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Abstract Fuzzy C-means (FCM) clustering method has
been widely used in image segmentation that plays an impor-
tant role in a variety of applications in image processing and
computer vision systems, but the performance of FCM heav-
ily relies on the initial cluster centers which are difficult to
determine. To solve the problem, the paper proposes a new
hybrid method for image segmentation, which first randomly
generates a population of initial clustering solutions and then
uses an evolutionary algorithm to search for better cluster-
ing solutions; at each iteration, the FCM method is applied
on each initial clustering solution to produce its segmenta-
tion result. Among a set of popular evolutionary algorithms,
we find that the biogeography-based optimization (BBO)
metaheuristic exhibits good performance on the considered
problem. Besides the basic BBO, we have also proposed a set
of improved BBO versions in their combination with FCM
for image segmentation. Computational experiments on a
set of test images show that the proposed method has sig-
nificant advantage over the basic FCM algorithm and those
hybrid algorithms combining FCM with other evolutionary
algorithms such as artificial bee colony and particle swarm
optimization.
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1 Introduction

Image segmentation is a process that partitions a raw image
into a set of non-overlapping regions, each of which has dif-
ferent characteristics so that some interesting objects can be
obtained. Traditional image segmentation techniques include
edge detection, region extraction, and histogram method
(threshold) (Han and Wang 2002; Lin and Tian 2002; Lin
et al. 2005; Sharon et al. 2000). In recent years, image seg-
mentation methods combining with some new calculation
models, such as wavelet analysis, clustering analysis, arti-
ficial neural networks, and evolutionary algorithms, have
attracted much attention (Bhandarkar and Zhang 1999; Choi
and Baraniuk 2001; Coleman and Andrews 1979; Kuntimad
and Ranganath 1999).

Essentially, the process of image segmentation is to
classify and restructure image pixels according to their char-
acteristics. So it is not surprising that clusteringmethods have
beenwidely used in image segmentation. K -means algorithm
is one of the most classical clustering algorithms, the basic
idea of which is dividing data points into k clusters, and
then continuously adjusting the points among the clusters
to improve clusters. This method is fast and easy to imple-
ment, but it is difficult to find appropriate clusters when the
distribution shape is complex.

The fuzzy C-means (FCM) clustering algorithm Bezdek
(1981) is based on K -means algorithm, and its process can
be divided into two stages: (1) dividing the given set of n
sample points into c initial clusters and calculating the mem-
bership degree of each point with respect to each cluster i ;
(2) constantly updating the clustering centers to improve the
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intra-class polymerization and the inter-class difference until
all the clustering centers converged. FCM has been widely
used because it introduces the concept of membership degree
of fuzzy set to image segmentation to avoid the setting of
thresholds and the intervention of the clustering (Liu et al.
2016). However, FCM has some shortcomings, e.g., it can be
very hard to determine the number of clusters and their ini-
tial centers, and the iterative convergence process can be very
time-consuming and easy to fall into local optima (Gong et al.
2013; Zhu 2009). Therefore, recently some researchers com-
bine FCM with evolutionary algorithms to simultaneously
handle multiple clustering solutions to improve clustering
speed and accuracy (Hruschka et al. 2004; Li 2013).

This paper proposes a newhybridmethodwhich combines
theFCMandanevolutionary algorithmnamedbiogeography-
based optimization (BBO) Simon (2008) for image segmen-
tation. The key idea is regarding an initial matrix of cluster
centers as a solution, and using BBO to evolve a popula-
tion of solutions, where each solution is evaluated by using
FCM to obtain the clustering result. For our hybrid method,
we have used not only the basic BBO but also a set of its
improvedversions in their combinationwithFCM.Computa-
tional experiments show that the hybrid evolutionary method
has significant advantage over the basic FCM method (e.g.,
the minimum-distance separation for partition of our method
is over 2000 times of that of FCM on the test image), and
BBO outperforms a number of other popular evolutionary
algorithms in our hybrid framework (in particular, the cohe-
sion within clusters of BBO–FCM is much higher than the
other algorithms).

The rest of this paper is organized as follows: Sect. 2
reviews related work, Sect. 3 introduces the basic FCM,
Sect. 4 describes the hybrid BBO–FCM for image segmen-
tation, Sect. 5 presents the computational experiments, and
Sect. 6 concludes.

2 Related work

In general, conventional segmentationmethods only perform
well on small-size problem instances, but their performance
deteriorates rapidly as the instance size increases. Therefore,
a number of studies have been devoted to evolutionary opti-
mization algorithms or their hybridization with conventional
methods for complex segmentation problems. In this section,
we review related work on metaheuristics for image segmen-
tation and related problems.

