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Abstract Owing to its manifold advantages in adapting
cloud computing for real-world scientific workflow appli-
cations, we intend to use cloud computing for executing the
scientificworkflows. In the presentwork,we aim for schedul-
ing the workflow in the scalable resources in the cloud. In
general, security is a vital challenge in cloud and so we
include security constraints into our optimizationmodel. The
main objective of our work is to find an optimized schedule
having minimum makespan and cost and by satisfying secu-
rity demand constraint. The users can submit their security
demand to the cloud provider during negotiation. The work-
flow is initially scheduled with list-based heuristics, which is
then optimized by Particle SwarmOptimization (PSO). Thus
we device a Smart Particle Swarm Optimization (SPSO)-
based secured scheduling to find the optimized schedule with
minimummakespan and cost. The proposed method is capa-
ble of assigning the task in the scientific workflows to the
best suitable virtualmachine in the cloud.Hence, the resource
allocation is addressed aswell by ourmethod.Besides, a vari-
ant of PSO algorithm called Variable Neighbourhood PSO
is also experimented to overcome the local optima problem.
Our experimental results show that the scheduled workflows
with assured security are yielding bettermakespan than exist-
ing methods with minimum iterations, which is well suited
for cloud environment.
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1 Introduction

Cloud computing is a model for enabling ubiquitous, con-
venient, on-demand network access to a shared pool of
configurable computing resources (e.g. networks, servers,
storage, applications and services) that can be rapidly pro-
visioned and released with minimal management effort or
service provider interaction (Mell and Grance 2011). This
is the definition given by National Institute of Standards
and Technology (NIST) for cloud computing. Cloud com-
puting provides a variety of services; among these, Software
as a Service (SaaS), Platform as a Service (PaaS) and Infras-
tructure as a Service (IaaS) are the common one. All these
services are accessed via Internet. The availability of Inter-
net facilities everywhere makes cloud services reachable to
everyone. Thus using cloud for scientific applications have
also no exception. Automated service provisioning is the
major research challenge in cloud computing as pointed out
by Zhang et al. (2010). In the survey conducted by Inter-
national Data Corporation (IDC), security is ranked as the
vital challenge attributing to cloud computing. The secu-
rity concern makes organizations to be hesitant in offloading
their business workloads into cloud (Gens 2008). The NIST
Cloud Computing Standards Roadmap Working Group has
also indicated that security integration of a cloud system into
existing enterprise security infrastructure is amust formajor-
ity of government systems with moderate and greater impact
(Pritzker 2013).

Workflow application is the emerging paradigm for dis-
tributed computing infrastructures,which are nowbeing used
in areas like astronomy, bioinformatics,material sciences and
physics. Workflow has a wide range of applications such as
scientific, enterprise applications and real-world problems.
Workflow concepts are well suited to fit for scenarios where
several distributed entities work collaboratively together to
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achieve a common goal. Adopting the cloud computing for
executing the workflow has many advantages. Firstly, it
reduces the burden of the user from having a self-owned
infrastructure. Secondly, it is cheap in terms of cost. Thirdly,
it provides access anywhere. When adopting cloud comput-
ing for executing workflows, one has to focus on objectives
such as cost to be paid for using the cloud services (Tan et al.
2014;Wu et al. 2010; Pandey et al. 2010; Xue andWu 2012),
time for completing the workflow (Wang et al. 2012; Bilo-
grevic et al. 2011; Tan et al. 2014; Zuo et al. 2014; Selvi and
Govindarajan 2014; Rodriguez and Buyya 2014; Wu et al.
2010; Xue and Wu 2012), resources allocated for the tasks
in the workflow (Selvi and Govindarajan 2014; Rodriguez
and Buyya 2014; Pandey et al. 2010) and security demand
of the user (Wang et al. 2012; Bilogrevic et al. 2011; Tan
et al. 2014; Zeng et al. 2015). Earlier research works on
other computing paradigm such as grid computing, high-
performance computing, heterogeneous distributed systems
and cluster computing also focus on these objectives. The lit-
eratures Topcuoglu et al. (2002); Tang et al. (2011); Li et al.
(2015) focus on cost minimization, Topcuoglu et al. (2002);
Xie and Qin (2006, 2008); Tang et al. (2010, 2011); Song
et al. (2006); Liu et al. (2012); Abraham et al. (2006); Li
et al. (2015); Sih and Lee (1993) focus on time minimiza-
tion, Liu et al. (2012); Tang et al. (2010); Li et al. (2015) focus
on resource allocation and Xie and Qin (2006, 2008); Tang
et al. (2011); Song et al. (2006); Liu et al. (2012) focus on
security constraints. The proposed work focuses on all these
objectives in order to provide an efficient and unique solu-
tion for automated service provisioning in cloud for scientific
workflows.

