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Abstract
With the development of α-planes representation of general type-2 fuzzy sets (GT2 FSs), general type-2 fuzzy logic systems
(GT2 FLSs) based on GT2 FSs have become a hot topic in academic field. While type-reduction (TR) is most critical block
for a T2 FLS, generally speaking, the most popular Karnik–Mendel (KM) or enhanced KM (EKM) algorithms are used
to perform the TR. The paper connects the EKM and the continuous version of EKM algorithms together and expands
the EKM algorithms to three different forms of weighted EKM (WEKM) algorithms resort to the Newton–Cotes quadrature
formulas of numerical integration techniques, while the EKM algorithms just become a special case of theWEKMalgorithms.
Four computer simulation examples are used to illustrate the performances of the WEKM algorithms. Compared with the
EKM algorithms, the WEKM algorithms have smaller absolute error and faster convergence speed to compute the centroid
defuzzified value of GT2 FLSs in general, which make them potentially applicable for T2 FLSs designers and adopters.

Keywords General type-2 fuzzy logic systems · α-Planes · Type-reduction · Weighted enhanced Karnik–Mendel algorithms ·
Continuous enhanced Karnik–Mendel algorithms · Computer simulation

1 Introduction

So far, interval type-2 fuzzy logic systems (IT2 FLSs)
(Mendel 2007; Hagras and Wagner 2012; Mendel 2001;
Khosravi and Nahavandi 2014; Chen et al. 2016) are still
the most widely used nonlinear models for fields with
high uncertainty, such as financial systems (Zarandi et al.
2009), autonomous mobile robots (Biglarbegian et al. 2011),
database and information systems (Niewiadomski 2010).
Takagi–Sugeno–Kang IT2 FLSs can approximate any real
continuous functions on a compact set to arbitrary accuracy.
The computational cost of general type-2 fuzzy logic systems
(GT2 FLSs) is comparatively high. Until recent years, the α-
planes representation (Mendel 2014) of general type-2 fuzzy
sets (GT2 FSs) was proposed by different research groups,
which tremendously decreased the computation complexity
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of GT2 FSs and their corresponding GT2 FLSs. In recent
years, GT2 FLSs (Sanchez et al. 2015; Castillo et al. 2016a)
based on the α-planes representation theories have been
applied in some fields.

In general, a T2 FLS is composed of five blocks, which are
fuzzifier, inference, rules, type-reduction (TR), and defuzzifi-
cation. Among them, the block of TR plays themost essential
role. The centroid TR (Karnik and Mendel 2001) is the
most popular method in theoretical researches. Traditional
Karnik–Mendel (KM)algorithms (Mendel 2013;Mendel and
Liu 2007) were developed for performing the centroid TR
of IT2 FLSs. It usually needs two to six iterations for the
KM algorithms to converge. Then EKM algorithms (Wu and
Mendel 2009) were developed by Wu and Mendel in order
to reduce the computation time. And the EKM algorithms
can save about two iterations compared with the KM algo-
rithms. The continuous versions of KM and EKM (CKM and
CEKM) were proposed by Mendel and Wu (2006), which
were used for theoretical analysis. Liu et al. (2012) gave
the theoretical explanations for the initialization of the EKM
algorithms and extended theEKMalgorithms to theweighted
EKM (WEKM) algorithms by means of numerical integra-
tion techniques to compute the centroid left end points of
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IT2 FSs. All of these laid a rich theoretical foundation for
applying the TR algorithms for IT2 FLSs.

In 2008, Liu (2008) introduced the α-planes representa-
tion of a GT2 FS for the first time and employed the KM
algorithms to perform the centroid TR of GT2 FLSs. In
the next year, Mendel et al. (2009) reviewed the α-planes
representation of a GT2 FS and compared T1, IT2, and tri-
angle quasi-GT2 FLSs to predict a chaotic Mackey–Glass
time series. Similar to the α-planes representation, Wagner
and Hagras (2010) used the KM algorithms to compute the
centroid of the zSlices of GT2 FLSs in robot control prob-
lems. Inspired by Mendel (2014), Liu (2008), Mendel et al.
(2009), Liu et al. (2012), Chen et al. (2015) and Chen and
Wang (2015), this paper aims to connect theEKMandCEKM
algorithms together and expands the WEKM algorithms for
implementing the centroid TR of α-planes representation-
based GT2 FLSs. By analyzing and comparing the sum
operation in the discrete version of EKM algorithms and the
integral operation in the continuous version ofEKM(CEKM)
algorithms, the paper employs the Newton–Cotes quadrature
formulas of numerical integration techniques to expand the
EKM algorithms to three different forms of WEKM algo-
rithms. For performing the centroid TR of GT2 FLSs, the
proposed WEKM algorithms have more accurate calcula-
tion results and faster convergence speed compared with the
EKM algorithms.

The remainder of the paper is organized as follows: Sect. 2
briefly introduces the backgrounds of GT2 FSs and GT2
FLSs. Section 3 provides the Newton–Cotes quadrature for-
mulas, the proposed CEKM algorithms for GT2 FLSs, and
how to compute the centroid TR of GT2 FLSs according to
the WEKM algorithms with three different weight assign-
ment approaches. Section 4 gives four simulation examples,
and analyzes and compares the performances of the WEKM
algorithms with the EKM algorithms. Finally, conclusions
are given in Sect. 5.

2 Backgrounds

2.1 General type-2 fuzzy sets

A general type-2 fuzzy set (GT2 FS) Ã can be viewed as
a bivariate function (Aisbett et al. 2010) on the Cartesian
product, where the mapping is μ Ã : X ×[0, 1] → [0, 1] and
X is the universe of the primary variable, x , of Ã, i.e.,

Ã = {(x, u), μ Ã(x, u)|∀x ∈ X ,∀u ∈ [0, 1]}, (1)

which is often called the point-value expression of a GT2 FS;
μ Ã(x, u) can also be represented as fx (u).

A vertical slice of μ Ã(x, u) is a secondary membership
function (MF) (Mendel and John 2002), i.e.,

μ Ã

(
x = x ′, u

) ≡ μ Ã

(
x ′) =

∫

u∈[0,1]
fx ′(u)/u, (2)

where the sign
∫
does not mean the integral operation, but

represents union over all admissible. For simplicity, we can
denote the secondary MF μ Ã

(
x ′) as Ã(x) in the paper.

So Eq. (1) can be reexpressed as

Ã =
∫

∀x∈X
Ã(x)/x; (3)

this kind of vertical slices representation of GT2 FSs is very
important for studying the computations of GT2 FLSs.

The two-dimensional support of μ Ã(x, u) is called the
footprint of uncertainty (FOU) of Ã, i.e.,

FOU
(
Ã
)

= {
(x, u) ∈ X × [0, 1]|μ Ã(x, u) > 0

}
, (4)

where FOU ( Ã) is bounded by upper MF (UMF) μ Ã(x) and
lower MF (LMF) μ

Ã
(x).

