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Abstract Brain–computer interface systems help paralyzed
people to control devices such as a computer cursor, robotic
limbs, wheelchairs, or spellers by only using their thoughts.
Nowadays, electroencephalogram (EEG) signals are mostly
used to detect activity of various actions within the brain
as they provide rich information about brain’s electrical
activity. However, EEG signal generates large amount of
data which is usually difficult to interpret and classify. This
paper introduces a new classification strategy based on EEG
signals, which is called fuzzy-based classification strategy
(FBCS). FBCSminimizes the classification time by perfectly
extracting the effective features of the produced EEG signals
based on a set of elected electrodes using semantic analy-
sis, then taking the classification decision accordingly. FBCS
uses feature reduction and electrode selection techniques to
reduce the dimensionality of data to be classified, which also
improves the classification accuracy. Experimental results
have shown that FBCS outperforms recent classification
strategies in terms of accuracy and classification time.
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1 Introduction

Brain–computer interface (BCI) researches have grown over
the past few decades since the 1970s. One goal of BCI
research is to develop systems capable of classifying neural
representations of naturalmovement planning and execution.
Researchers aim to develop systems that help disable per-
sons to communicate with external world and provide them
a non-muscular pathway between their brains and prosthetic
devices such as robotic limbs, wheelchairs, or spellers. Such
applications are not only limited the use of prosthetic devices
but also extended virtual gaming, tele-operation, communi-
cation, and robotics (McFarland andWolpaw 2008; Daly and
Wolpaw 2008).

However, BCI suffers from several challenges such as:
(i) the training sets are sometimes relatively small, since the
training process is affected by usability matter. Even though
heavily training sessions are considered time-consuming and
demanding for the subjects, in the training phase, trained
subject’s signal has been used to learn the used classifier.
Therefore, a significant challenge in designing a BCI is to
balance the trade-off between the technological complex-
ity of classifying the user’s brain signals and the amount of
training needed for successful operation of the interface. (ii)
Nonlinearity; the brain is a highly complex nonlinear system
in which disordered behavior of neural ensembles can be
detected. Thus, EEG signals can be better characterized by
nonlinear dynamic methods than linear methods. (iii) Non-
stationarity and noise; the used signals continuously changed
over time either between or within the recording sessions.
The mental, emotional state background through different
sessions, fatigue, and concentration levels can contribute in
EEG signals variability. Noise is also a big contributor in the
BCI non-stationarity issue as it includes unwanted signals
caused by alterations in electrode placement and environ-
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mental noise. (iv) High dimensionality; signals are recorded
from multiple channels to preserve high spatial accuracy.
As the amount of data needed to properly describe differ-
ent signals increases exponentially with the dimensionality
of the vectors, various feature extraction methods have been
proposed. They play an important role in identifying dis-
tinguishing characteristics. Thus, the classifier performance
will be affected only by the small number of distinctive fea-
tures instead of the whole recorded signals that may contain
redundancy (Abdulkader et al. 2015).

The basic steps of BCI include acquisition of brain sig-
nals, preprocessing, feature extraction, and classification.
The decisions generated by the employed classifier can be
used to control an external device. The electroencephalogram
(EEG) is a popular signal acquisition noninvasive technique
that allows BCI systems to measure electrical potentials of
the brain at a temporal resolution on the order of millisec-
onds through electrodes placed on the surface of the scalp.
Typically EEG caps with 6 to 64 electrodes are the mostly
used (some cases use a much greater number of electrodes,
e.g., 256), so the dimension of the feature space is often very
large having redundant features which not only creates addi-
tional overhead of managing the space complexity but also
might include outliers, thereby reducing classification accu-
racy (Rakotomamonjy et al. 2005).

Feature selection is a subarea of dimensionality reduc-
tion aims to identify the best subset of features out of original
feature space. InBCI applications, principal component anal-
ysis (PCA) (Yu et al. 2014), independent component analysis
(ICA) (Guo et al. 2013), sequential forward search (SFS) (Pal
et al. 2014), and particle swarm optimization (PSO) (Hsu
2013) have been used for feature selection to reduce the
dimensionality of data. After feature extraction and reduc-
tion, classification algorithms are used having two functions
in training and practical applications of BCI. During training,
the task is to infer a mapping between signals and classes
using the labeled feature vector produced by the feature
extraction module. During the application of BCI, the task
is to discriminate different types of neurophysiologic signals
translating them into commands therefore to allow for control
of a BCI.

Recently, a number of widely used classifiers such as lin-
ear discriminant analysis (LDA), K nearest neighbor (KNN)
algorithms, support vector machine (SVM), decision trees,
NaiveBayes (NB) classifier, andneural networks (NN) (Lotte
et al. 2007) have been used as BCI classifiers. Linearity is
the main limitation of LDA, which can cause poor outcomes
(Lotte et al. 2007). SVM has a low-speed execution but has
good generalization properties (Lotte et al. 2007). On the
other hand, KNN assigns an unseen data sample to the dom-
inant class among its K nearest neighbors formed using the
training set. KNN may fail in some BCI experiments due
to its sensitivity to the curse of dimensionality. However, it

performs efficiently with low-dimensional feature sets (Lotte
et al. 2007). NB classifier is based on Bayes’ theorem, with
a strong assumption of independence of the features, and it
is more suitable in BCI applications with small number of
trials.

This paper introduces a new fuzzy-based classification
strategy (FBCS) based on brain–computer interface. FBCS
includes novel techniques for feature reduction and electrode
selection to reduce the dimensionality of data. Accordingly,
both training time and response time have been minimized
that makes FBCS suitable for real-time applications which
need a quick response. On the other hand, FBCS is based
on a fuzzy inference system which is employed for the clas-
sification task. To accomplish such task, a new instance of
KNN is introduced, which is called fuzzified KNN (FKNN).
In addition to the high classification accuracy, FKNN has a
salient property that traditional KNN does not have, which
is overfitting resistant. The cause is that FKNN adds sev-
eral classification heuristics besides the K nearest neighbors,
which are the distance among items in the feature space as
well as the belonging degree of the item to the class. Those
heuristics have been merged via a fuzzy inference system.
Accordingly, FKNN provides accurate classification deci-
sions. FKNNhas been compared against recent classification
techniques that hadbeen applied toBCI.Experimental results
have depicted that FKNN outperforms recent techniques as
it gives not only the maximum classification accuracy and
sensitivity but also the minimum response time. This paper
is organized as follows: In Sect. 2, an overview about the
EEG-based BCI systems as well as their main parts have
been introduced. Section 3 shows the previous efforts about
the dimensional reduction and BCI classification techniques.
Section 4 introduces the proposed fuzzy-based classifica-
tion strategy (FBCS). Section 5 discusses the experimental
results. And finally, conclusion of our work is presented in
Sect. 6.

2 General scheme of EEG-based BCI

Figure 1 illustrates the basic principle ofEEG-basedBCI. Ini-
tially, signals from the brain are acquired. Generally, there
are three methods to acquire (capture) signals that represent
the human brain electrical activities, which are (i) invasive,
(ii) partially invasive, and (iii) noninvasive. Invasive capture
provides high-quality signal reading, but causes great incon-
venience and risks to human health. Partially invasive capture
provides lower-quality signals and lower risk to health. On
the other hand, noninvasive capture is fully external to the
body, more convenient, and easy to use and provides good
quality signal capture and not present risk to users.

Although there are many methods to detect brain signals,
EEG acquisition system has relatively short time constants,
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Fig. 1 General scheme of EEG-based BCI

can function in most environments, and require relatively
simple and inexpensive equipment, offering the possibility
of a new non-muscular communication and control chan-
nel. EEG signal is acquired with the help of a multi-channel
headset having a certain sampling rate.

EEG (electroencephalogram) is the most popular nonin-
vasive brain signal acquisition tool; thus, it is the cheapest
and the simplest recording technique. However, it has low
signal-to-noise ratio (SNR) due to the environmental noise
and artifacts caused bymuscle and eyemovements. The EEG
system contains electrodes, amplifiers, A/D converter, and a
recording device, which may be a personal computer or sim-
ilar. The electrodes acquire the signal from the scalp; the
amplifiers process the analog signal to enlarge the amplitude
of the EEG signals (signals on scalp are very small micro-
volt range (1/1,000,000V)), so that the A/D converter can
digitalize the signal accurately. Then, the recording device
stores and displays the data. The produced signal which is
digitized and analyzed can be used to extract commands that
can control a computer or a device.

Applications include spelling, computer mouse control,
and prosthesis or robot control.Generally, BCI can be applied
in several applications; mainly, it allows paralyzed people to
control prosthetic limbs with their mind; visual images can
be transmitted to the mind of a blind person, allowing them
to see; auditory data can be transmit to the mind of a deaf
person, allowing them to hear. From another point of view,
BCI allows gamers to control video gameswith theirminds; it
can also allow amute person to have their thoughts displayed
and spoken by a computer. Finally, a feedback is provided
to the user for further interaction. An improvement in just

one of these steps can improve the performance of a BCI
system.

3 Related work

The main target of this paper is to introduce a new classifica-
tion strategy to enhance the classificationperformanceofBCI
systems using the concept of dimensional reduction. Hence,
some of the recent efforts in employing some dimensional
reduction and classification techniques in BCI applications
will be represented in this section.