Ant colony optimization (ACO) Dorigo et al. (1996) is a
metaheuristic inspired by ants’ behavior for computationally
difficult optimization problems. Wang et al. (2005) proposed
an approach that uses the active contour model to convert the
image segmentation problem to a path searching problem
and then uses ACO to search for the best path in a con-

strained region for image segmentation. Simulation results
show that the newmethod has a better performance than GA.
Melkemi et al. (2006) proposed a distributed image segmen-
tation algorithm structured as a multiagent system composed
of a coordinator agent and a set of segmentation agents. For
an initial image, each segmentation agent employs the iter-
ated conditional method to obtain a sub-optimal segmented
image, and the coordinator agent uses the crossover and
mutation operators of GA to diversify the initial image along
with the extremal local search process. Experiments show
that the competitive and cooperative process accedes to a
good segmentation.

Artificial bee colony (ABC) is Karaboga (2005) another
popular metaheuristic that mimics a colony of bees coop-
erating in finding good solutions to optimization problems.
Hancer et al. (2012) proposed an ABC-based algorithm to
find a mapping of images to clusters in order to support high-
level description of image content for image understanding.
Ozturk et al. (2014) proposed an ABC-based color quanti-
zation method for reducing the number of colors in a digital
image without causing significant information loss, and their
results show the ABC algorithm is better than other quan-
tization methods including K -means and FCM. Xue et al.
(2017) equipped ABCwith a self-adaptive mechanism based
on the global best candidate, and their results showed that the
improved algorithm can better solve complex optimization
problems, including a real K -means clustering problem.

Particle swarm optimization (PSO) Eberhart andKennedy
(1995) is a stochastic algorithm which is inspired by behav-
ior of flock birds searching for food, and it also demonstrates
the effectiveness and efficiency in solving a wide range of
optimization problems in image applications. Omran et al.
(2006) proposed a dynamic clustering approach based on
PSO (DCPSO), which can automatically determine the most
appropriate number of clusters to segment images. This algo-
rithm consists of two main steps. In the first step, it partitions
the image data into a relatively large number of clusters,
selects the best number of clusters using binaryPSO, and then
refines the center of chosen clusters by K -means algorithm.
In the second step, it segments the image according to the
center of clusters. The proposed approach is suitable for both
synthetic and natural images. The advantage of the approach
is that the number of clusters does not need to be specified by
users in advance. Li and Li (2008) proposed another image
segmentation approach based on fuzzy entropy and PSO,
where PSO is used to select the optimal fuzzy parameter
combination and fuzzy threshold compatibly.Comparedwith
the exhaustive search method, the algorithm consumes less
search time to get the same optimal solution and shows better
robustness. Lee et al. (2012) proposed a modified PSO for
determining thresholds in color image segmentation, where
each particle adjusts its flying speed based on its own fly-
ing experience and its neighbors’ experience. In order to
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reduce the computational time of image segmentation, Gao
et al. (2013) presented a PSO algorithm with intermediate
disturbance searching strategy (IDPSO). Different from the
basic PSO, IDPSO inserts a disturbance factor depending
on the current local optimum into the displacement updating
process and thus not only enhances the global search abil-
ity but also increases the convergence speed. The proposed
approach can also be applied in medical image segmenta-
tion. Li et al. (2015) proposed a dynamic-context cooperative
quantum-behaved PSO algorithm, the key point of which is
to incorporate a dynamicalmechanism for updating each par-
ticle, while it completes a cooperation operation with other
particles. Recently, there are also studies on multiobjective
PSO algorithms for clustering and classification problems
using multiple criteria (Armano and Farmani 2016; Zheng
et al. 2014c).

BBO has also been used in some difficult optimization
problems in image processing.Wang andWu (2016) adopted
BBO to combine features in salient object detection to facil-
itate the delineation of pathological structures and other
regions for further image segmentation. The method first
extracts and normalizes the feature maps of the target image
and then utilizes BBO to determine an optimal weight vec-
tor that combines the feature maps into one saliency map.
Although BBO may take much computational time, the pro-
posed algorithm distinguishes the foreground objects and
the background more clear, and its segmentation effect is
much better than other conventional segmentation methods.
For detecting tumors from normal brains in MRI scanning,
Zhang et al. (2015) proposed a hybrid method that uses
BBO and PSO to optimize a feed-forward neural network
for detection. Yang et al. (2016) proposed a similar hybrid
wavelet-energy and BBO method for automated classifica-
tion of brain images, where BBO is used to optimize the
weights of the SVM classifier. BBO-based algorithms have
also been used inmedical applications such asCT scan image
segmentation (Chatterjee et al. 2012) and atrial fibrillation
diagnostic (Smiley and Simon 2016).

3 Image segmentation and fuzzy C-means
clustering algorithm

3.1 Image segmentation

Image segmentation is to partition a image into a set of
non-overlapping regions, each of which has different charac-
teristics so that some interesting objects can be obtained. In
this paper, we focus on pixel image segmentation, which is
done based on the features of and the distances between the
pixels of the image. For color images, we first convert them
into grayscale images and then perform segmentation.

