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Abstract The intuitionistic fuzzy set (IFS), as a generation
of Zadeh’s fuzzy set, can express and process uncertainty
much better. Similarity measures between IFSs are used
to indicate the similarity degree between the information
carried by IFSs. Although several similarity measures for
IFSs have been proposed in previous studies, some of them
cannot satisfy the axioms of similarity, or provide counter-
intuitive cases. In this paper, we first review several widely
used similarity measures and then propose a new similarity
measures. As the consistency of two IFSs, the proposed sim-
ilarity measure is defined based on the direct operation on the
membership function, non-membership function, hesitation
function and the upper bound of membership function of two
IFS, rather than based on the distancemeasure or the relation-
ship ofmembership andnon-membership functions. It proves
that the proposed similarity measure satisfies the properties
of the axiomatic definition for similarity measures. Com-
parison between the previous similarity measures and the
proposed similarity measure indicates that the proposed sim-
ilarity measure does not provide any counterintuitive cases.
Moreover, it is demonstrated that the proposed similarity
measure is capable of discriminating difference between pat-
terns. Experiments on medical diagnosis and cluster analysis
are carried out to illustrate the applicability of the proposed
similarity measure in practice.
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1 Introduction

As a generation of Zadeh’s fuzzy set theory (Zadeh 1965),
Atanassov (1986) initiated the concept of intuitionistic fuzzy
sets (IFSs) for the purpose of dealing with uncertainty much
better. Unlike fuzzy sets merely characterized by member-
ship functions, non-membership functions are brought into
the characterization of intuitionistic fuzzy sets for an elab-
orate description on uncertain information. The concept of
vague sets proposed by Gau and Buehrer (1993) is regarded
as another extension of fuzzy sets. Then it is pointed out
by Bustince and Burillo (1996) that the notion of intuition-
istic fuzzy sets and that of vague sets coincide with each
other. Intuitionistic fuzzy sets are agile and flexible in dealing
with vagueness and uncertainty. So the theory of intuition-
istic fuzzy sets has been widely used in many areas, such
as uncertainty reasoning and decision making in uncertain
environment.

Thedefinitionof similaritymeasure between IFSs is oneof
the most interesting topics in IFSs theory. A similarity mea-
sure is defined to compare the information carried by IFSs.As
an important tool for decision making (Szmidt and Kacprzyk
2002), pattern recognition (Papakostas 2013; Ngan 2016),
machine learning (Szmidt and Kacprzyk 2004) and image
processing (Balasubramaniam and Ananthi 2014), similarity
measure between IFSs has received much attention in recent
years.

Szmidt and Kacprzyk (2000) extended the well-known
Hamming distance and Euclidean distance to construct intu-
itionistic fuzzy similarity measure and compared them with
the approaches used for ordinary fuzzy sets. However, Wang
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and Xin (2005) argued that the distance measures in Szmidt
and Kacprzyk (2000) were not effective in some cases.
Therefore, several new distancemeasures were proposed and
applied to pattern recognition (Wang and Xin 2005). Grze-
gorzewski (2004) also extended the Hamming distance, the
Euclidean distance and their normalized counterparts to IFS.
Later, Chen (2007) pointed out that some errors existed in
Grzegorzewski (2004) by showing some counter examples.
Hung and Yang (2004) extended the Hausdorff distance to
IFSs and proposed three similarity measures. On the other
hand, instead of extending the well-known measures, some
studies defined new similarity measures for IFSs. Li and
Cheng (2002) suggested a new similarity measure for IFSs
based on the membership degree and the non-membership
degree. Afterward, Li (2004) defined two dissimilarity mea-
sures between intuitionistic fuzzy sets of a finite set, and it
was proved that both of thesemeasures aremetrical.Mitchell
(2003) showed that the similarity measure of Li and Cheng
(2002) had some counterintuitive cases and modified that
similarity measure based on statistical point of view. More-
over, Liang and Shi (2003) presented some examples to
show that the similarity measure proposed by Li and Cheng
(2002) was not reasonable for some conditions and there-
fore proposed several new similarity measures for IFSs. Li
et al. (2007) analyzed, compared and summarized the exist-
ing similarity measures between IFSs/vague sets by their
counterintuitive examples in pattern recognition. Ye (2011)
conducted a similar comparative study of the existing similar-
ity measures between IFSs and proposed a cosine similarity
measure and a weighted cosine similarity measure. Hwang
et al. (2012) proposed a similarity measure for IFSs in which
Sugeno integral was used for aggregation. The proposed
similarity measure was applied to clustering problem. Xu
(2007) introduced a series of similarity measures for IFSs
and applied them tomultiple attribute decision-making prob-
lem based on intuitionistic fuzzy information. Xu and Chen
(2008) introduced a series of distance and similarity mea-
sures, which are various combinations and generalizations
of the weighted Hamming distance, the weighted Euclidean
distance and the weighted Hausdorff distance. Xu and Yager
(2009) developed a similarity measure between IFSs and
applied the developed similarity measure for consensus anal-
ysis in group decision making based on intuitionistic fuzzy
preference relations. Xia and Xu (2010) proposed a series
of distance measures based on the intuitionistic fuzzy point
operators.

As an addition to aforementioned studies, some attempts
have been done to define similarity measures based on the
relationships between distance measure, similarity measure
and entropy of IFSs. Zeng and Guo (2008) investigated
the relationship among the normalized distance, the sim-
ilarity measure, the inclusion measure and the entropy of
interval-valued fuzzy sets. It was also shown that the sim-

ilarity measure, the inclusion measure and the entropy of
interval-valued fuzzy sets could be induced by the nor-
malized distance of interval-valued fuzzy sets based on
their axiomatic definitions. Wei et al. (2011) introduced an
approach to construct similarity measures by using entropy
measures for IFSs.

Besides, many other kinds of similarity measure between
IFSs are emerging. Boran and Akay (2014) proposed a
new general type of similarity measure for IFS with two
parameters, expressing L p norm and the level of uncertainty,
respectively. This similarity measure can also make sense
in terms of counterintuitive cases. Zhang and Yu (2013) pre-
sented a new distancemeasure based on interval comparison,
where IFSs were transformed into the symmetric triangular
fuzzy numbers. Comparison with the widely used methods
indicated that the proposed method in Zhang and Yu (2013)
contained more information, with much less loss of informa-
tion. Li and Deng (2012) introduced an axiomatic definition
of the similarity measure of IFSs. The relationship between
the entropy and the similarity measure of IFS was investi-
gated in detail. It was proved that the similarity measure and
the entropy of IFS can be transformed into each other based
on their axiomatic definitions. Papakostas (2013) investi-
gated the main theoretical and computational properties of
distance and similarity measures, as well as the relationships
between them. A comparison between distance and similar-
ity measures was also carried out in Papakostas (2013), from
the point of view of pattern recognition.

In the proposed similaritymeasures, someof themare con-
structed based on the well-known distance measures, such as
the Hamming distance (Wang and Xin 2005), the Euclidean
distance (Szmidt and Kacprzyk 2000) and the Hausdorff dis-
tance (Grzegorzewski 2004; Chen 2007; Hung and Yang
2004). Other similarity measures are defined based on the
linear or nonlinear relationship of the membership and non-
membership functions of IFSs (Li and Cheng 2002; Liang
and Shi 2003). There are also other kinds of similarity mea-
sures, e.g., similarity defined by entropy measures for IFSs,
similarity induced by interval comparison and cosine simi-
larity (Ye 2011; Zeng and Guo 2008; Wei et al. 2011; Boran
and Akay 2014; Zhang and Yu 2013; Li and Deng 2012;
Papakostas 2013).