Principle component analysis (PCA) is a widely used
dimensionality reduction linear transformation technique.
However, the projections it finds are to maximize variances,
which are not necessarily related to classification perfor-
mance (the class labels); it is not particularly useful in
classification and pattern recognition applications. Linear
discriminant analysis (LDA) attempts to overcome this lim-
itation of PCA by finding linear projections that maximize
class separability under the Gaussian distribution assump-
tion (Fukunaga 1990). The LDA projections are optimized
based on the means and the covariance matrices of classes,
which are not descriptive of an arbitrary probability density
function (pdf). Independent component analysis (ICA) has
also been used as a tool to find linear transformations that
maximize the statistical independence of random variables.
However, it has similar drawbacks as PCA. CSP (common
spatial patterns) can be used instead of PCA and ICA (Naeem
et al. 2009).

Atyabi et al. (2012) introduced electrode reduction (ER)
and feature reduction (FR) methods based on genetic
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algorithms (GA) and particle swarm optimization (PSO).
Evolution-based methods are used to generate a set of
indexes presenting either electrode seats or feature points that
maximize the output of a weak classifier representing a com-
parison between genetic algorithms (GA), particle swarm
optimization (PSO), and random search algorithm as elec-
trode and feature reductionmethods. The results indicate that
on average across all subjects, in GA-based ER, GA-based
FR, random-based ER, random-based FR, and PSO-based
FR, the electrode reduction (ER) had a greater impact on
classification performance compared to feature reduction
(FR), and the combination of polynomial SVM- and GA-
based ER performed better than all other methods except
the combination of the use of the full-set with polynomial
SVM.

Sparse common spatial pattern (SCSP) algorithm was
proposed in Arvaneh (2011), to select the least number of
channels within a constraint of classification accuracy. To
select channels using the SCSP method, first two sparse
common spatial filters corresponding to two motor imagery
tasks are obtained. After obtaining the sparse filters, chan-
nels corresponding to the zero elements in both of the spatial
filters are discarded, and the rest are defined as the selected
channels. To compare and consider the importance of each
selected channel, a ranking method was proposed as follows:
first, the top ranked channels for each motor imagery task are
determined from the maximum of the absolute value of the
corresponding sparse spatial filter. SCSP algorithm yielded
an average improvement in 10% in classification accuracy
compared to the use of three channels.

Multi-objective particle swarm optimization (MOPSO)
method proposed in Hasan et al. (2009) solves the problem
of effective channel selection for brain–computer interface
(BCI) systems. The proposed method was tested and com-
pared to another search-based method, sequential floating
forward search (SFFS). The results demonstrate the effec-
tiveness of MOPSO in selecting a fewer number of channels
with insignificant sacrifice in accuracy, which is very impor-
tant to build robust online BCI systems.

Muhammad et al. (2015) presented a comparison of
mostly used classification algorithmwith a newunsupervised
learning technique for classification, i.e., self-organizing
maps (SOM) based on neural network. SOM and other
algorithms have been used to categorize the feature vec-
tor acquired from the EEG dataset into their corresponding
classes. Both original and reduced feature sets have been
used for classification of motor imagery-based EEG signals.
The reduction is performed by applying principal component
analysis (PCA). It has been depicted frommeasured data that
SOM shows a maximum classification accuracy of 84.17%
on PCA implemented reduce feature set.

Nanayakkara and Sakkaff (2012) presented a new classifi-
cationmethod, which is closely related to K nearest neighbor

(KNN) classification method, named fixed distance neigh-
bor (FDN) classifier. For comparison purposes, performance
of KNN classification method and performance of the FDN
method are tested with the same feature vectors derived from
EEG datasets recorded for imagery motor movement mental
tasks. It was found that FDN performed slightly better than
KNN for most of the datasets used in this study, indicating
that FDN is a viable classificationmethod, which can be used
in place of KNN in BCI systems.

Authors in [17] used a combination of bacterial forag-
ing optimization and learning automata to determine the best
subset of features from a given motor imagery electroen-
cephalography (EEG)-based BCI dataset. They employed
discrete wavelet transform to obtain a high-dimensional fea-
ture set and classified it by distance likelihood ratio test. This
proposed feature selector produced an accuracy of 80.291%
in 216s. On the other hand, Zanchettin et al. (2012) presented
a hybrid KNN-SVM method for cursive character recogni-
tion. The main idea was to increase the K nearest neighbor
recognition rate, sensible to different classes with similar
attributes, using the SVM as a decision classifier. The adap-
tation was to get the two most frequently classes in the KNN
and use the SVM to decide between these two classes. The
main disadvantage is the processing time.

The advantages of self-organizing maps (SOM) artificial
networks and KNN were explored in Silva and Del-Moral-
Hernandez (2011), so the KNN performs the classification
process and the SOM work as preprocessing to the KNN
classifier, applied to digits recognition in car plates. The
main advantage of this method is that the time consumed by
SOM-KNN is shorter than time consumed by KNN. Finally,
a review of BCI several techniques for signal acquisition,
preprocessing or signal enhancement, feature extraction,
classification, and the control interface was discussed in
Nicolas-Alonso and Gomez-Gil (2012), representing their
advantages, drawbacks, and latest advances.

4 The proposed fuzzy-based classification strategy
(FBCS)

This section illustrates the proposed fuzzy-based classifica-
tion strategy (FBCS) in details. The different steps of FBCS
are depicted in Fig. 2. As illustrated in Fig. 2, the proposed
FBCS consists of seven sequential steps, namely (i) data
acquisition, (ii) preprocessing, (iii) feature extraction, (iv)
feature selection, (v) dimensionality reduction, (vi) classi-
fication, and (vii) decision making for choosing a certain
action. However, FBCSmainly focuses on: (iv) feature selec-
tion to acquire a set of compact and informative features, (v)
dimensionality reduction to minimize processing time, and
(vi) classification to take the corresponding precise decisions.
We claim that giving more attention to those steps will not
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Fig. 3 An EEG cap filled with electrodes used in BCI data acquisition

only improve the performance of the BCI system, but also
greatly reduce the computational load of the system. The next
subsections explain those steps in more details.

4.1 Data acquisition

Data acquisition can be accomplished through an EEG cap.
Figure 3 shows an example of EEG caps, representing a gen-
eral view of EEG cap filled with electrodes. These electrodes
are set up according to the standard 10/20 system of electrode
placement method. EEG cap with 22 electrodes with 250 Hz
sampling rate from Dataset 2a of BCI competition IV pro-
vided by BCI research group at Graz University (Brunner
et al. 2008) and EEG cap with 118 electrodes with 1000 Hz
sampling rate from Dataset IVa of BCI competition III (xxx
yyy) are used as data acquisition components to evaluate the
proposed FBCS.

4.2 Preprocessing

Generally, the purpose of signal preprocessing is to enhance
the signal produced by EEG. Unfortunately, EEG-recorded
data are highly challenging to evaluate due to the noise
recorded together with EEG signal, non-stationary, and
diverse artifacts. Artifacts are irrelevant unwanted signals
present in BCI system. They have various origins, which
include: utility frequencies such as noise, body movements,
or eye blinks. As noise amplitude is usually larger than the
signal of interest, the goal of preprocessing is to increase
signal-to-noise ratio (SNR) for the signal acquired fromEEG
headset (Mallick and Kapgate 2015). Figure 4 represents the
original signal before and after filtration to show the effect
of noise.

The digital EEG signal is stored electronically and can
be filtered. Filtering can be applied either in the frequency
domain by selecting different pass bands, or in the spatial
domain. Frequency filtering removes noises, such as filter-
ing out direct current and high frequency noise (1–45Hz).
Frequency filtering also has the ability to select relevant

frequency components, such as sensorimotor rhythm 8–
12Hz (mu). The goal of spatial domain filtering is to create
a subset of EEG channels, which are related to certain brain
activity, as well as to enhance the separability of the data. The
choice of spatial filter can affect the SNR greatly. Bipolar
derivation, Laplacian derivation, principal components anal-
ysis (PCA), independent components analysis (ICA), and
common spatial patterns analysis (CSP) are alternativemeth-
ods for deriving weights for a linear combination of EEG
channels (Jung et al. 2000). In FBCS, EEG signals were
band-pass filtered from 8 to 30Hz including mu (8–13Hz)
and beta (13–30Hz) rhythms, which are used for classifying
motor imagery data.

4.3 Feature extraction

The goal of feature extraction is to represent the character-
istics of original signal without unwanted redundancy. The
features can be extracted from the EEG signal in two dif-
ferent domains, which are: time domain features (TDF) and
frequency domain features (FDF).

Unlike Fourier transform, which provides frequency
domain analysis at a constant resolution on the frequency
scale, discrete wavelet transform (DWT) provides frequency
domain as well as time domain analysis at multiple reso-
lutions. Frequency domain analysis is mainly based on the
power and coherence of each frequency band in the EEG
signals. Spectral power estimation is the primary means
of frequency domain analysis. While time domain analy-
sis method mainly analyzes the geometric property of EEG
waveforms, such as amplitude, mean, variance. It is widely
used by EEG researchers for its intuition and clear physical
meaning (Zhao et al. 2015).

