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Abstract The so-called basic algebras correspond in a nat-
ural way to lattices with antitone involutions and hence
generalize both MV-algebras and orthomodular lattices. The
paper deals with several types of special elements of basic
algebras and with pseudocomplemented basic algebras.
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1 Introduction

The previous papers on the so-called basic algebras, or
lattices with antitone involutions, often dealt only with
particular cases when the antitone involutions had certain
additional properties, which led either to algebras similar to
MV-algebras [see Botur and Halaš (2008), Botur and Kühr
(2014) andKrňávek andKühr (2011)] or to lattice effect alge-
bras [see Chajda and Kühr (2013a) and Kühr et al. (2015)].
Recently, we realized that some results on such special alge-
bras are actually related to the properties of certain elements
rather than to the properties of the algebras as such, or have
to do with the fact that these algebras (lattices) are some-
times pseudocomplemented. In the present paper, we collect
several observations of this kind.
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The exact definitions are given in Sect. 2, but to give a
flavour of the structures and results in question, the situation
is as follows. Suppose that (A,∨,∧, 0, 1) is a bounded lattice
and every principal filter [a, 1] is equipped with an antitone
involution fa . For instance, in algebras of logic such as MV-
algebras, fa could be the restriction of implication → to the
pairs (x, a) with x ≥ a, i.e. fa(x) = x → a for x ≥ a. If we
define¬x = f0(x) and x⊕ y = fy(¬x∨ y) for all x, y ∈ A,
the algebra (A,⊕,¬, 0, 1) is lattice-ordered, with x ≤ y iff
¬x ⊕ y = 1, and fa(x) = ¬x ⊕ a for all a ∈ A and x ≥ a.
These algebras are called basic algebras [see Chajda et al.
(2009a)].

Already in Chajda et al. (2009a), special attention was
paid to the set S(A) of sharp elements of the algebra
(A,⊕,¬, 0, 1), where an element a ∈ A is sharp if ¬a
is its complement in the lattice; the terminology is borrowed
from effect algebras. There is not much to say about S(A) in
general, though S(A) has a nice structure in some particu-
lar cases. For instance, in lattice effect algebras, S(A) forms
an orthomodular lattice [see Jenča and Riečanová (1999)],
and in basic algebras satisfying the identity x ≤ x ⊕ y,
it is a Boolean algebra [see Botur and Kühr (2014)]. The
key property of sharp elements in basic algebras satisfying
the latter identity is that a ∈ S(A) iff a ⊕ x = a ∨ x for
every x ∈ A. Hence, in Sect. 3, given an arbitrary basic
algebra (A,⊕,¬, 0, 1), we focus on the set B(A) of those
elements a ∈ A which have this property. It turns out that
B(A) forms a Boolean subalgebra, and we therefore refer to
the elements of B(A) as Boolean. We prove that the Boolean
elements correspond to certain congruences of the “i-lattice”
(A,∨,∧,¬, 0, 1).We also prove that every Boolean element
is a neutral element of the underlying lattice, which gives rise
to a few observations on distributive, standard and neutral
elements.
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In Sect. 4, we discuss two variants of Boolean elements,
and as a corollary we obtain a simple characterization of
central elements in basic algebras and in particular in lattice
effect algebras. In Sect. 5, we study basic algebras with pseu-
docomplementation, i.e. algebras (A,⊕,¬, ∗, 0, 1), where
(A,⊕,¬, 0, 1) is a basic algebra and ∗ is pseudocomplemen-
tation on its underlying lattice. We describe the subdirectly
irreducible basic algebras with pseudocomplementation sat-
isfying the condition that the elements a∗ are central. This
allows us to (re)prove that any finite basic algebra satisfying
the identity1 x⊕(y∧z) = (x⊕ y)∧(x⊕z) is anMV-algebra
[see Krňávek and Kühr (2011)].

2 Preliminaries

2.1 Basic algebras

Wefirst recall some relevant facts about lattices with antitone
involution(s)2 and basic algebras [see Chajda et al. (2009a)].

A lattice with an antitone involution is an algebra
(A,∨,∧, f, 0, 1) where (A,∨,∧, 0, 1) is a bounded lattice
and f is an antitone involution on it, i.e. for all x, y∈A, one
has:

x ≤ y iff f (y) ≤ f (x), and f ( f (x)) = x .

In the literature, e.g. in Kalman (1958), these structures are
sometimes called “i-lattices”. By a lattice with antitone invo-
lutions we mean a structure (A,∨,∧, ( fa)a∈A, 0, 1) where
(A,∨,∧, 0, 1) is a bounded lattice and ( fa)a∈A is a collec-
tion of antitone involutions on the principal filters [a, 1], a ∈
A. In other words, for every a ∈ A, ([a, 1],∨,∧, fa, a, 1) is
a lattice with an antitone involution.

Let (A,∨,∧, ( fa)a∈A, 0, 1) be a lattice with antitone
involutions.With intent to generalizeMV-algebras,we define
“negation” and “addition” by

¬x = f0(x) and x ⊕ y = fy(¬x ∨ y), (2.1)

for all x, y ∈ A. The lattice operations can be expressed by

x ∨ y=¬(¬x⊕y) ⊕ y and x ∧ y=¬(¬x ∨ ¬y), (2.2)

for all x, y ∈ A, and for every a ∈ A, the antitone involution
fa on [a, 1] is given by

fa(x) = ¬x ⊕ a, (2.3)

1 This identity is one of the aforementioned additional conditionswhich
lead to algebras similar to MV-algebras; see Krňávek and Kühr (2011)
and Botur et al. (2014).
2 A note on terminology: when speaking of lattices with antitone invo-
lution(s), we omit the adjective “bounded”.

for x ≥ a. The algebra (A,⊕,¬, 0, 1) obtained by (2.1)
is the basic algebra associated with the lattice with antitone
involutions (A,∨,∧, ( fa)a∈A, 0, 1); it satisfies the following
identities:

x ⊕ 0 = x, (2.4)

¬¬x = x, (2.5)

¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x, (2.6)

¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1. (2.7)

Axiomatically, a basic algebra is an algebra (A,⊕,¬, 0, 1)
of type (2, 1, 0, 0) which satisfies identities (2.4)–(2.7). The
definition of Chajda et al. (2009a) also contained the super-
fluous identities x ⊕ 1 = 1 = 1 ⊕ x .

For any basic algebra (A,⊕,¬, 0, 1), (2.2) defines a
bounded lattice (with bounds 0 and 1 and with induced order
x≤y iff ¬x ⊕ y = 1), and for every a∈A, (2.3) defines an
antitone involution fa on the principal filter [a, 1]. Thus,
(A,∨,∧, ( fa)a∈A, 0, 1) is a lattice with antitone involutions.
It is straightforward to show that the basic algebra associated
with (A,∨,∧, ( fa)a∈A, 0, 1) via (2.1) is precisely the alge-
bra (A,⊕,¬, 0, 1). Therefore, basic algebras are equivalent
to lattices with antitone involutions, and when we want to
make an ordered structure into a basic algebra, if possible,
it suffices to show that it is a bounded lattice and that there
are antitone involutions on the principal filters. For technical
details, see Chajda et al. (2009a) or Chajda and Emanovský
(2004).

In Chajda et al. (2009a), the motivation was to find a
reasonable common generalization of orthomodular lattices
and MV-algebras in the signature of MV-algebras; hence,
orthomodular lattices andMV-algebras are our first examples
of basic algebras (or lattices with antitone involutions). For
completeness, we recall the definitions, though we assume
some familiarity with the elements of orthomodular lattices
and/or MV-algebras.

