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Abstract An effective extended differential evolution algo-
rithm is proposed to deal with constrained optimization
problems. The proposed algorithm adopts a new mecha-
nism to cope with constrained problems by transforming the
equality into inequality first. Then, two kinds of offspring
generation approaches are applied to balance the diversity
and the convergence speed of the population during evo-
lution, and seven criteria are designed to compare feasible
solution over infeasible solution. The performance of the
novel algorithm is evaluated on a set of well-known con-
strained problems from CEC2006. The experimental results
are quite competitive when comparing the proposed algo-
rithm against state-of-the-art optimization algorithms.
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1 Introduction

Manyengineering and scientific researches involve optimiza-
tion (Yi et al. 2016; Deb 2000). Some of them contain several
constraints which the optimal solution must meet. Without a
loss of generality, the mathematical formula of constrained
optimization problems (COPs) can be expressed as follows
(Sun et al. 2016; Yu et al. 2016; Garg 2016; Zhang et al. 2015;
Chuang et al. 2016; Asafuddoula et al. 2015):

min f (�x)

s.t.

{
g j (�x) ≤ 0, j = 1, 2, . . . , q
h j (�x) = 0, j = q + 1, . . . , m

, (1)

where �x = (x1, x2, . . . , xn) ∈ � is the decision vector gen-
erated in the decision space S. � denotes the feasible region.
S is the n-dimensional search space by the boundary con-
straints, Li ≤ xi ≤ Ui , i = 1, . . . , n, where Ui and Li are
the upper boundary and the lower boundary of xi , respec-
tively. f (�x) is the decision function. The constraints g j (�x)

and h j (�x)denote the inequality and the equality, respectively.
To solve COPs, the equality constraints are generally con-

verted into inequality constraints:

∣∣h j (�x)
∣∣ − δ ≤ 0, (2)

where j = q + 1, . . . , m and δ is the tolerance value for
the equality constraints. According to Liang et al. (2006b),
δ = 0.0001. The absolute value operator can be removed by
transforming the Eq. (2) into inequality constraints:

−δ ≤ h j (�x) ≤ δ →
{

h j (�x) ≤ δ j = q+1, . . . , m
−h j (�x) ≤ δ j = m+1, . . . , 2m − q

(3)
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So, the constraints of COPs can be presented as follows:

⎧⎨
⎩

g j (�x) ≤ 0 j = 1, . . . , q
h j (�x) ≤ δ j = q + 1, . . . , m
−h j (�x) ≤ δ j = m + 1, . . . , 2m − q

(4)

Then, the total constraint violation (CV) can be expressed
briefly as follows:

CV (�x) =
2m−q∑

j=1

cv j (�x), cv j (�x)

=
⎧⎨
⎩
max(g j (�x), 0) j = 1, . . . , q
max(h j (�x) − δ, 0) j = q + 1, . . . , m
max(−h j (�x) − δ, 0) j = m + 1, . . . , 2m − q

(5)

There are many different kinds of COPs. The main dif-
ferences among them are variables and constraint properties.
Some of them are integer, real; some of them are discrete
(Elsayed et al. 2012). Many optimization algorithms cannot
perform well as they are computationally expensive or eas-
ily get stuck at local optima (Wang and Cai 2011). On the
other hand, many researches have indicated that evolution-
ary algorithms (EAs) have advantage when solving COPs,
especially the genetic algorithm (GA) (Long 2014; Barbosa
andLemonge 2003;Garcia-Martinez et al. 2008), differential
evolution (DE) algorithm (Yong et al. 2008; Mezura-Montes
and Coello 2004; Price et al. 2005), evolutionary strategies
(ES) (Wei et al. 2011; Hansen and Ostermeier 2001), PSO
(Kennedy and Eberhart 1995; Liang et al. 2006a; Sun et al.
2011), ant colony-based method (Mahdavi and Shiri 2015;
Long et al. 2016), grey wolf (AroraMehak Kohliand 2017y),
and artificial bee colony(ABC) (Liang et al. 2015; Li and
Yin 2014; Karaboga and Akay 2011). In the past decades,
many techniques have been proposed to solve COPs, such as
feasibility rules, stochastic ranking, ε-constrained method,
penalty function, multi-objective concept, and ensemble of
constraint-handling techniques (Mezura-Montes and Coello
2011; Wang et al. 2016; Takahama and Sakai 2006; Runars-
son andYao 2000;Wang et al. 2007; Tessema andYen 2006).

Differential evolution is one of the EAs created by Storn
and Price (1997). The DE is very simple. The algorithm is
efficient and effective.DE has attracted increasing attention.
It is originally designed to solve continuous unconstrained
problems (Fan and Yan 2016; Qin et al. 2009; Mallipeddi
et al. 2011; Brest et al. 2006; Zhang and Sanderson 2009; Yu
et al. 2015a, b). Recently, an improved differential evolution
by differential vector archive and hybrid repairmethod is pro-
posed to solve single optimization problem. The proposed
algorithm has achieved good performance on IEEE CEC
2013 (Zhang and Zhang 2016). A prior knowledge-guided
DE (called PKDE) is implemented, in which the macro-
levels and micro-levels of prior knowledge are extracted to

guide the search direction. To validate the performance of
PKDE, two sets of benchmark test functions from IEEE
CEC2005 and IEEE CEC2014 are used. The experimen-
tal results have indicated that PKDE is competitive (Fan
et al. 2016). Besides, enhanced adaptive differential evo-
lution (EADE) algorithm is presented to solve large-scale
global optimization problems. A new mutation rule is intro-
duced to use the information of good and bad vectors in
the DE population of EADE (Mohamed 2017). There is no
doubt that these newly proposed algorithms have made great
contributions to the development of DE algorithm and EAs
community.

Now DE algorithm is extended to solve COPs. The adap-
tive rankingmutation operator (ARMOR) forDE is proposed
to solve COPs. The ARMOR is to make DE converge
faster and achieves feasible solutions faster (Gong et al.
2015). Inspired by the fact that in modern society, a dual-
population differential evolution (DPDE) with coevolution
is designed for COPs (Gao et al. 2015). For a better cover-
age of the problem characteristics, a self-adaptive differential
evolution algorithm is introduced (Elsayed et al. 2014). A
ranking-based mutation operator and an improved dynamic
diversity mechanism based on DE are proposed (Gong et al.
2014a).With the improved augmented Lagrangian approach,
a cooperative coevolutionary DE algorithm is proposed
(Ghasemishabankareh et al. 2016).Multi-objective optimiza-
tion is combined with differential evolution (CMODE) to
deal with COPs (Wang and Cai 2012a). A dynamic hybrid
framework (DyHF) is designed for solving COPs (Wang and
Cai 2012b). Objective function information is incorporated
into the feasibility rule to form a new algorithm: FROFI
(Wang et al. 2016). To cope with COPs, an improved DE
and a novel archiving-based adaptive trade-off model are
employed (Jia et al. 2013).