Formally, given a homogeneity predicate H , a segmenta-
tion of an image defined by a set R of pixels is to divide R
into N connected, non-empty subsets R1, R2, . . . , RN that
satisfy the following conditions (Pal and Pal 1993):

–
⋃

1≤i≤N Ri = R;
– Ri

⋂
R j = ∅, ∀i �= j ;

– H(Ri ) = 1, i = 1, 2, . . . , N ;
– H(Ri

⋃
R j ) = 0, ∀ adjacent i and j .

3.2 Traditional K -means clustering

Given a set of n samples X = x1, x2, . . . , xn in a D-
dimensional Euclid space, K -means clustering is to divide
the set into c subsets to minimize the following objective
function:

J1 =
c∑

i=1

n∑

k=1

uik ‖xk − vi‖ (1)

where uik = 1 denotes that the kth sample point belongs to
the i th class and uik = 0 otherwise, and ‖xk−vi‖ denotes the
Euclid distance between the two points xk and vi (denoted
as dik in short).

The K -means algorithmfirst randomly selects c clustering
centers and then continuously updates the centers as follows:

uik =
{
1, dik = min

1<r<c
drk

0, else
(2)

vi =
∑n

k=1 uik xk∑n
k=1 uik

, i = 1, 2, . . . , c (3)

3.3 Fuzzy C-means algorithm

FCM algorithm improves the traditional K -means in that
the value uik , i.e., the membership of point xk to the cluster
centered at ui , is a real value in the range of [0,1] instead of
binary 0 or 1. The objective function is improved by using
a fuzzy exponent m (large than 1 and typically set to 2) as
follows:

Jm =
c∑

i=1

n∑

k=1

(uik)
m ‖xk − vi‖2 (4)

In FCM, the cluster centers are iteratively updated as fol-
lows:

uik = 1
∑c

j=1

( ‖xk−vi‖‖xk−v j‖
)2/(m−1)

(5)

vi =
∑n

k=1 xk (uik)m
∑n

k=1̃ (uik)m
(6)
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Interested readers can refer to Nayak (2015) for a compre-
hensive review on FCM clustering and its improve methods.

4 The proposed hybrid BBO–FCM algorithm

It is known that the performance of FCM heavily relies on
the initial cluster centers which are difficult to determine.
To tackle the difficulty, we propose a new hybrid method
for image segmentation, which first randomly generates a
population of initial clustering solutions and then uses BBO
metaheuristic to search for better clustering solutions, where
each solution is evaluated by employing FCM on it to obtain
the clustering result, i.e., the objective function (4).

4.1 The basic BBO–FCM algorithm

BBO Simon (2008, 2013) is a metaheuristic optimization
algorithm inspired by the migration mechanism of species.
In biogeography, if a habitat is very suitable for living, it has
high habitat suitability index (HSI); on the contrary, habitats
supporting less species have low HSI. In BBO, each solution
to the optimization problem is analogous to a habitat, the
fitness of the solution is analogous to its HSI, and the solu-
tion components are analogous to a set of suitability index
variables (SIVs). The center of BBO is the equilibrium the-
ory of biogeography, which indicates that high HSI solutions
have high emigration rates and low HSI solutions have high
immigration rates. For example, Fig. 1 shows a simple linear
migration model. When the species number of a habitat is 0,
its emigration rate μ is 0 and its immigration rate λ is the
maximum; when the species number of a habitat is Smax, its
immigration rate λ is 0 and its emigration rateμ ismaximum;
when species number of a habitat is S0, its immigration rate
λ and emigration rate μ are equal, which indicates that the
habitat achieves a dynamic balance at this time.

Suppose that the solutions are sorted in ascending order of
their fitness values, the immigration rate λi and emigration
rate μi of the i th habitat can be calculated as:

λi = I

(
i

n

)

(7)

μi = E

(

1 − i

n

)

(8)

where I and E are, respectively, the maximum possible
immigration rate and emigration rate, which are typically
both set to 1.

When a solution achieves a dynamic balance, its habitat
probability P(i) is calculated as:

P(i) = vi
∑n

k=1 vk
(9)

Fig. 1 Species migration model

where vi is defined as:

vi =
{

n!
(n−1−i)!(i−1)! (i = 1, . . . , i ′)

vn+1−i (i = i ′ + 1, . . . , n)
(10)

here i ′ is an integer which is greater n/2.

The habitat probability is used in mutation operator. The
habitats with more species or less species are more easily
influencedby external factors,whichmayeasily lead tomuta-
tions. It is beneficial for habitats with low HSI to improve
their HSI by mutation. There is a close inverse correlation
between mutation rate and habitat probability, and the muta-
tion rate πi of the i th habitat is computed as:

πi = πmax

(

1 − P(i)

Pmax

)

(11)

where πmax is the maximum mutation rate that is usually a
constant value and Pmax is the maximum habitat probability
of the population.