On the basis of above-mentioned research articles, Szmidt
(2014) has provided a highly informative survey and in-
depth analysis of the major IFS similarity measures in the
literature. The ideas of two-term (i.e., membership and
non-membership values) and three-term (i.e., membership,
non-membership and hesitancy values) representations of
IFSs have been extensively discussed and employed by
Szmidt (2014) to characterize existing IFS distance and simi-
laritymeasures. Further, a detailed analysis of existing works
concerning the correlation of IFSs, a measure closely related
to similarity and distance, has also been provided in Szmidt
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(2014), also in terms of the two-term and three-term repre-
sentations.

Taking a closer examination on the existing similarity
measures between IFSs, we can find that it is highly non-
trivial to construct a truly robust IFS similarity measure.
Some of them cannot fully satisfy the axiomatic definition
of similarity by providing counterintuitive cases, which has
been demonstrated by the identification of counterintuitive
examples by researchers for the various existing measures.
Other similarity measures are lack of definitude physical
meaning with complicated expressions. We can note that
most of the existing measures, when proposed, were first
and foremost postulated at the “formula” level. So it is desir-
able to define an easier-to-understand similarity measure for
IFS. Therefore, the definition of similarity measure is still an
open problem achieving more interest.

In this paper, we propose a new similarity measures with
relative simple expression. The proposed similarity measure
can be considered as the consistency between two IFSs. We
define it by the direct operation on the membership func-
tion, non-membership function, hesitation function and the
upper bound of membership function of two IFS, instead of
based on the distance measure or the relationship of mem-
bership and non-membership functions. The computation of
our proposed similarity involves operations of multiplication
and evolution without choosing other parameters, which is
relative simple and concise. Illustrative examples reveal that
the proposedmeasures satisfy the properties of the axiomatic
definition for similarity measures. In addition, several com-
parative examples are provided to show the performance of
the proposed similarity measure.

The remainder of this paper is organized as follows. Sec-
tion 2 presents some preliminary definitions related to the
IFSs, similarity measure between IFSs. Some classical exist-
ing similarity measures are introduced in Sect. 3. The new
similarity measure, along with its interpretations is presented
in Sect. 4. Comparison between the proposed similarity mea-
sure and the existing similarity measures is carried out in
Sect. 5. The application of the proposed similarity measure
is presented in Sect. 6, followed by the conclusion of this
paper.

2 Preliminaries

In this section,webriefly recall somebasic knowledge related
to IFSs and similarity measure to facilitate subsequent expo-
sition.

Definition 1 Let X = {x1, x2, . . . , xn} be a universe of dis-
course, then a fuzzy set A in X is defined as follows:

A = {〈x, μA(x)〉 |x ∈ X } (1)

where μA(x): X → [0, 1] is the membership degree.

Definition 2 An IFS A in X defined by Atanassov can be
written as:

A = {〈x, μA(x), vA(x)〉 |x ∈ X } (2)

where μA(x): X → [0, 1] and vA(x): X → [0, 1] are mem-
bership degree and non-membership degree, respectively,
with the condition:

0 ≤ μA(x) + vA(x) ≤ 1 (3)

πA(x) determined by the following expression:

πA(x) = 1 − μA(x) − vA(x) (4)

is called the hesitancy degree of the element x ∈ X to the set
A, and πA(x) ∈ [0, 1], ∀x ∈ X .

πA(x) is also called the intuitionistic index of x to A.
Greater πA(x) indicates more vagueness on x . Obviously,
when πA(x) = 0, ∀x ∈ X , the IFS degenerates into an
ordinary fuzzy set.

In the sequel, the couple 〈μA(x), vA(x)〉 is called an IFS
or intuitionistic fuzzy value (IFV) for clarity. Let IFSs(X)

denote the set of all IFSs in X .
It is worth noting that besides Definition 2, there are other

possible representations of IFSs proposed in the literature.
Hong and Kim (1999) proposed to use an interval repre-
sentation [μA(x), 1 − vA(x)] of intuitionistic fuzzy set A in
X instead of pair 〈μA(x), vA(x)〉. This approach is equiva-
lent to the interval-valued fuzzy sets interpretation of IFS,
where μA(x) and 1 − vA(x) represent the lower bound and
upper bounds of membership degree, respectively. Obvi-
ously, [μA(x), 1 − vA(x)] is a valid interval, since μA(x) ≤
1 − vA(x) always holds for μA(x) + vA(x) ≤ 1.

Definition 3 For A ∈ IFSs(X) and B ∈ IFSs(X), some
relations between them are defined as:

(R1) A ⊆ B iff ∀x ∈ XμA(x) ≤ μB(x), vA(x) ≥ vB(x);
(R2) A = B iff ∀x ∈ XμA(x) = μB(x), vA(x) = vB(x);
(R3) AC = {〈x, vA(x), μA(x)〉 |x ∈ X }, where AC is the

complement of A.

Definition 4 Let D denote a mapping D: IFS × IFS →
[0, 1], if D(A, B) satisfies the following properties, D(A, B)

is called a distance between A ∈ IFSs(X) and B ∈ IFSs(X).

(DP1) 0 ≤ D(A, B) ≤ 1;
(DP2) D(A, B) = 0, if and only if A = B;
(DP3) D(A, B) = D(B, A);
(DP4) If A ⊆ B ⊆ C , then D(A, B) ≤ D(A,C), and

D(B,C) ≤ D(A,C).
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Definition 5 A mapping S: IFS × IFS → [0, 1] is called a
degree of similarity between A ∈ IFSs(X) and B ∈ IFSs(X),
if S(A, B) satisfies the following properties:

(SP1) 0 ≤ S(A, B) ≤ 1;
(SP2) S(A, B) = 1, if and only if A = B;
(SP3) S(A, B) = S(B, A);
(SP4) If A ⊆ B ⊆ C , then S(A, B) ≥ S(A,C), and

S(B,C) ≥ S(A,C).

Because distance and similarity measures are comple-
mentary concepts, similarity measures can be used to define
distance measures, and vice versa.

3 Existing similarity measures

In this section, we briefly review some existing similarity
measures between intuitionistic fuzzy sets. Here we only
present expressions of these similarity measures. Critical
analyses on the existing similaritymeasureswill be presented
in Sect. 5.

Let X = {x1, x2, . . . , xn} be a universe of discourse. Sup-
pose that A and B are two intuitionistic fuzzy sets in the
universe of X . The existing similarity measures between the
intuitionistic fuzzy sets A and B are reviewed as follows:

(1) Dengfeng and Chuntian’s similarity measure SDC (Li
and Cheng 2002):

SDC(A, B) = 1 − p

√∑n
i=1 |ϕA(xi ) − ϕB(xi )|p

n
(5)

where ϕA(xi ) = μA(xi )+1−vA(xi )
2 ,

ϕB(xi ) = μB (xi )+1−vB (xi )
2 .