The above algorithms based on DE make great contri-
butions to solve COPs. When using DE to solve COPs, it
generates feasible individuals and infeasible individuals dur-
ing the evolution. It also has to tackle the constraints. Two
issues are of great importance for solving COPs when using
DE. One is how to cope with the feasible and infeasible
solutions. Feasibility rule emphasizes the fact that feasible
solution is better than infeasible solution(Deb 2000). How-
ever, a lot of researches have indicated that infeasible solution
is also very critical to find the global optima (Singh et al.
2008; Mezura-Montes and Coello 2005; Lin et al. 2014). So,
how to extend three criteria to reconsider the infeasible solu-
tion should be observed. The second one is how to generate
the offspring. The conventional DE uses just single evolution
strategy during evolution. However, different problems need
different strategieswith different parameter values relying on
the properties of problems. A single mutation strategy often
cannot meet the requirement.
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Based on discussed above, an effective DE algorithm is
proposed by two efforts. First, the novel algorithm extends
three criteria of feasibility rule to seven criteria. The effort is
to compare feasible solution over infeasible solution. Then,
two kinds of offspring generation methods are designed. The
first one is DE/rand/1 as it is said to be the most widely
employed and successful mutation strategy according to
the current research. The second one is the integration of
current-to-rand/1 and current-to-best/1 (Wang andCai 2011).
The idea is significant different from the above research.
In order to validate the effectiveness of the proposed algo-
rithm, benchmark functions fromCEC2006 are adopted. The
experimental results have demonstrated that the proposed
algorithm is effective comparedwith other optimization algo-
rithms. Then, the proposed algorithm is employed to solve
the weight in AHP.

The paper is organized as follows. Literature review is
given in Sect. 2. In Sect. 3, DE is briefly introduced and the
proposed algorithm is presented. In Sect. 4, experiments are
done based on standard benchmarks. The proposed method
is employed to solve the real application in Sect. 5. The con-
clusions are made in Sect. 6.

2 Literature review

A comprehensive survey on COPs is introduced, in which
following techniques are mainly discussed to solve COPs
(Mezura-Montes and Coello 2011).

(1) Penalty function method
The approach introduces a penalty function or a coefficient

into the original objective function (Michalewicz 1995; Coit
et al. 1996; Tessema and Yen 2009). The aim is to penalize
solutions which violate constraints. To effectively cope with
constraint problems, Lin proposed a hybrid algorithm the
rough penalty genetic algorithm (RPGA), which contained
genetic algorithm and rough set theory. The aim of RPGA
was to effectively resolve COPs and achieve robust solu-
tions (Lin 2013). As it is difficult for static penalty approach
to adjust penalty factors, the dynamic penalty approach is
put forward. A novel optimization algorithm was designed
by utilizing a penalty function in the objective function to
treat violation (Homaifar et al. 1994). However, when using
penalty function approach to solve COPs, it is still the most
difficult to find appropriate penalty coefficients, which guide
the search direction toward the optimum (Joines and Houck
1994).

(2) Multi-objective optimization techniques
The technique usually transforms the COPs into two

objective function problems, the original objective function
and the violation objective function. Then, the problems
are handled by multi-objective optimization techniques. A
generic optimization framework based on genetic algorithms
was proposed to solve COPs (Venkatraman and Yen 2005).

Wang and Cai proposed an effective evolutionary algorithm
to optimize COPs according to multi-objective optimization
principle (Cai and Wang 2006). Multi-objective optimiza-
tion technique based on differential evolution algorithm was
employed to tackle these problems (Qu andSuganthan 2011).
Multi-objective optimization was combined with differential
evolution to dealwithCOPs (Wang andCai 2012c).However,
solving multi-objective optimization problems themselves is
still very complicated.

(3) Gradient method
An improved ε-constrained differential evolution algo-

rithmwaspresented,whichwas integratedwith pre-estimated
comparison gradient (Yi et al. 2016). A novel distributed gra-
dient algorithm was proposed for COPs (Yi et al. 2015).
A new line search method as well as combining it with
the spectral projected gradient approach was used to solve
COPs (Yu 2008).A non-monotonic interior backtracking line
search method combined with an affine scaling reduced pre-
conditional conjugate gradient path approach was proposed
(Zhu 2007). However, gradient method is applicable to two
kinds of problems: a few variables or having convex feasi-
ble regions. The burden of computational cost will become
increasingly heavier when the amount of variables increases
(Deb 1995; Reklaitis et al. 1983).

(4) Ensemble of constraint-handling methods
Motivated by the no free lunch theorems, Mallipeddi

and Suganthan proposed an ensemble of four constraint
techniques (Mallipeddi and Suganthan 2010). Elsayed et
al. employed two constraint-handling techniques to solve
CMOPs (Ali and Kajee-Bagdadi 2009). Feasibility rule, ε-
constrained, and an adaptive penalty functionwere combined
to solve CMOPs (Tasgetiren et al. 2010).

(5) Feasibility rule
Let x1 and x2 be feasible solutions, and x3 and x4 are

infeasible solutions.

1. Feasible solution is preferred to infeasible solutionswith-
out considering their objective value. So, x1 and x2 are
preferred to x3, x4, respectively.

2. If f (x1) is smaller than f (x2), then x1 is preferred to x2.
3. If CV (x3) < CV (x4), then x3 is preferred to x4.

There are also a number of other criteria, which are sim-
ilar to the above. They are imposed to deal with COPs
(Deb 2000; Richardson et al. 1989). These implementations
employed different measures of constraint violations. By
designing new comparison rules, the infeasible individuals
with better objective function were made full use of during
the evolution (Zheng et al. 2012). For instance, a novel diver-
sity mechanism was designed (Mezura-Montes and Coello
2005). However, these criteria are too simple. They directly
consider that infeasible solution is worse than feasible solu-
tion. In fact, infeasible solution is also of importance to
maintain the diversity of the population.
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Fig. 1 The flowchart of
conventional DE
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3.1 Conventional DE

In conventional DE, mutation, crossover, and selection are
very critical. The main framework of DE is similar to EAs,
which is exhibited in Fig. 1.

According to the main steps of DE, the trial vector Vi,G =
{v1i,G , v2i,G , . . . , vD

i,G} and U=
i,G{u1

i,G , u2
i,G , . . . , u D

i,G} are the
trial vectors. The former is generated by mutation strategy in
the mutation step. The latter is generated in crossover step.

Mutation strategy plays an important role during evolu-
tion. Price and Storn employed DE/rand/1/bin. It is widely
used. The main strategies implemented in the DE are listed
as follows (Sharma et al. 2012):

DE/best/1:

Vi,G = Xbest,G + F.(Xri
1,G

− Xri
2,G

) (6)

DE/best/2:

Vi,G = Xbest,G + F.(Xri
1,G

− Xri
2,G

)+ F.(Xri
3,G

− Xri
4,G

)

(7)

DE/current-to-best/1:

Vi,G = Xi,G + F.(Xbest,G − Xi,G) + F.(Xri
1,G

− Xri
2,G

)

(8)

DE/rand/1:

Vi,G = Xri
1,G

+ F.(Xri
2,G

− Xri
3,G

) (9)

DE/rand/2:

Vi,G = Xri
1,G

+ F.(Xri
2,G

− Xri
3,G

) + F.(Xri
4,G

− Xri
5,G

)

(10)

DE/current-to-rand/1 :

Ui,G = Xi,G + K .(Xri
1,G

− Xri ,G) + F.(Xri
2,G

− Xri
3,G

).