Workflow scheduling (Juve et al. 2013) is of course has to
dealwith some scheduling heuristics to generate a best sched-
ule for all the tasks in the workflow. The correct execution
sequence of workflow activities should be found for schedul-
ing theworkflow.Acorrect execution sequence should follow
the constraints of the workflow model that may be of tempo-
ral constraints or causality constraints.

The scheduling strategies for workflow graphs are clas-
sified into two main categories, namely heuristic approach
and metaheuristic approach (Topcuoglu et al. 2002). In the
present work, we focus on using a metaheuristic search algo-
rithm, Particle Swarm Optimization (PSO). Owing to the
significant results of using PSO algorithm for workflow task
scheduling in earlier works by Zuo et al. (2014), Rodriguez
andBuyya (2014), Liu et al. (2012), Pandey et al. (2010), Xue
and Wu (2012), Beegom and Rajasree (2014), we employ
PSO in the present work for optimizing the schedule. We do
modify the basic PSO algorithm by making a smart initial-
ization of the population in the swarm. First we generate a
schedule for the workflow, which has been submitted by the
cloud user. We do consider the security requirement of the
cloud user. This will help the cloud user to trust the cloud

provider and confidently execute his/her workflow tasks in
the cloud. The security risk has been mainly caused by the
multitenancy nature of the cloud. There is a possibility of
vulnerable neighbours or some disturbing (noisy) neighbours
occupying the virtual machines in the same zone. They may
try to perform some unethical hacking mechanisms or some
type of attacks such as snooping, modification and spoof-
ing. Snooping, modification and spoofing can be overcome
by adopting security mechanisms such as confidentiality,
integrity and authentication. Thus in this paper, we have inte-
grated the security measures for satisfying the user QoS with
the scheduling of the workflow applications. When we con-
sider security services, it involves more overhead. This may
be a bottleneck for the performance of the application. Nor-
mally before getting the IaaS the user will be signing the
service-level agreement (SLA) with the cloud provider. Our
model gives the user the right to specify their security demand
as part of their SLA.

Similarly, the resources at the cloud provider side will be
maintained with a security guaranteed level (SGL). Both the
security demand as well as the security rank is configured
based on the three security factors integrity, confidentiality
and authentication. We design our SPSO optimization model
by integrating the scheduling constrains and the security con-
straints. The scheduling constraints include the makespan of
the schedule and the cost the user has to pay to the cloud
provider. Security constraints consider the security demand
of the cloud user. The SPSOmodelmakes the optimistic deci-
sion in selecting the best schedule as well as the best virtual
machine (VM) for executing the task.
The main contributions of our proposed work are as follows.

• We design a unique solution for automated IaaS provi-
sioning with minimal decision time in cloud for scientific
workflows.

• We propose Smart Particle Swarm Optimization (SPSO)
which finds an optimized schedule that trade off between
security and minimum makespan and cost for workflow
execution in cloud.

• We consider the dynamic provisioning and heterogeneity
of the virtual machine (VM) resource pool at the cloud
provider side. The SPSO algorithm is used to solve not
only the problem of producing a schedule defining the
task to virtual machine mapping but also the number and
type of VMs that are to be leased from the cloud provider.

• Security demand of the user is also merged and modelled
into the optimization problem.

• A coding strategy is designed for encoding the particle
to solve the multiobjective problem.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the related work in a nutshell. Section 3
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describes the secured schedule architecture. Then the prob-
lem outline is briefed in Sect. 4 with the multiobjective
focused in this paper. In Sect. 5, we explore the sched-
ule primitives. This is followed by the schedule generation
method in Sect. 6. Section 7 deals with the Smart Particle
Swarm Optimization (SPSO) algorithm and Smart Variable
Neighbourhood Particle Swarm Optimization (SVNPSO)
algorithm. The experiments and performance analysis are
enumerated in Sect. 8. Finally, we conclude this paper in
Sect. 9.