In this paper, DWT is used. Signals are passed through
filters with different cutoff frequencies and different scales.
The number of filter stages (levels) to be used depends on the
resolution required. So the feature vector is prepared using
the detail coefficients of third and fourth level (D3 and D4)
for each electrode because these levels contain information
in the frequency range of 8–12 and 16–24Hz. Considering a
headset of 14 electrodes as an example, the dimension of a
feature matrix is M = 1176; thus, the number of samples is
S = 84 samples.

4.4 Feature reduction

Feature reduction methods aim to identify a subset of ‘mean-
ingful’ features out of the original set of features. Feature
reduction has several advantages such as (i) overfitting avoid-
ance, this is because the classification model is trained with
the most precise and informative features, (ii) performance
promotion, and (iii) processing time minimization, which
makes the model more suitable for real-time applications

123



A fuzzy-based classification strategy (FBCS) based on brain–computer interface 2349

Fig. 4 EEG produced signals
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Fig. 5 Proposed feature reduction methodology

(Saleh et al. 2016; Saleh and Abulwafa 2017). Generally,
feature reductionmethods can be subdivided into filter, wrap-
per, and embedded methods (Saleh and Abulwafa 2017).
Filter methods compute a score for each feature by their
information content, and then select only the features that
have the best scores. On the other hand, wrapper methods
train a predictive model on subsets of features; then, the
subset which gives the best accuracy is selected. Finally,
embedded methods determine the optimal subset of fea-
tures directly by the trained weights of the classification
method.

In this paper, we propose a new filter approach for feature
reduction; the goal is to determine one feature value for the
repeated feature values of the same electrode. For number
of n trails, there will be n feature matrices, i.e., n value for
each element in the feature matrix of dimension M(E × S),
for the above-mentioned example the matrixM of dimension
(14 × 84) is repeated n times for the same action. So, we
propose a feature reduction phase to have only one nearly
equivalent value for each element.

As shown in Fig. 5, theoretically the value of the feature
xi, j remains constant for n trails for the same action. But due
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Fig. 6 Projecting the considered values on the numbering axis

to the effect of many factors like the personal feeling, fatigue,
happiness, sadness, the value of any element xi, j may differ
in each trail. By following the next steps, there will be one
value for each element constructing one feature vector for n
trails of one action.

For each element in the matrix (xi, j ), the following steps
should be followed:

• Step 1 represent the n values of the element (xi, j ) the
linear axis shown in Fig. 6, as x1, x2, . . ., xn , which are
assumed normally to be nearly identical.

• Step 2 calculate the average value μ of the n values of
the element xi, j , as:

μ =
∑n

i=1 xi
n

(1)

• Step 3 find the set of values of x in the neighborhood of
μ after determining the neighborhood width as:

NW = Xmax − Xmin

2
(2)

Then select the set

S1 = {x(i)∀μ − NW < x(i) < μ + NW} (3)

• Step 4 repeat step 2 and step 3 for a pre-defined (ξ) times
till find the approximately value of the element xi, j as
the average of the items ∈ Sξ , or till we reached to one
value of element xi, j before the complete of (ξ) times.

Thepre-mentioned stepswill be followed for all the elements;
the data after n trails will be only one matrix of M elements.
For illustration, if the system simply has 20 trails using 14
EEG electrodes and each electrode’s signal has been sampled
to 84 samples, so there will be 20 feature matrices each of
dimension 14× 84. Thus, within each matrix each element
xi, j will have 20 theoretically identical values which is equal
1176 elements. Table 1 shows an example of xi, j values from
the 20th trails. The goal is to have only one feature matrix
with a certain value for each element xi, j . First, the average
of the given 20 values should be determined, which will be
equal to 0.537. Then, the range of neighborhood width as
depicted in Eq. (2) is calculated, which is equal to 0.395.
From Eq. (3), a selected list S1 from the given feature values,
which lies inside the elected range, is picked. Doing the same
action for the selected set of values S1, a new set of feature

values S2, which has a number of items less than that of S1,
can be selected. Assuming ξ = 10, the value of xi, j can be
represented by only 0.44 from S8 after 8 times of calculations.
Repeating this procedure for the remaining elements of the
feature matrix, the result is one matrix representing the 20
trails after removing the outlier values.

4.5 Electrode selection

Electrode selection mainly focuses on the use of electrodes
and scalp locations that best represent the subject’s intention
and have a high contribution to classification accuracy. Dif-
ferent subjects may have different reactions toward the tasks,
and the optimal electrode set for specific tasks may also vary
among subjects. In this paper, a new approach for electrode
selection will be introduced. Semantic analysis (Ogiela and
Ogiela 2012) is used to determine the most informative set
of electrodes for better classification accuracy and eliminates
the electrodes that may badly affect the average accuracy of
BCI several action system.

To reduce the dimensions of the feature matrix FE×S , in
which E is the number of electrodes (equal 14 in the above
example) and S is the number of samples (equal 84 in the
above example), the proposed strategy aims to choose the
most informative set of electrodes IS, regarding their effect
on the classification accuracy of the underlying action.

Initially, using a simple classifier such as ELM (extreme
learning machine) classifier (Geetha and Geethalakshmi
2011), determine the accuracy according to a certain action
A1, i.e., determine the classification accuracy for the input
matrix FExS (e.g.,F14×84), considering the features from all
electrodes, denoted as; Acc, which can be calculated by
Eq. (4).

ACC =
∑M

i=1 nii
N

(4)

where the numerator represents the correctly classified sam-
ples and the denominator (e.g., N ) represents the total
number of samples. Then, the classification accuracy when
using only one electrode Ei is calculated, if the accuracy
decreased, then add it to the bad effect set of electrodes
denoted as B, which reduces the accuracy. If using the
features of Ei increases the accuracy, then add it to the
informative set of electrodes IS. After that, the classification
accuracy is determinedwhen using the two electrodes Ei and
Ei+1, if the accuracy decreased, then add the electrode Ei+1

to the bad effect set of electrodes (e.g., B). Afterward, classi-
fication accuracy when using another electrode Ei+2 with Ei

is determined, else add Ei+1 to the informative set of elec-
trodes IS, and repeat again for all the remaining electrodes.
Finally, there will be two sets of electrodes representing the
informative electrode IS and the bad effect electrodes B for
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a certain action. Hence, each action has a set of electrodes
E (e.g., E = {E1, E2, E3, . . .., En}) and a set of most infor-
mative selected set of electrodes IS ⊂ E . The remaining
electrodes are considered as the bad effect set of electrodes
for that action B = E − IS. The bad effect (BE) on the
accuracy can be determined, as it is the difference between
the best accuracy and the accuracy using every electrode in
the bad effect set of electrodes. Also, for every informative
electrode its goodness effect (G) can be determined based on
the accuracy, which is the difference between the accuracy
of the system without using this electrode and after using it.

Algorithm 1: Electrode Selection Algorithm

The above-mentioned procedure is used to determine
the mutual effect of the system electrodes on the accuracy
of recognizing each action and should be repeated for the
remaining actions (e.g., if the systemdesigned to classify four
actions, repeat the same procedure for A2, A3, A4). Consid-
ering four actions, the result will be the sets of electrodes that
improved the accuracy for each action IS1, IS2, IS3, IS4 and
sets of bad effect electrodes B1, B2, B3, B4. Furthermore,
since the system is designed to classify several actions, there

will be IS and B sets for each actionwhichmay differ accord-
ing to the underlying action.

To solve this issue, we select the common set of electrode,
which guarantee the maximum classification accuracy of the
whole classification system (e.g., for all considered actions).
Electing the suitable set of electrodes is a true challenge.
However, this can be accomplished through rule inference
methodology and semantic analysis algorithm. The impor-
tanceof each electrode to thewhole systemcanbedetermined
by analyzing the contents of all the resulted sets semantically
and answering the following questions:

• If this electrode exists in all informative sets for all
actions:

� So it can be considered as an informative electrode
for all the system.

• If this electrode exists in some pre-defined number of
informative sets for some actions and has a little bad
effect on the accuracy of the other actions:
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� So it can be considered as an informative electrode
for all the system.

• If this electrode exists in all bad effect sets for all actions:

� So it can be considered as a bad effect electrode
for all the system.

• If this electrode exists in some pre-defined number of
informative sets for some actions and has a great not
neglected bad effect on the accuracy of the other actions:

� So it can be considered as a bad effect electrode
for all the system.

• Otherwise a comparison between the goodness effect of
this electrode on some actions and its bad effect degree
on the other action could be established to determine its
effect on all the system actions and its importance for the
system.

Hence, a set of election rules couldbe concluded, then applied
whenever it is needed to elect the most suitable set of elec-
trodes to express the data for the whole classification system.
Accordingly, this reduces the dimension of the employed
dataset as well as the response time for the classification sys-
tem. Election rules are illustrated in Table 2. On the other
hand, electrode election methodology is depicted in Algo-
rithm 2.