(2) Mitchell’s similarity measure SHB (Mitchell 2003):

SHB(A, B) = 1

2

(
ρμ(A, B) + ρv(A, B)

)
(6)

where ρμ(A, B) = 1 − p
√∑n

i=1 |μA(xi )−μB (xi )|p
n ,

ρv(A, B) = 1 − p

√∑n
i=1 |vA(xi ) − vB(xi )|p

n
.

(3) Hong and Kim’s similarity measure SHK (Hong and
Kim 1999):

SHK(A, B) = 1

−
∑n

i=1 |(μA(xi ) − μB(xi )) − (vA(xi ) − vB(xi ))|
2n

(7)

(4) Liang and Shi’s similarity measures S p
e , S

p
s and S p

h
(Liang and Shi 2003):

S p
e (A, B) = 1 − p

√∑n
i=1

(
φμ(xi ) + φv(xi )

)p
n

(8)

where

φμ(xi ) = |μA(xi ) − μB(xi )| /2,
φv(xi ) = |(1 − vA(xi )) − (1 − vB(xi ))| /2.

S p
s (A, B) = 1 − p

√∑n
i=1 |ψs1(xi ) + ψs2(xi )|p

n
(9)

where

ψs1(xi ) = |mA1(xi ) − mB1(xi )| /2,
ψs2(xi ) = |mA2(xi ) − mB2(xi )| /2,
mA1(xi ) = |μA(xi ) + mA(xi )| /2,
mB1(xi ) = |μB(xi ) + mB(xi )| /2,
mA2(xi ) = |1 − vA(xi ) + mA(xi )| /2,
mB2(xi ) = |1 − vB(xi ) + mB(xi )| /2,
mA(xi ) = |1 − vA(xi ) + μA(xi )| /2,
mB(xi ) = |1 − vB(xi ) + μB(xi )| /2.

S p
h (A, B) = 1 − p

√∑n
i=1 (η1(xi ) + η2(xi ) + η3(xi ))p

3n
(10)

where

η1(xi ) = φμ(xi ) + φv(xi )(defined in S p
e ),

η2(xi ) = ∣∣ϕμ(xi ) − ϕv(xi )
∣∣ (defined in SDC),

η3(xi ) = max (lA(xi ), lB(xi )) − min (lA(xi ), lB(xi )) ,

lA(xi ) = (1 − μA(xi ) − vA(xi )) /2,

lB(xi ) = (1 − μB(xi ) − vB(xi )) /2.

(5) Chen’s similarity measure SC (Chen 1995):

SC(A, B) = 1

−
∑n

i=1 |(μA(xi ) − vA(xi )) − (μB(xi ) − vB(xi ))|
2n

(11)

(6) Ye’s cosine similarity measure CIFS (Ye 2011) :

CIFS(A, B) = 1

n

∑n

i=1

μA(xi )μB(xi ) + vA(xi )vB(xi )√
(μA(xi ))2 + (vA(xi ))2

√
(μB(xi ))2 + (vB(xi ))2

(12)
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(7) The similarity measure SO proposed by Li et al. (2002):

SO(A, B) = 1

−
√∑n

i=1

(
(μA(xi ) − μB(xi ))2 + (vA(xi ) − vB(xi ))2

)
2n

(13)

(8) Hung and Yang’s similarity measures S1HY, S
2
HY and

S3HY (Hung and Yang 2004):

S1HY(A, B) = 1 − dH(A, B) (14)

S2HY(A, B) = e−dH(A,B) − e−1

1 − e−1 (15)

S3HY(A, B) = 1 − dH(A, B)

1 + dH(A, B)
(16)

where dH(A, B) = 1
n

∑n
i=1 max

( |μA(xi ) − μB(xi )| ,
|vA(xi ) − vB(xi )|

)
.

(9) Li and Xu’s similarity measure SLX (Li and Xu 2001):

SLX(A, B)

= 1 −
∑n

i=1 |(μA(xi ) − vA(xi )) − (μB(xi ) − vB(xi ))|
4n

−
∑n

i=1 (|μA(xi ) − μB(xi )| + |vA(xi ) − vB(xi )|)
4n

(17)

(10) Boran and Akay’s similarity measure SBA (Boran and
Akay 2014):

S p
t (A, B) = 1

− p

√√√√ n∑
i=1

1

2n(1 + p)

{ |t (μA(xi ) − μB (xi )) − (vA(xi ) − vB (xi ))|p
+ |t (vA(xi ) − vB (xi )) − (uA(xi ) − uB (xi ))|p

}

(18)

where p = 1, 2, 3, . . . is the L p norm and t =
2, 3, 4, . . . is a parameter for adjusting the effect of hes-
itation margin.

4 A new similarity measure

LetA = {〈x, μA(x), vA(x)〉 |x ∈ X } and B = { 〈x, μB(x),
vB(x)〉 |x ∈ X

}
be two IFSs in X = {x1, x2, . . . , xn}. If we

consider A and B as intervals representation, the information
carried by them is determined by not only the lower and upper
bounds, but also the length of the interval. So we can define
a similarity measure between A and B as:

SY(A, B) = 1

3n

n∑
i=1(

2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

)
(19)

In this definition, we apply the concept of consis-
tency to describe the similarity between two IFSs. For
an IFS A = 〈x, μA(x), vA(x)〉, the membership degree
of x can be written as an interval [μA(x), 1 − vA(x)].
Similarly, its non-membership degree can be regarded
as [vA(x), 1 − μA(x)]. The span of these intervals are
1 − μA(x) − vA(x), i.e., πA(x). Hence, in Eq. (19),√

μA(xi )μB(xi ) and
√

vA(xi )vB(xi ) represent the consis-
tency degree between the lower bounds of membership
degree, non-membership degree, respectively. Accordingly,√

(1−μA(xi )) (1−μB(xi )) and
√

(1−vA(xi )) (1−vB(xi ))
are used to describe the consistency degree between the upper
bounds of membership degree and non-membership degree.√

πA(xi )πB(xi ) represents the consistency degree between
interval lengths. Different coefficients are assigned to each
item to differentiate their importance. The factor 1/3n is
adopted to normalize the similarity into the interval [0, 1].

Theorem 1 SY(A, B) is a similarity measure between two
IFSs A and B in X.

Proof For the sake of simplicity, IFSs A and B are denoted
by A = {〈μA(xi ), vA(xi )〉} and B = {〈μB(xi ), vB(xi )〉},
respectively.

(SP1) For each x, y ∈ [0,+∞], we have 0 ≤ √
xy ≤

x+y
2 . For 0 ≤ μ(xi ) ≤ 1, 0 ≤ v(xi ) ≤ 1, 0 ≤ π(xi ) ≤ 1 and

0 ≤ 1 − v(xi ) ≤ 1, we can get:

(i)

0 ≤ 2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi )

+√
πA(xi )πB(xi ) + √

(1 − μA(xi )) (1 − μB(xi ))

+√
(1 − vA(xi )) (1 − vB(xi )) ≤ 2 · μA(xi ) + μB(xi )

2

+2 · vA(xi ) + vB(xi )

2
+ πA(xi ) + πB(xi )

2

+1 − μA(xi ) + 1 − μB(xi )

2
+ 1 − vA(xi ) + 1 − vB(xi )

2

= 2 + μA(xi ) + vA(xi ) + πA(xi )

2

+μB(xi ) + vB(xi ) + πB(xi )

2
= 3,

and

0 ≤
∑n

i=1(
2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

)
≤ 3n.