(11)
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Table 1 The pseudo codes of
offspring generation methods V 1

i,G = Xri
1,G

+ F.(Xri
2,G

− Xri
3,G

)

if rand. φ then

V 2
i,G = Xri

1,G
+ K .(Xri

1,G
− Xri ,G) + F.(Xri

2,G
− Xri

3,G
)//current-to-rand

else

V 2
i,G = Xi,G + F.(Xbest,G − Xi,G) + F.(Xri

1,G
− Xri

2,G
)//current-to-best

end

The indices r i
1, r i

2, r i
3 are mutually exclusive integers ran-

domly generated within the range [0, 1], which are also
different from the index i . F and K are the mutation scale
factors, which are used in controlling the amplification of the
differential variation.

3.2 The proposed algorithm

3.2.1 Mutation strategies

The first mutation strategy DE/rand/1 was developed for
DE (Price et al. 2005) and is one of the most widely and
successful employed strategies (Babu and Jehan 2003). But
DE/best/2 may have some superiority to DE/rand/1 (Gam-
perle et al. 2002; Pahner and Hameyer 2000). Besides, it
is beneficial to incorporate best solution information dur-
ing evolution (Mezura-Montes et al. 2006). In contrast to
DE/rand, algorithm can get benefits by holding best solution
information. However, the behaviormay also cause problems
such as premature due as population diversity is reduced
(Zhang and Sanderson 2009). Besides, it has been proved
that current-to-best/1 strategy performs well when solving
un-modal problems as it has the best individual informa-
tion (Iorio and Li 2004). However, when solving multimodal
problems, it easily traps in a local optimum. From the above
discussion, it can be found that only one strategy cannot per-
form well during evolution. Here, two generation methods
are used. The first one is DE/rand/1 as it is said to be the
most wide and successful strategy (Babu and Jehan 2003).
The second one is the integration of current-to-best/1 and
current-to-rand/1 (Mezura-Montes et al. 2006).

Based on above discussion, the implementation of the
mutation process is given inTable 1,where parameter rand ∈
[0, 1] is a uniformly random number and φ is the feasi-
ble solution proportion of the last population. At the early
stage, there are little feasible solutions and φ is very small.
Thus, condition of current-to-rand can be met more fre-
quently.At themiddle and later stage,more andmore feasible
solutions are generated. Mutation strategy current-to-best
will be employed more frequently, in which best solution is
incorporated. By balancing the two strategies with the help
of parameter ϕ, the algorithm can realize global and local
search.

The crossover operation is the same as conventional DE.
So, the two trial vectors U 1

i,G , U 2
i,G are generated. Now, the

key is how to compare the three vectors Xi,G , U 1
i,G , U 2

i,G .

3.2.2 Selection mechanism

The comparison among the three vectorsXi,G , U 1
i,G , U 2

i,G is
to select the onewhich ismore suitable for the next evolution.
There are two kinds: feasible solution and infeasible solution.
If all the solutions are feasible, the one having lower objective
function value is chosen. The main problems are to compare
the feasible solution over infeasible solution and infeasible
solution over infeasible solution. As the infeasible solution
is also very important to keep the diversity of population,
the algorithm should make good use of information from
infeasible solution. The ε-constrained method introduces a
relaxation of the limit ε to consider a solution as feasible
(Takahama et al. 2005).

Let f (x1), f (x2) and CV (x1), CV (x2) be the fitness val-
ues and the constraint violation. Then, ε level comparison
between f (x1) and f (x2) is defined as follows:

( f (x1), CV (x1)) <ε ( f (x2), CV (x2))

⇔
⎧⎨
⎩

f (x1) < f (x2) i f CV (x1), CV (x2) ≤ ε

f (x1) < f (x2) i f CV (x1) = CV (x2)
CV (x1) < CV (x2) otherwise

(12)

However, when the mechanism deals with complicated
COPs, the global search ability is also limited. Combined
with ε-constrained method and feasibility rule, the novel cri-
teria are proposed in Table 2. In the procedure, there are two
parameters e and P . The parameter e is the tolerance param-
eter, which is used to compare with total constraints CV in
Eq. (5). The function of parameter e is similar to ε in Eq.
(12). The selection probability parameter Pis the probability
parameter, which is between 0.9 and 1.

For the first criteria, the lower objective function value is
preferred,which is the same to the feasibility rule (Deb2000).
In the second criterion, if the total constraints of two vectors
are both less than e, the lower objective function value is also
chosen. This rule is similar to ε-constrained (Takahama et al.
2005). The total constraints of two vectors are bothmore than
e in the third criterion, and the lower total constraints vector is
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selected with probability P . The rule is similar to feasibility
rule (Deb 2000). If rand > P , the vector with lower fitness
value is selected to keep the diversity of population in the
fourth criterion. If U 1

i,G is infeasible solution and U 2
i,G is

feasible solution, U 2
i,G can be accepted in the fifth and sixth

criteria. For the last criterion, the total constraints of U 2
i,G

are less than e and it is selected to maintain the diversity of
population.

3.2.3 The procedure of the proposed algorithm e-DE

According to the discussion above, the main procedure of the
novel algorithm e-DE is presented as follows:

Step 1 Initialize parameters. Maximum number of function evaluation evaluations 

(Max_FES); number of population (NP); tolerance parameter e; probability P. 

Step 2 Set G=1 and randomly generate NP individuals 1, ,{ ,..., }G G NP GP X X= with 

1
, , ,{ ,..., }D

i G i G i GX x x= , 1,...,i NP= uniformly distributed in the range min max[ , ]X X  , where 

1 2
min min min min{ , ,..., }DX x x x= and 1 2

max max max max{ , ,..., }DX x x x= . 

Step 3 Calculate the fitness value, total constraint violations CV, and feasibility solution 

proportion . 

Step 4 FES= NP+FES 

Step 5 While stopping criterion is not met 

Step 5.1  If (e<=10^-6) e=0; end 

Step 5.2   Generate two vectors 
1 2
, ,,i G i GV V  according to procedure in Table 1. 

Step 5.3   Generate two vectors 
1 2
, ,,i G i GU U  according to DE crossover 

and
1 2
, ,,i G i GV V . 

Step 5.4 If the trial vectors  
1 2
, ,,i G i GU U  are outside boundary; randomly generate 

them within the search space 

Step 5.5 Selection 

Calculate the fitness value, total constraint violations CV and feasibility 

solution proportion p of 
1 2
, ,,i G i GU U   respectively. 

1
,i GU = CompareVector(

1 2
, ,,i G i GU U ) by calling procedure in Table 2; 

,i GX = CompareVector (
1

, ,,i G i GX U ) by calling procedure in Table 2; 

Step 5.6 Set FES= NP+2× FES; 

Step 5.7 e decreases linearly; 

Step 6 End while 

φ

4 Experiments

4.1 Test functions

For the purpose of validating the performance of the
algorithm e-DE, twenty-two functions are selected from
CEC2006 (Liang et al. 2006b) in Table 3.These well-known
benchmark functions include linear, nonlinear, polynomial,
quadratic, and so on, where f (x∗) is the objective function
value for optimal solution x∗.