An orthomodular lattice is a lattice with an antitone invo-
lution (A,∨,∧, ⊥, 0, 1) which satisfies the orthomodular
law x ≤ y ⇒ x∨(x⊥∧y) = y. For every a ∈ A, a⊥ is a com-
plement of a. The standard reference is Kalmbach (1983). In
any orthomodular lattice, the maps fa : x �→ x⊥ ∨ a are
antitone involutions on the principal filters [a, 1], and hence,
if we put ¬x = f0(x) = x⊥ and x ⊕ y = fy(¬x ∨ y) =
(x⊥ ∨ y)⊥ ∨ y = (x∧ y⊥)∨ y, then (A,∨,∧, ⊥, 0, 1) can be
regarded as (A,⊕,¬, 0, 1). Basic algebras corresponding to
orthomodular lattices in this way can be axiomatized by the
quasi-identity

x ≤ y ⇒ y ⊕ x = y, (2.8)

which is a translation of the orthomodular law and which
can obviously be replaced with the identity x ⊕ (x ∧ y) = x .
In particular, basic algebras corresponding to Boolean alge-
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bras can be axiomatized by this (quasi-)identity together with
commutativity x ⊕ y = y ⊕ x , or simply by

x ⊕ y = x ∨ y. (2.9)

However, this does not mean that (A,∨,∧,¬, 0, 1) is an
orthomodular lattice or a Boolean algebra if and only if the
basic algebra (A,⊕,¬, 0, 1) satisfies (2.8) or (2.9), respec-
tively.

As amatter of fact,MV-algebras coincide with associative
basic algebras, but the usual definition is this: AnMV-algebra
is an algebra (A,⊕,¬, 0, 1) of type (2, 1, 0, 0) such that
(A,⊕, 0) is a commutativemonoid satisfying identities (2.5),
(2.6), x ⊕ 1 = 1 and ¬0 = 1. We refer the reader to Cig-
noli et al. (2000). For any MV-algebra, rules (2.2) and (2.3)
define a distributive lattice with antitone involutions, and
basic algebras corresponding to these lattices with antitone
involutions are exactly MV-algebras. Interestingly, an asso-
ciative basic algebra is automatically commutative, hence an
MV-algebra, but commutativity does not imply associativity;
there exist infinite commutative basic algebras distinct from
MV-algebras [cf. Krňávek and Kühr (2016) and Botur and
Halaš (2008)].

Another important example of basic algebras is lattice
effect algebras, including both MV-algebras and orthomod-
ular lattices. An effect algebra is a structure (A,+, 0, 1),
where + is a partial binary operation and 0, 1 distinguished
constants, satisfying the following conditions:

(i) x + y = y + x if one side is defined;
(ii) x + (y + z) = (x + y) + z if one side is defined;
(iii) for every x ∈ A there exists a unique x ′ ∈ A such that

x ′ + x = 1;
(iv) x + 1 is defined only if x = 0.

Effect algebras were introduced in Foulis and Bennett (1994)
and are equivalent to D-posets which were introduced in
Kôpka and Chovanec (1994). For more information, we refer
the reader to Dvurečenskij and Pulmannová (2000). A lat-
tice effect algebra is an effect algebra (A,+, 0, 1), which is
a (bounded) lattice with respect to the natural order defined
as follows:

x ≤ y iff y = z + x for some z ∈ A.

For any a ∈ A, the map fa : x �→ x ′ + a is an antitone
involution on [a, 1], whence (A,+, 0, 1) can be made into
a basic algebra by letting ¬x = f0(x) = x ′ and x ⊕ y =
fy(¬x∨ y) = (x ′ ∨ y)′ + y = (x∧ y′)+ y. The basic algebra

so obtained satisfies the quasi-identity3

x ⊕ y ≤ ¬z ⇒ (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z). (2.10)

On the other hand, if a basic algebra (A,⊕,¬, 0, 1) satisfies
(2.10), then the structure (A,+, 0, 1), where x+ y is defined
and is equal to x ⊕ y iff x ≤ ¬y, is a lattice effect algebra
in which x ′ = ¬x , and the basic algebra associated with it
is exactly (A,⊕,¬, 0, 1). Therefore, lattice effect algebras
are equivalent to basic algebras satisfying (2.10). The quasi-
identity (2.10) can be replaced with an identity; it suffices to
write ¬(x ⊕ y) ∧ z in place of z.

Relative to (the variety of basic algebras equivalent to)
lattice effect algebras, MV-algebras are characterized by x ⊕
y = y ⊕ x , and orthomodular lattices by x ⊕ x = x (or
alternatively, by x∧¬x = 0). The smallest variety containing
both the variety of MV-algebras and the variety of (basic
algebras equivalent to) orthomodular lattices was recently
axiomatized in Kühr et al. (2015).

We close this paragraph with a few notes on arithmetic
of basic algebras. Recalling (2.1) and using the fact that the
fa’s are antitone involutions, we have

(x ∧ y) ⊕ z = fz(¬(x ∧ y) ∨ z) = fz(¬x ∨ ¬y ∨ z)

= fz(¬x ∨ z) ∧ fz(¬y ∨ z)

= (x ⊕ z) ∧ (y ⊕ z).

Thus, all basic algebras satisfy the identity

(x ∧ y) ⊕ z = (x ⊕ z) ∧ (y ⊕ z), (2.11)

and consequently, the addition ⊕ is isotone in the first argu-
ment, i.e. x ≤ y implies x⊕z ≤ y⊕z.Wewill also frequently
use the equivalence

¬x ≤ y ⊕ z iff ¬y ≤ x ⊕ z, (2.12)

which easily follows from isotonicity in the first argument
and (2.2). However, the “mirror image” of (2.11), i.e. the
identity

x ⊕ (y ∧ z) = (x ⊕ y) ∧ (x ⊕ z), (2.13)

does not hold in general and ⊕ is not isotone in the sec-
ond argument.4 Basic algebras satisfying (2.13), and even
those satisfying the weaker identity x ≤ x ⊕ y, have some

3 In fact, the quasi-identity (x ≤ ¬y & x ⊕ y ≤ ¬z) ⇒ (x ⊕ y) ⊕ z =
x ⊕ (z ⊕ y) was used in Chajda et al. (2009a, b), but it is possible to
show that it is equivalent to (2.10).
4 In the variety generated by linearly ordered basic algebras, (2.13) is
equivalent to the quasi-identity x ≤ y ⇒ z ⊕ x ≤ z ⊕ y, but we do not
know whether this is true in general.
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notable properties. For instance, they are distributive as lat-
tices, and in the finite case, they are just finite MV-algebras
[see Krňávek and Kühr (2011), Botur et al. (2014) and Botur
and Kühr (2014)].

In basic algebras, it is sometimesmore convenient to work
with certain antitone involutions, say ga , on principal ideals
[0, a] instead of the antitone involutions fa onprincipal filters
[a, 1]. Here, for any a ∈ A, the antitone involution ga in
question is the composite map f0 ◦ f¬a ◦ f0, i.e.

ga(x) = ¬(x ⊕ ¬a) (2.14)

for x ≤ a. It is obvious that the basic algebra (A,⊕,¬, 0, 1)
is determined by its underlying lattice and the collection
(ga)a∈A of antitone involutions on the principal ideals.
Indeed, ¬x = g1(x) and x ⊕ y = ¬g¬y(x ∧ ¬y) for all
x, y ∈ A.

2.2 Special elements

Since basic algebras include orthomodular lattices, it fol-
lows that basic algebras satisfy no special lattice identities.
We therefore focus on special elements of basic algebras as
lattices, i.e. distributive, standard and neutral elements. First,
we recall from Grätzer (2011), Sect. III.2 that an element a
of a lattice (A,∨,∧) is

(i) distributive if a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y) for all
x, y ∈ A;

(ii) standard if (a ∨ x) ∧ y = (a ∧ y) ∨ (x ∧ y) for all
x, y ∈ A;

(iii) neutral if (a ∨ x) ∧ (a ∨ y) ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧
y) ∨ (x ∧ y) for all x, y ∈ A.

Dually distributive and dually standard elements are defined
dually. The sets of distributive, dually distributive, standard,
dually standard and neutral elements of the lattice (A,∨,∧)

are denoted, respectively, by Distr(A), Distr∂ (A), Stand(A),
Stand∂ (A) and Neutr(A). The following is worth recalling.
For any a ∈ A:

(i) a ∈ Distr(A) iff the relation

αa = {(x, y) ∈ A2 : x ∨ a = y ∨ a}

is a congruence of the lattice (A,∨,∧);
(ii) a ∈ Stand(A) iff the relation

α̃a = {(x, y) ∈ A2 : x ∨ y = (x ∧ y) ∨ a1

for some a1 ≤ a}

is a congruence of the lattice (A,∨,∧), in which case
a ∈ Distr(A) and α̃a = αa ;

(iii) a ∈ Neutr(A) iff a ∈ Distr(A) ∩ Distr∂ (A), and for all
x, y ∈ A, whenever x ∨ a = y ∨ a and x ∧ a = y ∧ a,
then x = y.