So we have 0 ≤ SY(A, B) ≤ 1.
(SP2) We know that

√
xy achieves its maximum value

x+y
2 when x = y. Therefore, we have:
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(ii)

SY(A, B) = 1

⇔ 2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi )

+√
πA(xi )πB(xi ) + √

(1 − μA(xi )) (1 − μB(xi ))

+√
(1 − vA(xi )) (1 − vB(xi )) = 3

⇔ μA(xi ) = μB(xi ), vA(xi ) = vB(xi ), πA(xi )

= πB(xi ), 1 − μA(xi ) = 1 − μB(xi ), 1 − vA(xi )

= 1 − vB(xi ) ⇔ A = B.

Thus, SY(A, B) = 1, if and only if A = B.
(SP3) It is easy to note that the expression of SY(A, B) is

commutative. So we have SY(A, B) = SY(B, A).
(SP4) Let C = {〈μC (xi ), vC (xi )〉} be another IFS in X ,

satisfying A ⊆ B ⊆ C . We have 0 ≤ μA(xi ) ≤ μB(xi ) ≤
μC (xi ) ≤ 1 and 0 ≤ vC (xi ) ≤ vB(xi ) ≤ vA(xi ) ≤ 1, for
∀x ∈ X . Based on Eq. (19), the similarity measures between
(B,C) and (A,C) can be written as:

SY(B,C) = 1

3n

∑n

i=1(
2
√

μB(xi )μC (xi ) + √
vB(xi )vC (xi ) + √

πB(xi )πC (xi )
+√

(1 − μB(xi )) (1 − μC (xi )) + √
(1 − vB(xi )) (1 − vC (xi ))

)

SY(A,C) = 1

3n

∑n

i=1(
2
√

μA(xi )μC (xi ) + 2
√

vA(xi )vC (xi ) + √
πA(xi )πC (xi )

+√
(1 − μA(xi )) (1 − μC (xi )) + √

(1 − vA(xi )) (1 − vC (xi ))

)

For a, b ∈ [0, 1], a + b ≤ 1, we define a function f as:

f (x, y) = 2
√
ax + 2

√
by + √

(1 − a − b)(1 − x − y)

+√
(1 − a)(1 − x) + √

(1 − b)(1 − y)

where x, y ∈ [0, 1], x + y ∈ [0, 1].
Then we have:

∂ f

∂x
=

√
a√
x

−
√
1 − a − b

2
√
1 − x − y

−
√
1 − a

2
√
1 − x

= (a − x)(1 − b)

2
√
x(1 − x − y)

(√
a(1 − x − y) + √

(1 − a − b)x
)

+ a − x

2
√
x(1 − x)

(√
a(1 − x) + √

(1 − a)x
) ,

∂ f

∂y
=

√
b√
y

−
√
1 − a − b

2
√
1 − x − y

−
√
1 − b

2
√
1 − y

= (b − y)(1 − a)

2
√
y(1 − x − y)

(√
b(1 − x − y) + √

(1 − a − b)y
)

+ b − y

2
√
y(1 − y)

(√
b(1 − y) + √

(1 − b)y
) .

Given a ≤ x ≤ 1, b ≤ 1, we have ∂ f
∂x ≤ 0, which means

that f is a decreasing function of x ,when x ≥ a.
For 0 ≤ x ≤ a, b ≤ 1, we can get ∂ f

∂x ≥ 0, which means
that f is an increasing function of x ,when, x ≤ a.

Similarly, we can also get ∂ f
∂y ≥ 0 for 0 ≤ y ≤ b, a ≤ 1

and ∂ f
∂y ≤ 0 for b ≤ y ≤ 1, a ≤ 1. These indicate that f is an

increasing function of y for y ≤ b, but a decreasing function
when y ≤ b.

Given a = μA(xi ), b = vA(xi ) and two couples
(μB(xi ), vB(xi )), (μC (xi ), vC (xi )), satisfying a = μA(xi )
≤ μB(xi ) ≤ μC (xi ) and vC (xi ) ≤ vB(xi ) ≤ vA(xi ) = b,
we can get:

f (μC (xi ), vC (xi )) ≤ f (μB(xi ), vC (xi ))

≤ f (μB(xi ), vB(xi )).

And then

(iii)

2
√

μA(xi )μC (xi ) + 2
√

vA(xi )vC (xi )

+√
πA(xi )πC (xi ) + √

(1 − μA(xi )) (1 − μC (xi ))

+√
(1 − vA(xi )) (1 − vC (xi )) ≤ 2

√
μA(xi )μB(xi )

+2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi ))

+√
(1 − vA(xi )) (1 − vB(xi ))

Therefore, SY(A, B) ≥ SY(A,C).
In such a way, if we suppose a = μC (xi )b =

vC (xi ), considering another two couples (μB(xi ), vB(xi ))
and (μA(xi ), vA(xi )), we have:μA(xi ) ≤ μB(xi ) ≤
μC (xi ) = a, b = vC (xi ) ≤ vB(xi ) ≤ vA(xi ).

Hence, it follows that
f (μA(xi ), vA(xi )) ≤ f (μB(xi ), vA(xi )) ≤ f (μB(xi ),

vB(xi )), which can be written as:

(iv)

2
√

μA(xi )μC (xi ) + √
vA(xi )vC (xi )

+√
πA(xi )πC (xi ) + √

(1 − μA(xi )) (1 − μC (xi ))

+√
(1 − vA(xi )) (1 − vC (xi )) ≤ 2

√
μB(xi )μC (xi )

+2
√

vB(xi )vC (xi ) + √
πB(xi )πC (xi )

+√
(1 − μB(xi )) (1 − μC (xi ))

+√
(1 − vB(xi )) (1 − vC (xi )).

Then we have SY(B,C) ≥ SY(A,C).
So the similarity measure SY(A, B) satisfies all properties

in Definition 5. It is a similarity measure between IFSs. �
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Considering the weights of xi , we can define the weighted
similarity between two IFSs as:

SWY(A, B)

= 1

3

∑n

i=1
wi

(
2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

)
(20)

where wi is the weights factor of the features xi , wi ∈ [0, 1]
and

∑n
i=1 wi = 1.

Theorem 2 SWY(A, B) is the similarity measure between
two IFSs A and B in X.

Proof (SP1) Considering the expression (i), we can get:

0 ≤
∑n

i=1
wi

(
2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

)

≤
∑n

i=1
3wi = 3 ·

∑n

i=1
wi = 3

Therefore, 0 ≤ SWY(A, B) ≤ 1.
(SP2) Given the implication (ii), we have:

SWY(A, B) = 1

⇔ wi

(
2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

)
= 3wi

⇔ 2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

= 3

⇔ μA(xi ) = μB(xi ), vA(xi ) = vB(xi ), πA(xi ) = πB(xi ),

1 − μA(xi ) = 1 − μB(xi ), 1 − vA(xi ) = 1 − vB(xi )

⇔ A = B

So we get SWY(A, B) = 1 ⇔ A = B.
(SP3) It is obvious that SWY(A, B) satisfies SP3.
(SP4) Since all wi ≥ 0, we can multiply inequality (iii)

and (iv) by wi as:

wi

(
2
√

μA(xi )μC (xi ) + 2
√

vA(xi )vC (xi ) + √
πA(xi )πC (xi )

+√
(1 − μA(xi )) (1 − μC (xi )) + √

(1 − vA(xi )) (1 − vC (xi ))

)

≤ wi

(
2
√

μA(xi )μB(xi ) + 2
√

vA(xi )vB(xi ) + √
πA(xi )πB(xi )

+√
(1 − μA(xi )) (1 − μB(xi )) + √

(1 − vA(xi )) (1 − vB(xi ))

) ,

wi

(
2
√

μA(xi )μC (xi ) + 2
√

vA(xi )vC (xi ) + √
πA(xi )πC (xi )

+√
(1 − μA(xi )) (1 − μC (xi )) + √

(1 − vA(xi )) (1 − vC (xi ))

)

≤ wi

(
2
√

μB(xi )μC (xi ) + 2
√

vB(xi )vC (xi ) + √
πB(xi )πC (xi )

+√
(1 − μB(xi )) (1 − μC (xi )) + √

(1 − vB(xi )) (1 − vC (xi ))

) .