Algorithm 2: Electrode Selection for all actions Algorithm

Table 2 Rules of electrode election methodology

Rule Description Function

R1 If Ei ∈ ISA for all actions ∈ AS
Then (Accept Ei )

Acceptance rule

R2 If Ei ∈ ISA for a pre-defined
number of actions ξ , AND has
little bad effect BE on the other
actions Then (Accept Ei )

R3 If Ei ∈ ISA for a pre-defined
number of actions ξ with a little
goodness effect value, AND has
a not neglected bad effect BE on
the other actions Then (Reject
Ei )

Rejection rule

R4 If Ei ∈ BA for all actions ∈ AS
Then (Reject Ei )

R5 If Ei has acceptable goodness
values for some actions and has
not neglected bad effect on other
actionsThen (Compare goodness
and bad effect then take the
decision either to accept or reject)

Acceptance/
rejection rule

Illustrative example

For illustration, consider a system that uses 6-EEGelectrodes
to classify four actions with trial duration of 6 s and the sig-
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Table 3 Selection for the most informative set of electrodes for the first action

Step Input attribute (information of) Accuracy for action A1 E1 E2 E3 E4 E5 E6 
* √ √ √ √ √ √ 89.1 
1 √ X X X X X 89.5 
2 X √ X X X X 88.1 
3 X X √ X X X 87.5 
4 X X X √ X X 85.3 
5 X X X X √ X 83.4 
6 X X X X X √ 68.9 
7 √ √ X X X X 90 

: : : : : : : : 

50 √ √ √ X X X 87.7 
51 √ √ X √ X X 90.2 
52 √ √ X √ √ X 91.5 
53 √ √ X √ √ √ 90.4 

Step Input attribute (information of) Accuracy for action A1 E1 E2 E3 E4 E5 E6 
* √ √ √ √ √ √ 89.1 
: 

63 : : : : : : : 

Table 4 Effect (G—goodness/BE—bad effect) of each electrodes for the first action

Step Input attribute (information of) Accuracy for 
action A1 G BE E1 E2 E3 E4 E5 E6 

0 √ √ X √ √ X 91.5 - - 
1 √ √ √ √ √ X 91 - -0.5 
2 √ √ X √ √ √ 90.4 - -1.1 
3 X √ X √ √ X 90.5 1 - 
4 √ X X √ √ X 90.2 1.3 - 
5 √ √ X X √ X 91.3 0.2 - 
6 √ √ X √ X X 90 1.5 - 

nal of each electrode has been sampled to 5 samples/s. So,
there will be four feature matrices, each of dimension 6× 30,
and the number of each matrix’s elements is equal to 180
elements. The goal is to distinguish only a set of the most
informative electrodes for the 4 actions. Use the extreme
learning machine (ELM) classification (Geetha and Geetha-
lakshmi 2011), as a simple learning algorithm on the training
set to select the set of electrodes that achieve the best accu-
racy.

As illustrated in Table 3, the classification accuracy using
all electrodes for the first action is 89.1%. However, it is
lightly improved when using only features from E1. Deter-
mining the classification accuracy using features from E2

and the features from E1 gives another little improvement.
Repeat the calculation of the classification accuracy after
adding new electrodes to the previous set, showing that the
system has the max classification accuracy equals to 91.5%
using the set of electrodes IS1 = {E1, E2, E4, E5}, while

adding electrodes E3 and E6 reduces the classification accu-
racy. Accordingly, they are considered as the items of the bad
effect set, e.g., B1 = {E3, E6}.

From Table 3, it will be easy to determine the goodness
(G) or bad effect (BE) of each electrode according to the
promotion or demotion in the system’s performance (e.g.,
classification accuracy), as depicted in Table 4. Repeat the
same to determine the most informative set of electrodes as
well as the bad effect set of electrodes for the other three
actions. Results are presented in Table 4.

It is clear from Table 5 that E1 and E5 are good electrodes
for all actions. Hence, they should be used on the classifica-
tion of the four actions. On the other hand, E3 is a common
bad effect electrode for all actions, so it should be discarded
with no effect on the classification accuracy. E2 ismost infor-
mative for three actions and has only bad effect on A2. So,
it can also be discarded. On the other hand, each of the elec-
trodes E4 and E6 has a bad effect on two actions out of
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Table 5 Selected electrodes on the four actions

Action Input attribute (information of) Accuracy

E1 E2 E3 E4 E5 E6

A1 G = 1 G = 1.3 B = (− 0.5) G = 0.2 G = 1.5 B = (− 1.1) 91.5

A2 G = 0.5 B = (− 0.2) B = (− 1) G = 0.1 G = 1.3 G = 0.2 88.9

A3 G = 1.1 G = 0.9 B = (− 0.4) B = (− 0.9) G = 1.4 B = (− 0.8) 90.4

A4 G = 0.9 G = 1.5 B = (− 0.2) B = (− 1.1) G = 1.1 G = 0.1 91.1

the four actions. So, the goodness and badness effect of them
will be compared. FromTable 4, it can be concluded that they
have slightly goodness effect and their bad effect cannot be
neglected; hence, the decision is to discard them. Finally, the
common informative set of electrodes for the given classifi-
cation system consists of only {E1, E2, E5} instead of the six
electrodes.Accordingly, the input featurematrix for this clas-
sification system will have the dimension of 3× 30 instead
of 6× 30, which in turn minimizes the number of the input
elements to be the half of the original data.

4.6 Classification and decision making

BCI performance is measured by its classification accu-
racy (Aydemir and Kayikcioglu 2013). In order to guarantee
online classification, the classifier must be quick enough to
do real-time classification of the EEG signals. Accordingly,
several issues must be carefully considered, which are: (i)
classification should be robust with respect to outliers, since
the neurophysiologic signals may contain several outliers as
well as artifacts. (ii) The employed classification technique
should have as low computational complexity as possible
since data in BCI system should be processed in real time.
(iii) Classification should provide confidence prediction lev-
els as the nature basis to combine information obtained from
different sources.

K nearest neighbors (KNN) classifier is a classical super-
vised method in the field of machine learning. It is based
on statistical data and is widely used in many areas such as
text classification, pattern recognition, and image process-
ing. The decision rule of KNN algorithm is to find the K
nearest or most similar training samples in the feature space,
and then, the test sample is assigned to a majority vote of
its K nearest neighbors (Zhao and Chen 2016). KNN perfor-
mance depends on two factors, which are: (i) the assigned
value of K that represents the number of considered neigh-
bors, and (ii) the employed distance metric. The mostly used
method to compute distance between a test sample and the
specified training samples is Euclidean distance (Zhao and
Chen 2016), which can be computed by Eq. (5).

Dist(X,Y ) =
√

∑n

i=1
(xi − yi )2 (5)

where Dist(X ,Y ) is the Euclidean distance between a test
sample X and a specified training sample Y of features
(1,2,…,n), xi represents the features of the test sample X, yi
represents the features of the specified training sample Y , and
n is the total number of features.

The main advantage of KNN is that it can easily deal
with problems in which the number of classes is more than
two. In addition, KNN allows adding examples to training
dataset without retraining the classifier. The work in this
paper extends themain concept ofKNN tomake the choice of
the appropriate action. Accordingly, a new instance of KNN
is produced with enhanced characteristics via a set of addi-
tional parameters, which are illustrated through the following
definitions.

Definition 1 Distance To Center (DTC) DTCi is defined as
the distance from the testing item to the center of the class
corresponding to the i th action.

Definition 2 Inverse Belonging Degree (IBD) IBDi is
defined as the average distance from the K nearest neighbors
of the testing item to the center of the class corresponding to
the i th action.

Definition 3 Number of the nearest neighbors (NNN)NNNi

is defined as the number of nearest neighbors of the class
corresponding to the i th action for the testing item.

As depicted in the above definitions, one of these additional
parameters is the distance between the input test signal and
the center point of each action’s training data DTCi (where i
represents the corresponding action’s identifier). Moreover,
the average distance from each of selected nearest neighbor
points in the training dataset related to a certain action and the
center point of this action is considered as a new parameter
called inverse belonging degree (IBDi ). The inverse belong-
ing degree affects the choice of the appropriated action that
it helps to remove the outliers with highest IBDi . A fuzzy
inference system is used to combine those parameters for
formulating the suitable decision. Hence, the new classifi-
cation strategy is called fuzzy-based classification strategy
(FBCS). Initially, during the training phase the centers of
the underlying classes are calculated, which are denoted as;
c1, c2, c3, c4 considering four actions (A1, A2, A3, and A4)

as depicted in Fig. 7.
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During the testing phase, initially, the distances from the
unknown (unclassified) input item, which is expressed in a
feature matrix and the pre-classified training items, are deter-
mined. Then, the K nearest training items are selected. Then
the pre-mentioned parameters should be calculated to per-
fectly classify the input unclassified item, namely number
of nearest neighbor (NNN), distance to center (DTC), and
inverse belonging degree (IBD). Generally, the more the
number of the nearest items related to the i th action (e.g.,
NNNi ) the more probability that the unknown item would
be associated with that action. On the other hand, the less the
distance from the tested item to the center of the i th class
(e.g., DTCi ) the more the probability that the unclassified
item related to that action. Moreover, the inverse belonging
degree of the input item to i th class, which is the (average)
distance from the selected nearest neighboring points of the
training dataset related to each action and input unclassified

itemcanbe calculatedbyEq. (6).Actually, the less the inverse
belonging degree to the i th class (e.g., IBDi ), the more the
probability that the input item is related to that class (action).