For these test functions, 25 independent runs were per-
formed. Parameters setting: NP=50,CR=0.9, F=0.8, e=1,
selection probability parameter P ∈ [0.9, 1]. These parame-
ters were maintained in all runs.
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Table 2 The pseudo codes of
selection mechanism for feasible
solution and infeasible solution

Function CompareVector (U1
i,G , U2

i,G){

if(CV (U1
i,G) = CV (U2

i,G) = 0& f (U1
i,G) > f (U2

i,G))

return U2
i,G if//the above is the first criterion

if(CV (U1
i,G) �= 0&CV (U2

i,G) �= 0&CV (U1
i,G) ≤ e&CV (U2

i,G) ≤ e& f (U2
i,G) < f (U1

i,G))

return U2
i,G if//the above is the second criterion

if(CV (U1
i,G) ≥ e&CV (U2

i,G) ≥ e&CV (U2
i,G) < CV (U1

i,G)&rand ≤ P))

return U2
i,G //the above is the third criterion

if(CV (U1
i,G) ≥ e&CV (U2

i,G) ≥ e& f (U2
i,G) < f (U1

i,G)&rand ≥ P))

return U2
i,G //the above is the fourth criterion

if(CV (U1
i,G) �= 0&CV (U2

i,G) = 0&CV (U1
i,G) ≤ e& f (U2

i,G) < f (U1
i,G))

return U2
i,G //the above is the fifth criterion

if(CV (U1
i,G) ≥ e&CV (U2

i,G) = 0)

return U2
i,G //the above is the sixth criterion

if(CV (U1
i,G) = 0&CV (U2

i,G) �= 0&CV (U2
i,G) ≤ e& f (U2

i,G) < f (U1
i,G))

return U2
i,G the above is the seventh criterion

If above criteria are not met, return U1
i,G

Table 3 Benchmark test
functions

Test function n Objective function ρ (%) LI NI LE NE α f (x∗)

g01 13 Quadratic 0.0111 9 0 0 0 6 − 15.0000000000

g02 20 Nonlinear 99.9971 0 2 0 0 1 − 0.8036191042

g03 10 Polynomial 0.0000 0 0 0 1 1 − 1.0005001000

g04 5 Quadratic 51.1230 0 6 0 0 2 − 30665.5386717834

g05 4 Cubic 0.0000 2 0 0 3 3 5126.4967140071

g06 2 Cubic 0.0066 0 2 0 0 2 − 6961.8138755802

g07 10 Quadratic 0.0003 3 5 0 0 6 24.3062090681

g08 2 Nonlinear 0.8560 0 2 0 0 0 − 0.0958250415

g09 7 Polynomial 0.5121 0 4 0 0 2 680.6300573745

g10 8 Linear 0.0010 3 3 0 0 0 7049.2480205286

g11 2 Quadratic 0.0000 0 0 0 1 1 0.7499000000

g12 3 Quadratic 4.7713 0 1 0 0 0 − 1.0000000000

g13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539415140

g14 10 Nonlinear 0.0000 0 0 3 0 3 − 47.7648884595

g15 3 Quadratic 0.0000 0 0 1 1 2 961.7150222899

g16 5 Nonlinear 0.0204 4 34 0 0 4 − 1.9051552586

g17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5338748065

g18 9 Quadratic 0.0000 0 13 0 0 0 − 0.8660254038

g19 15 Nonlinear 33.4761 0 5 0 0 0 32.6555929502

g21 7 Linear 0.0000 0 1 0 5 6 193.7245100700

g23 9 Linear 0.0000 0 2 3 1 6 − 400.0551000000

g24 2 Linear 79.6556 0 2 0 0 2 − 5.5080132716

4.2 Experimental results

The results of e-DE are presented in Table 4 and
Table 5.On the basis of the reference (Liang et al. 2006b), the
best, the worst, median, mean, and standard deviation (Std)
of the function error value ( f (x)- f (x∗)) of the acquired best

results with 5×103, 5×104, and 5×105 FES for each bench-
mark function are presented, where x∗ is the best known
solution and f (x∗) is the best function value.

The experimental results have demonstrated that the e-DE
has the ability to succeed in finding feasible solutions, which
are close to the best known solutions for g08 in 5 × 103
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Table 4 Function errors
acquired when 5× 103, 5× 104,
and 5 × 105 for test functions
g01–g12

FES g01 g02 g03 g04 g05 g06

5000 Best 3.77E+0 4.13E−1 1.94E−1 1.11E+1 4.55E+1 6.14E−1

Median 5.41E+0 4.74E−1 2.56E−1 3.30E+1 6.18E+1 4.37E+0

Worst 6.57E+0 5.57E−1 3.11E−1 5.35E+1 7.10E+2 2.68E+1

Mean 5.36E+0 4.77E−1 2.61E−1 3.36E+1 1.51E+2 6.84E+0

Std 5.71E−1 1.28E−3 9.32E−4 1.36E+2 3.08E+4 4.49E+1

50,000 Best 5.42E−4 1.94E−1 3.11E−8 3.33E−9 5.37E−11 3.37E−11

Median 2.07E−3 2.51E−1 9.11E−8 1.50E−8 9.97E+1 3.37E−11

Worst 4.55E−3 307E−1 2.17E−7 6.30E−8 5.55E+2 3.37E−11

Mean 2.06E−3 2.52E−1 1.02E−7 1.83E−8 1.47E+2 3.37E−11

Std 9.06E−7 8.93E−4 2.00E−15 2.22E−16 2.36E+4 0

500,000 Best 0 1.16E−9 − 1.00e−11 7.64e−11 − 1.82e−12 3.37E−11

Median 0 3.15E−8 − 1.00e−11 7.64e−11 − 1.82e−12 3.37E−11

Worst 0 2.53E−2 − 1.00e−11 7.64e−11 − 1.82e−12 3.37E−11

Mean 0 1.69E−3 − 1.00e−11 7.64e−11 − 1.82e−12 3.37E−11

Std 0 3.58E−5 0 0 0 0

FES g07 g08 g09 g10 g11 g12

5000 Best 2.94E+1 8.20E−11 1.17E+1 1.89E+3 5.50E−5 2.33E−5

Median 5.93E+1 8.20E−11 2.76E+1 3.66E+3 3.31E−3 1.37E−4

Worst 1.17E+2 8.21E−11 6.91E+1 6.60E+3 2.28E−1 5.00E−4

Mean 6.17E+1 8.20E−11 2.81E+1 3.83E+3 3.81E−2 1.89E−4

Std 4.21E+1 3.45E−27 1.39E+2 1.29E+6 4.30E−2 2.25E−8

50,000 Best 1.60E−2 8.19E−11 2.82E−9 2.54E+0 0 0

Median 3.24E−2 8.19E−11 9.68E−9 5.82E+0 0 0

Worst 6.67E−2 8.19E−11 2.77E−9 1.31E+1 1.52E−13 0

Mean 3.42E−2 8.19E−11 1.17E−8 6.21E+0 6.10E−15 0

Std 1.47E−4 0 4.89E−17 5.80E+0 0 0

500,000 Best 7.97E−11 8.20E−11 − 9.83E−11 6.18E−11 0 0

Median 7.97E−11 8.20E−11 − 9.83E−11 6.28E−11 0 0

Worst 7.97E−11 8.20E−11 − 9.83E−11 6.37E−11 0 0

Mean 7.97E−11 8.20E−11 − 9.83E−11 6.28E−11 0 0

Std 0 0 0 1.39E−25 0 0

function evaluations (FES) and for g03, g04, g06, g09, g11,
g12, g16, and g24 in 5×104 FES.When FES is set to 5×105,
the best solutions of experiments are close or equal to the
optimal known solutions.