We obtain SWY(A, B) ≥ SWY(A,C) and SWY(B,C) ≥
SWY(A,C).

Therefore, SWY(A, B) is a similarity measure between
IFSs A and B. �

5 Numerical comparisons

In order to illustrate the superiority of the proposed similar-
ity measure, a comparison between the proposed similarity
measure and all the existing similaritymeasures is conducted
based on the numerical cases in Boran and Akay (2014),

which are widely used as counterintuitive examples. Table 1
presents the result with p = 1 for SHB, S

p
e , S

p
s , S

p
h and p = 1,

t = 2 for S p
t .

We can see that SC(A, B) = SDC(A, B) = CIFS(A, B) =
1 for two different IF sets A = 〈0.3, 0.3〉 and B =
〈0.4, 0.4〉.This indicates that the second axiomatic require-
ment of similaritymeasure (SP2) is not satisfiedby SC(A, B),
SDC(A, B) and CIFS(A, B). This also can be illustrated
by SC(A, B) = SDC(A, B) = 1 when A = 〈0.5, 0.5〉,
B = 〈0, 0〉 and A = 〈0.4, 0.2〉, B = 〈0.5, 0.3〉. As for
SH, SO, SHB, S

p
e , S

p
s and S p

h , different pairs of A, B may
provide the identical results, which cannot satisfy the appli-
cation of pattern recognition. Table 1 shows that SHB = 0.9
for both A = 〈0.3, 0.3〉, B = 〈0.4, 0.4〉 and A = 〈0.3, 0.4〉,
B = 〈0.4, 0.3〉. Such situation seems to be worse for S1HY,
S2HY and S3HY, where all the cases take the same similarity
degree except case.3 and case.4. S p

t seems to be reasonable
without any counterintuitive results, but it bring new prob-
lem with the choice of parameters p and t , which is still an
open problem. Moreover, we can notice an interesting situ-
ation when comparing case.3 and case.4. For three IF sets
A = 〈1, 0〉, B = 〈0.5, 0.5〉 and C = 〈0, 0〉, intuitively,
it is more reasonable to take the similarity degree between
them as: SF (A,C) = 0.15, SF (B,C) = 0.25 than taking
S p
t (A,C) = 0.5 and S p

t (B,C) = 0.833. In such a sense, the
proposed similarity measure is the most reasonable one with
a relative simple expression, and has none of the counterin-
tuitive cases. Three IFSs A = 〈0.4, 0.2〉, B = 〈0.5, 0.3〉 and
C = 〈0.5, 0.2〉 can be written in forms of interval values as:
A = [0.4, 0.8], B = [0.5, 0.7] and C = [0.5, 0.8], respec-
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Table 1 Comparison of
similarity measures
(counterintuitive cases are in
bold type)

1 2 3 4 5 6

A 〈0.3, 0.3〉 〈0.3, 0.4〉 〈1, 0〉 〈0.5, 0.5〉 〈0.4, 0.2〉 〈0.4, 0.2〉
B 〈0.4, 0.4〉 〈0.4, 0.3〉 〈0, 0〉 〈0, 0〉 〈0.5, 0.3〉 〈0.5, 0.2〉
SC 1 0.9 0.5 1 1 0.95

SHK 0.9 0.9 0.5 0.5 0.9 0.95

SLX 0.95 0.9 0.5 0.75 0.95 0.95

SO 0.9 0.9 0.3 0.5 0.9 0.93

SDC 1 0.9 0.5 1 1 0.95

SHB 0.9 0.9 0.5 0.5 0.9 0.95

Sp
e 0.9 0.9 0.5 0.5 0.9 0.95

Sp
s 0.95 0.9 0.5 0.75 0.95 0.95

Sp
h 0.933 0.933 0.5 0.67 0.933 0.95

S1HY 0.9 0.9 0 0.5 0.9 0.9

S2HY 0.85 0.85 0 0.38 0.85 0.85

S3HY 0.82 0.82 0 0.33 0.82 0.82

CIFS 1 0.96 0 0 0.9971 0.9965

Sp
t 0.967 0.9 0.5 0.833 0.967 0.95

SY 0.988 0.994 0.333 0.471 0.987 0.996

tively. In such a sense, we can say that the similarity degree
between A and C should not less than the similarity degree
between A and B, which is also illustrated by other simi-
larity measures except SC, SDC and S p

t (underlined cases).
Therefore, our proposed similarity measure is in agreement
with this analysis. The proposed similarity measure is the
most reasonable similarity measure without any counterin-
tuitive cases. We must note that, among the measures listed
in Table 1, S p

t seems to be another metric measure without
any counterintuitive cases. However, it brings a new problem
with the choice of the parameter p and t , which is also an
important open problem facing by similarity measures SHB,
S p
e , S

p
s and S p

h . Therefore, we can say that our proposal is a
satisfactory similarity measure satisfying all axiomatic prop-
erties, without any counterintuitive cases and the problem of
choosing other parameters.

In order to study the effectiveness of the proposed similar-
ity measure for IFSs in the application of pattern recognition,
we consider the pattern recognition problem discussed in Ye
(2011) and Li and Cheng (2002).

Suppose there arem patterns, which can be represented by
IFSs A j = {〈

xi , μA j (xi ), vA j (xi )
〉 |xi ∈ X

}
, A j ∈ IFSs(X),

j = 1, 2, . . . ,m. Let the sample to be recognized be
denoted as B = {〈xi , μB(xi ), vB(xi )〉 |xi ∈ X }. According
to the recognition principle of maximum degree of similarity
between IFSs, the process of assigning B to Ak is described
by:

k = arg max
j=1,2,...,m

{S(A j , B)} (21)

Example 1 Assume that there exists three known patterns
A1, A2 and A3, with class labelsC1,C2 andC3, respectively.
Each pattern can be expressed by IFS in X = {x1, x2, x3} as:

A1 = {〈x1, 1, 0〉 , 〈x2, 0.8, 0〉 , 〈x3, 0.7, 0.1〉} ,

A2 = {〈x1, 0.8, 0.1〉 , 〈x2, 1, 0〉 , 〈x3, 0.9, 0〉} ,

A3 = {〈x1, 0.6, 0.2〉 , 〈x2, 0.8, 0〉 , 〈x3, 1, 0〉} .

The sample B need to be recognized is:

B = {〈x1, 0.5, 0.3〉 , 〈x2, 0.6, 0.2〉 , 〈x3, 0.8, 0.1〉} .