Suppose that Ãα(x) denotes the α-cut of Ã(x), α ∈ [0, 1],
i.e.,

Ãα(y) = {u | fx (u) ≥ α} = [aα(x), bα(x)]. (5)

For any x ∈ X , we treat Ã(x) as the following α-cuts
decomposition, i.e.,

Ã(x) =
⋃

∀α∈[0,1]
[α/ Ãα(x)] = sup

∀α∈[0,1]

[
α/ Ãα(x)

]

= sup
∀α∈[0,1]

{
α/
[
aα(x), bα(x)

]}
, (6)

where
⋃

represents the union operation and sup denotes the
supremum. The vertical slices representation of Ã could be
obtained by substituting (6) into (3) as

Ã =
∫

∀x∈X

⎧
⎨

⎩

⋃

∀α∈[0,1]

[
α/ Ãα(x)

]
⎫
⎬

⎭
/x . (7)

Based on the above analyses, the α-planes (horizontal
slices or z-slices) (Mendel 2014; Liu 2008; Mendel et al.
2009; Wagner and Hagras 2010) representation of Ã can be
expressed as

Ã =
⋃

∀α∈[0,1]

{∫

∀x∈X

[
α/ Ãα(x)

]
/x

}

=
⋃

∀α∈[0,1]

{
α/

[∫

∀x∈X
Ãα(x)/x

]}
, (8)
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where the α-plane Ãα is the union of primary membership
functions of Ãwhose secondary membership grades must be
greater than or equal to α, i.e.,

Ãα = {(x, u), μ Ã(x)(u) ≥ α|∀x ∈ X ,∀u ∈ [0, 1]}

or

Ãα =
∫

∀x∈X

∫

∀u∈[0,1]
{(x, u)|μ Ã(x)(u) ≥ α}, (9)

where Eq. (9) denotes both the point-value and continuous
forms, and Ãα can also be straight forwardly expressed as

Ãα =
∫

∀x∈X
Ãα(x)/x =

∫

∀x∈X
[aα(x), bα(x)]/x . (10)

In addition, an α-plane which is raised to the α-level is
usually denoted by RÃα

, i.e.,

RÃα
= α/ Ãα, (11)

where RÃα
is an IT2FSwhose secondarymembership grades

equal to α.
Interestingly, the secondary membership grades of IT2

FSs are all equal to 1. So an IT2 FS can be completely char-
acterized by its UMF and LMF.

2.2 General type-2 fuzzy logic systems

In general, the structure of GT2 FLSs (Mendel 2014) can
be classified into two types: Mamdani and TSK. Only the
Mamdani type is focused on this paper. Without loss of gen-
erality, we consider a Mamdani GT2 FLS with p inputs
x1 ∈ X1, . . . , xp ∈ X p and one output y ∈ Y . It is char-
acterized by M fuzzy rules, where the lth rule is of the form

IF x1 is F̃
l
1 and · · · and xp is F̃

l
p, THEN y is G̃l l

= 1, . . . , M, (12)

where F̃l
i (i = 1, . . . , p; l = 1, . . . , M) are the antecedent

GT2 FSs and G̃l(l = 1, . . . , M) are the consequent GT2
FSs.

In order to simplify expressions, we adopt singleton fuzzi-
fier in the paper. When xi = x ′

i , only the vertical slice F̃
l
i (x

′
i )

of antecedent GT2 FSs F̃l
i is activated, whose α-cut decom-

position is (see Eq. 7)

F̃l
i

(
x ′
i

) = sup
∀α∈[0,1]

α/
[
ali,α

(
x ′
i

)
, bli,α

(
x ′
i

)]
. (13)

For every fuzzy rule, one computes the firing interval at
the α-level Fl

α(x ′) as:

Fα :

⎧
⎪⎪⎨

⎪⎪⎩

Fl
α

(
x ′) ≡

[
f l
α

(
x ′) , f

l
α

(
x ′)
]

f l
α

(
x ′) ≡ T p

i=1a
l
i,α

(
x ′
i

)

f
l
α

(
x ′) ≡ T p

i=1b
l
i,α

(
x ′
i

)
,

(14)

where T denotes the minimum or product t-norm operation.
Suppose that the α-plane (horizontal slice) G̃l

α of the con-
sequent GT2 FS G̃l at the α-level is (see Eq. 9)

G̃l
α =

∫

∀y∈Y
G̃l

α(y)/y =
∫

∀y∈Y

[
glL,α(y), glR,α(y)

]
/y. (15)

Then the firing interval of each fuzzy rules is combined
with the corresponding consequent α-plane G̃l

α to obtain the
firing rule α-plane B̃l

α , i.e.,

B̃l
α :

⎧
⎪⎪⎨

⎪⎪⎩

FOU
(
B̃l

α

)
=
[
μ
B̃l

α

(
y|x ′) , μB̃l

α

(
y|x ′)

]

μ
B̃l

α

(
y|x ′) = f l

α

(
x ′) ∗glL,α (y)

μB̃l
α

(
y|x ′) = f

l
α

(
x ′) ∗glR,α (y) ,

(16)

where ∗ represents the minimum or product operation.
Next, we aggregate all the B̃l

α(l = 1, . . . , M) to obtain
the output α-plane B̃α , i.e.,

B̃α :

⎧
⎪⎪⎨

⎪⎪⎩

FOU
(
B̃α

)
=
[
μ
B̃α

(
y|x ′) , μB̃α

(
y|x ′)

]

μ
B̃α

(
y|x ′) = μ

B̃1
α

(
y|x ′) ∨ · · · ∨ μ

B̃M
α

(
y|x ′)

μB̃α

(
y|x ′) = μB̃1

α

(
y|x ′) ∨ · · · ∨ μB̃M

α

(
y|x ′) ,

(17)

where ∨ denotes the maximum operation.
Then compute the centroid of B̃α to acquire the TR set

YC,α(x ′) at the α-level, i.e.,

YC,α

(
x ′) = CB̃α

(
x ′) = α/

[
l B̃α

(
x ′) , rB̃α

(
x ′)] , (18)

where α ∈ [0, 1], and the two end points l B̃α
(x ′) and rB̃α

(x ′)
(the centroid end points of a specific IT2FS) can be computed
by TR algorithms like EKM algorithms (Mendel 2013; Wu
and Mendel 2009; Liu et al. 2012; Chen et al. 2015) as:

l B̃α

(
x ′) = min

μB̃α
(yi )∈

[
μ
B̃α

(yi ),μB̃α
(yi )

]

∑N
i=1 yiμRB̃α

(yi )
∑N

i=1 μRB̃α
(yi )

(19)

and

rB̃α

(
x ′) = max

μB̃α
(yi )∈

[
μ
B̃α

(yi ),μB̃α
(yi )

]

∑N
i=1 yiμRB̃α

(yi )
∑N

i=1 μRB̃α
(yi )

,

(20)
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Table 1 EKM algorithms to compute the centroid end points of an IT2
FS (Wu and Mendel 2009)