As the next lemma shows, distributive and standard ele-
ments of basic algebras can be easily characterized in the
language of basic algebras. The lemma is a strengthening of
the fact [see Krňávek and Kühr (2011), Lemma 2.13] that
a basic algebra is distributive if and only if it satisfies the
identity

(x ∨ y) ⊕ z = (x ⊕ z) ∨ (y ⊕ z).

Lemma 2.1 Let (A,⊕,¬, 0, 1) be a basic algebra. For
every a ∈ A, we have:

(i) a ∈ Distr(A) iff ¬a ∈ Distr∂ (A) iff for all x, y ∈ A,

(x ∨ y) ⊕ a = (x ⊕ a) ∨ (y ⊕ a);

(ii) a ∈ Stand(A) iff ¬a ∈ Stand∂ (A) iff for all x, y ∈ A,

(x ∨ a) ⊕ y = (x ⊕ y) ∨ (a ⊕ y).

Proof First, it is evident that a ∈ A is distributive or standard
if and only if ¬a is dually distributive or dually standard,
respectively.

If a ∈ Distr(A), then by the definition of the addition ⊕,
and since fa is an antitone involution on [a, 1], we have

(x ∨ y) ⊕ a = fa(¬(x ∨ y) ∨ a)

= fa((¬x ∧ ¬y) ∨ a)

= fa((¬x ∨ a) ∧ (¬y ∨ a))

= fa(¬x ∨ a) ∨ fa(¬y ∨ a)

= (x ⊕ a) ∨ (y ⊕ a)

for any x, y ∈ A. Conversely, suppose that a ∈ A satisfies the
equality for all x, y ∈ A. Then almost the same calculation
shows that a ∈ Distr(A). Indeed, for any x, y ∈ A we have

fa((x ∧ y) ∨ a) = (¬x ∨ ¬y) ⊕ a

= (¬x ⊕ a) ∨ (¬y ⊕ a)

= fa(x ∨ a) ∨ fa(y ∨ a)

= fa((x ∨ a) ∧ (y ∨ a)),

whence (x ∧ y) ∨ a = (x ∨ a) ∧ (y ∨ a). This proves (i).
The proof of (ii) is analogous. ��
Of course, it is possible to give a similar characterization

of neutral elements, but we find it opaque in comparison with
the usual definition.
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3 Boolean elements

Let (A,⊕,¬, 0, 1) be a basic algebra. An element a ∈ A
is central if there is an isomorphism h : A → A1 × A2 of
(A,⊕,¬, 0, 1) onto the direct product of some basic alge-
bras (A1,⊕,¬, 0, 1) and (A2,⊕,¬, 0, 1) such that a =
h−1(0, 1) or a = h−1(1, 0). The central elements obviously
correspond to the factor congruences. Specifically, a ∈ A is
central if and only if the equivalence relation

αa = {(x, y) ∈ A2 : x ∨ a = y ∨ a},

or equivalently, the equivalence relation

βa = {(x, y) ∈ A2 : x ∧ a = y ∧ a},

is a factor congruence of the basic algebra (A,⊕,¬, 0, 1). It
comes as no surprise that the set C(A) of the central elements
forms a Boolean subalgebra of (A,⊕,¬, 0, 1). Here, by a
Boolean subalgebra we mean a subalgebra which satisfies
identity (2.9); in other words, the subalgebra is a Boolean
algebra in its own right.5

Further, an element a ∈ A is sharp if¬a is its complement
in the underlying lattice (i.e. if a∨¬a = 1, which is the same
as a ∧ ¬a = 0). It is not hard to show that being sharp is
equivalent toa⊕a = a. In lattice effect algebras, the setS(A)

of the sharp elements forms an orthomodular subalgebra of
(A,⊕,¬, 0, 1), in the sense that it is a subalgebra which
satisfies quasi-identity (2.8).6

In basic algebras satisfying identity (2.13), we even have
S(A) = C(A), but in general, S(A) is neither a subalgebra
nor a sublattice.

Therefore, it might be of some interest to find a Boolean
subalgebra between C(A) and S(A). To this end, given an
arbitrary basic algebra (A,⊕,¬, 0, 1), we define an element
a ∈ A to be Boolean if

a ⊕ x = a ∨ x for all x ∈ A,

and we let B(A) denote the set of Boolean elements of the
algebra (A,⊕,¬, 0, 1). It is easy to see that a ∈ B(A) iff
¬a ∈ B(A). Indeed, if a ∈ B(A), then ¬a ∨ x = ¬(a ⊕
x)⊕ x = ¬(a ∨ x)⊕ x = (¬a ∧¬x)⊕ x = ¬a ⊕ x for any
x ∈ A, thus ¬a ∈ B(A).

We have

C(A) ⊆ B(A) ⊆ S(A),

5 Given B ⊆ A, this is not equivalent to saying that (B,∨,∧,¬, 0, 1)
is a Boolean algebra. It can easily happen that (B,∨,∧,¬, 0, 1) is a
Boolean algebra, but (B,⊕,¬, 0, 1) is not a Boolean subalgebra of
(A,⊕,¬, 0, 1), because B need not be closed under ⊕.
6 As in the case of Boolean subalgebras, this is stronger than saying
that (B,∨,∧,¬, 0, 1) is an orthomodular lattice.

with strict inclusions in general. Our first goal is to prove
that B(A) forms a Boolean subalgebra. We also prove that
Boolean elements are closely related to the so-called weak
congruences of basic algebras, where, by Chajda and Kühr
(2013b), a weak congruence of a basic algebra is an equiva-
lence relation θ with the property that

(x, y) ∈ θ implies (¬x,¬y) ∈ θ and (x ⊕ z, y ⊕ z) ∈ θ .

Recalling (2.2), it is clear that any weak congruence is a lat-
tice congruence (compatible with¬), but the converse fails to
be true in general. Thus,weak congruences of (A,⊕,¬, 0, 1)
are a special case of congruences of (A,∨,∧,¬, 0, 1).

Lemma 3.1 Let (A,⊕,¬, 0, 1) be a basic algebra. The fol-
lowing are equivalent for any a ∈ A:

(i) a ∈ B(A);
(ii) a ∨ (x ⊕ y) = (a ∨ x) ⊕ y for all x, y ∈ A;
(iii) a ∈ S(A) and a ⊕ (x ⊕ y) = (a ⊕ x) ⊕ y for all

x, y ∈ A;
(iv) αa is a weak congruence of (A,⊕,¬, 0, 1).

Proof In doing calculations, we will repeatedly use equiva-
lence (2.12).

(i) implies (ii). Let a ∈ B(A). We have

a∨(x⊕y) = a∨y∨(x⊕y) = (a⊕y)∨(x⊕y) ≤ (a∨x)⊕y

(3.1)

for all x, y ∈ A. Since ¬a ≤ ¬a ∨ x = ¬(a ⊕ x) ⊕ x and
a ∈ S(A), by (3.1) we have 1 = a ∨ ¬a ≤ a ∨ (¬(a ⊕ x) ⊕
x) ≤ (a ∨ ¬(a ⊕ x)) ⊕ x , hence (a ∨ ¬(a ⊕ x)) ⊕ x = 1
and so

¬x ≤ a ∨ ¬(a ⊕ x) (3.2)

for every x ∈ A. But then, again by (3.1), for all x, y ∈ A
we have

¬x ≤ a ∨ [¬(a ⊕ x) ∨ y] = a ∨ [¬((a ⊕ x) ⊕ y) ⊕ y]
≤ [a ∨ ¬((a ⊕ x) ⊕ y)] ⊕ y,

whence¬z ≤ x⊕y by (2.12),where z = a∨¬((a⊕x)⊕y) =
a ⊕ ¬((a ⊕ x) ⊕ y). Then

(a ⊕ x) ⊕ y ≤ a ∨ ¬z ≤ a ∨ (x ⊕ y),

where the first inequality follows from (3.2).We have proved
that a∨ (x ⊕ y) = a⊕ (x ⊕ y) = (a⊕ x)⊕ y = (a∨ x)⊕ y
for all x, y ∈ A.