The main disadvantage of FCM is that its performance
highly depends on the quality of the initial cluster centers.
Here we propose a hybrid BBO–FCM algorithm to combine
the BBO’s advantage with FCM for image segmentation. In
our algorithm, an initial matrix of cluster centers is regarded
as a solution (habitat) of BBO. The algorithm starts by initial-
izing a population of solutions and then uses BBO to evolve
the solutions (i.e., search for the optimal initialmatrix),where
the fitness of each solution is evaluated by employing FCM
to obtain the clustering result according to the initial matrix.
Algorithm 1 presents the framework of the BBO–FCM algo-
rithm (where rand() is the function for producing a random
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Fig. 2 The flowchart of BBO–FCM for image segmentation

number uniformly distributed in [0,1]), and Fig. 2 presents
the algorithm flowchart.

This framework is easy to be extended by replacing the
basic BBOwith its variants. Next we present some improved
variants of BBO–FCM for image segmentation.

4.2 The Blended BBO–FCM algorithm

The migration operation of the basic BBO is clonal-based,
i.e., it has a probability of λi of replacing a cluster center of a
solution Hi with the corresponding cluster center of another
solution Hj selected with the probability proportional to μ j .
In other words, the operation never generates a new position
of cluster center, and thus, it may limit the diversity of the
solutions.

Blended biogeography-based optimization (B-BBO) Ma
and Simon (2010) replaces the original migration operation
with a blended migration which learns from the crossover
operation in GA to combine the features of both the two
parent solutions. The blendedmigration is defined as follows:

Hi (k) = αHi (k) + (1 − α)Hj (k) (12)

where α is a constant or random number within the range
of [0,1]. In this way, the immigrating solution can not only

Algorithm 1 BBO–FCM algorithm
1: Randomly initialize a population of n solutions (initial matrices);
2: while stop criterion is not satisfied do
3: for i = 1 to n do
4: Call FCM to produce the clustering result according to the i th

cluster center matrix;
5: Use the reciprocal of the objective function (1) as the fitness

of the solution;
6: end for
7: for i = 1 to n do
8: Calculate λi , μi , and πi according to its fitness;
9: end for
10: for i = 1 to n do
11: for k = 1 to N do
12: if rand() < λi then //migration
13: Select another solution Hj with probability ∝ μ j ;
14: Replace the kth component (cluster center) of Hi with

the corresponding one of Hj ;
15: end if
16: end for
17: end for
18: for i = 1 to n do
19: for k = 1 to N do
20: if rand() < πi then //mutation
21: Replace the kth component (cluster center) of Hi with

a random value within the range;
22: end if
23: end for
24: end for
25: end while
26: return the best solution found so far.

obtain the features from an emigrating solution Hj but also
retain its own features.

The procedure of the blendedBBO–FCM (B-BBO–FCM)
is similar to Algorithm 1 except that Line 14 is replaced by
Eq. (12).

4.3 The DE/BBO–FCM algorithm

Differential evolution (DE) Storn and Pric,e (1997) is a fast
and robust evolutionary algorithm for global optimization.
Unlike GA, DE generates a mutant solution Vi for each solu-
tion Hi in the population by adding the weighted difference
between two randomly selected vectors to a third one:

Vi = Hr1 + F · (Hr2 − Hr3) (13)

where r1, r2, and r3 are random indices in {1, 2, . . . , n} and
F is a positive scale coefficient.

A trial vector Ui is then generated by using the crossover
operator which mixes the components of the mutant vector
and the original one, where each component of Ui is deter-
mined as follows:

Ui (k) =
{
Vi (k) if rand(0, 1) < Cr or j = r(i)
Hi (k) else

(14)

123



2038 M. Zhang et al.

where Cr is the crossover probability ranged in (0, 1) and
r(i) is a random integer within [1, n] for each i .

In the last step of each iteration, the selection operator
chooses the better one for the next generation by comparing
Ui with Xi :

Xi =
{
Ui if f (Ui ) ≤ f (Xi )

Xi else
(15)

DE/BBO Gong et al. (2010) is a hybrid algorithm that
combines DE mutation and BBO migration, i.e., each com-
ponent of a solution has a probability ofCr of beingmodified
by DE mutation and a probability of (1−Cr ) of being mod-
ified by BBO migration. Algorithm 2 presents the procedure
of the DE/BBO–FCM algorithm for image segmentation.

Algorithm 2 DE/BBO–FCM algorithm
1: Randomly initialize a population of n solutions (initial matrices).
2: for i = 1 to n do
3: Call FCM to produce the clustering result according to the i th

cluster center matrix;
4: Use the reciprocal of the objective function (1) as the fitness of

the solution;
5: end for
6: while stop criterion is not satisfied do
7: for i = 1 to n do
8: Calculate λi , μi , and πi according to its fitness;
9: end for
10: for i = 1 to n do
11: for k = 1 to N do
12: if rand() < λi then
13: if rand() < CR then //DE mutation
14: Vi (k) ← Hr1 + F · (Hr2 − Hr3 );
15: else// BBO migration
16: Select a habitat Hj with probability ∝ μ j ;
17: Ui (k) ← Hj (k);
18: end if
19: end if
20: Call FCM to produce the clustering result according to

Ui (k);
21: if The fitness of Ui (k) is better than Hi (k) then
22: Replace Hi (k) with Ui (k) in the population;
23: end if
24: end for
25: end for
26: end while
27: return the best solution found so far.