Step EKM algorithm for cl

1 Set k = [N/2.4] (the nearest integer to N/2.4) and compute
a = ∑k

i=1 xiμRÃα
(xi ) +∑N

i=k+1 xiμRÃα

(xi ), b =
∑k

i=1 μRÃα
(xi ) +∑N

i=k+1 μ
RÃα

(xi ), c′ = a/b

2 Find k′ ∈ [1, N − 1] such that xk′ ≤ c′ ≤ xk′+1

3 Check if k′ = k. If yes, stop and set c′ = cl and k = L . If
no, go to Step 4.

4 Compute s = sign(k′ − k) and:

a′ = a + s
∑mak(k,k′)

i=min(k,k′)+1 xi [μRÃα
(xi ) − μ

RÃα

(xi )]
b′ = b +
s
∑mak(k,k′)

i=min(k,k′)+1 [μRÃα
(xi ) − μ

RÃα

(xi )], c′′(k′) = a′/b′

5 Set c′ = c′′(k), a = a′ and b = b′ and go to Step 2

Step EKM algorithm for cr

1 Set k = [N/1.7] (the nearest integer to N/1.7) and compute
a = ∑k

i=1 xiμRÃα

(xi ) +∑N
i=k+1 xiμRÃα

(xi ), b =
∑k

i=1 μ
RÃα

(xi ) +∑N
i=k+1 μRÃα

(xi ), c′ = a/b

2 Find k′ ∈ [1, N − 1]such that xk′ ≤ c′ ≤ xk′+1

3 Check if k′ = k. If yes, stop and set c′ = cr and k = R. If
no, go to Step 4.

4 Compute s = sign(k′ − k) and:

a′ = a − s
∑mak(k,k′)

i=min(k,k′)+1 xi [μRÃα
(xi ) − μ

RÃα

(xi )] b′ =
b − s

∑mak(k,k′)
i=min(k,k′)+1 [μRÃα

(xi ) − μ
RÃα

(xi )], c′′(k′) =
a′/b′

5 Set c′ = c′′(k), a = a′ and b = b′ and go to Step 2

where N denotes the number of discrete points of the rule
consequent primary variable.

Table 1 shows the detailed steps for computing the cen-
troid of an IT2 FS bymeans of the EKM algorithms, where L
and R are the switching points for the lower and upper MFs,
and cl and cr are the left and right end points of the centroid
interval, respectively.

Finally, we aggregate all theα-planesYEKM,α to constitute
the T1 FS YEKM, i.e.,

YEKM = sup
∀α∈[0,1]

α/YEKM,α

(
x ′) . (21)

In practical calculations, one uniformly divides the value
of α into n alpha-planes at α1, α2, . . . , αn . Then the crisp
output of a GT2 FLS is calculated as

y
(
x ′) =

n∑

i=1

αi

[(
l B̃αi

(
x ′)+ rB̃αi

(
x ′)) /2

]
/

n∑

i=1

αi . (22)

Equation (22) is referred to as the average of end points
defuzzification method, which is first proposed by Wagner

and Hagras (2010). In this way, altogether n values of YC,α

at the corresponding α-level need to be computed by the TR
algorithms (Mendel 2013; Mendel and Liu 2007; Wu and
Mendel 2009; Liu et al. 2012; Biglarbegian et al. 2010; Cou-
pland and John 2007; Mendel and Liu 2013). We may use 2n
processors to speed up the computation time, if such condi-
tions are available.

3 WEKM algorithms

Before introducing the proposed WEKM algorithms, we
must first give two parts of preliminary knowledge: Newton–
Cotes quadrature formulas (Liu et al. 2012; Chen and Wang
2015) and CEKM algorithms.

3.1 Newton–Cotes quadrature formulas

The numerical integration aims to approximate the definite
integral

∫ b
a f (x)dx by the linear combination of some func-

tional values f (xi ) on the discrete points. Therefore, the
calculations of definite integrals can be ascribed to comput-
ing the functional values.

Definition 1 (Quadrature formula Liu et al. 2012; Mathews
and Fink 2004) Suppose that a < x0 < x1 < · · · < xn = b,
for the definite integral

∫ b

a
f (x)dx = Q( f ) + E( f ). (23)

If the following is true

Q( f ) =
n∑

i=0

wi f (xi ) = w0 f (x0) + · · · + wn f (xn), (24)

then Eq. (23) is referred to as the quadrature formula or
numerical integration, where {wi }ni=0 is called the weight
coefficient, {xi }ni=0 is called the integration node, and E( f )
is referred to as the truncation error, which is also the remain-
der of the quadrature formula.

Next, we employ the composite trapezoidal rule, com-
posite Simpson rule, and composite Simpson 3/8 rule as the
straight line, quadrature polynomial function, and cubic poly-
nomial function to approximate f (x), respectively.

Theorem 1 (Composite trapezoidal rule Liu et al. 2012;
Mathews and Fink 2004) Consider the function y = f (x)
on the closed interval [a, b]. Divide the interval [a, b] into
n subintervals {xi−1, xi }ni=1 with the equal width h = (b −
a)/n, where the equal interval node is xi = x0 + ih(i =
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0, 1, . . . , n). Then the numerical estimation of definite inte-
gral with the composite trapezoidal rule is

∫ b

a
f (x)dx = h

2

[

f (a) + f (b) + 2
n−1∑

i=1

f (xi )

]

+ET ( f , h). (25)

If the function f is second-order continuous differentiable
on [a, b], then the error term is

ET ( f , h) = − (b − a) f ′′(ζ )

12
h2, (26)

where a < ζ < b.

Theorem 2 (Composite Simpson rule Liu et al. 2012; Math-
ews and Fink 2004) Consider the function y = f (x) on
the closed interval [a, b]. Divide the interval [a, b] into
2n subintervals {xi−1, xi }2ni=1 with the equal width h =
(b−a)/2n, where the equal interval node is xi = x0+ih(i =
0, 1, . . . , 2n). Then the numerical estimation of definite inte-
gral with the composite Simpson rule is

∫ b

a
f (x)dx = h

3

[

f (a) + f (b) + 2
n−1∑

i=1

f (x2i )

+4
n−1∑

i=0

f (x2i+1)

]

+ ES( f , h). (27)

If the function f is fourth-order continuous differentiable
on [a, b], then the error term is

ES( f , h) = − (b − a) f (4)(ζ )

180
h4, (28)

where a < ζ < b.

Theorem 3 (Composite Simpson 3/8 rule Liu et al. 2012;
Mathews and Fink 2004) Consider the function y = f (x)
on the closed interval [a, b]. Divide the interval [a, b] into
3n subintervals {xi−1, xi }3ni=1 with the equal width h =
(b−a)/3n, where the equal interval node is xi = x0+ih(i =
0, 1, . . . , 3n). Then the numerical estimation of definite inte-
gral with the composite Simpson 3/8 rule is

∫ b

a
f (x)dx = 3h

8

[

f (a) + f (b) +
n∑

i=1

2 f (x3i ) +
n∑

i=1

3 f (x3i−2)

+
n∑

i=1

3 f (x3i−2)

]

+ ESC( f , h). (29)

If the function f is fourth-order continuous differentiable on
[a, b], then the error term is

ESC( f , h) = − (b − a) f (4)(ζ )

80
h4, (30)

where a < ζ < b.
Suppose that Eqs. (25), (27), and (29) are measurable, that

is to say, all of them have meanings in Lebesgue sense.

3.2 CEKM algorithms

CEKMalgorithms are similar to the discrete version of EKM
algorithms (Mendel 2013; Mendel and Liu 2007; Wu and
Mendel 2009; Mendel and Wu 2006; Liu et al. 2012; Chen
et al. 2015), and they can be used to investigate the theoretical
property ofGT2 FLSs (Mendel 2014; Liu 2008;Mendel et al.
2009) based on the α-planes representation theory.