(ii) implies (iii). Clearly, by substituting 0 for x we get
a ∨ y = a ⊕ y, for every y ∈ A. Hence a ∈ B(A) and by
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what we have proved above we conclude that a ⊕ (x ⊕ y) =
(a ⊕ x) ⊕ y for all x, y ∈ A.

(iii) implies (i). For any x ∈ A, we have a ⊕ (¬a ⊕ x) =
(a ⊕ ¬a) ⊕ x = 1, so ¬a ≤ ¬a ⊕ x , which is equivalent to
a ≤ a⊕x by (2.12). Then, for any x ∈ A, a ≤ a⊕¬(¬a⊕x),
whence

a ⊕ x ≤ (a ⊕ ¬(¬a ⊕ x)) ⊕ x

= a ⊕ (¬(¬a ⊕ x) ⊕ x) = a ⊕ (a ∨ x).

By (2.12) this entails ¬a ≤ ¬(a ⊕ x) ⊕ (a ∨ x). We also
have a ≤ ¬(a ⊕ x) ⊕ (a ∨ x) and a ∈ S(A), and thus,
¬(a⊕ x)⊕ (a∨ x) = 1, i.e. a⊕ x ≤ a∨ x . Since a ≤ a⊕ x ,
we see that a ⊕ x = a ∨ x and so a ∈ B(A).

Now, we prove that (i) implies (iv). Let a ∈ B(A) and
suppose that (x, y) ∈ αa for some x, y ∈ A. Then x ≤
a ∨ x = a ∨ y = a ⊕ y yields ¬a ≤ ¬x ⊕ y by (2.12),
whence 1 = a ⊕ (¬x ⊕ y) = (a ⊕ ¬x) ⊕ y, which means
that ¬y ≤ a ⊕ ¬x = a ∨ ¬x , and so a ∨ ¬y ≤ a ∨ ¬x . The
inequality a ∨ ¬x ≤ a ∨ ¬y is obtained by interchanging
x and y, thus a ∨ ¬x = a ∨ ¬y, proving (¬x,¬y) ∈ αa .
Moreover, for every z ∈ Awehavea∨(x⊕z) = (a∨x)⊕z =
(a ∨ y) ⊕ z = a ∨ (y ⊕ z), i.e. (x ⊕ z, y ⊕ z) ∈ αa .

(iv) implies (i). Let αa be a weak congruence. It is obvious
that (a, 0) ∈ αa , whence ¬(¬a ⊕ x) ≡αa ¬(¬0 ⊕ x) =
0 ≡αa a for every x ∈ A. Thismeans that a∨¬(¬a⊕x) = a,
i.e. ¬a ≤ ¬a ⊕ x and, equivalently, a ≤ a ⊕ x . But (a, 0) ∈
αa also yields (a⊕x, x) ∈ αa , i.e.a⊕x = a∨(a⊕x) = a∨x .
Hence a ∈ B(A). ��
Theorem 3.2 In any basic algebra (A,⊕,¬, 0, 1), the set
of Boolean elements B(A) forms a Boolean subalgebra.

Proof Let a, b ∈ B(A) and x ∈ A. By Lemma 3.1, we have
(a ⊕ b) ⊕ x = a ⊕ (b ⊕ x) = a ∨ b ∨ x = (a ⊕ b) ∨ x ,
thus a⊕b = a∨b ∈ B(A). We already know that a ∈ B(A)

iff ¬a ∈ B(A), and thus, B(A) is a subalgebra. For any
a, b, c ∈ B(A), since a ∧ b ∈ B(A), and recalling identity
(2.11) we have (a∧b)∨c = (a∧b)⊕c = (a⊕c)∧(b⊕c) =
(a ∨ c) ∧ (b ∨ c). Hence, B(A) forms a Boolean algebra. ��

The Boolean subalgebra B(A) is generally larger than
C(A), but it need not be the largest Boolean subalgebra of
(A,⊕,¬, 0, 1). It can happen that S(A) is a Boolean subal-
gebra and B(A) � S(A). For example, it suffices to take a
Boolean algebra (with at least eight elements) and “perturb”
the antitone involutions7 in some filters [a, 1] with a �= 0;
then B(A) � A = S(A).

7 This means that the relative complementation in [a, 1], which is the
natural antitone involution in [a, 1], is replaced with another antitone
involution. Of course, this is possible, provided that the interval has
more than two elements. For a concrete example, see Chajda and Kühr
(2013b), Example 3.1 or Krňávek and Kühr (2015), Example 14.

Lemma 3.3 Let (A,⊕,¬, 0, 1) be a basic algebra. If
a ∈ B(A), then βa = α¬a is a weak congruence of
(A,⊕,¬, 0, 1) with the property that

αa ∩ βa = �A and αa ◦ βa = ∇A.

Moreover, a ∈ Neutr(A). Thus B(A) ⊆ Neutr(A).

Proof We have already seen that a ∈ B(A) iff ¬a ∈ B(A).
Hence, α¬a is a weak congruence. Consequently, we have
(x, y) ∈ α¬a iff (¬x,¬y) ∈ α¬a iff ¬a ∨ ¬x = ¬a ∨ ¬y
iff a ∧ x = a ∧ y iff (x, y) ∈ βa . Thus, α¬a = βa .

Suppose that (x, y) ∈ αa ∩ βa , i.e. a ∨ x = a ∨ y and
¬a ∨ x = ¬a ∨ y. Then, x ≤ a ∨ y = a ⊕ y implies
¬a ≤ ¬x ⊕ y, and at the same time x ≤ ¬a ∨ y = ¬a ⊕ y
implies a ≤ ¬x ⊕ y. Since a ∈ S(A), we have ¬x ⊕ y = 1,
so x ≤ y. By interchanging x and y, we get y ≤ x , and so
x = y. Thus, αa ∩ βa = �A.

Now, since both αa and βa are lattice congruences, the
element a is both distributive and dually distributive. Since
αa ∩ βa = �A (i.e. a ∨ x = a ∨ y and a ∧ x = a ∧ y imply
x = y), it follows that a is neutral.

There remains to prove that αa ◦ βa = ∇A. Let x, y ∈ A
be arbitrary elements and put z = (x ∨ a) ∧ (y ∨ ¬a). Since
a as well as ¬a is a neutral element, it is straightforward to
verify that a ∨ z = a ∨ x and a ∧ z = a ∧ y, i.e. (x, z) ∈ αa

and (z, y) ∈ βa . ��
Remark Since B(A) ⊆ Neutr(A), in Lemma 3.1 (iv) we
could replace αa with

α̃a = {(x, y) ∈ A2 : x ∨ y = (x ∧ y) ∨ a1

for some a1 ≤ a}.

Indeed, if a ∈ B(A), then a ∈ Stand(A), and so αa = α̃a

is a weak congruence of (A,⊕,¬, 0, 1). Conversely, if α̃a is
a weak congruence of the basic algebra, then a ∈ Stand(A)

because any weak congruence is a lattice congruence, and in
this case we have αa = α̃a . Thus, αa is a weak congruence
of (A,⊕,¬, 0, 1), which yields a ∈ B(A).

Themap a �→ αa is a one-to-one correspondence between
Boolean elements and certain weak congruences (“factor”
weak congruences):

Lemma 3.4 Let (A,⊕,¬, 0, 1) be a basic algebra. Let ϕ be
a weak congruence such that ϕ ∩ ψ = �A and ϕ ◦ ψ = ∇A

for some weak congruence ψ . Then the only element a ∈ A
such that (0, a) ∈ ϕ and (a, 1) ∈ ψ is a Boolean element,
and we have ϕ = αa and ψ = βa.