4.4 The localized BBO–FCM algorithm

The basic BBO uses a global topology that enables any two
solutions in the population to communicate with each other:
if a solution is selected for immigration, all the rest solutions
have chances to be an emigrating habitat. Such a global topol-
ogy often makes most solutions be strongly attracted by the
best current best solution and thus easily causes premature
convergence. To address this issue, Zheng et al. (2014a) pro-
poses localized BBO where each solution is only connected

to its neighbors which are only a portion of the population,
and migration can only occur between neighboring habitats,
so as to improve the solution diversity and suppress prema-
ture convergence.

The hybrid localized BBO–FCM (denoted by L-BBO–
FCM) algorithm employs a local random topology where the
probability of any two solutions being connected is K/(n−1)
where K is a control parameter in the range of [2, n − 1].
Algorithm 3 presents the procedure for setting the local ran-
dom topology (where Link is the n× n adjacent matrix), and
Algorithm 4 presents the L-BBO–FCM algorithm for image
segmentation. Note that in Lines 26–28 of Algorithm 4, if
no new best solution is found for lN iterations (where lN is a
control parameter), the local random topology will be reset.

We can also equip the local topology to other variants of
BBO–FCM , such as localized DE/BBO–FCM (denoted by
L-DE/BBO–FCM).

Algorithm 3 Initialization of the localized random topology
1: Let p = K/(n − 1);
2: for i = 1 to n do
3: for j = 1 to n do
4: if i = j or rand() < p then
5: Link(i, j) = 1;
6: else
7: Link(i, j) = 0;
8: end if
9: end for
10: end for
11: return Link

4.5 The EBO–FCM algorithm

EBO Zheng et al. (2014b) is a recent improved variant of
BBO, which designs two new migration operators, called a
global migration and a local migration, to balance the explo-
ration and exploitation of the algorithm. It is also based on
the local random topology. For each solution Hi to be immi-
grated, the global migration selects a neighbor Hnb and a
non-neighbor Hfar and then performs the migration opera-
tion as follows:

Hi (k) =
{
Hfar(k) + α(Hnb(k) − Hi (k)) f (Hfar) > f (Hnb)

Hnb(k) + α(Hfar(k) − Hi (k)) f (Hfar) ≤ f (Hnb)

(16)

where α is a random number in the range from 0 to 1.
And the local migration operates as follows:

Hi (k) = Hi (k) + α(Hnb(k) − Hi (k)) (17)

EBO introduces a new parameter η, named the immaturity
index, for determining whether to perform global migration
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Algorithm 4 L-BBO–FCM algorithm
1: Randomly initialize a population of n solutions (initial matrices);
2: Call Algorithm 3 to initialize the adjacent matrix Link;
3: while stop criterion is not satisfied do
4: for i = 1 to n do
5: Call FCM to produce the clustering result according to the i th

cluster center matrix;
6: Use the reciprocal of the objective function (1) as the fitness

of the solution;
7: end for
8: for i = 1 to n do
9: Calculate λi , μi , and πi according to its fitness;
10: end for
11: for i = 1 to n do
12: for k = 1 to N do
13: if rand() < λi then //migration
14: Select another solution Hj satisfying Link(i, j) = 1

with probability ∝ μ j ;
15: Replace the kth component (cluster center) of Hi with

the corresponding one of Hj ;
16: end if
17: end for
18: end for
19: for i = 1 to n do
20: for k = 1 to N do
21: if rand() < πi then //mutation
22: Replace the kth component (cluster center) of Hi with

a random value within the range;
23: end if
24: end for
25: end for
26: if No new best solution is found for lN iterations then
27: Call Algorithm 3 to reset the adjacent matrix Link;
28: end if
29: end while
30: return the best solution found so far.

or localmigration:Eachmigrationoperationhas a probability
of η of being a global migration and a probability of (1− η)

of being a local migration. The value of η is dynamically
adjusted as follows:

η = ηmax − t

tmax

(
ηmax − ηmin

)
(18)

where t is the current iteration number and tmax is the maxi-
mum iteration number, and ηmax and ηmin are the upper limit
and lower limit of η, respectively.

Algorithm 5 presents the procedure of the EBO–FCM
algorithm for image segmentation.