The similarity degree between Ai (i = 1, 2, 3) and B
calculated by Eq.(19) is:

SY(A1, B) = 0.888,

SY(A2, B) = 0.910,

SY(A3, B) = 0.942.

It can be observed that the pattern B should be classified
to A3 with a class label C3.according to the recognition prin-
ciple of maximum degree of similarity between IFSs. This
result is in agreement with the one obtained in Ye (2011) and
Li and Cheng (2002).

Let’s assume that the weights of x1, x2and x3 are 0.5, 0.3,
and 0.2, respectively, as they were assumed in Ye (2011).
Considering Eq.(20), we can get:

SWY(A1, B) = 0.850,
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Table 2 Similarity measures
between the known patterns and
the unknown pattern in
Example 2 (patterns not
discriminated are in bold type)

S(A1, B) S(A2, B) S(A3, B) S(A1, B) S(A2, B) S(A3, B)

SC 1 1 1 Sp
s 1 0.967 0.900

SHK 1 1 1 Sp
h 1 0.956 0.867

SLX 1 0.967 0.9 S1HY 1 0.967 0.8

SO 1 0.918 0.784 S2HY 1 0.898 0.713

SDC 1 1 1 S3HY 1 0.875 0.667

SHB 1 0.933 0.8 CIFS 1 1 1

Sp
e 1 0.933 0.8 Sp

t 1 0.978 0.933

p = 1 for SHB, S
p
e , S

p
s , S

p
h and p = 1, for Sp

t

SWY(A2, B) = 0.914,

SWY(A3, B) = 0.955.

According to Eq.(21), B can be recognized as A3, which
is identical to the result obtained in Ye (2011) and Li and
Cheng (2002).

To make our similarity measure more transparent and
comparable with the measures proposed earlier by other
authors, the example analyzed in Hwang et al. (2012) will
be discussed next.

Example 2 Assume that there are three IFS patterns in X =
{x1, x2, x3}.The three patterns are denoted as follows:

A1 = {〈x1, 0.3, 0.3〉 , 〈x2, 0.2, 0.2〉 , 〈x3, 0.1, 0.1〉} ,

A2 = {〈x1, 0.2, 0.2〉 , 〈x2, 0.2, 0.2〉 , 〈x3, 0.2, 0.2〉}
A3 = {〈x1, 0.4, 0.4〉 , 〈x2, 0.4, 0.4〉 , 〈x3, 0.4, 0.4〉}

Assume that a sample B = { 〈x1, 0.3, 0.3〉 , 〈x2, 0.2, 0.2〉 ,

〈x3, 0.1, 0.1〉
}
is to be classified.

The similarity degrees of S(A1, B), S(A2, B)and S(A3, B)

calculated for all similarity measures listed in Sect. 3 are
shown in Table 2.

The proposed similarity measure SY can be calculated by
Eq.(19) as:

SY(A1, B) = 1,

SY(A2, B) = 0.991,

SY(A3, B) = 0.944.

It is obvious that B is equal to A1. This indicates that
sample B should be classified to A1. However, the similar-
ity degrees of S(A1, B), S(A2, B) and S(A3, B) are equal
to each other when SC, SH, SDC and CIFS are employed.
These four similarity measures cannot capable of discrimi-
nating difference between the three patterns. Fortunately, the
results of SY(Ai , B)(i = 1, 2, 3) can be used tomake correct
classification conclusion. This means that the proposed simi-
larity measure shows an identical performance with majority
of the existing measures.

6 Applications in pattern recognition

In this section, to illustrate the efficiency of the proposed
similarity measure in practice, we will apply it in the area
of pattern recognition. Examples on medical diagnosis and
clustering will be discussed.

6.1 Medical diagnosis

Themedical diagnosis problem discussed in Boran andAkay
(2014), De et al. (2001), Own (2009), Szmidt and Kacprzyk
(2004), Vlachos and Sergiadis (2007), Wei et al. (2011) and
Ye (2011)will be presented as an application in pattern recog-
nition. In this paper, we propose an alternative approach to
medical diagnosis using the newly defined similarity mea-
sure.

Suppose that there are four patients Al, Bob, Joe and Ted,
represented as P= {Al, Bob, Joe, Ted}. Their symptoms are
S = {Temperature, Headache, Stomach pain, Cough, Chest
pain}. The set of diagnoses is defined as = {Viral fever,
Malaria, Typhoid, Stomach problem, Chest problem}. The
intuitionistic fuzzy relation P → S is presented in Table 3.
Table 4 gives the intuitionistic fuzzy relation S → D. Each
element of the tables is given in the form of IFV, which is a
pair of numbers corresponding to the membership and non-
membership values, respectively.

In order to make a proper diagnosis for each patient, we
calculate the similarity degree between each patient and each
diagnose. According to the principle of maximum similar-
ity degree, the higher similarity degree indicates a proper
diagnosis. In Table 5, the similarity degree SY between
patients and diagnoses are presented. According to the sim-
ilarity degrees in Table 5, conclusion can be made that Al
suffers from Viral fever, Bob suffers from Stomach prob-
lem, Joe suffers from Typhoid, and Ted suffers from Viral
fever. The diagnosis results for this case obtained in previ-
ous study have been presented in Boran and Akay (2014). It
is clear that our proposed method provides the same results
as those obtained by the methods presented in Boran and
Akay (2014), Own (2009) andVlachos and Sergiadis (2007).
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Table 3 Symptoms
characteristic for the patients

Temperature Headache Stomach pain Cough Chest pain

Al (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) (0.1,0.6)

Bob (0,0.8) (0.4,0.4) (0.6,0.1) (0.1,0.7) (0.1,0.8)

Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) (0.0, 0.5)

Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) (0.3, 0.4)

Table 4 Symptoms
characteristic for the diagnoses

Viral fever Malaria Typhoid Stomach problem Chest pain problem

Temperature (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8)

Headache (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0, 0.8)

Stomach pain (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8)

Cough (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8)

Chest pain (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1)

Table 5 Proposed similarity
measure SY between each
patient’s symptoms and the
considered set of possible
diagnoses

Viral fever Malaria Typhoid Stomach problem Chest problem

Al 0.9455 0.9348 0.9333 0.7996 0.7633

Bob 0.8448 0.7143 0.9144 0.9760 0.8363

Joe 0.9201 0.8585 0.9247 0.7844 0.7301

Ted 0.9614 0.9187 0.9221 0.8728 0.8264

Moreover, operations involved in our proposed similarity
measure are addition,multiplication and evolution,which are
implemented based onmembership degree, non-membership
degree and hesitancy degree, without any other parameters.
So it can reduce the computation complexity.

6.2 Cluster analysis

Let O = {O1, O2, . . . , On} be a set of n objects. The aim
of cluster analysis is to cluster O into c clusters. We will
apply our proposed similarity measure into the clustering
algorithms for IFSs (Algorithm-IFSC) proposed by Xu et al.
(2008).