Suppose that the centroid TR output of GT2 FLSs is the
GT2 FS Ã, and we decompose the value of α into n values
such that α = α1, . . . , αn . For every αi (i = 1, . . . , n), the
corresponding IT2 FS RÃαi

(i = 1, . . . , n) is obtained (see

Eq. 18). Then the EKM algorithms can be used to compute
the two end points of every RÃαi

(see Table 1). If the primary

variable of Ã satisfies a = x1 < x2 < · · · < xN = b, a and b
are the left and right end points of sampling primary variable
x and then the continuous version of EKM algorithms should
be as follows:

l Ãα
(x ′) = min

ζ∈[a,b]

∫ ζ

a xμRÃα
(x)dx + ∫ b

ζ
xμ

RÃα

(x)dx
∫ ζ

a μRÃα
(x)dx + ∫ b

ζ
μ
RÃα

(x)dx
(31)

r Ãα
(x ′) = max

ζ∈[a,b]

∫ ζ

a xμ
RÃα

(x)dx + ∫ b
ζ
xμRÃα

(x)dx
∫ ζ

a μ
RÃα

(x)dx + ∫ b
ζ

μRÃα
(x)dx

. (32)

Note that Ã and RÃα
denote the GT2 FS and the corre-

sponding IT2 FS in Eqs. (31) and (32), while B̃ and RB̃α

represent the GT2 FS and the corresponding IT2 FS in Eqs.
(19) and (20). Table 2 gives the processes of computing the
centroid end points of an IT2 FS by the CEKM algorithms.
The sign α in Table 2 is just a representation for computing,
which has different meanings with the α in the α-plane.

3.3 WEKM algorithms

The CEKM algorithms are given in order to let us better
understand the EKM algorithms in theory. On the basis of
Sects. 3.1 and 3.2, this section proposes the WEKM algo-
rithms, which can be used to perform the centroid TR of
GT2 FLSs in contrast to the EKM algorithms. The results in
this section are adapted from Liu et al. (2012).
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Table 2 CEKM algorithms to compute the centroid end points of an
IT2 FS

Step CEKM algorithm for cl

1 Set c = a + (b − a)/2.4, and compute
α = ∫ c

a xμ
R̃Ax

(x)dx + ∫ b
c xμ

R̃Ax

(x)dx ,

β = ∫ c
a xμ

R̃Ax
(x)dx + ∫ b

c xμ
R̃Ax

(x)dx, c′ = α/β

2 Check if |c′ − c| < ε(ε is a give bound of the algorithms). If
yes, stop and set c′ = cl . If no, go to Step 3.

3 Compute s = sign(c′ − c) and

α′ = α + s
∫ max(c,c′)
min(c,c′) x[μRÃα

(x) − μ
RÃα

(x)]dx
β ′ = β + s

∫ max(c,c′)
min(c,c′) [μRÃα

(x) − μ
RÃα

(x)]dx, c′′ = α′/β̇ ′

4 Set c = c′, c′ = c′′, α = α′, β = β ′ and go to Step 2

Step CEKM algorithm for cr

1 Set c = a + (b − a)/1.7, and compute
α = ∫ c

a xμ
R̃Ax

(x)dx + ∫ b
c xμ

R̃Ax
(x)dx ,

β = ∫ c
a xμ

R̃Ax

(x)dx + ∫ b
c xμ

R̃Ax
(x)dx, c′ = α/β

2 Check if |c′ − c| < ε(ε is a give bound of the algorithms). If
yes, stop and set c′ = cr . If no, go to Step 3.

3 Compute s = sign(c′ − c) and

α′ = α − s
∫ max(c,c′)
min(c,c′) x[μRÃα

(x) − μ
RÃα

(x)]dx
β ′ = β − s

∫ max(c,c′)
min(c,c′) [μRÃα

(x) − μ
RÃα

(x)]dx, c′′ = α′/β̇ ′

4 Set c = c′, c′ = c′′, α = α′, β = β ′ and go to Step 2

The WEKM algorithms are numerical implementation
of the CEKM algorithms. By observing and comparing the
results in Tables 1 and 2, we can obtain that the CEKM algo-
rithms are similar to the discrete version of EKM algorithms.
However, the sum operations in the discrete version have
been changed to the integral operations in the continuous ver-
sion. It justmeans the sumoperations for theEKMalgorithms
at the sampling points play the role of integrations for the cor-
responding function in the CEKM algorithms. According to
the Newton–Cotes quadrature formulas, we can assign the
corresponding weight wi for each of the xi , and then the
more accurate results of cl and cr can be computed.

The EKM algorithms are just a special case of theWEKM
algorithm, whose weights are all equal to 1 (wi = 1(i =
1, . . . , N )). In Table 3, according to Eq. (24) (Mathews and
Fink 2004), the weights can be assigned with several meth-
ods. However, we only consider the numerical integration
methods based on the Newton–Cotes quadrature formulas
described in Sect. 3.1. These methods are the composite
trapezoidal rule, composite Simpson rule, and composite
Simpson 3/8 rule, respectively. Moreover, the corresponding
WEKM algorithms can simply referred to as the TWEKM,
SWEKM, and S3/8WEKM algorithms. Although in theory,
we may use arbitrary order of the Newton–Cotes quadrature

Table 3 WEKM algorithms to compute the centroid end points of an
IT2 FS

Step WEKM algorithm for cl

1 Set k = [N/2.4] (the nearest integer to N/2.4) and compute
α = ∑k

i=1 wi xiμRÃα
(xi ) +∑N

i=k+1 wi xiμRÃα

(xi ), β =
∑k

i=1 wiμRÃα
(xi ) +∑N

i=k+1 wiμRÃα

(xi ), c′ = α/β

2 Find k′ ∈ [1, N − 1] such that xk′ ≤ c′ ≤ xk′+1

3 Check if k′ = k. If yes, stop and set c′ = cl and k = L . If
no, go to Step 4.

4 Compute s = sign(k′ − k) and: α′ =
α + s

∑mak(k,k′)
i=min(k,k′)+1 wi xi [μRÃα

(xi ) − μ
RÃα

(xi )]β ′ =
β + s

∑mak(k,k′)
i=min(k,k′)+1 wi [μRÃα

(xi ) − μ
RÃα

(xi )], c′′(k′) =
α′/β ′

5 Set c′ = c′′(k), α = α′ and β = β ′ and go to Step 2

Step EKM algorithm for cr

1 Set k = [N/1.7] (the nearest integer to N/1.7) and compute
α = ∑k

i=1 wi xiμRÃα

(xi ) +∑N
i=k+1 wi xiμRÃα

(xi ), β =
∑k

i=1 wiμRÃα

(xi ) +∑N
i=k+1 wiμRÃα

(xi ), c′ = α/β

2 Find k′ ∈ [1, N − 1]such that xk′ ≤ c′ ≤ xk′+1

3 Check if k′ = k. If yes, stop and set c′ = cr and k = R. If
no, go to Step 4.

4 Compute s = sign(k′ − k) and: α′ =
α − s

∑mak(k,k′)
i=min(k,k′)+1 wi xi [μRÃα

(xi ) − μ
RÃα

(xi )]β ′ =
β − s

∑mak(k,k′)
i=min(k,k′)+1 wi [μRÃα

(xi ) − μ
RÃα

(xi )], c′′(k′) =
α′/β ′

5 Set c′ = c′′(k), α = α′ and β = β ′ and go to Step 2

formulas to obtain the more generalized WEKM algorithms,
as the number of orders increases, the generated Runge’s
phenomenon may greatly amplify the numerical integration
error. And this does not conform to the requirement of esti-
mation theory (Mathews and Fink 2004). Table 4 proposes
the weights assignment methods for the TWEKM, SWEKM,
and S3/8WEKM algorithms. For all the WEKM algorithms,
the sampling points are equidistant distributed on [a, b], i.e.,

xi = a + i − 1

N − 1
(b − a) (i = 1, . . . , N ) . (33)