When FES is equal to 5×105, all the experimental results
for functions g01, g11, and g12 are the same as the optimal
values. The e-DEfinds solutions close to the best solutions for
the fourteen test functions (g04-g10, g14-g16, g18, g19, g23,
g24). The acquired best solutions approximate the known
optimal values with differences (10−10). It has indicated that
the e-DE can obtain the results, which are approximate to
optimal solutions for these five test functions. The best results
for the g03, g05, g09 problems are even beyond to its optimal
solutions as equality constraints are converted into inequal-
ity constraints with a tolerance of 0.0001, revealing that the

algorithm e-DE can consistently find the best solutions in 25
experiments.

Notably, the standard deviations of the e-DEare very small
in fourteen test problems (g01, g03-g09, g11, g12, g14-g16,
g24). This finding implies that the novel algorithm is robust
when solving COPs.

4.3 The performance of success performance

The number of min, median, max, mean FES required
in each run to find a feasible solution is shown in Table 6.
Besides, the success rate, the feasible rate, and the success
performance are also given in Table 6.

Once one feasible solution is found during the run, it is
a feasible run. If the feasible solution �x satisfies f (�x) −
f (�x∗) ≤ 0.0001, it is a successful run.
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Table 5 Function errors
achieved when 5 × 103,
5 × 104, and 5 × 105 for test
functions g13–g19, g23, g24

FES g13 g14 g15 g16 g17

5000 Best 1.55E−1 − 3.27E+1 9.07E−4 1.77E−2 − 2.09E+1

Median 9.29E−1 − 8.56E+0 8.78E+0 3.78E−2 1.01E+2

Worst 1.09E+1 4.78E+1 2.29E+0 5.80E−2 4.45E+2

Mean 1.61E+0 − 3.09E+0 1.07E+0 3.64E−2 1.31E+2

Std 6.78E+0 6.22E+2 7.29E+0 1.39E−4 1.33E+4

50,000 Best 1.96E−1 1.19E+0 6.09E−11 2.90E−10 1.99E+1

Median 8.07E−1 5.39E+0 7.73E−1 5.47E−10 8.72E+1

Worst 3.00E+0 7.16E+0 5.57E+0 1.22E−9 3.43E+2

Mean 8.78E−1 5.17E+0 1.52E+0 5.74E−10 8.80E+1

Std 2.48E−1 1.85E+0 3.01E+0 6.08E−20 3.39E+3

500,000 Best 4.19E−11 8.51E−12 6.08E−11 6.52E−11 1.82E−12

Median 3.85E−6 8.51E−12 6.08E−11 6.52E−11 5.46E−8

Worst 3.85E−5 8.51E−12 6.08E−11 6.52E−11 7.41E−1

Mean 2.77E−6 8.51E−12 6.08E−11 6.52E−11 3.55E−1

Std 3.11E−6 0 0 0 1.43E−2

FES g18 g19 g21 g23 g24

5000 Best 4.60E−1 1.18E+2 1.21E+2 4.00E+2 6.80E−5

Median 8.66E−1 1.99E+2 5.88E+2 4.00E+2 5.51E+0

Worst 8.66E−1 3.14E+2 7.95E+2 4.00E+2 5.51E+0

Mean 8.16E−1 2.07E+2 5.43E+2 4.00E+2 3.31E+0

Std 1.42E−2 2.30E+3 4.00E+4 3.03E−26 7.58E+0

50,000 Best 6.40E−3 8.73E−1 9.23E−4 1.26E+2 4.67E−12

Median 1.33E−2 1.54E+0 3.99E+1 3.20E+2 4.67E−12

Worst 2.01E−1 2.11E+0 1.34E+2 7.10E+2 4.67E−12

Mean 1.97E−2 1.51E+0 6.02E+1 3.12E+2 4.67E−12

Std 1.44E−3 1.20E−1 3.93E+3 1.73E+4 0

500,000 Best 1.56E−11 4.69E−11 3.81E−10 − 1.71E−13 4.67E−12

Median 1.60E−11 4.74E−11 3.00E−10 5.68E−14 4.67E−12

Worst 2.08E−11 8.65E−11 7.31E−2 1.15E−11 4.67E−12

Mean 1.65E−11 5.01E−11 4.19E−2 7.07E−13 4.67E−12

Std 1.56E−24 6.41E−23 3.89E−3 5.54E−24 0

Feasible rate = (feasible runs)/(total runs)
Success rate = (successful runs)/(total runs)
Success performance = mean (FES for successful runs)
×(total runs)/(successful runs)

Table 6 exhibits the overall performance of e-DE. It can be
noticed that the feasible rate is 100%for these functions.With
the exception of test functions g02, g13, g17, and g21, the
success rate of 100%has been achieved for the rest functions.

The e-DE needs fewer than 5000 FES for one function to
reach the success condition and requires fewer than 50,000
FES to achieve success for ten functions. No more than
200,000 FES for 19 test functions and no more than 300,000
FES for 21 functions are demanded, respectively.

In practical terms, the proposed e-DE presents superior
SP that has a lot of inequality constraints and disconnected

feasible regions, for instance g16, g12, and g24. Moreover,
it is observed that the proposed e-DE can successfully cope
with great majority of test problems. Functions include g01,
g07, g10, g16, and g18 with a larger amount of inequality
constraints compared to the other COPs. The results have
indicated that the e-DE with the dynamic control parameters
is effective to deal with such constraints.

In addition, it is mentioned that some functions are con-
sidered as the comparatively more difficult functions among
these test functions (Liang and Suganthan 2006; Huang et al.
2006). For instance, g02, g13, and g17 are the multimodal
COPs. Similar to other EAs, the algorithm also has difficulty
to tackle these complicated functions. However, the algo-
rithm achieves success rates as high as 92, 44, and 44% for
g02, g13, and g17, respectively. It is obviously better than
majority of EAs.