IBDi =
∑M

j=1 ds j

NNN
(6)

where NNN is the number of selected nearest points associ-
ated to an action Ai , ds j is the distance between each selected
nearest training point associated to the action Ai and the
center point of the training set for that action. The above-
mentioned three parameters NNNi , DCi , and IBDi for each
action i are considered as three different fuzzy sets. Then, a
proposed fuzzy inference system is employed to predict the
weight of each action (Wi ) to be the appropriate action for the
unknown input features. The fuzzy inference system is real-
ized through three steps, namely (i) fuzzification of inputs,
(ii) fuzzy rule induction, and finally (iii) defuzzification.

Algorithm 3: Fuzzy Based Classification Strategy (FBCS)
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(i) Fuzzification

Generally, NNNi , DTCi , and IBDi would be considered as
three different fuzzy sets. During the fuzzification step, the
inputs are transformed into degree ofmembership for linguis-
tic terms ‘low’ and ‘high’ of the considered fuzzy set. Then,
a membership function is employed to provide the similarity
degree of the considered input to the corresponding fuzzy
set. The result is a value between 0.0 (for non-membership)
and 1.0 (for full-membership). The used membership func-
tions for the considered fuzzy sets are depicted in Fig. 8. On
the other hand, the used values of α and β are illustrated in
Table 6, assuming K = 10.
(ii) Fuzzy rule induction

After fuzzification, the result is introduced as the input for the
fuzzy rule base. The considered rules are in the form; if (A
is x) AND (B is y) AND (C is z)… THEN (O is m), where
A, B, andC represent the input variables (e.g., NNNi , DTCi ,
and IBDi ), while x, y, and z represent the corresponding
linguistic terms (e.g., ‘Low’ or ‘High’), O represents the
rule output, and m represents the corresponding linguistic
terms (‘Low’, ‘Medium’, or ‘High’). Actually, there are 8
rules, which are illustrated in Table 7 (assuming L refers
to ‘Low,’ H refers to ‘High,’ and M refers to ‘Medium’).
For clarification, the first rule in Table 6 indicates that if
NNN(action i) is Low AND DTC(action i) is Low AND
IBD(action i) is Low THEN Output is Medium.

As illustrated in Giarratano and Riley (2004), four meth-
ods for fuzzy rules inference are available. These are max–
min, max-product inference, sum-dot method, and drastic
product. We choose the max–min method to be used in this
paper, which is based on choosing amin operator for the con-
junction in the rule premise and for the implication function
while the max operator is used for the aggregation. Consider
the case of using two items of evidence per rule, the resultant
rules will be;

IF X11 AND X12 THEN Y1 
IF X21 AND X22 THEN Y2 

. 

. 

. 

IF XN1 AND XN2 THEN YN 

Thus, the max–min composition inference rule would be:

μY =
aggregation

︷︸︸︷
max

⎡

⎣ min︸︷︷︸
implication

(
μX j1 , μX j2

) ∀ j ∈ {1, 2, 3, . . . , N }
⎤

⎦

(7)

This produces

μY = max
[
min

(
μX11 , μX12

)
, min

(
μX21 , μX22

)
, . . . . . . ,

min
(
μXN1 , μXN2

)]
(8)

where μx is the value of membership function associated
with each fuzzy parameter, N is the number of Fuzzy rules,
andμY represents the output membership value of fuzzy rule
induction step.

(iii) Defuzzification

The output of the fuzzy rules after applying it on the fuzzi-
fied inputs is then defuzzified. Defuzzification process is a
transformation from a space of fuzzy actions into a space
of non-fuzzy ones. As depicted in Saleh et al. (2015), the
most commonly used defuzzification techniques are: max-
criterion, the mean of maxima, and center of gravity (COG).
In COG, the weighted average of the area bounded by the
membership function curve is computed to be the crisp value
of the fuzzy quantity as illustrated in Eq. (9). Defuzzifica-
tion would be accomplished by using the output membership
function illustrated in Fig. 9.

COG =
∑

μ (Wi) ∗ Wi
/

μ (Wi) (9)

So, the fuzzified KNN classifier algorithm can be written as
the following steps:

• Determine the values of the three fuzzy input parameters
NNNi , DTCi , and IBDi for each action i .

• Apply the fuzzy rules according to them, then determine
the output membership values (μLow, μHigh, μMedium)

according to Eq. (8).
• Plot the output membership values (μLow, μHigh,

μMedium) on the output membership function graph
(Fig. 10),

• Finally, determine the area under the resulting curve to
have the weight of the action to be the correspondent
action to the unknown input feature according to Eq. (9),
and select the action with the highest weight.

5 Results and discussion

As the proposed fuzzy-based classification strategy (FBCS)
mainly contributes on; feature reduction to acquire a set
of compact and informative features, electrode selection to
minimize processing time, and classification to take the cor-
responding precise decisions, in this section, the proposed
FBCSwill be evaluated against some other approaches previ-
ously published in feature reduction, electrode selection and
classification of BCI. Informedness (Powers 2003) is used to
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Fig. 7 An example for new unknown feature vector to be classified in the system which has training features for four actions and the proposed
fuzzy parameters
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Fig. 8 Membership functions for the considered fuzzy sets

Table 6 Assigned values of α

and β
Parameter Assigned value

α1 1

β1 10

α2 0.169

β2 0.2

α3 0.1

β3 0.15

evaluate the performance, as used in the evaluation of fea-
ture selection and electrode reduction techniques in Atyabi
et al. (2012), as it is more informative in comparison with
accuracy taking specificity and sensitivity into account, as in
Eq. 10.

Informedness = TP

TP + FN
+ TN

TN + FP
− 1 (10)

Table 7 Used fuzzy rules for the fuzzified KNN classifier

ID NNNi DTCi IBDi Rule output

1 L L L M

2 L L H M

3 L H L L

4 L H H L

5 H L L H

6 H L H M

7 H H L L

8 H H H L

where TP is the true positive, which represents the number of
positive samples correctly predicted, TN is the true negative,
which represents the number of negative samples correctly
predicted, FP is the false negative, which represents the num-
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αo=4 βo=7 γo=10
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Weight of ac�on i (Wi)
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Fig. 9 Output membership function for defuzzification

Fig. 10 Time line of EEG signal acquisition

ber of positive samples incorrectly predicted, and FN is the
false negative, which represents the number of negative sam-
ples incorrectly predicted.

Moreover, the performance metrics: (i) classification
accuracy (CA), (ii) sensitivity (SE), (iii) specificity (SP),
and (iv) computational time (CT) are also used with the
comparison of the classifiers, as applied in Geetha and
Geethalakshmi (2011), and their calculating equations are
depicted in Eqs. (11–13).

CA = TP + TN

TP + TN + FP + FN
× 100 (11)

SE = TP

TP + FN
× 100 (12)

SP = TN

TN + FP
× 100 (13)

Higher accuracies reflect better decoding (prediction) of class
information from the EEG data features. To obtain statis-
tically significant conclusions, a Wilcoxon rank-sum test
(Sheskin 2003), one nonparametric statistical test to deter-
mine whether two independent random samples are from the
same distribution, was performed to compare the accuracies
of the classification system achieved with the proposed algo-
rithm with the accuracies achieved by the other competitors,
due to the simplicity of these statistics. In statistical hypothe-
sis testing, the p value or probability value is the probability
for a given statistical model that, when the null hypothesis is
true, the statistical summary would be the same as or more
extreme than the actual observed results. The computation is
based on a rank for each p value, a threshold value of 0.05
was applied which means that if the p value is very low (p <

0.05), we reject the null hypothesis and the result is consid-
ered significant. On the other hand, if the p value is greater

than 0.05, we accept the null hypothesis. The null hypothesis
of this statistical test assumes the equivalent performance of
all the competitor algorithms.

5.1 Employed datasets

In order to evaluate the proposed FBCS strategy, we car-
ried out the experimental testing using two well-known BCI
datasets. The first is labeled as Dataset D1, which is Dataset
2a of BCI competition IV provided by BCI research group
at Graz University (Brunner et al. 2008). Recoded from 9
healthy subjects, the dataset consists of four different tasks
known as motor imagery (MI) tasks, namely left hand, right
hand, both feet, and tongue recorded on different days from
each subject. The dataset is comprised of two sessions, each
with six runs separated by short breaks. Every run includes
48 trials (12 trials for each task). Therefore, there are 288
trails in total per session. For a single trial paradigm, the
subjects were sitting in a comfortable armchair in front of a
computer screen. As shown in Fig. 11, at the beginning of a
trial (t = 0 s), a fixation cross appeared on the black screen.
In addition, a short warning tone was presented. After 2 s
(t = 2 s), a cue in the form of an arrow pointing either to
the left, right, down, or up (corresponding to one of the four
classes left hand, right hand, foot, or tongue) appeared and
stayed on the screen for 1.25 s. This prompted the subjects to
perform the desiredMI task. No feedback was provided. The
subjects were asked to carry out the motor imagery task until
the fixation cross disappeared from the screen at t = 6s.
A short break followed where the screen was black again.
Table 8 gives a short description of the essential parameters
of dataset D1.