Proof Clearly, there exists a unique a ∈ A such that (0, a) ∈
ϕ and (a, 1) ∈ ψ . Then, for any x ∈ A we have a ⊕ x ≡ϕ

x ≡ϕ a ∨ x and a ⊕ x ≡ψ 1 ≡ψ a ∨ x , which entails
a ⊕ x = a ∨ x as ϕ ∩ ψ = �A. Thus, a ∈ B(A).
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If (x, y) ∈ αa , then x ≡ϕ a ∨ x = a ∨ y ≡ϕ y. Thus,
αa ⊆ ϕ. Conversely, we have x ≡ϕ a ∨ x ≡ψ 1 and y ≡ϕ

a ∨ y ≡ψ 1, and hence, (x, y) ∈ ϕ implies a ∨ x = a ∨ y,
i.e. (x, y) ∈ αa . Thus, ϕ ⊆ αa , proving αa = ϕ. Similarly,
βa = ψ . ��

In the remainder of this section, given a basic algebra
(A,⊕,¬, 0, 1) and a non-empty subset X ⊆ A we use (X ]
to denote the order ideal (of the underlying lattice of the
algebra) generated by the set X , i.e. (X ] = {a ∈ A : a ≤
x for some x ∈ X}.
Lemma 3.5 Let (A,⊕,¬, 0, 1) be a basic algebra. For
every a ∈ A\{0} there exists a maximal ideal M of the
Boolean subalgebra B(A) such that a /∈ (M]. Consequently,
⋂

{(M] : M is a maximal ideal of B(A)} = {0}.

Proof LetM be the set of all ideals I of B(A) with a /∈ (I ].
Since a �= 0, it is obvious that {0} ∈ M and so, by Zorn’s
lemma, M ordered by set inclusion has a maximal element,
M say. Suppose to the contrary that M is not a maximal ideal
of B(A), i.e. there exists b ∈ B(A) such that b,¬b /∈ M . Let
J and K be the ideals of B(A) generated by M ∪ {b} and
M ∪ {¬b}, respectively. It is easily seen that J ∩ K = M .
Since M is contained properly in both J and K , it follows
that J, K /∈ M and a ∈ (J ] ∩ (K ] = (J ∩ K ] = (M], which
contradicts the choice of M . Therefore, M is a maximal ideal
of B(A) and a /∈ (M].

The statement about the intersection of the order ideals
(M] where M ranges over the maximal ideals of B(A) is a
straightforward corollary. ��

By Lemma 3.1, we know that for any a ∈ B(A), the
relation αa is a weak congruence of the basic algebra
(A,⊕,¬, 0, 1). Moreover, we have

(x, y) ∈ αa iff d(x, y) ≤ a,

where

d(x, y) = ¬(¬x ⊕ y) ∨ ¬(¬y ⊕ x).

Indeed, it suffices to observe that x ∨ a ≤ y ∨ a iff x ≤
y ∨ a = a ⊕ y iff ¬a ≤ ¬x ⊕ y iff ¬(¬x ⊕ y) ≤ a. It easily
follows that when we are given an ideal I of B(A), then the
relation

α I =
⋃

{αa : a ∈ I }

is a weak congruence of (A,⊕,¬, 0, 1), too, and

(x, y) ∈ α I iff d(x, y) ∈ (I ].

Theorem 3.6 For any basic algebra (A,⊕,¬, 0, 1),

⋂

{αM : M is a maximal ideal of B(A)} = �A.

The lattice with antitone involution (A,∨,∧,¬, 0, 1) is
a subdirect product of the quotient lattices with antitone
involution (A,∨,∧,¬, 0, 1)/αM where M ranges over the
maximal ideals of B(A).

Proof If (x, y) ∈ αM for all maximal ideals M of B(A),
then d(x, y) ∈ (M] for all maximal ideals M of B(A). Thus,
d(x, y) = 0 by the previous lemma,whichmeans that x = y.
In other words, the intersection of the αM ’s is �A. Since
each αM is a congruence of (A,∨,∧,¬, 0, 1), we conclude
that (A,∨,∧,¬, 0, 1) is a subdirect product of the quotient
algebras (A,∨,∧,¬, 0, 1)/αM . ��

4 Two variants of Boolean elements

We have seen that a ∈ A is a Boolean element if and
only if the equivalence relation αa is a weak congruence of
(A,⊕,¬, 0, 1). This raises the question under which condi-
tions αa is a congruence of the basic algebra (A,⊕,¬, 0, 1)
in the stronger version, or of the lattice with antitone involu-
tion (A,∨,∧,¬, 0, 1) in the weaker version.

First, it turns out that αa is a congruence of the basic
algebra, roughly speaking, when the conditions (ii) and (iii)
of Lemma 3.1 are replaced by their “mirror images”. Such
elements a are “strongly Boolean”.

Lemma 4.1 Let (A,⊕,¬, 0, 1) be a basic algebra. The fol-
lowing are equivalent for any a ∈ A:

(i) x ⊕ (y ∨ a) = (x ⊕ y) ∨ a for all x, y ∈ A;
(ii) a ∈ S(A) and x ⊕ (y ⊕ a) = (x ⊕ y) ⊕ a for all

x, y ∈ A;
(iii) αa is a congruence of (A,⊕,¬, 0, 1).

If a ∈ A satisfies these conditions, then a ∈ B(A).

Proof (i) implies (ii). By substituting 0 for y, we obtain x ⊕
a = x∨a. Hence, a ∈ S(A) and x⊕(y⊕a) = x⊕(y∨a) =
(x ⊕ y) ∨ a = (x ⊕ y) ⊕ a for all x, y ∈ A.

(ii) implies (i). Since x ⊕ a ≤ (x ∨ a) ⊕ a, we have

[¬(x ⊕ a) ⊕ (x ∨ a)] ⊕ a=¬(x ⊕ a) ⊕ ((x ∨ a) ⊕ a) = 1,

so¬a ≤ ¬(x⊕a)⊕(x∨a). At the same time,a ≤ ¬(x⊕a)⊕
(x∨a). Sincea ∈ S(A), it follows that¬(x⊕a)⊕(x∨a) = 1,
i.e. x⊕a ≤ x∨a for every x ∈ A. Conversely,¬x⊕(x⊕a) =
(¬x⊕x)⊕a = 1⊕a = 1, i.e. x ≤ x⊕a,whencewe conclude
that x ∨ a = x ⊕ a. Thus, x ⊕ (y ∨ a) = x ⊕ (y ⊕ a) =
(x ⊕ y) ⊕ a = (x ⊕ y) ∨ a for all x, y ∈ A.
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Now, we are able to prove that a is a Boolean element
whenever it satisfies the equivalent conditions (i) and (ii).We
have 1 = ¬a ⊕ (x ⊕ a) = (¬a ⊕ x) ⊕ a, so ¬a ≤ ¬a ⊕ x ,
which is the same as a ≤ a ⊕ x . We have seen above that
x ∨ a = x ⊕ a, and hence, x ⊕ a = x ∨ a ≤ a ⊕ x . On the
other hand,

¬(a ⊕ x) ⊕ (x ⊕ a) = (¬(a ⊕ x) ⊕ x) ⊕ a

= (¬a ∨ x) ⊕ a = 1,

thus a ⊕ x ≤ x ⊕ a and x ⊕ a = x ∨ a = a ⊕ x , proving
that a ∈ B(A).

(i) implies (iii). If (x, y) ∈ αa , then (z ⊕ x) ∨ a = z ⊕
(x ∨a) = z⊕ (y∨a) = (z⊕ y)∨a, i.e. (z⊕ x, z⊕ y) ∈ αa .
Moreover, we know that a ∈ B(A) and so, by Lemma 3.1,
αa is a weak congruence of (A,⊕,¬, 0, 1). Therefore, αa is
a congruence of (A,⊕,¬, 0, 1).

(iii) implies (i). We have (y, y ∨ a) ∈ αa , whence (x ⊕
y, x ⊕ (y ∨ a)) ∈ αa . So (x ⊕ y)∨ a = (x ⊕ (y ∨ a))∨ a =
x ⊕ (y ∨ a). ��
Remark As in Lemma 3.1, we could replace αa with α̃a

because α̃a is a lattice congruence if and only if a ∈
Stand(A), in which case α̃a coincides with αa .

Lemma 4.1 together with Lemma 3.3 allows us to describe
the central elements of basic algebras; our characterization
below is more concise than the one given in Chajda and
Kolařík (2009).