To implement the proposed CEKM and WEKM algorithms
to compute the centroid TR of GT2 FLSs, we can have the
following specific steps:

Step 1 Union all the fired rules in the GT2 FLSs to find the
output GT2 FS Ã.
Step2Breakα into values of 0, 1/Δ, 2/Δ, . . ., (Δ−1)/Δ, 1.
Decompose the GT2 FS into multiple α-planes Ãα with
above α values.
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Table 4 Weights assignments
method for the WEKM
algorithms (Liu et al. 2012)

Algorithms Integration rule Weight

EKM ____________ wi = 1(i = 1, . . . , N )

TWEKM Composite trapezoidal rule wi =
{
1/2, i = 1, N ,

1, i �= 1, N .

SWEKM Composite Simpson rule

S3/8WEKM Composite Simpson 3/8 rule

Step 3 Compute the centroid α/[l Ãα
, r Ãα

] for each of the
corresponding IT2 FS RÃα

using the CEKM and WEKM
algorithms.
Step 4 Compute the union of all of the Step 3 centroids (see
Eq. 21).
Step 5 Compare the performances of the proposed WEKM
algorithms with the EKM algorithms by considering the
CEKM algorithms as the benchmark.

Table 3 shows WEKM algorithms to compute the centroid
end points of an IT2 FS.

In Table 4, except for the EKM algorithms, the weight
assignments of the three types of WEKM algorithms can
be obtained from Eqs. (25), (27), and (29) according to the
following steps:

1. Replace xi (i = 0, 1, . . . , n), x0 = a, xn = b in Eq. (25);
and xi (i = 0, 1, . . . , 2n), x0 = a, x2n = b in Eq. (27);
and xi (i = 0, 1, 2, . . . , 3n) and x0 = a, x3n = b in Eq.
(29) all by xi (i = 1, 2, . . . , N ) and x1 = a, xN = b.

Note that, in Table 4, a sign mod represents the modular
arithmetic operator. i = j mod(d) means i = nd + j , where
n is an integer.

2. The common coefficients of h/2, h/3, and 3h/8 in Eqs.
(25), (27), and (29) can be cancelled by the quotient of
two integrals (the numerator and denominator) in Table 2.

3. In Table 4, the weight values of TWEKM and SWEKM
algorithms use one half of the coefficients in the parenthe-
ses of (25) and (27), and theweight values of S3/8WEKM
algorithm use one-third of the coefficients in the paren-
theses of (29).

4. The number of discrete points N of SWEKM and
S3/8WEKM algorithms is not only restricted to N =

2n+ 1 and N = 3n+ 1, but as required by Eqs. (27) and
(29) (N = 1 mod (2) and N = 1 mod (3)).

According to the relations between Table 4 and Eqs.
(25), (27), and (29), the proposed TWEKM, SWEKM, and
S3/8WEKM algorithms approximate the numerical integra-
tion MFs as first, second, and third order of polynomials,
respectively. Moreover, they are only special cases of the
Newton–Cotes quadrature formulas.

Furthermore, the relations between CEKM algorithms (as
in Table 2) and WEKM algorithms (as in Table 3) for per-
forming the centroid TR of GT2 FLS can be summarized as
follows:

1. The WEKM algorithms perform the centroid TR based
on the sum operations based on the sampling points
xi (i = 1, . . . , N ). When the iterations stop, the optimal
switchingpoints canbe found to approximate the centroid
TR end points. But the CEKMalgorithms use the integral
operations to perform the centroid TR, and the accurate
centroid TR end points can be calculated by the CEKM
algorithms. In theory, as the sampling point N → +∞,
the solutions of theWEKMalgorithms approach the solu-
tions of the CEKM algorithms.

2. For theWEKM algorithms, we may increase N to obtain
more accurate results. As for the CEKM algorithms, we
can set smaller error bound ε to control the difference
between two adjacent iterations to improve the compu-
tational accuracy.

3. Moreover, the WEKM algorithms achieve the numeri-
cal calculation according to the sum operations, whereas
the CEKM algorithms perform the calculations with the
integral operations. In conclusion, theWEKMalgorithms
canbeviewed as the numerical implementation ofCEKM
algorithms according to the numerical integration meth-
ods.
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4 Simulation studies

Four numerical simulation examples are given in this sec-
tion. Here, we suppose that the FOU of output GT2 FS of the
described GT2 FLSs and the corresponding secondary MFs
are known by means of merging or weighting the fuzzy rules
under the guidance of inference engine (Wang et al. 2008).
For the first example, the whole FOU is composed of piece-
wise linear function (Liu 2008; Mendel et al. 2009; Liu et al.
2012), and the corresponding vertical slices (secondaryMFs)
are trapezoidalMFs. For the second example, thewhole FOU
is composed of two different types of MFs (Mendel and Liu
2007; Liu et al. 2012; Mendel and Liu 2013), and the corre-
sponding secondary MFs are trapezoidal MFs. For the third
example, the whole FOU is completely composed of Gaus-
sian MFs (Liu 2008; Mendel et al. 2009; Liu et al. 2012),
and the corresponding secondary MFs are triangle MFs. For
the last example, the whole FOU is the Gaussian T2 primary
MF with uncertain standard deviations, and the correspond-
ing secondary MFs are triangle MFs.

In the simulations, we decompose α into Δ effective val-
ues as α = 0, 1/Δ, . . . , (Δ − 1)/Δ, 1. The value of Δ is
selected to range from 1 to 100. The primary variable of the
centroid TR set is uniformly sampled, where the difference
between adjacent points is xi+1 − xi = 0.05. In this paper,
we plot the centroid type-reduced T1 FS with the highest Δ
and compare the defuzzified outputs derived from the type-
reduced T1 FS with different Δ values. For Examples 1, 3,
and 4, the sampling of primary variable is x = 0:0.05:10,
whereas for the second example, the sampling of the primary
variable is x = − 5:0.05:15.

Note that the special α-plane with α-level equal to 0 does
not play a role in performing the centroid TR of GT2 FLSs
(see Eq. 22).