On the other hand, the second employed dataset is labeled
asDatasetD2,which is theDataset IVaofBCI competition III
(http://www.bbci.de/competition/iii/desc_IVa.html). It con-
tains 3.5 s of the following 3 motor imageries in which the
subject should perform, namely (L) left hand, (R) right hand,
(F) right foot.Motor imagery tasks performed by five healthy
subjects over 280 trials. Even though the visual cue was pre-
sented to subjects for the total amount of 3.5 s, the beginning
and end0.5 s canbe ignored since they represent the transition
time during which subject is changing its state from non-task
to task and vice versa. Therefore, it is reasonable to omit the
first and last 0.5 s and only use the middle 2.5 s for the classi-
fication task. As shown in Table 9, the used datasets contain
EEG recordings from 118 channels for 2.5 s over 280 trials
with 1000Hz sample rate. The experiments have been done
usingMATLABR2015b. Simulations have beendone using a
computerwith 4GBmemory and processor core i3 2.53GHz.

The two datasets (i.e., D1 and D2) were used in test-
ing proposed feature reduction (FR), the proposed electrode
selection (ES), and the proposed fuzzified KNN classifier
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Fig. 11 Average informedness result achieved on testing set with SVM using feature reduction techniques

Table 8 Table of parameters of dataset D1

Parameter Value

No. of electrodes 22

No. of classes 4 actions; left hand, right
hand, feet, tongue

No. of subjects 9

Sampling rate 250Hz

Filtering 0.5–100Hz; notch filtered

No. of trials 576

Table 9 Table of parameters of dataset D2

Parameter Value

No. of electrodes 118

No. of classes 3 actions; left hand, right hand,
right foot

No. of subjects 5 (named AA,AL,AV,AW,AY)

Sampling rate 1000Hz

Filtering band-pass filtered between 0.05
and 200 Hz

No. of trials 280

Actual time of single trail
signal

2.5 s

with some other approaches previously published, as will be
discussed in the next subsections.

5.2 Experimental results

This section evaluates in details the contributions introduced
in this paper. Three different experiments will be introduced
through this section. The first experiment is employed using
the dataset D2, for simplicity, to assess the impact of the
proposed feature reduction (FR); a comparison is made with
feature reductionmethods based on genetic algorithms (GA),

particle swarmoptimization (PSO), random search algorithm
introduced in Atyabi et al. (2012) and principal component
analysis (PCA) applied inMuhammadet al. (2015). The com-
parison shows the impact of the use of the full-set and the
use of reduced set, after applying several feature reduction
methods, on performance using SVM.

The second experiment is employed on the dataset D2
also to assess the impact of the proposed electrode selection
(ES); a comparison is made with electrode selection meth-
ods based on genetic algorithms (GA) and random search
algorithm introduced in Atyabi et al. (2012). The compari-
son shows the impact of the use of the full-set and the use of
reduced set, after applying the electrode selection methods,
on performance using SVM.

Finally, the third experiment is employed to assess the
impact of the proposed fuzzified KNN classifier, a compari-
son ismade on the two datasets D1 andD2with six classifiers
namely K nearest neighbor (KNN) (Lotte et al. 2007),
support vector machines (SVM) (Lotte et al. 2007), linear
discriminate analysis (LDA) (Lotte et al. 2007), Naive Bayes
(NB) (Lotte et al. 2007), decision tree (DT) (Lotte et al. 2007),
and self-organized map (SOM) (Arvaneh 2011) using their
built-in MATLAB implementations with default competi-
tors’ parameters.As inGeetha andGeethalakshmi (2011),we
used leave-one-out cross-validation (LOOCV) technique to
estimate the most appropriate KNN’s and SVM’s parameters
to avoid the problems of random selection as it selects param-
eters that provide the highest average performance matrices.
Table 10 illustrates the values of the control parameters spe-
cific to each of the employed competitor.

5.2.1 Evaluating the proposed feature reduction
methodology

Uses a 10*20 cross-validation (CV) to assess the impact of
the proposed feature reduction (FR). A comparison is made
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Table 10 Values of the control parameters specific to each of the employed competitor

Technique Parameter Employed value

GA Population size 100

Max. iteration 100

Member of the population • A binary mask formed as a vector containing indices
representing features or electrodes (0 and 1 indicating the omission
and selection of the feature or electrode, respectively)

• For feature reduction: mask size = 250 features

• For electrode selection: mask size = 118 electrodes

No. of repetitions 10

CV (cross-validation) 20-fold

M (mutation no. of iterations after it the mask is to
be replaced by a random one if it didn’t improve)

M = 10% of Max. iterations (100)

PSO Acceleration coefficients (C1,C2) 0.5 (fixed acceleration coefficient that control the effectiveness of
cognitive component)

Inertia weights (W1,W2) Linearly decreasing inertia weight

• W1 = 0.2

• W2 = 1

Random search Population size 100

Max. iteration 100

Member of the population • A binary mask formed as a vector containing indices
representing features or electrodes (0 and 1 indicating the omission
and selection of the feature or electrode, respectively)

• For feature reduction: mask size = 30 features

• For electrode selection: mask size = 10 electrodes

KNN K value The used value of K has been experimentally obtained. Hence,
starting with (K = 1) as an initial value, a test set is used to estimate
the error rate of the classifier. This process is repeated by
continuously changing K ’s value by gradually adding one more
neighbor. Then, The K ’s value that introduces the minimum error
was selected, which was K = 10

SVM The scaling factor of kernel function (σ) Leave-one-out cross-validation (LOOCV) (Arlot 2010) technique is
used to determine the best value of σ , searched between [0.1,1.5]
step size of 0.1

with feature reduction methods based on genetic algorithms
(GA), particle swarm optimization (PSO), random search
algorithm represented in Atyabi et al. (2012) and princi-
pal component analysis (PCA) applied in Muhammad et al.
(2015) on each subject of the 5 subjects according to the
D2 dataset . The comparison shows the impact of the use of
the full-set and the use of reduced set, after applying several
feature reduction methods, on performance using SVM.

Table 11 and Fig. 11 represent the impact of using fea-
ture reduction’s above-mentioned techniques by the averaged
informedness result achieved on testing set with SVM,which
has superior results in most cases. The p values obtained
through the Wilcoxon rank-sum statistical test between the
best algorithm and each of the competitors are listed in
Table 12. Values with p value < 0.05 indicate that the
differences are statistically significant. The results listed in
Tables 11 and 12 clearly indicate the superiority of the pro-
posed FR in statistically significant fashion over the most

Table 11 Averaged informedness result achieved on testing set with
SVM using feature reduction techniques

Subject Full-set GA PSO Random PCA Proposed FR

AA 0.38 0.18 0.1 0.08 0.3 0.381

AL 0.72 0.38 0.41 0.4 0.5 0.72

AV 0.22 0.13 0.11 0.10 0.2 0.25

AW 0.58 0.22 0.2 0.23 0.57 0.6

AY 0.51 0.26 0.26 0.21 0.5 0.52

Average 0.482 0.23 0.22 0.204 0.41 0.49

of the competitors. However, the statistical test for subjects
named AV and AW indicates no significant difference of the
proposed FR over PCA as their corresponding p values are
0.052 and 0.057, respectively.

Generally, the results indicate that on average across all
subjects (named AA, AL, AV, AW, AY), the informedness
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Table 12 p values obtained
through the Wilcoxon rank-sum
statistical test for the best
algorithm—proposed
FR—versus each of the
competitors for each subject
within the dataset

Subject FR versus GA FR versus PSO FR versus Random FR versus PCA

AA 0.0007 0.004 0.0014 0.0141

AL 0.0048 0.0074 0.0031 0.005

AV 0.0013 0.011 0.0101 0.052

AW 0.0022 0.002 0.023 0.057

AY 0.026 0.0206 0.0002 0.0005

Table 13 Averaged informedness result achieved on testing set with
SVM using electrode selection techniques

Subject Full-set GA Random Proposed ES

AA 0.38 0.22 0.19 0.40

AL 0.72 0.60 0.51 0.75

AV 0.22 0.20 0.15 0.27

AW 0.58 0.40 0.30 0.65

AY 0.51 0.41 0.38 0.54

Average 0.482 0.366 0.306 0.522

has slightly improved from 0.482 to 0.49 using the proposed
FR technique. The other techniques need to be improved to
achieve high performance, so the next experiment shows the
impact of electrode selection.

5.2.2 Evaluating the proposed electrode selection
methodology

The same as experiment 1, experiment 2 evaluates the impact
of the proposed electrode selection (ES) using D2 dataset. A
comparison is made with electrode selection methods based
on genetic algorithms (GA) and random search algorithm
introduced in Atyabi et al. (2012). The comparison shows
the impact of the use of the full-set and the use of reduced
set, after applying the electrode selection methods, on per-
formance using SVM.

Table 13 and Fig. 12 represent the impact of using the
electrode selection’s above-mentioned techniques by the

Table 14 p values obtained through the Wilcoxon rank-sum statistical
test for the best algorithm—proposed ES—versus each of the competi-
tors for each subject within the dataset

Subject ES versus GA ES versus random

AA 0.0022 0.019

AL 0.0506 0.002

AV 0.0202 0.0015

AW 0.0408 0.0003

AY 0.0041 0.0602

averaged informedness result achieved on testing set with
SVM. The results indicate that on average across all sub-
jects, the informedness has improved from 0.482 to 0.522
using the proposed ES technique. According to Table 14,
where the p values obtained through the Wilcoxon rank-
sum statistical test between the best algorithm and each of
the competitors are displayed, the proposed ES is statisti-
cally significant better than the rest competitors. However,
the statistical test for subject named AL indicates that no
significant difference of the proposed ES over GA and for
subject AY indicates insignificant dominance of ES over ran-
dom as their corresponding p values are 0.0506 and 0.0602,
respectively.