5 Computational experiments

5.1 Experimental setup

We have implemented six versions of BBO–FCM, i.e., the
basic BBO–FCM, B-BBO–FCM, DE/BBO–FCM, L-BBO–
FCM, L-DE/BBO–FCM, and EBO–FCM, and test their

Algorithm 5 EBO–FCM algorithm
1: Randomly initialize a population of n solutions (initial matrices);
2: Call Algorithm 3 to initialize the adjacent matrix Link;
3: while stop criterion is not satisfied do
4: for i = 1 to n do
5: Call FCM to produce the clustering result according to the i th

cluster center matrix;
6: Use the reciprocal of the objective function (1) as the fitness

of the solution;
7: end for
8: for i = 1 to n do
9: Calculate λi , μi , and πi according to its fitness;
10: end for
11: for i = 1 to n do
12: for k = 1 to N do
13: if rand() < λi then //migration
14: Select a neighbor Hnb with probability in proportional

to the emigration rate;
15: if rand() < η then
16: Select a non-neighbor Hfar with probability in pro-

portional to the emigration rate;
17: Perform the global migration according to Eq. (16);
18: else
19: Perform the local migration according to Eq. (17);
20: end if
21: end if
22: end for
23: Call FCM to produce the clustering result of the new solution;
24: if The fitness of the new solution is better than Hi (k) then
25: Replace Hi (k) with the new solution in the population;
26: end if
27: end for
28: if No new best solution is found for lN iterations then
29: Call Algorithm 3 to reset the adjacent matrix Link;
30: end if
31: end while
32: return the best solution found so far.

performance of image segmentation in comparison with the
basic FCM and other three hybrid algorithms combing FCM
and metaheuristics including AFSA–FCM, ABC–FCM, and
PSO–FCM (Hruschka et al. 2004; Li 2013). For FCM, we set
themaximumnumber of iterations to 50, the fuzzy parameter
m to 2, and set the number of cluster centers to 4 for each
image. Then, we set the termination condition as the differ-
ence between two adjacent solutions is less than ζ = 10−5

or the algorithm reaches the maximum number of iterations.
The parameters of AFSA–FCM, ABC–FCM and PSO–FCM
are set as suggested in the literature (Hruschka et al. 2004; Li
2013). For BBO–FCM, we set the population size n = 10,
the maximum mutation rate πmax = 0.005, the number of
maximum non-improving iterations lN = 6 (for localized
BBO–FCM), ηmax = 0.7 and ηmin = 0.4 (for EBO). The
algorithms are tested on a set of eight images shown in Fig. 3.

5.2 Evaluation criteria

We use the following five metrics from Balasko et al. (2005);
Bezdek (1981) to evaluate the performance of the algorithms:
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Fig. 3 The set of eight test images. a Lena, b Baboon, c Woman, d
Peppers, e Milktrop, f Camera, g Bridge and h Plane

(1) Subarea coefficient (SC), which measures the ratio of
the sum of compactness and separation of the clusters:

SC =
c∑

i=1

∑n
k=1(uik)

m ‖xk − vi‖2
ni

∑c
j=1

∥
∥v j − vi

∥
∥2

(19)

Fig. 4 Segmentation results on the Lena image. (Reproducedwith per-
mission from Li 2013). a Lena, b FCM, c BBO–FCM, d AFSA–FCM,
e ABC–FCM and f PSO–FCM

where ni is the number of samples which belongs to
clustering i .

(2) Xie and Beni’s index (XB), which measures the ratio of
the total variation within clusters and the separation of
clusters:

XB =
∑c

i=1
∑n

k=1(uik)
m ‖xk − vi‖2

n min
1≤i≤c,1≤k≤n

∥
∥x j − vi

∥
∥2

(20)

(3) Classification entropy (CE), which measures the fuzzy-
ness of the cluster partition:

CE = −1

n

c∑

i=1

n∑

k=1

uik log uik (21)
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Table 1 Comparison of FCM,
BBO–FCM, and hybrid FCM
with other metaheuristics on
image Lena (Li 2013)

Metric FCM BBO–FCM AFSA–FCM ABC–FCM PSO–FCM

SC 1.0684 1.2735 2.2694 0.5670 5.3410

XB 24.0430 2.5015e−011 0.3532 0.8996 0.2829

CE 0.9850 8.5050e−005 2.0446 1.3544 2.0900

S 1.0742e-004 0.2792 0.5505 0.1458 1.4035

PC 0.5316 2.4880e−011 0.3345 0.0608 0.3925

(4) Separation index (S), which uses a minimum-distance
separation for partition validity:

S =
∑c

i=1
∑n

k=1(uik)
2 ‖xk − vi‖2

n min
1≤i≤c,1≤k≤n

∥
∥x j − vi

∥
∥2

(22)

(5) Partition coefficient (PC), which measures the amount
of overlapping between cluster:

PC = 1

n

c∑

i=1

n∑

k=1

(uik)
2 (23)

According to the above fivemetrics, the smaller the values
of SC, XB and CE, or the larger the values of S and PC, the
better the clustering performance is.