4.1 Case 1: Piecewise linear functions with
trapezoidal vertical slices (Liu 2008; Mendel
et al. 2009)

As shown in Fig. 1, the upper bound of the FOU is composed
of the maximum of two triangular functions, i.e.,

u1(x) =
⎧
⎨

⎩

x−1
2 , 1 ≤ x ≤ 3

7−x
4 , 3 < x ≤ 7

0, otherwise
(34)

and

u2(x) =
⎧
⎨

⎩

x−2
5 , 2 ≤ x ≤ 6

16−2x
5 , 6 < x ≤ 8

0, otherwise.
(35)
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Fig. 1 a FOU of Case 1; b its corresponding vertical slice at x = 2

The lower bound of the FOU is composed of the maximum
of two triangular functions

u3(x) =
⎧
⎨

⎩

x−1
6 , 1 ≤ x ≤ 4

7−x
6 , 4 < x ≤ 7

0, otherwise
(36)

and

u4(x) =
⎧
⎨

⎩

x−3
6 , 3 ≤ x ≤ 5

8−x
9 , 5 < x ≤ 8

0, otherwise.
(37)

For any value of x , the associated vertical slice is the non-
symmetric trapezoid MF, whose top left and right end points
are determined by
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Fig. 2 The centroid type-reduced T1 FS (computed by CEKM algo-
rithms) for Δ = 100 in Case 1
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Fig. 3 The centroid defuzzified values (computed by CEKM algo-
rithms) for Δ ranging from 1 to 100 in Case 1

L(x) = u(x) + 0.6w(u(x)

− u(x)), R(x) = u(x)

− 0.6(1 − w)(u(x) − u(x)), (38)

where u(x) and u(x) are the lower and upper bounds of the
primary MF, respectively. For this case, we choose w = 0.
In addition, the error accuracy was selected as ε = 10−6.

First of all, we choose the CEKM algorithms as the
benchmark to compute the centroid type-reduced T1 FS for
Δ = 100 and the centroid defuzzified values for Δ ranging
from 1 to 100, which are shown in Figs. 2 and 3.

Then we study the performances of the proposed WEKM
algorithms. For Δ = 100, the type-reduced T1 FSs (see
Eq. 21) for four types of WEKM algorithms are shown in
Fig. 4a, and the absolute errors of centroid type-reduced
T1 FS between the CEKM algorithms and the four types of
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Fig. 4 a The centroid type-reduced T1 FSs for four types of WEKM
algorithms;b the absolute error of centroid type-reducedT1 FS between
the CEKM and WEKM algorithms for Case 1

WEKM algorithms are shown in Fig. 4b, where the grades
of centroid type-reduced MF are chosen as the independent
variable and the absolute error |CWEKM − CCEKM| is the
dependent variable.

Moreover, the centroid defuzzified values for four types of
WEKMalgorithmare shown in Fig. 5a, and the absolute error
of centroid defuzzified values between theCEKMalgorithms
and four types of WEKM algorithms are shown in Fig. 5b,
where the effective number of α-planes (Δ) is chosen as
the independent variable and the absolute error |yWEKM −
yCEKM| is the dependent variable.

4.2 Case 2: Hybrid functions with trapezoidal
vertical slices (Mendel et al. 2009)

As shown in Fig. 6, the upper bound of the FOU is the piece-
wise Gaussian function, i.e.,
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Fig. 5 a The centroid defuzzified values for four types ofWEKM algo-
rithms; b the absolute error of centroid defuzzified values between the
CEKM and WEKM algorithms for Case 1

u1(x) =
⎧
⎨

⎩

exp
[
− 1

2

( x−2
5

)2]
, − 5 ≤ x ≤ 7.185

exp
[
− 1

2

( x−9
1.75

)2]
, 7.185 < x ≤ 14.

(39)

The lower bound of the FOU is the piecewise linear function,
i.e.,

u2(x) =
{

0.6(x+5)
19 , − 5 ≤ x ≤ 2.6

0.4(14−x)
19 , 2.6 < x ≤ 14.

(40)

For any value of x , the corresponding vertical slice is also
chosen in the form of Eq. (38), and here we still selectw = 0
for this case.

The CEKM algorithms are used to compute the centroid
type-reducedT1FS forΔ = 100 and the centroid defuzzified
values forΔ ranging from 1 to 100 as shown in Figs. 7 and 8.

For Δ = 100, the type-reduced T1 FSs for four types
of WEKM algorithms are shown in Fig. 9a, and the absolute
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Fig. 6 a FOU of Case 2; b its corresponding vertical slice at x = 4
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Fig. 7 The centroid type-reduced T1 FS (computed by CEKM algo-
rithms) for Δ = 100 in Case 2
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Fig. 8 The centroid defuzzified values (computed by CEKM algo-
rithms) for Δ ranging from 1 to 100 in Case 2
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Fig. 9 a The centroid type-reduced T1 FSs for four types of WEKM
algorithms;b the absolute error of centroid type-reducedT1 FS between
the CEKM and WEKM algorithms for Case 2
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Fig. 10 a The centroid defuzzified values for four types of WEKM
algorithms; b the absolute errors of centroid defuzzified values between
the CEKM and WEKM algorithms for Case 2

errors of the centroid type-reducedT1FSbetween theCEKM
algorithms and four types of WEKM algorithms are shown
in Fig. 9b.

The centroid defuzzified values for four types of WEKM
algorithm are shown in Fig. 10a, and the absolute errors
of centroid defuzzified values between the CEKM algo-
rithms and the four types of WEKM algorithms are shown
in Fig. 10b.

4.3 Case 3: Piecewise Gaussian functions with
triangle vertical slices (Liu 2008; Mendel et al.
2009)

See Fig. 11, the upper bound of the FOU is the maximum of
two Gaussian functions, i.e.,
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Fig. 11 a FOU of Case 3; b its corresponding vertical slice at x = 3.5

u1(x) = exp

[

−1

2

(
x − 3

2

)2
]

(41)

and

u2(x) = 0.8 exp

[

−1

2

(
x − 6

2

)2
]

. (42)

The lower bound of the FOU is the maximum of another
two Gaussian functions, i.e.,

u3(x) = 0.5 exp

[
− (x − 3)2

2

]
(43)

and

u4(x) = 0.4 exp

[
− (x − 6)2

2

]
. (44)
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Fig. 12 The centroid type-reduced T1 FS (computed by CEKM algo-
rithms) for Δ = 100 in Case 3
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Fig. 13 The centroid defuzzified values (computed by CEKM algo-
rithms) for Δ ranging from 1 to 100 in Case 3

For any value of x , the corresponding vertical slice is the
triangle MF, whose apex is determined by

Apex = u(x) + w(u(x) − u(x)), (45)

where u(x) and u(x) are the lower and upper bounds of the
primary MF, respectively. In this test, we choose w = 0.5.

We choose the CEKM algorithms as the benchmark to
compute the centroid type-reduced T1 FS for Δ = 100 and
the centroid defuzzified values for Δ ranging from 1 to 100,
which are shown in Figs. 12 and 13.

As Δ = 100, the type-reduced T1 FSs for four types of
WEKM algorithms are shown in Fig. 14a, and the absolute
errors of centroid type-reduced T1 FS between the CEKM
algorithms and the four types of WEKM algorithms are
shown in Fig. 14b.
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Fig. 14 a The centroid type-reduced T1 FSs for four types of WEKM
algorithms; b the absolute errors of centroid type-reduced T1 FS
between the CEKM and WEKM algorithms for Case 3

Moreover, the centroid defuzzified values for four types
of WEKM algorithm are shown in Fig. 15a, and the abso-
lute errors of centroid defuzzified values between the CEKM
algorithms and four types of WEKM algorithms are shown
in Fig. 15b.