Let X = {x1, x2, . . . , xn} be a discrete universe of dis-
course, and let w = (w1, w2, . . . , wn) be the weight vector
of the elements xi (i = 1, 2, . . . , n), with wi ≥ 0, i =
1, 2, . . . , n, and

∑n
i=1 wi = 1. Let A j ( j = 1, 2, . . . ,m) be

a collection of m IFSs representing different objects, where

A j = { 〈
xi , μA j (xi ), vA j (xi )

〉∣∣ xi ∈ X
}
, j = 1, 2, . . . ,m

and πA j (xi ) = 1 − μA j (xi ) − vA j (xi ), j = 1, 2, . . . ,m is
the degree of hesitation of xi to A j .

On the basis of our proposed similarity measure SWY, the
Algorithm-IFSC can be described as follows:

Step 1 Utilize Eq. (20) to calculate the association coef-
ficients of IFSs Ai (i = 1, 2, . . . ,m), and then construct

an association matrix C = (ci j )m×m , where ci j =
SWY(Ai , A j ), i, j = 1, 2, . . . ,m.
Step 2 If the associationmatrixC = (ci j )m×m is an equiv-
alent association matrix, then we construct a λ-cutting
matrix Cλ = (λci j )m×m of C by Eq. (22); otherwise, we
compose the association matrix C by using Eq. (23) to
derive an equivalent association matrix C̄ , and then con-
struct a λ-cutting matrix C̄λ = (λc̄i j )m×m of C̄ by using
(22).

λci j =
{
0 i f ci j < λ,

1 i f ci j ≥ λ,
i, j = 1, 2, . . . ,m (22)

c̄i j = max
k

{min{cik, ck j }}, i, j = 1, 2, . . . ,m (23)

Step 3 If all elements of the i th line (column) in Cλ (or
C̄λ) are the same as the corresponding elements of the
j th line (column) in Cλ (or C̄λ), then the IFSs Ai and A j

are of the same type. By this principle, we can classify
all these m IFSs A j ( j = 1, 2, . . . ,m).

Remarks C2 = C ◦ C = C̄λ = (c̄i j )m×m is called a com-
position matrix of C . If C2 ⊆ C , i.e., maxk{min{cik, ck j }} ≤
ci j for all i, j = 1, 2, . . . ,m, then C is called an equivalent
association matrix. For the association matrix C , after the
finite times of compositions C → C2 → C4 → · · · →
C2k → · · · , there must exist a positive integer k such that
C2k = C2(k+1), and C2k is also an equivalent association
matrix.
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Table 6 Car data set

x1 x2 x3 x4 x5 x6
μAi (x1) vAi (x1) μAi (x2) vAi (x2) μAi (x3) vAi (x3) μAi (x4) vAi (x4) μAi (x5) vAi (x5) μAi (x6) vAi (x6)

A1 0.30 0.40 0.20 0.70 0.40 0.50 0.80 0.10 0.40 0.50 0.20 0.70

A2 0.40 0.30 0.50 0.10 0.60 0.20 0.20 0.70 0.30 0.60 0.70 0.20

A3 0.40 0.20 0.60 0.10 0.80 0.10 0.20 0.60 0.30 0.70 0.50 0.20

A4 0.30 0.40 0.90 0.00 0.80 0.10 0.70 0.10 0.10 0.80 0.20 0.80

A5 0.80 0.10 0.70 0.20 0.70 0.00 0.40 0.10 0.80 0.20 0.40 0.60

A6 0.40 0.30 0.30 0.50 0.20 0.60 0.70 0.10 0.50 0.40 0.30 0.60

A7 0.60 0.40 0.40 0.20 0.70 0.20 0.30 0.60 0.30 0.70 0.60 0.10

A8 0.90 0.10 0.70 0.20 0.70 0.10 0.40 0.50 0.40 0.50 0.80 0.00

A9 0.40 0.40 1.00 0.00 0.90 0.10 0.60 0.20 0.20 0.70 0.10 0.80

A10 0.90 0.10 0.80 0.00 0.60 0.30 0.50 0.20 0.80 0.10 0.60 0.40

Based on Algorithm-IFSC, we conduct an experiment on
real-word data sets from Xu et al. (2008). Each data point
has six attributes: x1: fuel economy; x2: aerodynamic degree;
x3: price; x4: comfort; x5: design; x6: safety. The data set is
shown in Table 6.

Now we utilize the Algorithm-IFSC to cluster the ten new
cars Ai (i = 1, 2, . . . , 10):

Based on the association coefficients that can be calculated
by Eq.(20), we can construct the association matrix as:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9121 0.8964 0.9166 0.8759 0.9891 0.9114 0.8747 0.8953 0.8970
0.9121 1.0000 0.9872 0.9223 0.9052 0.9137 0.9821 0.9604 0.9114 0.9233
0.8964 0.9872 1.0000 0.9351 0.9223 0.8880 0.9797 0.9578 0.9353 0.9131
0.9166 0.9223 0.9351 1.0000 0.9116 0.8956 0.9136 0.8906 0.9843 0.9038
0.8759 0.9052 0.9223 0.9116 1.0000 0.8771 0.9049 0.9265 0.9041 0.9467
0.9891 0.9137 0.8880 0.8956 0.8771 1.0000 0.9048 0.8777 0.8691 0.9146
0.9114 0.9821 0.9797 0.9136 0.9049 0.9048 1.0000 0.9735 0.9119 0.9246
0.8747 0.9604 0.9578 0.8906 0.9265 0.8777 0.9735 1.0000 0.8915 0.9432
0.8953 0.9114 0.9353 0.9843 0.9041 0.8691 0.9119 0.8915 1.0000 0.9051
0.8970 0.9233 0.9131 0.9038 0.9467 0.9146 0.9246 0.9432 0.9051 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Calculate the composition matrix of C :