123



2418 X. Yu et al.

Table 6 Number of FES to reach the success condition, success rate, feasible rate, and success performance

Function Best Median Worst Mean Feasible rate (%) Success rate (%) Success performance

g01 57950 65350 68550 64274 100 100 64274

g02 155950 189650 253450 192297 100 92 209019

g03 29450 33350 36650 33066 100 100 33066

g04 42550 44050 45250 43942 100 100 43942

g05 34050 144550 265750 152110 100 100 152110

g06 41150 42150 42850 42098 100 100 42098

g07 90750 99050 111050 99614 100 100 99614

g08 4550 6050 9150 6254 100 100 6254

g09 27650 29550 31350 29446 100 100 29446

g10 128050 135850 142850 135934 100 100 135934

g11 9550 20750 54250 24566 100 100 24566

g12 650 1350 1850 1354 100 100 1354

g13 201850 303650 368750 303741 100 44 690320

g14 64150 80150 160850 92730 100 100 92730

g15 35250 73150 256050 95022 100 100 95022

g16 22750 24750 26150 24410 100 100 24410

g17 166450 253850 400650 264232 100 44 600527

g18 116150 137550 181650 140458 100 100 140458

g19 184650 205650 233450 207286 100 100 207286

g21 65750 74550 158250 84500 100 72 117361

g23 35350 43750 79750 46922 100 100 46922

g24 13150 20050 24850 19678 100 100 19678

Table 7 Mean number of FES to find the first feasible solution

Function Mean Function Mean

g01 1418 g12 150

g02 210 g13 28394

g03 698 g14 45998

g04 150 g15 18450

g05 23430 g16 870

g06 742 g17 26286

g07 1774 g18 5706

g08 198 g19 150

g09 230 g21 25838

g10 3962 g23 41990

g11 8206 g24 150

In order to approve the velocity that e-DE finds the fea-
sible region, Table 7 presents the mean number of FES to
find feasible solutions over 25 runs. The proposed algorithm
e-DE requires no more than 1000 FES for ten test problems,
between 1000 and 10,000 FES for five test problems. For the
rest test problems, the numbers of FES finding the first fea-
sible solutions are between 10,000 and 50,000. The finding
reveals that the algorithm has good convergence speed.

4.4 Comparison against the latest DE variants

In the previous subsection, the efficacy of e-DE is veri-
fied through the benchmark functions. In this section, e-DE
is compared with state-of-the-art EAs for the COPs. These
algorithms areCMODE(WangandCai 2012a),DyHF (Wang
and Cai 2012b), ICDE (Jia et al. 2013), rank-iMDDE (Gong
et al. 2014a), and CCiALF (Ghasemishabankareh et al.
2016). The CMODE algorithm is proposed, which combines
multi-objective optimization with differential evolution to
deal with COPs. A dynamic hybrid framework, (DyHF) is
designed for solving COPs. This framework consists of two
major steps: global search model and local search model. To
solve COPs, an improved DE and a novel archiving-based
adaptive trade-off model are employed to form a new algo-
rithm ICDE. An improved constrained differential evolution
(rank-iMDDE) method is proposed, where a ranking-based
mutation and an improved dynamic diversity mechanism are
presented. A cooperative coevolutionary differential evolu-
tion algorithm based on the improved augmented Lagrangian
approach (CCiALF) is proposed for solving COPs. We
choose these five EAs for comparisons due to their good per-
formance obtained and the same Max_NFEs (240,000) used.
As it is fair to keep the same Max_NFEs for each algorithm,
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Table 8 The best, mean, and standard variation of six algorithms for g01–g13

CMODE DyHF ICDE rank-iMDDE CCiALF e-DE

g01

Best − 14.99999999 − 15 − 15 − 15 − 15 − 15

Mean − 14.9999999 − 15 − 15 − 15 − 15 − 15

Std 1.32E−8 0 0 0.00E+00 2.39E−08 0

g02

Best − 0.8036 − 0.803619 − 0.803611 − 0.80361905 − 0.8036176 − 0.803619

Mean − 0.8036 − 0.803619 − 0.7976561 − 0.80202119 − 0.7930875 − 0.80196

Std 5.1E−6 5.7E−15 5.5E−5 4.57E−03 8.30E−03 1.4E−5

g03

Best − 1.0005 − 1.0005 − 1.0005 − 1.0005001 − 1.000501 − 1.0005

Mean − 1.0005 − 1.0005 − 1.0005 − 1.0005001 − 1.000501 − 1.0005

Std 1.5E−16 2.3E−32 1.77E−31 0.00E+00 1.69E−08 2.8E−31

g04

Best 30665.53867 − 30665.53867 − 30665.53867 − 30665.539 − 30665.539 − 30665.53867

Mean 30665.53867 − 30665.53867 − 30665.53867 − 30665.539 − 30665.539 − 30665.53867

Std 3.71E−23 1.4E−32 1.38E−23 0.00E+00 9.80E−06 1.38E−23

g05

Best 5126.4967 5126.4967 5126.4967 5126.496714 5126.4967 5126.496714

Mean 5126.4967 5126.4967 5126.4967 5126.496714 5126.497 5126.496714

Std 7.75E−24 7.8E−24 7.75E−24 0.00E+00 9.17E−08 2.75E−12

g06

Best − 6961.813756 − 6961.81388 − 6961.81388 − 6961.81388 − 6961.814 − 69618.1388

Mean − 6961.813756 − 6961.81388 − 6961.81388 − 6961.81388 − 6961.814 − 6961.81388

Std 0E+0 0E+0 0E+0 0.00E+00 5.19E−11 0E+0

g07

Best 24.30621 24.30621 24.30621 24.30620907 24.3062 24.30621

Mean 24.30621 24.30621 24.30621 24.30620907 24.3062 24.30621

Std 1.1E−14 2.0E−23 9.89E−29 0.00E+00 6.82E−07 1.87E−23

g08

Best − 0.095825 − 0.095825 − 0.095825 − 0.09582504 − 0.09582505 − 0.095825

Mean − 0.095825 − 0.095825 − 0.095825 − 0.09582504 − 0.09582505 − 0.095825

Std 3.0E−43 2.0E−34 2E−34 0.00E+00 1.07E−15 2.0E−34

g09

Best 680.630057 680.630057 680.630057 680.6300574 680.6300 680.630057

Mean 680.630057 680.630057 680.630057 680.6300574 680.6300 680.630057

Std 2.7E−26 8.1E−26 1.13E−25 0.00E+00 5.43E−08 1.10E−25

g10

Best 7049.24802 7049.24802 7049.24802 7049.248021 7049.248 7049.24802

Mean 7049.24802 7049.24802 7049.24802 7049.248021 7049.248 7049.24802

Std 1.3E−13 2.7E−14 4.76E−22 0.00E+00 6.04E−07 4.89E−19

g11

Best 0.7499 0.7499 0.7499 0.7499 0.7498959 0.7499

Mean 0.7499 0.7499 0.7499 0.7499 0.7498984 0.7499

Std 1.3E−32 1.3E−32 1.28E−32 0.00E+00 2.04944E−16 1.28E−32

g12

Best − 1 − 1 − 1 − 1 − 1 -1
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Table 8 continued

CMODE DyHF ICDE rank-iMDDE CCiALF e-DE

Mean − 1 − 1 − 1 − 1 − 1 − 1

Std 0 0 0 0.00E+00 0 0

g13

Best 0.0539415 0.0539415 0.0539415 0.0539415 0.05394151 0.0539415

Mean 0.069335957 0.0539415 0.146308 0.0539415 0.05394261 0.0539415

Std 5.9E−3 3.4E−34 0E−0 0.00E+00 4.03E−06 1.27E−10

Table 9 The best, mean, and standard variation of six algorithms for g14–g19, g21, and g24