Corollary 4.2 Let (A,⊕,¬, 0, 1) be a basic algebra. The
following are equivalent for any a ∈ A:

(i) a ∈ C(A);
(ii) x ⊕ (y ∨ z) = (x ⊕ y) ∨ z for all x, y ∈ A and z ∈

{a,¬a};
(iii) a ∈ S(A) and x⊕(y⊕z) = (x⊕ y)⊕z for all x, y ∈ A

and z ∈ {a,¬a};
(iv) αa and α¬a are congruences of (A,⊕,¬, 0, 1).

The next lemma answers the question of when the rela-
tion αa is a congruence of the “i-lattice” (A,∨,∧,¬, 0, 1).
The weaker version of Boolean elements mentioned at the
beginning of the section is the sharp distributive elements.

Lemma 4.3 Let (A,⊕,¬, 0, 1) be a basic algebra. For any
a ∈ A, we have:

(i) a ∈ S(A) ∩ Distr(A) iff αa is a congruence of the
lattice with antitone involution (A,∨,∧,¬, 0, 1), in
which case (x, y) ∈ αa iff x ⊕ a = y ⊕ a;

(ii) a ∈ S(A) ∩ Stand(A) iff α̃a is a congruence of
(A,∨,∧,¬, 0, 1);

(iii) a ∈ S(A)∩Neutr(A) iff αa and βa are congruences of
(A,∨,∧,¬, 0, 1) such that αa ∩ βa = �A.

Proof (i) Let a ∈ S(A) ∩ Distr(A). Clearly, the relation αa

is a lattice congruence. If (x, y) ∈ αa , i.e. x ∨ a = y ∨ a,
then

¬x ∨ a = (¬x ∨ a) ∧ (¬a ∨ a) = (¬x ∧ ¬a) ∨ a

= ¬(x ∨ a) ∨ a = ¬(y ∨ a) ∨ a

= (¬y ∧ ¬a) ∨ a = (¬y ∨ a) ∧ (¬a ∨ a)

= ¬y ∨ a

since the element a is distributive. Thus (¬x,¬y) ∈ αa .
Conversely, if αa is a congruence of (A,∨,∧,¬, 0, 1), then
a is a distributive element and (0, a) ∈ αa implies (1,¬a) ∈
αa , so 1 = ¬a ∨ a, whence a ∈ S(A).

Now, if a ∈ S(A) ∩ Distr(A), then (x, y) ∈ αa yields
x ⊕ a = (x ∨ a) ⊕ a = (y ∨ a) ⊕ a = y ⊕ a, and on the
other hand, x ⊕ a = y ⊕ a yields ¬x ∨ a = ¬(x ⊕ a)⊕ a =
¬(y ⊕ a) ⊕ a = ¬y ∨ a, i.e. (¬x,¬y) ∈ αa , which is
equivalent to (x, y) ∈ αa .

(ii) Suppose that a ∈ S(A)∩Stand(A). Then α̃a is a lattice
congruence and it coincides with αa , which is a congruence
of (A,∨,∧,¬, 0, 1) in the light of (i). Conversely, let α̃a

be a congruence of (A,∨,∧,¬, 0, 1). Then a is a standard
element and (0, a) ∈ α̃a implies (1,¬a) ∈ α̃a , so 1 = ¬a ∨
a1 for some a1 ≤ a, whence ¬a ∨ a = 1. Thus a ∈ S(A).

(iii) Let a ∈ S(A) ∩ Neutr(A). Then a ∈ S(A) ∩
Distr∂ (A), so that, by duality, item (i) entails that βa is a
congruence of (A,∨,∧,¬, 0, 1). An alternative argument:
a ∈ S(A)∩Distr∂ (A) is equivalent to¬a ∈ S(A)∩Distr(A),
and hence, αa and α¬a are congruences of (A,∨,∧,¬, 0, 1)
by (i), and we have (x, y) ∈ α¬a iff (¬x,¬y) ∈ α¬a iff
¬x ∨¬a = ¬y∨¬a iff x ∧a = y∧a iff (x, y) ∈ βa . Thus,
α¬a = βa . Neutrality of a implies αa ∩ βa = �A.

Conversely, if αa and βa are congruences of (A,∨,

∧,¬, 0, 1) such that αa ∩ βa = �A, then the element a
is neutral, and it is also sharp by (i). ��

In contrast to B(A), S(A) ∩ Neutr(A) is a subalge-
bra of (A,∨,∧,¬, 0, 1) (which is a Boolean algebra in
its own right) but not of (A,⊕,¬, 0, 1) in general, and
S(A) ∩ Distr(A), S(A) ∩ Stand(A) and the set of “strongly
Boolean elements” satisfying the equivalent conditions of
Lemma 4.1 do not form subalgebras of (A,∨,∧,¬, 0, 1) or
(A,⊕,¬, 0, 1).

In lattice effect algebras, all these sets coincide with the
centre C(A):
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Theorem 4.4 If (A,⊕,¬, 0, 1) is a basic algebra satisfying
(2.10), then

C(A) = B(A) = S(A) ∩ Distr(A) = S(A) ∩ Distr∂ (A)

= S(A) ∩ Stand(A) = S(A) ∩ Stand∂ (A)

= S(A) ∩ Neutr(A).

To prove the theorem, we need to recall the concept of
compatible elements. Let (A,⊕,¬, 0, 1) be a basic algebra
satisfying (2.10). Two elements x, y ∈ A are compatible (in
the corresponding lattice effect algebra, in symbols x ↔ y)
if there exist x1, y1, z ∈ A such that x = x1 + z, y = y1 + z
and x1 + y1 + z is defined. In the language of basic algebras,
we have

x ↔ y iff x ⊕ y = y ⊕ x iff x ≤ x ⊕ y;

see Chajda et al. (2009a) and Kühr et al. (2015). We will
use the following facts, see e.g. Riečanová (1997, 1999) or
Dvurečenskij and Pulmannová (2000):

(i) if x, y ∈ A are comparable, then x ↔ y;
(ii) x ↔ y iff x ↔ ¬y;
(iii) if x ↔ y and x ∧ y = 0, then x ∨ y = x + y = x ⊕ y;
(iv) a ∈ C(A) iff a ∈ S(A) and a ↔ x for every x ∈ A.

Proof of Theorem 4.4 In the light of Lemma 3.3, we have

C(A) ⊆ B(A) ⊆ S(A) ∩ Neutr(A)

⊆ S(A) ∩ Stand(A) ⊆ S(A) ∩ Distr(A).

If a ∈ B(A), then a ≤ a ⊕ x , i.e. a ↔ x for every x ∈ A.
Hence B(A) = C(A) by (iv), and it remains to prove that
S(A) ∩ Distr(A) ⊆ B(A).

Suppose that a ∈ S(A) ∩Distr(A). Then (¬a ∧ x) ∨ a =
x∨a for any x ∈ A. Since (¬a∧x)∧a = 0 and a ↔ ¬a∧x
(as ¬a ≥ ¬a ∧ x), it follows that x ∨ a = (¬a ∧ x) ∨ a =
(¬a ∧ x) + a = (¬a ∧ x) ⊕ a = x ⊕ a. But this yields
x ≤ x ⊕ a, so x ↔ a for every x ∈ A, which proves that
a ∈ C(A), by the above item (iv). ��

5 Basic algebras with pseudocomplementation

In this section, we deal with the case that the underly-
ing lattice is pseudocomplemented and, in fact, also dually
pseudocomplemented. We first recall [see, e.g. Balbes and
Dwinger (1975) or Grätzer (2011)] that a double p-algebra
is an algebra (A,∨,∧, ∗, +, 0, 1) where (A,∨,∧, 0, 1) is a
bounded lattice and, for every a ∈ A, a∗ is the pseudocom-
plement of a (i.e. x ≤ a∗ iff x ∧ a = 0) and a+ is the dual
pseudocomplement of a (i.e. x ≥ a+ iff x∨a = 1). A double

p-algebra is called a double Stone algebra if it is distributive
as a lattice and satisfies the identities

x∗∗ ∨ x∗ = 1 and x++ ∧ x+ = 0. (5.1)

For any double p-algebra (A,∨,∧, ∗, +, 0, 1), the skeletons

A∗ = {a∗ : a ∈ A} and A+ = {a+ : a ∈ A}

form Boolean algebras (A∗,�,∧, ∗, 0, 1) and (A+,∨,

�, +, 0, 1) with x � y = (x ∨ y)∗∗ and x � y = (x ∧ y)++,
respectively. The two skeletons coincide in double Stone
algebras.