4.4 Case 4: Gaussian T2 primary MF (with fixedmean
and uncertain standard deviations) with triangle
vertical slices (Mendel et al. 2009; Liu et al. 2012)

As shown in Fig. 16, the upper bound of the FOU is a Gaus-
sian MF, i.e.,

u1(x) = exp

[

−1

2

(
x − 3

1.75

)2
]

. (46)
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Fig. 15 a The centroid defuzzified values for four types of WEKM
algorithms; b the absolute errors of centroid defuzzified values between
the CEKM and WEKM algorithms for Case 3

The lower bound of the FOU is another Gaussian function,
i.e.,

u2(x) = exp

[

−1

2

(
x − 3

0.25

)2
]

. (47)

For any value of x , the corresponding vertical slice is chosen
in the form of Eq. (45). In this test, we choose w = 0.75.

The CEKM algorithms are still chosen as the benchmark
to compute the centroid type-reduced T1 FS for Δ = 100
and the centroid defuzzified values for Δ ranging from 1 to
100 as shown in Figs. 17 and 18.

For Δ = 100, the type-reduced T1 FSs for four types of
WEKM algorithms are shown in Fig. 19a, and the absolute
errors of centroid type-reduced T1 FS between the CEKM
algorithms and four types of WEKM algorithms are shown
in Fig. 19b.
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Fig. 16 a FOU of Case 4; b its corresponding vertical slice at x = 4.5
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Fig. 17 The centroid type-reduced T1 FS (computed by CEKM algo-
rithms) for Δ = 100 in Case 4
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Fig. 18 The centroid defuzzified values (computed by CEKM algo-
rithms) for Δ ranging from 1 to 100 in Case 4
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Fig. 19 a The centroid type-reduced T1 FSs for four types of WEKM
algorithms; b the absolute errors of centroid type-reduced T1 FS
between the CEKM and WEKM algorithms for Case 4
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Fig. 20 a The centroid defuzzified values for four types of WEKM
algorithms; b the absolute errors of centroid defuzzified values between
the CEKM and WEKM algorithms for Case 4

Finally, the centroid defuzzified values for four types of
WEKM algorithm are shown in Fig. 20a, and the absolute
errors of centroid defuzzified values between the CEKM
algorithms and four types of WEKM algorithms are shown
in Fig. 20b.

4.5 Discussion

For all of the above four cases, we first discuss the perfor-
mances for performing the centroid type-reduced T1 FSs
(both left side and right side of the four types ofWEKMalgo-
rithms). After observing Figs. 4b, 9b, 14b, and 19b,we obtain
the conclusion that the proposed three types ofWEKM algo-
rithms outperform the special WEKM (EKM) algorithms in
Cases 3 and 4, the proposed WEKM algorithms and EKM
algorithms both have their own advantages on the particular
ranges in Case 2, and the EKM algorithms outperform the
proposed WEKM algorithms in Case 1.

For the four cases, the more important thing is to discuss
computing the centroid defuzzified values for the GT2 FLSs.
In order to measure the performances the EKM, TWEKM,
SWEKM, and S3/8WEKMalgorithms further, we define and
compute the relative error |yWEKMi −yCEKMI |/|yCEKMi |(i =
1, . . . , 4) for all four cases for Δ ranging from 1 to 100.
Table 5 gives the average relative error of the centroid
defuzzified values as Δ ranges from 1 to 100, where the last
row in Table 5 is the total mean average relative error for the
four types of WEKM algorithms.

From Table 5 and Figs. 5b, 10b, 15b, and 20b, the follow-
ing conclusions can be obtained:

1. From Figs. 5b, 10b, 15b, and 20b, we find that the
absolute errors of four types of WEKM algorithms all
converge, in the four cases. In Case 1, the S3/8WEKM
algorithms obtain theminimumabsolute errors, the EKM
andTWEKMalmost obtain themaximumabsolute errors
whose values are almost the same, and the SWEKM
algorithms obtain the medium absolute errors. In Case
2, the absolute errors obtained by the EKM algorithms
are less than that by the proposed three types of WEKM
algorithms at most values of Δ. However, at several ini-
tial Δ values, the corresponding absolute errors obtained
by the EKM algorithms are greater than that by the
proposed WEKM algorithms. In Case 3, the absolute
errors obtained by the proposed WEKM algorithms are
all less than that by the EKM algorithms, whereas the
TWEKM and SWEKM algorithms obtain the minimum
absolute errors, and the S3/8WEKM algorithms obtain
the medium absolute error. In Case 4, the S3/8WEKM
algorithms obtain the maximum absolute error and the
other three types of WEKM algorithms obtain the rela-
tively small absolute errors whose values are almost the
same.

2. From Table 5, we find that the maximum average rela-
tive errors of the EKM and TWEKM algorithms are both
0.114651%, the maximum average relative error of the
SWEKM algorithms is 0.096386%, and the maximum
average relative error of the S3/8WEKM algorithms is
0.081919%.

3. According to items 1 and 2, we can see that the appropri-
ate WEKM algorithms may be selected to obtain better
computational accuracy than the EKM algorithms.

In the above analysis, we choose w = 0 for Cases 1 and 2,
w = 0 for Cases 1 and 2, w = 0.5 for Case 3, and w = 0.75
forCase4.Next,we select different values ofw for four cases.
In addition,we summarize the results of average relative error
of the centroid defuzzified values as Δ ranges from 1 to 100
in Table 6. Here we choose w = 1 for Case 1, w = 0.25 for
Case 2, w = 0.75 for Case 3, and w = 0.5 for Case 4.
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Table 5 Average relative error
of the centroid defuzzified
values as Δ ranges from 1 to
100

Algorithm EKM TWEKM SWEKM S3/8WEKM

Case 1 0.00114651 0.00114651 0.00096386 0.00068703

Case 2 0.00016067 0.00081159 0.00079131 0.00081919

Case 3 0.00053427 0.00000234 0.00000152 0.00010139

Case 4 0.00000011 0.00000012 0.00000017 0.00002422

Total mean 0.00046039 0.00049014 0.00043922 0.00040796

Table 6 Average relative error
of the centroid defuzzified
values as Δ ranges from 1 to
100 (with different values of w)

Algorithm EKM TWEKM SWEKM S3/8WEKM

Case 1 0.00707651 0.00707651 0.00696286 0.00685563

Case 2 0.01061840 0.00942086 0.00944295 0.00940927

Case 3 0.00060771 0.00000218 0.00000142 0.00011553

Case 4 0.00000015 0.00000014 0.00000019 0.00002265

Total mean 0.00457569 0.00412492 0.00410186 0.00410077

In Table 6, we can also find that the proposed WEKM
algorithms still have better performances than the EKM
algorithms for performing the centroid type-reduction and
defuzzification of GT2 FLSs.