CMODE DyHF ICDE rank-iMDDE CCiALF e-DE

g14

Best − 47.764888 − 47.764888 − 47.764888 − 47.7648885 − 47.7649 − 47.764888

Mean − 47.764888 − 47.764888 − 47.764888 − 47.7648885 − 47.7649 − 47.764888

Std 7.2E−19 8.1E−28 5.91E−28 0.00E+00 4.04E−08 5.47E−23

g15

Best 961.715 961.715 961.715 961.7150 961.7150 961.715

Mean 961.715 961.715 961.715 961.7150 961.7150 961.715

Std 5.4E−25 3.4E−25 3.37E−25 0.00E+00 1.86E−08 2.41E−14

g16

Best − 1.905155 − 1.905155 − 1.905155 − 1.905155 − 1.905155 − 1.905155

Mean − 1.905155 − 1.905155 − 1.905155 − 1.905155 − 1.905155 − 1.905155

Std 2.1E−32 5.0E−31 2.05E−31 0.00E+00 9.77E−09 2.05E−31

g17

Best 8853.53387 8853.53387 8853.53387 8853.539675 8857.447 8853.53387

Mean 8853.53389 8854.64472 8853.53387 8853.539675 8916.856 8853.8165

Std 2.2E−9 6.8E+0 1.79E−24 0.00E+00 3.64E+01 1.7E−2

g18

Best − 0.866025 − 0.866025 − 0.866025 − 0.866025 − 0.8660255 − 0.866025

Mean − 0.866025 − 0.866025 − 0.866025 − 0.866025 − 0.8660255 − 0.866025

Std 1.3E−17 9.5E−21 5.94E−29 0.00E+00 3.58E−07 1.14E−12

g19

Best 32.6557 32.65559 32.65559 32.6559 32.65561 32.65559

Mean 32.6558 32.65559 32.65559 32.6556 32.66077 32.65559

Std 6.0E−9 1.6E−17 6.21E−17 8.30E−05 2.35E−04 3.97E−11

g21

Best 193.7245 193.7245 193.7245 193.7245 193.7243 193.7245

Mean 230.398 200.9283 193.7245 193.7245 193.7352 193.7275

Std 3.60E+3 7.61E+2 1.73E−21 0.00E+00 1.20E−02 6.0E−10

g23

Best − 400.0551 − 400.0551 − 400.0551 − 400.0551 − 400.0551 − 400.0551

Mean − 400.0545 − 400.0551 − 400.0551 − 398.180865 − 400.0536 − 400.0551

Std 3.2E−6 3.6E−11 2.47E−10 4.51E+00 5.00E−03 1.0E−6

g24

Best − 5.508013 − 5.508013 − 5.508013 − 5.508013 − 5.508013 − 5.508013

Mean − 5.508013 − 5.508013 − 5.508013 − 5.508013 − 5.508013 − 5.508013

Std 8.2E−31 8.2E−31 8.2E−31 0.00E+00 1.30E−08 8.2E−31
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Table 10 Average rankings of
CMODE, DyHF, ICDE,
rank-iMDDE, CCiALF, and
e-DE by the Friedman test for
the 22 functions in terms of the
mean values

Algorithm Ranking

CMODE 4.07

DyHF 3.48

ICDE 4.45

rank-iMDDE 3.09

CCiALF 4.73

e-DE 3.09

the Max_NFEs of e-DE is also set to 240,000. Otherwise, the
comparisons are unfair and unfaithful.

In Tables 8 and 9, the best, mean, and standard deviation of
the objective function values of the final solutions for each
algorithms are shown. The overall best results among the
six EAs are highlighted in boldface. Note that the results of
rank-iMDDE and CCiALF are directly obtained from their
corresponding literature.

From the Tables 8 and 9, it is very clear that the six algo-
rithms have achieved the same performance in ten functions
(g03, g07, g08, g09, g10, g11, g12, g15, g16, and g24), in
which three equality functions and seven inequality functions
are included. These results have indicated that the proposed
algorithm has the same search ability to the five algorithms.
CMODE has achieved the best performance in g14 and g18.
DyHF and e-DE have the best performance in g01, g06, g13,
g14, g18, g19, and g23. ICDE has the superior performance
in g01, g06, g14, g17, g18, g19, g21, and g23. Rank-
iMDDE has the superior performance in g01,g06,g13,g18,
and g21.

According to the results shown in Tables 8 and 9, it can be
clearly seen that e-DE consistently obtains highly competi-
tive results in all functions compared with other five EAs. In
terms of the best results, e-DE gets the best or similar val-
ues among the six EAs in all 22 functions. With respect to
the mean results, only in two functions g17 and g21, e-DE is
slightly worse. In the rest 20 functions, e-DE is able to obtain
better or similar results compared with other five EAs.

Friedman test has been used to rank these algorithms. It
is a nonparametric statistical test .It is used to detect differ-
ences in treatments across multiple test attempts. Based on
the mean values in Tables 8 and 9, the final rankings obtained
by the Friedman test are shown in Table 10. With respect to
the average rankings of all algorithms by the Friedman test,
Table 10 shows that our proposed e-DE and rank-iMDDE get
the first ranking among six algorithms, followed by DyHF,
CMODE, ICDE, and CCiALF. It denotes that the e-DE can
perform as well as or even superior to other algorithms. In
other words, the advantages of the proposed e-DE method
are stated and proven.

It is reported that the test function g17 has the new
best known function value 8853.533875 (Brajevic 2015).

The results also have been achieved for the four algorithms
(CMODE, DyHF, ICDE, and e-DE). The finding also indi-
cates that the four algorithms have good abilities to deal with
COPs.

4.5 The parameter sensitivity analysis

The parameter e needs to be tested as it is one of the most
important parameters during the evolution. In this section,
the impact of this parameter on the algorithm is focused on.
The e-DE runs 25 times on each function with ten different
parameters of 1, 2, 3, 4, 5,6,7,8,9,10, random between 1 and
10, respectively.

Figures 2, 3, and 4 reveal the box plots of log( f (�x) −
f (�x∗) + exp(−10)) that e-DE algorithm obtained in the 25
runs. f (�x∗) is the objective function value for known optimal
solution �x∗, and f (�x) is the optimal solution obtained by the
algorithm in each run.

From Figs. 2, 3, and 4, it is found that the proposed algo-
rithm is not sensitive to parameter value on g01, g03, g04,
g06, g08, g11, g12, g15, g16, and g24,in which three equality
constrains and seven inequality constrains are included. The
parameter e has little influence on g02, g05, g07, g09, g10,
g13, g18, and g19 and has some impact on g14, g17, g21,
and g23.

In particular, test function g02 has a nonlinear objective
function and 20 decision variables; test function g16 has
thirty-four nonlinear inequality constraints and four linear
inequality constraints. The feasible region is limited. With
ten different parameters, the algorithm can obtain the known
optimal values in 25 runs. The performance of e-DE algo-
rithm is also stable to find the known optimal solutions.
Therefore, the e-DE algorithm is less sensitive to the param-
eter e between 1 and 10 for most of test functions. Therefore,
the algorithm is robust.