Now, we define a basic algebra with pseudocomplemen-
tation as a basic algebra the underlying lattice of which is
pseudocomplemented,with pseudocomplementation consid-
ered to be a unary operation. More precisely, by a basic
algebra with pseudocomplementation we mean an algebra
(A,⊕,¬, ∗, 0, 1) such that (A,⊕,¬, 0, 1) is a basic algebra
and, for every a ∈ A, a∗ is the pseudocomplement of a in the
underlying lattice of the algebra (A,⊕,¬, 0, 1). It is easily
seen that for every a ∈ A,

a+ = ¬(¬a)∗

is the dual pseudocomplement of a. (Indeed, x ≥ ¬(¬a)∗ iff
¬x ≤ (¬a)∗ iff ¬(x ∨ a) = ¬x ∧ ¬a = 0 iff x ∨ a = 1.)
Therefore, (A,∨,∧, ∗, +, 0, 1) is a double p-algebra and so,
in a sense, we could regard basic algebras with pseudocom-
plementation as double p-algebras with antitone involutions.

It isworth observing that (since¬x∗ = (¬x)+ and¬x+ =
(¬x)∗, and x ∈ S(A) iff ¬x ∈ S(A)):

(i) a ∈ A∗ implies ¬a ∈ A+, and a ∈ A+ implies ¬a ∈
A∗;

(ii) A∗ ⊆ S(A) iff A+ ⊆ S(A);
(iii) S(A) ⊆ A∗ iff S(A) ⊆ A+.

Theorem 5.1 The class of basic algebras with pseudocom-
plementation is a variety which can be axiomatized by
identities (2.4)–(2.7) together with the identities

0∗ = 1, 1∗ = 0 and x ∧ (x ∧ y)∗ = x ∧ y∗.

Proof It is known and easy to prove that the above identities
characterize pseudocomplementation in meet semilattices
with 0 [seeGrätzer (2011), Exercise I.6.27]. To bemore accu-
rate, the language used there does not include the constant 1
and the axiomatization contains the identities x∧0∗ = x and
0∗∗ = 0, which can evidently be replaced with the identity
1∗ = 0. ��
Lemma 5.2 Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation.
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(i) If a ∈ S(A), then a+ ≤ ¬a ≤ a∗.
(ii) If a ∈ S(A)∩Distr(A), then a = (¬a)∗ and¬a = a+.

Dually, if a ∈ S(A) ∩ Distr∂ (A), then a = (¬a)+
and ¬a = a∗. Hence, S(A) ∩ Distr(A) ⊆ A∗ and
S(A) ∩ Distr∂ (A) ⊆ A+.

(iii) If a ∈ S(A) ∩ Distr(A) ∩ Distr∂ (A), then ¬a = a∗ =
a+.

Proof (i) It is plain that a ∧ ¬a = 0 implies ¬a ≤ a∗, and
a ∨ ¬a = 1 implies ¬a ≥ a+.

(ii) Let a ∈ S(A) ∩ Distr(A). Then a = a ∨ (¬a ∧
(¬a)∗) = a ∨ (¬a)∗, so a ≥ (¬a)∗. At the same time,
a∧¬a = 0 implies a ≤ (¬a)∗, and hence, a = (¬a)∗ ∈ A∗.
Now, if a ∈ S(A) ∩ Distr∂ (A), then ¬a ∈ S(A) ∩ Distr(A)

and by what we have just shown we have ¬a = (¬¬a)∗ =
a∗, whence a = ¬a∗ = (¬a)+ ∈ A+.

(iii) This is a direct consequence of (ii). ��
Note that Lemmas 3.3 and 5.2 entail B(A) ⊆ S(A) ∩

Neutr(A) ⊆ A∗ ∩ A+ with ¬a = a∗ = a+ for all a ∈ B(A).

Lemma 5.3 Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation. Then, the underlying lattice ismod-
ular if and only if it is distributive, in which case S(A) ⊆
A∗ ∩ A+ and ¬a = a∗ = a+ for every a ∈ S(A).

Proof Suppose to the contrary that the lattice is modular but
not distributive, i.e. it contains the following sublattice (the
so-called diamond):

o

i

a b c

Since the map gi : x �→ ¬(x ⊕ ¬i) defined by (2.14) is an
antitone involution on [0, i], there is a copy of the diamond
at the bottom of A, and so we may safely assume that o = 0.
We then have a, b ≤ c∗ because a ∧ c = b ∧ c = 0. Thus,
c ≤ i = a∨b ≤ c∗, whence c = c∧c∗ = 0, a contradiction.
Therefore, the lattice is distributive andbyLemma5.2 (ii) and
(iii) we conclude that S(A) ⊆ A∗ ∩ A+ and ¬x = x∗ = x+
for every x ∈ S(A). ��

We have just seen that in distributive basic algebras
with pseudocomplementation we have S(A) ⊆ A∗ ∩ A+
with ¬a = a∗ = a+ for all a ∈ S(A). Another class
where this holds true is the class of lattice effect algebras
with pseudocomplementation [i.e. basic algebras with pseu-
docomplementation satisfying quasi-identity (2.10)]. This
was essentially proved in Riečanová (2009). Indeed, if
(A,⊕,¬, ∗, 0, 1) is a basic algebra with pseudocomplemen-
tation satisfying (2.10), then by Riečanová (2009), Theorem
3.4, ¬a = a∗ for every a ∈ S(A), whence a = ¬a∗ =

(¬a)+ ∈ A+. Since a ∈ S(A) iff ¬a ∈ S(A), we get
a = (¬a)∗ ∈ A∗ and ¬a = a+.

However, the next simple example shows that in general,
when (A,⊕,¬, ∗, 0, 1) is neither distributive nor satisfies
(2.10), then S(A) need not be a subset of A∗ ∩ A+.

Example 5.4 Let (A,⊕,¬, ∗, 0, 1) be the basic algebra with
pseudocomplementation with the following underlying lat-
tice (the so-called benzene):

0

1

a b

¬b ¬a

The linearly ordered intervals bear unique antitone involu-
tions; thus, ⊕ is determined by the lattice and ¬. The basic
algebra (A,⊕,¬, 0, 1) is neither distributive nor satisfies
(2.10) because, e.g. a⊕b = ¬a but (a⊕b)⊕a = ¬a⊕a = 1
and a ⊕ (b ⊕ a) = a ⊕ ¬b = ¬b. We have S(A) = A,
A∗ = {0,¬a,¬b, 1} and A+ = {0, a, b, 1}, and hence,
S(A) � A∗ ∩ A+.

Lemma 5.5 Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation such that A∗ ⊆ S(A). Then
(A,⊕,¬, ∗, 0, 1), or the double p-algebra (A,∨,∧, ∗,
+, 0, 1), satisfies identities (5.1).

Proof For any x ∈ A, since x∗ ∈ A∗ ⊆ S(A), we have
x∗ ∨ ¬x∗ = 1 and x∗ ∧ ¬x∗ = 0, whence ¬x∗ ≤ x∗∗, and
so 1 = x∗ ∨ ¬x∗ ≤ x∗ ∨ x∗∗. Thus, x∗ ∨ x∗∗ = 1. The
dual identity is satisfied because x++ ∧ x+ = ¬(¬x)∗∗ ∧
¬(¬x)∗ = ¬((¬x)∗∗ ∨ (¬x)∗) = ¬1 = 0. ��

Note that the condition A∗ ⊆ S(A) can be captured by
the identity x∗ ⊕ x∗ = x∗.

Lemma 5.6 Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation satisfying identity (2.13). Then

C(A) = B(A) = S(A) = A∗ = A+.

Consequently, the double p-algebra (A,∨,∧, ∗, +, 0, 1) is a
double Stone algebra.