Comparing the results with the results of experiment 1,
it is clearly that electrode selection techniques had a greater
impact on classification performance compared to feature
reduction. In the next experiment, evaluate the impact of the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

AA AL AV AW AY Average

in
fo

rm
ed

ne
ss

 

Subject

Full-set GA Random Proposed ES

Fig. 12 Average informedness result achieved on testing set with SVM using electrode selection techniques
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combination of proposed feature reduction (FR) and elec-
trode selection (ES) with the proposed FKNN and other
classifiers.

5.2.3 Evaluating the proposed fuzzified KNN classifier

Finally, to assess the impact of the proposed fuzzified KNN
classifier (K = 10) using the two datasets (i.e., D1 and D2),
a comparison is made against K nearest neighbor (KNN)
(Lotte et al. 2007), support vector machines (SVM) (Lotte
et al. 2007), linear discriminate analysis (LDA) (Lotte et al.
2007), naive Bayes (NB) (Lotte et al. 2007), decision tree
(DT) (Lotte et al. 2007), and self-organized map (SOM)
(Muhammad et al. 2015) classifiers using their built-inMAT-
LAB implementations with default techniques’ parameters
and values listed in Table 10. The performance metrics illus-
trated with Eqs. (11–13) are evaluated, giving the following
results.

Figure 13 illustrates the average classification accuracy
(CA), which represents the percentage of the number of trails
classified correctly in the test set over the total trails, for the
competing classifiers as well as FKNN. Both datasets (i.e.,
D1 and D2) are employed on the original datasets without
using dimensionality reduction, noting that D2 (118 elec-
trode) is higher dimensional than D1 (22 electrode). As
illustrated in such figure, FKNN has the maximum aver-
age classification accuracy (78% for D1 and 74% for D2),
while KNN showed the worst average classification accu-
racy (70.1% for D1 and 60.8% for D2) as it is very sensitive
to the curse of dimensionality and this explains why KNN
algorithms are not very popular in the BCI community. On
the other hand, Fig. 14 represents the average classification
accuracy for the same set of classifiers using the proposed
feature reduction and electrode selection methodologies. It
is clearly that using feature reduction and electrode selec-
tion improves the average accuracy for all classifiers, due
to the removal of outlier features and bad effect electrodes.
Moreover, it is found that FBCS still has the highest accuracy
(85.7% for D1 and 87.8% for D2).

Again, D1 and D2 are employed for measuring the aver-
age classification sensitivity (called the true positive rate) for
the competing classifiers as well as FKNN in two scenarios.
In the first scenario, SE is measured for all classifiers with
no dimensionality reduction, while in the second scenario,
both the proposed feature selection and electrode reduction
methodologies are employed. As illustrated in Fig. 15, SE for
all classifiers is shown using the first scenario. It is shown that
FKNNpresents themaximumaverage classification sensitiv-
ity for both datasets, precisely 76.5% for D1 and 74% for D2,
and as proven in average classification accuracy, KNN rep-
resents the worst sensitivity with average sensitivity 70.1%
for D1 and 60.8% for D2 which has higher dimensions. On
the other hand, when the second scenario is followed, as

KNN SVM LDA NB DT SOM FKNN
D1 70.1 75.4 76.2 76.4 70.6 77 78

D2 60.8 72.1 69.6 69.5 62.3 72.8 74
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Fig. 13 Average classification accuracy without using dimensionality
reduction

KNN SVM LDA NB DT SOM FBCS
D1 80.5 81.2 81 79.8 79 84 85.7

D2 79 82.5 83.1 78.9 79.5 86.7 87.8
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Fig. 14 Average classification accuracy with the proposed feature
reduction and electrode selection

illustrated in Fig. 16, SE is promoted for all classifiers. The
maximum SE is given by the proposed FKNN, which was
85.1% for D1 and 84.2% for D2. Note that, KNN classifier
gives acceptable sensitivity results with feature reduction and
electrode selection techniques 82% for D1 and 80.5% for D2
as the dimensions of the datasets were reduced.

In this experiment, the target is to measure the average
classification specificity (SP) (also called the true nega-
tive rate) for the employed classifiers against FKNN. As
illustrated in Fig. 17, with no dimensionality reduction, the
proposed FKNN outperforms all other classifiers in terms of
SP. It is found that FKNN introduces 79% for D1 and 88%
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KNN SVM LDA NB DT SOM FKNN
D1 65.4 74.7 75.1 75 72.8 75.8 76.5

D2 59.8 71.5 61.8 62 65.9 73.8 74
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Fig. 15 An average classification sensitivity without using dimension-
ality reduction

KNN SVM LDA NB DT SOM FBCS
D1 82 84.3 83.5 82.8 77 84.6 85.1

D2 80.5 83.2 82.5 80.9 71.5 83.9 84.2
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Fig. 16 Average classification sensitivity with the proposed feature
reduction and electrode selection

for D2. From another point of view, when applying both the
proposed feature selection and electrode reduction method-
ologies, it is found that SP is promoted for all classifiers as
illustrated in Fig. 18. For FKNN, which introduces the max-
imum SP, the calculated values of SP were 89.9% for D1 and
90.2% for D2.

To insure that the proposed FKNN is suitable for real-time
operation, it is essential to measure the testing time. For the
training and testing of the twoBCI competition datasetswith-
out dimensionality reduction using the different classifiers,
the average computational time is depicted in Fig. 19. In such
figure, it can be seen that KNN and FKNN had the shortest
computational time in the training phase with average value

KNN SVM LDA NB DT SOM FKNN
D1 74.2 74.7 76 77.5 68.4 77.9 79

D2 66 72.8 82.6 86.3 58.7 87 88
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Fig. 17 Average classification specificity without using dimensional-
ity reduction

KNN SVM LDA NB DT SOM FBCS
D1 80.1 83.2 85.1 86 77 87 89.9

D2 76 80.2 86 87.3 60.1 88 90.2
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Fig. 18 Average classification specificity with the proposed feature
reduction and electrode selection

of the two datasets equal 0.04, 0.05 s, respectively, this is
logically true as KNN is a lazy learner. Hence, more time
is spent during the testing phase as almost all calculations
are done during the testing phase. SVM had the longest time
as it performs classification tasks by constructing the best
hyperplane in a multidimensional space by maximizing the
margin as possible. For the testing phase, SVM and FKNN
nearly had the same average computational times (CT) with
values of 0.44, 0.5 s, respectively. As seen FKNN computa-
tional time is greater than the computational time of KNN
in testing phase as it has more computations than simple
KNN.

On the other hand, using the dimensional reduction tech-
niques, the average computational times (CT) in the training
phase increase for all classification algorithms applied, as the
computations of feature reduction (FR) and electrode selec-
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KNN SVM LDA NB DT SOM FKNN
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Fig. 19 Average classification computational time without using
dimensionality reduction
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Fig. 20 Average classification computational time with the proposed
feature reduction and electrode selection

tion (ES) techniques take more time in the training phase,
even the value of CT for training the simple KNN and FBCS
classifiers increases to be 5s. and SVM classifier still hav-
ing the highest average CT nearly about 30 s, as illustrated in
Fig. 20. In the testing phase, the average CT for the classifica-
tion decreases due to the reduction in the dataset dimensions.
The main objective of the proposed strategy is to reduce the
computational classification time specially in testing phase
tomeet the needs of real-timeBCI applications. As discussed
early, FR and ES need more time to select the best subset of

features and electrode, but there is no need to significantly
reduce computational time in training step. For the data cap-
tured to be tested, the selected features from the selected
electrodes are directly classified referring to the reduced
trained set of data, with no need for any feature reduction
and electrode selection calculations. KNN has the shortest
testing time with CT value 0.01 s. but according to the accu-
racywe can say that FBCS is still the fastest strategy in testing
phase using both datasets with CT value about 0.018s to take
the decision of what expressed by the data captured from the
EEG headset.

Table 15 reports the p values obtained through the
Wilcoxon rank-sum statistical test for the proposed FBCS
algorithm versus each of the other competitors applied
on the datasets D1 and D2. The results of the statisti-
cal test prove that the FBCS with dimension reduction is
among the best performing models for the BCI recogni-
tion system. Unlike most publications in BCI field which
recommended SVM and LDA as the highest performing
classifiers, our three experiments show that for each feature
reduction and electrode selection method at many classifiers
should be tested including the purposed classifier, and gen-
erally there is not a best classifier or feature reduction or
electrode selection method that outperforms all others as
they differs according to the mentality actions of the sub-
ject and the combination of all model’s parameters (signal
processing, feature extraction, dimensionality reduction and
classifier).