4.6 Effectiveness of the selection mechanism

Experiments were performed to validate the effectiveness
of the algorithm for rand/1/bin and combined mutation
strategies. The former one is the e-DE with the rand/1/bin
(e-DE-1), and the latter one is the current-to-best/1 and
current-to-rand/1 (e-DE-2). The results obtained from the
above experiments are compared with the e-DE. The com-
parisons of four representative test functions g14, g17, g19,
and g21 are listed in Table 11.

Test function g14 has ten decision variables, three equal-
ity constraints, and a nonlinear objective function. Note that
e-DE-2 can obtain similar results with e-DE, which reveals
that adding rand/1/bin cannot give negative effects on the
diversity of population. The mean and STD results of e-DE
and e-DE-2 are better than those of e-DE-1. With respect
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Fig. 2 e-DE with different parameters on g01–g03

to test function g17, e-DE-1 and e-DE-2 have not achieved
any success during the evolution. The success rate of pro-
posed algorithm is 44%, which is the highest among the three
algorithms. The above phenomenon signifies that the algo-
rithm including two strategies has higher convergence speed.
Function g19 has a nonlinear objective function with fifteen
decision variables. The results of e-DE and e-DE-2 are much
better than those of e-DE-1. It manifests that rand/1/bin strat-
egy deteriorates the convergence speed.However, the success
rate of e-DE-1 is higher than e-DE-2 for function g21. Func-
tion g21 is a complex constrained problem. As the e-DE-2
has the information of the optimal individual, it degrades the
diversity of the population.

According to the abovediscussion, e-DE-1with rand/1/bin
strategy can enhance the diversity of the population and
deteriorate the convergence speed, e-DE-2 with current-to-
best/1 and current-to-rand/1 can accelerate the convergence
speed and degrade the diversity of the population, and e-
DE with the above two strategies can trade off the diversity
of the population and the convergence speed very well.
The comparison above confirms that strategy selection is
reasonable.

5 Solve weights in analytic hierarchy process
(AHP)

AHP, developed by Saaty (1980), is used to tack multiple
criteria decision making (MCDM) in real applications (Wu
et al. 2016; Xiaobing et al. 2011; Gong et al. 2014b). MCDM
is to screen, prioritize, rank, or select a set of alternatives
under usually independent, incommensurate, or conflicting
attributes. In AHP, multiple pair-wise comparisons are from
a standardized comparison scale of nine levels shown in
Table 12.

Suppose that C = {C j | j = 1, 2. . .n} be the set of criteria.
Evaluation matrix Acan be gotten, in which every element
ai j (i, j = 1, 2. . .n) represents the relative weights of the
criteria illustrated:

A =

⎡
⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . . . .

. . . . . . aii . . .

an1 an2 . . . ann

⎤
⎥⎥⎦ (13)

If matrix A is completely consistent, it has to comply with
following condition:

aii = wi

wi
= 1

a ji = w j

wi
= 1

ai j

ai j a jk = wi

w j
× w j

wk
= wi

wk
= aik . (14)

According to above properties, the following equations
can be obtained:

n∑
k=1

(aikwk)=
n∑

k=1

(wi/wk)wk =nwi , i =1, 2, . . . , n (15)

n∑
i=1

∣∣∣∣∣
n∑

k=1

(aikwk) − nwi

∣∣∣∣∣ = 0. (16)

In other words, if the judgment matrix Ameets the Eq.
(16), it is completely consistent. However, it is very difficult
to achieve the condition in the real application. In fact, the
matrix A has just to meet the satisfactory consistency. The
Eq. (16) can be converted into the following format:

min C I F(w) =
∑n

i=1

∣∣∑n
k=1 (aikwk) − nwi

∣∣
n

(17)

0 < wk < 1,
∑n

k=1
wk = 1 (18)

The smaller the CIF is, the more consistent the matrix
A is. So, the weight acquisition is converted into the sin-
gle objective optimization with constraint. The objective
is to minimize CIF, and the constraint is:0 < wk <

1,
∑n

k=1 wk = 1. Thus, it is a typical COP and can be solved
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Fig. 3 e-DE with different parameters on g04–g19, g21
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Fig. 4 e-DE with different parameters on g23 and g24

Table 11 Comparison of e-DE with e-DE-1 and e-DE-2

Function e-DE e-DE-1 e-DE-2

g14 Mean 8.51E−12 4.51E+0 8.51E−12

Std 0 2.50E+0 0

Success rate 100% 0 100%

g17 Mean 3.55E+1 5.25E+1 4.74E+1

Std 1.43E+3 3.40E+1 1.32E+3

Success rate 44% 0% 0%

g19 Mean 5.01E−11 9.58E−2 4.63E−11

Std 6.41E−23 9.54E−2 2.39E−29

Success rate 100% 0% 100%

g21 Mean 4.19E+1 7.33E+1 2.67E+1

Std 3.89E+3 4.40E+3 2.45E+4

Success rate 72% 44% 0%

by the proposed algorithm. For example,

A =
⎡
⎣ 1 3 7
1/3 1 5
1/7 1/5 1

⎤
⎦

The min CIF is as follows:

minC I F(w) =
∑3

i=1

∣∣∣∑3
k=1 (A(k, i) × wk) − nwi

∣∣∣
n

.

(19)

The CIF can be solved by the proposed algorithm, and
convergence graph is presented in Fig. 5. To verify the ratio-
nal results, both weights from the proposed algorithm and
AHP theory are presented in Table 13, respectively. It can
be observed that the weights are consistent with the AHP
theory. Both weights have little difference. The results have
indicated that the proposed algorithm has the ability to solve
real-application COPs.

Table 12 Standardized comparison scale of nine levels

Definition Value

Equal importance 1

Weak importance 3

Essential importance 5

Demonstrated importance 7

Extreme importance 9

Intermediate values 2, 4, 6, 8

Fig. 5 Convergence graph for min CIF

Table 13 The weights comparison between algorithm and AHP theory

Method W1 W2 W3

Algorithm 0.6429 0.2831 0.0740

AHP theory 0.6433 0.2828 0.0739
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6 Conclusions

An extended effective differential evolution algorithm is
designed, named e-DE.The frameworkof e-DE is the sameas
the conventional DE. It is mainly composed of seven criteria
and two offspring generation approaches. The seven crite-
ria are used to compare the feasible solutions over infeasible
solutions, which is quite different from traditional research.
The two kinds of offspring generation approaches com-
bine rand/1/bin, current-to-best/1, and current-to-rand/1. The
experimental results based on CEC2006 have revealed the
effectiveness of the proposed algorithm. The proposed algo-
rithm can reach 100% feasible rate. In addition, compare to
some state-of-the-art optimization algorithms, the algorithm
is competitive. Besides, the proposed algorithm is used to
solve the weights in AHP. The results are consistent with the
weights from AHP theory.

In the following studies, wewill use the algorithm to solve
emergency management optimization problems, in which a
lot of COPs are involved.
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