C2 = C ◦ C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9166 0.9166 0.9166 0.9116 0.9891 0.9136 0.9121 0.9166 0.9146
0.9166 1.0000 0.9872 0.9351 0.9265 0.9146 0.9821 0.9735 0.9353 0.9432
0.9166 0.9872 1.0000 0.9353 0.9265 0.9137 0.9821 0.9735 0.9353 0.9432
0.9166 0.9351 0.9353 1.0000 0.9223 0.9166 0.9351 0.9351 0.9843 0.9223
0.9116 0.9265 0.9265 0.9223 1.0000 0.9146 0.9265 0.9432 0.9223 0.9467
0.9891 0.9146 0.9137 0.9166 0.9146 1.0000 0.9146 0.9146 0.9114 0.9146
0.9136 0.9821 0.9821 0.9351 0.9265 0.9146 1.0000 0.9735 0.9353 0.9432
0.9121 0.9735 0.9735 0.9351 0.9432 0.9146 0.9735 1.0000 0.9353 0.9432
0.9166 0.9353 0.9353 0.9843 0.9223 0.9114 0.9353 0.9353 1.0000 0.9131
0.9146 0.9432 0.9432 0.9223 0.9467 0.9146 0.9432 0.9432 0.9131 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We found that C2 ⊆ C does not hold, i.e., the association
matrix C is not an equivalent association matrix. Thus, we
further calculate:
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C4 = C2 ◦ C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9166 0.9166 0.9166 0.9166 0.9891 0.9166 0.9166 0.9166 0.9166
0.9166 1.0000 0.9872 0.9353 0.9432 0.9166 0.9821 0.9735 0.9353 0.9432
0.9166 0.9872 1.0000 0.9353 0.9432 0.9166 0.9821 0.9735 0.9353 0.9432
0.9166 0.9353 0.9353 1.0000 0.9351 0.9166 0.9353 0.9353 0.9843 0.9353
0.9166 0.9432 0.9432 0.9351 1.0000 0.9166 0.9432 0.9432 0.9353 0.9467
0.9891 0.9166 0.9166 0.9166 0.9166 1.0000 0.9166 0.9166 0.9166 0.9166
0.9166 0.9821 0.9821 0.9353 0.9432 0.9166 1.0000 0.9735 0.9353 0.9432
0.9166 0.9735 0.9735 0.9353 0.9432 0.9166 0.9735 1.0000 0.9353 0.9432
0.9166 0.9353 0.9353 0.9843 0.9353 0.9166 0.9353 0.9353 1.0000 0.9353
0.9166 0.9432 0.9432 0.9353 0.9467 0.9166 0.9432 0.9432 0.9353 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C8 = C4 ◦ C4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9166 0.9166 0.9166 0.9166 0.9891 0.9166 0.9166 0.9166 0.9166
0.9166 1.0000 0.9872 0.9353 0.9432 0.9166 0.9821 0.9735 0.9353 0.9432
0.9166 0.9872 1.0000 0.9353 0.9432 0.9166 0.9821 0.9735 0.9353 0.9432
0.9166 0.9353 0.9353 1.0000 0.9353 0.9166 0.9353 0.9353 0.9843 0.9353
0.9166 0.9432 0.9432 0.9353 1.0000 0.9166 0.9432 0.9432 0.9353 0.9467
0.9891 0.9166 0.9166 0.9166 0.9166 1.0000 0.9166 0.9166 0.9166 0.9166
0.9166 0.9821 0.9821 0.9353 0.9432 0.9166 1.0000 0.9735 0.9353 0.9432
0.9166 0.9735 0.9735 0.9353 0.9432 0.9166 0.9735 1.0000 0.9353 0.9432
0.9166 0.9353 0.9353 0.9843 0.9353 0.9166 0.9353 0.9353 1.0000 0.9353
0.9166 0.9432 0.9432 0.9353 0.9467 0.9166 0.9432 0.9432 0.9353 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C16 = C8 ◦ C8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.0000 0.9166 0.9166 0.9166 0.9166 0.9891 0.9166 0.9166 0.9166 0.9166
0.9166 1.0000 0.9872 0.9353 0.9432 0.9166 0.9821 0.9735 0.9353 0.9432
0.9166 0.9872 1.0000 0.9353 0.9432 0.9166 0.9821 0.9735 0.9353 0.9432
0.9166 0.9353 0.9353 1.0000 0.9353 0.9166 0.9353 0.9353 0.9843 0.9353
0.9166 0.9432 0.9432 0.9353 1.0000 0.9166 0.9432 0.9432 0.9353 0.9467
0.9891 0.9166 0.9166 0.9166 0.9166 1.0000 0.9166 0.9166 0.9166 0.9166
0.9166 0.9821 0.9821 0.9353 0.9432 0.9166 1.0000 0.9735 0.9353 0.9432
0.9166 0.9735 0.9735 0.9353 0.9432 0.9166 0.9735 1.0000 0.9353 0.9432
0.9166 0.9353 0.9353 0.9843 0.9353 0.9166 0.9353 0.9353 1.0000 0.9353
0.9166 0.9432 0.9432 0.9353 0.9467 0.9166 0.9432 0.9432 0.9353 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We note that C16 = C8, which indicates that C8 is an
equivalent association matrix.

Since the confidence level λ has a close relationship with
the elements of the equivalent association matrix C8, in the
following, we give a detailed sensitivity analysis with respect
to the confidence level λ, and by Eq. (22), we get all the pos-
sible classifications of the 10 new cars Ai (i = 1, 2, . . . , 10):

(1) If 0 ≤ λ ≤ 0.9166, all cars Ai (i = 1, 2, . . . , 10) are of
the same type:

{A1, A2, A3, A4, A5, A6, A7, A8, A9, A10} .

(2) If 0.9166 < λ ≤ 0.9353, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following two types:

{A1, A6} , {A2, A3, A4, A5, A7, A8, A9, A10} .

(3) If 0.9353 < λ ≤ 0.9432, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following three types:

{A1, A6} , {A2, A3, A5, A7, A8, A10} , {A4, A9} .

(4) If 0.9432 < λ ≤ 0.9467, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following four types:

{A1, A6} , {A2, A3, A7, A8} , {A4, A9} , {A5, A10} .

(5) If 0.9467 < λ ≤ 0.9735, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following five types:

{A1, A6} , {A2, A3, A7, A8} , {A4, A9} , {A5} , {A10} .

(6) If 0.9735 < λ ≤ 0.9821, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following six types:

{A1, A6} , {A2, A3, A7} , {A4, A9} , {A5} , {A8} , {A10} .

(7) If 0.9821 < λ ≤ 0.9843, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following seven types:

{A1, A6} , {A2, A3} , {A4, A9} , {A5} , {A7} , {A8} , {A10}.
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(8) If 0.9843 < λ ≤ 0.9872, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following eight types:

{A1, A6} , {A2, A3} , {A4} , {A5} , {A7} ,

{A8} , {A9} , {A10} .

(9) If 0.9872 < λ ≤ 0.9891, all cars Ai (i = 1, 2, . . . , 10)
are classified into the following nine types:

{A1, A6} , {A2} , {A3} , {A4} , {A5} , {A7} ,

{A8} , {A9} , {A10} .

(10) If 0.9891 < λ ≤ 1, all cars Ai (i = 1, 2, . . . , 10) are
classified into the following ten types, i.e., none of them
are of the same class:

{A1} , {A2} , {A3} , {A4} , {A5} , {A6} , {A7} ,

{A8} , {A9} , {A10} .

We can find that with the increase in confidence level,
more and more patterns are differentiated. Comparing these
clustering results with those obtained by Xu et al. (2008),
we note that the clustering algorithm based on our proposed
similarity measure is more sensitive to the confidence level.
There is only one probable case for a specific cluster num-
ber. For example, if these cars are classified into four types,
the result can only be {A1, A6}, {A2, A3, A7, A8}, {A4, A9},
{A5, A10}. This is helpful for final decision by reducing
uncertainty. Moreover, the reasonable clustering result pre-
sented in Hwang et al. (2012) is also included in these results
yielded based on our proposed similarity measure.

7 Conclusion

Although numbers of similarity measures between IFSs have
been proposed to cope with uncertainty in information sys-
tems, most of them have provided counterintuitive results. In
this study, a new similarity measure and weighted similar-
ity measure between IFSs are proposed. The new similarity
measure is calculated based on the operations on themember-
ship degreeμA(x), non-membership degree vA(x), hesitancy
degree πA(x), as well as the upper bound of membership
1 − vA(x). In some special cases where some of the exist-
ing similarity measure cannot provide reasonable results, the
proposed similarity measure shows great capacity for dis-
criminating IFSs. Moreover, investigation of the application
of the proposed similarity in the field of pattern recognition is
carried out based on numerical examples as well as the prac-
tice of medical diagnosis and cluster analysis. It has been
illustrated that the proposed similarity measure performs as

well as or better than previous measures. However, our pro-
posed similarity is not an absolute perfect one. It is stuckwith
the lack of definitude physical meaning. Efforts are continu-
ing to look for a more excellent similarity measure for much
better exploration and exploitation on IFSs.
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