5.3 Comparative results

Previous studies He et al. (2009), Li et al. (2007); Li (2013)
and Ouadfel and Meshoul (2012) have shown that BBO–
FCM can achieve much better image segmentation effects
than FCM, AFSA–FCM, ABC–FCM and PSO–FCM. For
these five algorithms, here we simply take their results on the
first image (Lena) from Li (2013) and show the segmented
images in Fig. 4 and present the comparative results in terms
of the five metrics in Table 1 (where the bold values in each
row denote the best result among the five algorithms). As
we can see, BBO–FCM obtains the best XB and CE values,
the third best SC and S values, and the worst PC values. In
particular, the XB and CE values of BBO–FCM are close
to zero, which indicates that the cohesion within clusters
is very high. As the other metaheuristics use the same ran-
dom approach to produce the initial clustering solutions, the
results demonstrate that BBO can evolve the solutions to
much more coherent cluster centers than the other meta-
heuristics. In general, the overall performance of BBO–FCM
is the best among the five methods.

The comparative results of these five algorithms on the
rest seven images are similar, which are not presented here
[see Li (2013) for more details].

Next we test the performance of six BBO versions on
the test images, show the resultant segmented images in

Fig. 5 Segmentation results of 6 algorithms on the image Lena. a
BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

Figs. 5, 6, 7, 8, 9, 10, 11 and 12, and present the metric
values in Tables 2, 3, 4, 4, 5, 6, 7, 8 and 9.

From the results of the first imageLena,we can see that the
image obtained by EBO-FCM is better than others because
its outline is more clear, especially the areas of lips and eyes.
Besides, according to Table 2, the values of CE and PC of
EBO–FCM are slightly better than other BBO versions. But
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Fig. 6 Segmentation results of six algorithms on the image Baboon.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

in terms of XB, L-BBO–FCM achieves the best clustering
effect.

For the second image Baboon, EBO–FCM only achieves
the best S value among all the algorithms, which is far greater
than others, but its values of other 4 metrics are close to best
values. Thus, EBO–FCMobtains a good segmentation effect.
Generally speaking, the image of B-BBO–FCM may be the
best one, which shows obvious features, i.e., the eyes and
nostrils.

From the results of the image Woman, we could see the
obvious edges on the image of DE/BBO–FCM, and its XB
value is much smaller than other algorithms. In terms of PC,
EBO–FCM gets the best result.

On images Camera, Milktrop and Bridge, EBO–FCM
shows better performance than other BBO versions, and

Fig. 7 Segmentation results of six algorithms on the image Woman.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

Fig. 8 Segmentation results of six algorithms on the image Peppers.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

its images embody clear edges and show significant char-
acteristics. For the last two boundary-blurring pictures, the
segmentation effect of EBO–FCM is not obvious enough.
Hence in general, EBO–FCMshows preferable segmentation
effect on most test images, especially those images having
human face, where EBO–FCM could distinguish eyes, hair
and background clearly and provide more clear edges.

Generally speaking, EBO–FCM shows the best overall
performance among the six BBO version, because it com-
bines global migration and local migration to better balance
exploration and exploitation than the other versions and thus
achieves clustering results that better balance the intra-class
polymerization and the inter-class difference (but its perfor-
mance is also a bit more than the other versions). Therefore,
inmost conditionswe suggest using EBO–FCMexceptwhen
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Fig. 9 Segmentation results of six algorithms on the image Milktrop.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

Fig. 10 Segmentation results of six algorithms on the image Camera.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

the real-time requirement is very strict. DE/BBO–FCM is the
most efficient, because theDEoperators are typically fast and
the algorithm does not employ any local topology to main-
tain the neighborhood structure of the solutions, and thus, it
is more suitable for high-performance applications.

In summary, the proposed BBO–FCM and its variants
effectively segment the test images and achieve clear results,
which shows the combination of BBO and FCM is beneficial
to improve the accuracy and precision of image segmenta-
tion. A shortcoming of BBO–FCM is that its PC values are
typically small, which indicates the overlapping between the
resultant clusters is small. We can find that the other BBO
versions cannot significantly improve the PC values, mainly
due to they use the inherently similar migration operators.

Fig. 11 Segmentation results of six algorithms on the image Bridge.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

Fig. 12 Segmentation results of six algorithms on the image Plane.
a BBO–FCM, b B-BBO–FCM, c L-BBO–FCM, d DE/BBO–FCM, e
L-DE/BBO–FCM and f EBO–FCM

Thus, we do not suggest to use BBO–FCM for those images
with many overlapping objects.