In order to apply these algorithms in real-time applica-
tions, we must study the computation times. In Cases 1, 3,
and 4, the number of sampling points of the primary variable
is fixed as x = 0:0.05:10, whereas for Case 2, the num-
ber of sampling points of the primary variable is fixed as
x = − 5:0.05:15. Here we only choose w = 0 for Case
1, w = 0 for Case 2 w = 0.5 for Case 3, and w = 0.75
for Case 4. However, for studying the computation times of
centroid defuzzified values, in the following we choose the
number of the primary variable to be N = 100:50:2000. The
specific computation times of the algorithms depend on the
environments of both software and hardware, whose com-
putational results are unrepeatable. In this paper, we choose
the simulation platform as the Microsoft Windows XP Pro-
fessional system, and the dual-core CPU Dell desktop with
E5300@2.6GHz and 2.00GB memory. All the algorithms
are programmed using the MATLAB 2013a. The number of
effective α-planes (Δ) is fixed at 200, and the number of
sampling points of the primary variable is selected as the
independent variable. The computation times are shown in
Figs. 21, 22, 23 and 24.

If we do not consider the fluctuations in computation time
for the number of sampling points N , all four WEKM algo-
rithms emerge in a linear way with respect to the N . So we
adopt the least square regression model t = a + bN for all
algorithms, where t is the computation time, and the regres-
sion coefficients are given inTable 7.Moreover,we define the
computation time difference rate for four types of algorithms
as
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Fig. 21 Comparisons of runtime for Case 1 (with N = 100:50:2000)
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Fig. 22 Comparisons of runtime for Case 2 (with N = 100:50:2000)
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Fig. 23 Comparisons of runtime for Case 3 (with N = 100:50:2000)
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Fig. 24 Comparisons of runtime for Case 4 (with N = 100:50:2000)

(
max

i=1,...,4
{ti } − min

i=1,...,4
{ti }
)
/

max
i=1,...,4

{ti }, (48)

where ti (i = 1, . . . , 4) is the computation time for four types
of algorithms.

From Table 7 and Figs. 21, 22, 23 and 24, as for different
numbers of sampling points, we observe that the convergence
speed of the proposed WEKM algorithms is faster than that
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Fig. 25 Comparisons of runtime for Case 1 (with Δ = 1:1 : 100)

of the EKMalgorithms. In other words, the computation time
of EKM algorithm is less than that of theWEKMalgorithms.
That is because the weights assignment for the proposed
WEKM algorithms is more complex than for the EKM algo-
rithms. However, for the proposed WEKM algorithms, we
may use less number of sampling points to obtain the same
computation time as the EKM algorithms. When the number
of sampling points is chosen as N = 100:50:2000, the com-
putation time difference rate for the four WEKM algorithms
for the four cases is between 16.38 and 58.28%.

Next we study the computation times for four cases, but
choose the number of effective α-plane as the independent
variable,where that number varies from1 to 100. The compu-
tation times are shown in Figs. 25, 26, 27 and 28. Observing
these figures, we can find that the convergence speed of
the proposed WEKM algorithms is faster than that of the
EKM algorithms for performing the centroid type-reduction
of GT2 FLSs.

The proposedWEKMalgorithms can be used for studying
the TR of IT2 or GT2 FLSs. If only the computation accuracy
is taken into account, observe from Table 5 that S3/8WEKM
algorithm is the best choice. In the practical design and appli-
cation of T2FLSs, real-time computations are needed and the
sampling rate (1/N ) is fixed. Considering both Table 5 and

Table 7 Compute the regression model by least square for four types of algorithms

Regression coefficient EKM a/10−3 b/10−3 TWEKM a/10−3 b/10−3 SWEKM a/10−3 b/10−3 S3/8WEKM a/10−3 b/10−3

Case 1 0.017 4.246 0.023 8.004 0.024 7.247 0.019 5.421

Case 2 0.019 3.503 0.023 8.655 0.025 7.716 0.028 8.051

Case 3 0.018 3.578 0.023 7.622 0.024 7.683 0.025 7.143

Case 4 0.018 2.859 0.023 7.521 0.024 8.481 0.025 6.963

Total mean 0.018 3.547 0.023 7.951 0.024 7.782 0.024 6.894
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Fig. 26 Comparisons of runtime for Case 2 (with Δ = 1:1 : 100)
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Fig. 27 Comparisons of runtime for Case 3 (with Δ = 1:1 : 100)

Figs. 21, 22, 23 and 24 simultaneously, we suggest one share
the S3/8WEKM algorithms for performing centroid TR of
GT2 FLSs as the piecewise linear functions with trapezoidal
vertical slices in Case 1, adopt the EKM algorithms for com-
puting the centroid TR of GT2 FLSs as the hybrid functions
with trapezoidal vertical slices in Case 2, use the TWEKM
or SWEKM algorithms for performing the centroid TR of
GT2 FLSs as the piecewise Gaussian functions with triangle
vertical slices in Case 3, and adopt the EKM or TWEKM
algorithms for computing the centroid TR of GT2 FLSs as
the Gaussian T2 primary MF with triangle vertical slices in
Case 4.

Finally, it should be pointed out that this paper only
focuses on the comparison of EKM and WEKM algo-
rithms and their performance in theory. When the number
of sampling points is fixed, the proposed WEKM algo-
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Fig. 28 Comparisons of runtime for Case 4 (with Δ = 1:1 : 100)

rithms can improve the computational accuracy compared
with the EKM algorithms. However, if the requirement of
computation accuracy is not very high, the proposedWEKM
algorithms may not show their advantages over the EKM
algorithms. Simple EKM algorithms will do. In addition, the
WEKM algorithms cannot be applied to problems in which
there is no numerical integration.

5 Conclusions

In this paper, the EKM algorithms are extended to three
different forms of WEKM algorithms according to the
Newton–Cotes quadrature formulas in numerical integration.
The CEKM algorithms are chosen as the benchmark for per-
forming centroid TR and defuzzification of GT2 FLSs. The
proposed WEKM algorithms are then employed to compute
both the centroid type-reduced T1 FSs and their defuzzified
values, and are compared with the EKM algorithms. This
paper applies the WEKM algorithms that are derived and
given in Liu et al. (2012) for an IT2 FS at each alpha-plane.
Four simulation examples are provided to show that the pro-
posed WEKM algorithms can obtain better absolute error
and faster convergence speed than the EKM algorithms.

There are much interesting works that lie ahead, includ-
ing the study of center-of-sets type-reduction of GT2 FLSs
(Mendel 2014; Wagner and Hagras 2010), and making use
of intelligent optimization algorithms (Chen et al. 2013;
Hidalgo et al. 2012; Zhai et al. 2012; Hsu and Juang 2013;
Olivas et al. 2016; Juang and Chang 2010) to design and
apply the IT2 or GT2 FLSs (Chen and Wang 2015; Bilgin
et al. 2013;Gonzalez et al. 2017; Caraveo et al. 2017; Castillo
et al. 2016b; Gonzalez et al. 2016; Melin et al. 2014; Linda
and Manic 2012). Future studies will be focused on T2 FLSs
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design and applications based on Mendel (2001), Khosravi
and Nahavandi (2014), Chen et al. (2016), Mendel (2014),
Sanchez et al. (2015), Castillo et al. (2016a) and Mendel
(2013) and this paper.
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