Proof Owing to (2.13), the underlying lattice of the algebra
is distributive [see Krňávek and Kühr (2011), Lemma 2.11
or Botur and Kühr (2014), Lemma 4.2] and C(A) = S(A)

[see Krňávek and Kühr (2015), Lemma 2], whence we have
C(A) = B(A) = S(A) ⊆ A∗ ∩ A+ by Lemma 5.3.

Let a ∈ A∗. Using identities (2.11) and (2.13) we get
0 = (a ∧ a∗) ⊕ (a ∧ a∗) = (a ⊕ a) ∧ (a ⊕ a∗) ∧ (a∗ ⊕ a) ∧
(a∗ ⊕ a∗) ≥ (a ⊕ a) ∧ a∗, so (a ⊕ a) ∧ a∗ = 0, whence
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a ⊕ a ≤ a∗∗ = a. Thus a ⊕ a = a, which means that
a ∈ S(A).

We have proved that A∗ = S(A), and hence, by the
remarks (ii) and (iii) before Theorem 5.1, also A+ = S(A).
By Lemma 5.5, (A,⊕,¬, ∗, 0, 1) satisfies identities (5.1),
whence (A,∨,∧, ∗, +, 0, 1) is a double Stone algebra. ��

In what follows, we focus on basic algebras with pseudo-
complementation satisfying the condition C(A) = A∗, which
is the same as C(A) = A+. By Corollary 4.2 we have:

Lemma 5.7 A basic algebra with pseudocomplementation
(A,⊕,¬, ∗, 0, 1) satisfies the condition C(A) = A∗ if and
only if it satisfies the identities

x ⊕ (y ∨ z∗) = (x ⊕ y) ∨ z∗

and x ⊕ (y ∨ ¬z∗) = (x ⊕ y) ∨ ¬z∗. (5.2)

Lemma 5.8 Let (A,⊕,¬, ∗, 0, 1) be an arbitrary basic
algebra with pseudocomplementation. If a ∈ C(A), then
αa as well as βa = α¬a is a factor congruence of
(A,⊕,¬, ∗, 0, 1).

Proof Let a ∈ C(A). By Lemma 5.2 (iii), we have ¬a = a∗.
By Lemma 3.3, we know that βa = α¬a , αa ∩ βa = �A

and αa ◦ βa = ∇A. Clearly, αa = β¬a . If (x, y) ∈ αa , then
x∗ ∧ ¬a = x∗ ∧ a∗ = (x ∨ a)∗ = (y ∨ a)∗ = y∗ ∧ a∗ =
y∗ ∧ ¬a, and so (x∗, y∗) ∈ β¬a = αa . ��

Now, we can describe subdirectly irreducible members of
the variety of basic algebras with pseudocomplementation
satisfying the condition C(A) = A∗:

Theorem 5.9 Let (A,⊕,¬, ∗, 0, 1) be a basic algebra with
pseudocomplementation such thatC(A) = A∗. The following
statements are equivalent:

(i) (A,⊕,¬, ∗, 0, 1) is a subdirectly irreducible algebra;
(ii) the underlying lattice is a chain;
(iii) (A,⊕,¬, ∗, 0, 1) is a simple algebra.

Proof (i) implies (ii). Suppose that a, b ∈ A are two incom-
parable elements. Since the map gi defined by (2.14) is an
antitone involution on [0, i] where i = a ∨ b, by eventu-
ally replacing a, b with gi (a), gi (b), we may assume that
a ∧ b = 0. Then a ≤ b∗ and a∗ ≥ b∗∗, whence a∗ ∨ b∗ ≥
b∗∗ ∨ b∗ = 1 because (A,⊕,¬, ∗, 0, 1) satisfies identities
(5.1) by Lemma 5.5. Thus a∗ ∨ b∗ = 1.

Let ϕ = βa∗ and ψ = βb∗ . Since a∗, b∗ ∈ A∗ = C(A),
the relations ϕ,ψ are congruences of (A,⊕,¬, ∗, 0, 1). We
have ϕ �= �A �= ψ as otherwise a∗ = 1 or b∗ = 1 which
would contradict a �= 0 �= b. Moreover, if (x, y) ∈ ϕ ∩ ψ ,
then x = x ∧ (a∗ ∨ b∗) = (x ∧ a∗) ∨ (x ∧ b∗) = (y ∧ a∗) ∨
(y ∧ b∗) = y ∧ (a∗ ∨ b∗) = y. Thus, ϕ ∩ ψ = �A, so the
algebra is not subdirectly irreducible.

(ii) implies (iii). Let θ �= �A be a congruence of
(A,⊕,¬, ∗, 0, 1). Let (x, y) ∈ θ with x �= y, say x > y.
Then ¬x ⊕ y �= 1 and 0 �= ¬(¬x ⊕ y) ≡θ ¬(¬y ⊕ y) =
¬1 = 0 which yields 0 = (¬(¬x ⊕ y))∗ ≡θ 0∗ = 1. This
shows that θ = ∇A. Thus, the algebra is simple.

(iii) implies (i). This is trivial. ��
The following result follows from Krňávek and Kühr

(2011), Theorem 4.4 as well as from Botur and Kühr (2014),
Theorem 4.7, where it was proved that finite basic algebras
satisfying certain identities8 weaker than (2.13) are automat-
ically MV-algebras. Our present proof is much shorter.

Corollary 5.10 Every finite basic algebra which satisfies
identity (2.13) is an MV-algebra.

Proof Let (A,⊕,¬, 0, 1) be a finite basic algebra satisfying
(2.13). We know that it is distributive [see the introduc-
tion, also see Krňávek and Kühr (2011), Lemma 2.11 or
Botur and Kühr (2014), Lemma 4.2]. Then for every a ∈ A,
a∗ = ∨{x ∈ A : x ∧ a = 0} is the pseudocomplement of a,
thus (A,⊕,¬, ∗, 0, 1) is a basic algebra with pseudocomple-
mentation. By Lemma 5.6, we have C(A) = A∗, and hence,
by Theorem 5.9, (A,⊕,¬, ∗, 0, 1) is a subdirect product of
linearly ordered algebras (At ,⊕,¬, ∗, 0, 1). But these alge-
bras are finite, and since the only finite linearly ordered basic
algebras are MV-algebras, each (At ,⊕,¬, 0, 1) is an MV-
algebra and it follows that (A,⊕,¬, 0, 1) is an MV-algebra.

��
The only lattice effect algebras with pseudocomplemen-

tation satisfying the condition C(A) = A∗ are MV-algebras:

Corollary 5.11 Let (A,⊕,¬, ∗, 0, 1) be a basic algebra
with pseudocomplementation satisfying identity (2.10). Then
C(A) = A∗ if and only if (A,⊕,¬, 0, 1) is an MV-algebra.

Proof If (A,⊕,¬, 0, 1) is an MV-algebra, then it satisfies
(2.13) and hence C(A) = A∗ by Lemma 5.6. Conversely,
suppose that C(A) = A∗. Since this condition is equivalent
to identities (5.2), the algebra (A,⊕,¬, ∗, 0, 1) is a subdirect
product of linearly ordered effect algebras with pseudocom-
plementation, by Theorem 5.9. But linearly ordered effect
algebras are a fortiori MV-algebras, whence we may con-
clude that (A,⊕,¬, 0, 1) is an MV-algebra. ��
Corollary 5.12 The variety of basic algebras with pseudo-
complementation satisfying identities (5.2) is a discriminator
variety.

Proof It is easy to check that the term

t (x, y, z) = (d(x, y)∗ ∨ x) ∧ (d(x, y)∗∗ ∨ z),

8 Namely, the identity x ⊕ (¬x ∧ y) = x ⊕ y in Krňávek and Kühr
(2011), and the identity x ≤ x ⊕ y in Botur and Kühr (2014).
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where d(x, y) = ¬(¬x ⊕ y)∨¬(¬y⊕ x), is a discriminator
term for the variety. Indeed, if (A,⊕,¬, ∗, 0, 1) is a subdi-
rectly irreducible basic algebrawith pseudocomplementation
satisfying (5.2), then it is linearly ordered, and hence, for all
a, b, c ∈ A we have d(a, a)∗ = 1 and d(a, b)∗ = 0 when
a �= b, whence t (a, a, c) = c and t (a, b, c) = a when
a �= b. ��
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