6 Conclusion

Dimensional reduction in features is an open problem in
brain–computer interfacing (BCI) research. Therefore, fea-
tures extracted from brain signals are high-dimensional
which affects the accuracy of the classifier. Selection of the
most relevant features and electrodes improves the perfor-
mance of the classifier and reduces the computational cost of
the system. In this study, a new strategy called fuzzy-based
classification strategy (FBCS) is proposed to determine the
best subset of features from a selected number of electrodes
of electroencephalography (EEG)-based BCI dataset for dif-
ferent actions. Applying the proposed strategy for feature
reduction and electrode selection reducing the dimensions
of the feature vector is tested and gains the best metrics of

Table 15 p values obtained through theWilcoxon rank-sum statistical test for the best algorithm—proposed FBCS—versus each of the competitors
for each dataset

Dataset FBCS vs. KNN FBCS vs. SVM FBCS vs. LDA FBCS vs. NB FBCS vs. SOM

D1 0.0022 0.0104 0.052 0.00007 0.00859

D2 0.0052 0.0508 0.0068 0.0098 0.0012
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classification performance (specially the computational time
CT as a vital parameter) for Dataset 2a of BCI competition
IV (Brunner et al. 2008) and Dataset IVa of BCI competi-
tion III (http://www.bbci.de/competition/iii/desc_IVa.html).
Thus, our algorithm can be employed for further real-time
processing of multi-class problem. Our future aim is to
design a real system that has the ability to online classify
brain tasks in a real environment with less computational
time. Further study in this direction will aim to optimize
the feature reduction, electrode selection, and classification
techniques to be implemented in real-time applications of
BCI.

Compliance with ethical standards

Conflict of interest We admit that our paper is well formed due to the
ethical standards of the declared author policy.We also declare that they
have no conflict of interest. Moreover, informed consent was obtained
from all individual participants included in the study.

References

Abdulkader Sarah N, Atia Ayman, Mostafa Mostafa-Sami M (2015)
Brain computer interfacing: applications and challenges. Egypt
Inform J 16:213–230

Arlot Sylvain (2010) A survey of cross validation procedures for model
selection. Stat Surv 4(2):40–79

Arvaneh M (2011) Optimizing the channel selection and classification
accuracy inEEG-basedBCI. IEEETransBiomedEng58(6):1865–
1873

Atyabi A, Luerssen M, Fitzgibbon S, Powers DMW (2012) Evolu-
tionary feature selection and electrode reduction for EEG clas-
sification. WCCI 2012 IEEE world congress on computational
intelligence, 10–15 June 2012, Brisbane, Australia

Aydemir Onder, Kayikcioglu Temel (2013) Comparing common
machine learning classifiers in low-dimensional feature vectors
for brain computer interface applications. Int J Innov Comput Inf
Control ICIC Int 9(3):1145–1157

BrunnerC et. al., (2008)BCI competition 2008—Graz data setA. http://
www.bbci.de/competition/iv/#dataset2a

Daly JJ, Wolpaw JR (2008) Brain computer interfaces in neurological
rehabilitation. Lancet Neurol 7:103243

Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd
edn. Academic Press, New York

Geetha G, Geethalakshmi SN (2011) Detecting epileptic seizure using
electroencephalogram: a new and optimized method for seizure
classification using hybrid extreme learning machine?”. In: Inter-
national conference on Process automation, control and computing
(PACC), pp 1–6

Giarratano J, Riley G (2004) Expert systems: principles and program-
ming. Course Technology Inc., Cambridge

Guo X, Wu X, Gong X, Zhang L (2013) Envelope detection based on
online ICA algorithm and its application to motor imagery clas-
sification. In: 6th International IEEE/EMBS conference on neural
engineering (NER), pp 1058–1061

Hasan BAS, Gan JQ (2009) Multi-objective particle swarm opti-
mization for channel selection in brain–computer interfaces. In:
Proceedings of the UK workshop on computational intelligence
(UKCI2009),Nottingham. http://repository.essex.ac.uk/id/eprint/
4148

Hsu WY (2013) Application of quantum-behaved particle swarm opti-
mization to motor imagery EEG classification. Int J Neural Syst
23(6):1350026

http://www.bbci.de/competition/iii/desc_IVa.html
Jung TP et al (2000) Removing electroencephalographic artifacts by

blind source separation. Psychophysiology 37:163–178
Lotte F, Congedo M, L’ecuyer A, Lamarche F, Arnaldi B (2007) A

review of classification algorithms for EEG-based brain–computer
interfaces. J Neural Eng 4:R1–R13

Mallick A, Kapgate D (2015) A review on signal pre-processing
techniques in brain computer interface. Int J Comput Technol
2(4):130–134

McFarland DJ, Wolpaw JR (2008) Brain–computer interface operation
of robotic and prosthetic devices. Computer 41(10):52–56

MuhammadZBet al (2015)Motor imagery basedEEGsignal classifica-
tion using self organizing maps. Sci Int (Lahore) 27(2):1165–1170

NaeemM, Brunner C, Pfurtscheller G (2009) Dimensionality reduction
and channel selection of motor imagery electroencephalographic
data. Comput Intell Neurosci 2009, Article ID 537504. https://doi.
org/10.1155/2009/537504

Nanayakkara Asiri, Sakkaff Zahmeeth (2012) Fixed distance neighbour
classifiers in brain computer interface systems. J Natl Sci Found
Sri Lanka 40(3):195–200

Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer inter-
faces, a review. Sensors 12:1211–1279. https://doi.org/10.3390/
s120201211. ISSN 1424-8220. www.mdpi.com/journal/sensors

Ogiela L, OgielaMR (2012) Beginnings of cognitive science. AdvCog-
nit Inf Syst Cognit Syst Monogr 17:1–18

PalM,BhattacharyyaS,KonarA,TibarewalaDN, JanarthananR (2014)
Decoding of wrist and finger movement from electroencephalog-
raphy signal. In: IEEE international conference on electronics,
computing and communication technologies, Bangalore

Pal M, et. al. (2014) A bacterial foraging optimization and learning
automata based feature selection for motor imagery EEG clas-
sification. Conference paper, July 2015. https://doi.org/10.1109/
SPCOM.2014.6983926, 978-1-4799-4665-5/14/$31.00 ©2014
IEEE

Powers DMW (2003) Recall and precision versus the bookmaker. In:
International conference on cognitive science (ICSC-2003), pp
529–534

Rakotomamonjy A, Guigue V, Mallet G, Alvarado V (2005) Ensem-
ble of SVMs for improving brain computer interface P300 speller
performances. Int Conf Artif Neural Netw 2005:45–50

Saleh Ahmed I, Abulwafa Arwa E (2017) A web page distillation strat-
egy for efficient focused crawling based on optimized Naïve bayes
(ONB) classifier. Appl Soft Comput 53:181–204

Saleh Ahmed I, El Desouky Ali I, Ali Shereen H (2015) Promoting
the performance of vertical recommendation systems by applying
new classification techniques. Knowl Based Syst 75:192–223

Saleh Ahmed I, Rabie Asmaa H, Abo-Al-Ez Khaled M (2016) A data
mining based load forecasting strategy for smart electrical grids.
Adv Eng Inform 30:422–448

Sheskin David J (2003) Handbook of parametric and nonparametric
statistical procedures. CRC Press, Boca Raton

Silva LA, Del-Moral-Hernandez E (2011) A SOMcombinedwith KNN
for classification task. In: Proceeding of international joint confer-
ence on neural networks, 31 July–5 Aug, 2011 San Jose, CA, pp
2368–2373

Yu X, Chum P, Sim KB (2014) Analysis the effect of PCA for fea-
ture reduction in non-stationary EEG based motor imagery of BCI
system. Opt Int J Light Electron Opt 125(3):1498–1502

Zanchettin C, Bezerra BLD,WAzevedoW (2012) AKNN-SVMhybrid
model for cursive hand writing recognition . In: Proceeding of the
IEEE international joint conference on neural networks, 10–15
June, Brisbane, Australia, pp 1–8

123

http://www.bbci.de/competition/iii/desc_IVa.html
http://www.bbci.de/competition/iv/#dataset2a
http://www.bbci.de/competition/iv/#dataset2a
http://repository.essex.ac.uk/id/eprint/4148
http://repository.essex.ac.uk/id/eprint/4148
http://www.bbci.de/competition/iii/desc_IVa.html
https://doi.org/10.1155/2009/537504
https://doi.org/10.1155/2009/537504
https://doi.org/10.3390/s120201211
https://doi.org/10.3390/s120201211
www.mdpi.com/journal/sensors
https://doi.org/10.1109/SPCOM.2014.6983926
https://doi.org/10.1109/SPCOM.2014.6983926


A fuzzy-based classification strategy (FBCS) based on brain–computer interface 2367

Zhao H et al (2015) Analyze EEG signals with extreme learning
machine based on PMIS feature selection. Int JMach Learn Cyber.
https://doi.org/10.1007/s13042-015-0378-x

Zhao Ming, Chen Jingchao (2016) Improvement and comparison of
weighted K nearest neighbors classifiers for model selection. J
Softw Eng 10(1):109–118

123

https://doi.org/10.1007/s13042-015-0378-x

	A fuzzy-based classification strategy (FBCS) based  on brain–computer interface
	Abstract
	1 Introduction
	2 General scheme of EEG-based BCI
	3 Related work
	4 The proposed fuzzy-based classification strategy (FBCS)
	4.1 Data acquisition
	4.2 Preprocessing
	4.3 Feature extraction
	4.4 Feature reduction
	4.5 Electrode selection
	4.6 Classification and decision making

	5 Results and discussion
	5.1 Employed datasets
	5.2 Experimental results
	5.2.1 Evaluating the proposed feature reduction methodology
	5.2.2 Evaluating the proposed electrode selection methodology
	5.2.3 Evaluating the proposed fuzzified KNN classifier


	6 Conclusion
	References