6 Conclusion

In order to overcome the shortcomings of FCM cluster-
ing methods, this paper proposes a hybrid BBO–FCM that
integrates the BBO with FCM for image segmentation, uti-
lizing BBO to evolve a population of solutions to initial
cluster center settings and using FCM to produce effective
clustering results. Based on the framework of BBO–FCM,
we have implemented five algorithms by combining FCM
with different variants of BBO. Experimental results on a
set of test images demonstrate that BBO–FCM can effec-
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Table 2 Comparison of the six BBO–FCM algorithms on image Lena

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.0266 0.0238 0.0318 0.0268 0.034 0.0273

XB 527.8712 527.9023 4871.9e+03 816.3527 947.0908 695.9211

CE 0.4335 0.4439 0.4597 0.4349 0.4655 0.4335

S 0.059 0.0682 0.0546 0.0587 0.1617 0.0591

PC 0.7745 0.7741 0.7384 0.7735 0.7586 0.7745

Table 3 Comparison of the six BBO–FCM algorithms on image Baboon

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.026 0.0229 0.0305 0.0298 0.0386 0.0355

XB 3.8998e+03 3.8970e+03 3.7673e+03 3.9014e+03 2.0488e+03 2.3209e+03

CE 0.4294 0.4314 0.4822 0.4491 0.655 0.6186

S 0.0569 0.0498 0.0449 0.0514 0.0648 15.6874

PC 0.7763 0.7245 0.6952 0.64 0.6252 0.6532

Table 4 Comparison of the six BBO–FCM algorithms on image Woman

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.0261 0.0242 0.0359 Inf 0.0397 0.0261

XB 8.9476e+03 8.9578e+03 8.9680e+03 1.0873e+05 5.3699e+03 7.7670e+03

CE 0.4341 0.4007 0.3803 0.5192 0.5013 0.4341

S 0.0574 0.0582 0.0639 0.1472 0.3061 0.0574

PC 0.7739 0.7603 0.7418 0.7276 0.7388 0.7739

Table 5 Comparison of the six BBO–FCM algorithms on image Peppers

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.0262 0.02491 0.0264 0.031 0.0342 0.03492

XB 2.9977e+03 2.6679e+03 2.6672e+03 1.6806e+03 2.4693e+03 2.7324e+03

CE 0.4324 0.4461 0.4427 0.4324 0.4629 0.4326

S 0.0569 0.0654 0.0583 0.0572 0.0617 0.0571

PC 0.7748 0.7264 0.7636 0.7748 0.7127 0.6991

Table 6 Comparison of the six BBO–FCM algorithms on image Milktrop

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.0264 0.0265 0.0264 0.0268 0.0263 0.0266

XB 413.4504 413.3634 413.4538 2.6153e+03 1.9203e+04 2.7068e+06

CE 0.4351 0.4365 0.4351 0.4359 0.4363 0.4344

S 0.0583 0.0592 0.0583 0.0593 0.0603 0.0606

PC 0.7729 0.7732 0.7747 0.7725 0.7723 0.7731

tively improve the performance of the basic FCM algorithm
and those hybrid methods combining FCM with other well-
known metaheuristics and, in particular, the cohesion within
clusters of BBO–FCM is much higher than the other meta-

heuristic algorithms. Among the five BBO–FCM variants,
EBO–FCM achieves the best overall performance.

The proposed BBO–FCM and its variants can also be
applied to many other clustering problems, and now we are
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Table 7 Comparison of the six BBO–FCM algorithms on image Camera

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.0264 0.0262 0.0261 0.0263 0.0264 0.0261

XB 4.4165e+03 835.9259 835.7836 811.2899 2.0601e+03 1.0967e+03

CE 0.4326 0.4332 0.4326 0.4728 0.4327 0.4326

S 0.0598 0.0574 0.0575 0.0573 0.0571 0.0571

PC 0.7748 0.7743 0.7746 0.7745 0.7745 0.7745

Table 8 Comparison of the six BBO–FCM algorithms on image Bridge

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.026 0.026 0.0262 0.0264 0.0259 0.0267

XB 1.3124e+03 1.3125e+03 1.3133e+03 1.6680e+03 1.9865e+05 1.2609e+05

CE 0.4304 0.4300 0.4304 0.4304 0.4305 0.4574

S 0.0564 0.0558 0.0566 0.0563 0.0569 0.1458

PC 0.776 0.776 0.766 0.7761 0.7759 0.7606

Table 9 Comparison of the six BBO–FCM algorithms on image Plane

Metric BBO–FCM B-BBO–FCM L-BBO–FCM DE/BBO–FCM L-DE/BBO–FCM EBO–FCM

SC 0.0258 0.0257 0.0258 0.0265 0.0263 0.0258

XB 1.1089e+03 1.1091e+03 1.1097e+03 5.7416e+03 3.9301e+03 587.5618

CE 0.4323 0.4324 0.4323 0.4323 0.4326 0.4323

S 0.0576 0.0576 0.0577 0.0617 0.0675 0.0578

PC 0.7748 0.7747 0.7749 0.7752 0.7753 0.7748

testing the algorithms for more applications including object
detection, image retrieval, and speech recognition. In partic-
ular, we are interested in improving the robustness of BBO
to handle problems with much noise (Ma et al. 2015), typ-
ically by the hybridization with other metaheuristics (Ma
et al. 2014; Zheng et al. 2014d; Zheng 2015). We also plan to
incorporate artificial neural networks (including deep learn-
ing models) to exact features (Vincent 2008; Zheng et al.
2016, 2017) for enhancing image segmentation.
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