2 Related Work

Scheduling precedence-constrained task such as workflows
is NP-hard problem and it is studied by many researchers.
The taxonomy of the workflow scheduling algorithms is
list scheduling heuristics (Topcuoglu et al. 2002; Xie and
Qin 2006, 2008; Tang et al. 2011, 2010; Li et al. 2015;
Sih and Lee 1993; Canon et al. 2008), clustering heuristics
(Topcuoglu et al. 2002), task duplication heuristics (Sujana
et al. 2015; Tang et al. 2010) and guided random search such
as GA (Song et al. 2006) and PSO (Zuo et al. 2014; Selvi and
Govindarajan 2014; Rodriguez and Buyya 2014; Liu et al.
2012; Liu and Abraham 2007; Kalra and Singh 2015).

Sih and Lee (1993) focused on developing dynamic level
scheduling. The priorities are changed dynamically to find
the task processor pair. It is the first algorithms that computed
an estimate of the availability of each computing resource
and allowed a task to be scheduled to a processor in use.
Topcuoglu et al. (2002) have designed the upward rank and
downward rank. This has constituted for the Heterogeneous
Earliest Finish Time (HEFT) and the Critical Path on a Pro-
cessor (CPOP) algorithm. The task rank order is calculated
using the communication cost in the task graph, i.e.workflow,
in the work done by Tang et al. (2010) and they were able
to achieve better results. Li et al. (2015) have used stochas-
tic model for finding the task stochastic bottom level, which
refers to the priority rank order of the task in the workflow.
Canon and his team has compared 20 scheduling heuristics
that can be applied to workflows in the form of directed
acyclic graph and concluded that on average, for random
graphs, HEFT is the best one in terms of robustness and
schedule length (Canon et al. 2008). Arabnejad and Barbosa
(2014) have proposed Predict Earliest Finish Time (PEFT)-
based scheduling for heterogeneous computing systems. In
this, they are introducing a look-ahead feature to the earlier
HEFT without increasing the time complexity.

On the other hand, metaheuristic algorithms can give
better optimized schedules. Particle Swarm Optimization
(PSO) is a bioinspired algorithm inherited from birds flock-
ing and fish schooling. It is one of the latest optimization
algorithms that outperform genetic algorithm with minimal

iterations. Zuo et al. (2014) have used PSO for schedul-
ing deadline-constrained tasks in hybrid clouds. They have
proposed self-adaptive PSO for effective utilization of inter
cloud resources. They have focused on deadline alone with
hybrid clouds. Chakraborty and his team (2016) have used
PSO along with fuzzy rule constraints to solve multiobjec-
tive problem. CLOUDRB proposed by Selvi et al. Selvi
and Govindarajan (2014) used PSO for job scheduling and
resource allocation for high-performance computing applica-
tions. They have focused on scheduling with better resource
allocation objective, which will minimize the makespan.
Rodriguez and Buyya (2014) have proposed resource pro-
visioning and scheduling strategy for scientific workflows
on Infrastructure as a Service (IaaS) clouds. They present
an algorithm based on PSO, which aims to minimize the
overall workflow execution cost while meeting deadline con-
straints. Wu et al. (2010) have devised Revised Discrete
Particle Swarm Optimization (RDPSO) to schedule applica-
tions among cloud services, by considering data transmission
cost and computation cost. The RDPSO algorithm gives
better performance on makespan and cost optimization com-
pared to the classic PSO algorithm. Pandey et al. (2010)
proposed a PSO-based algorithm to minimize the execution
cost of a single workflow with load balancing on the avail-
able resources. They did not consider security constraints, but
their work gave good results in terms of cost saving alone.
Xue and Wu (2012) have devised Hybrid Particle Swarm
Optimization (GHPSO) algorithm for scheduling workflows
in cloud computing with cost minimization objective. They
have embedded the crossover and mutation of genetic algo-
rithm into the PSO, which has increased the time complexity
of the algorithm. But we like to focus on time minimiza-
tion also for quick decision-making. Beegom et al. Beegom
and Rajasree (2014) have designed integer PSO, to solve
the bi-objective task scheduling problem in cloud. They
have considered the Pareto optimization with the user sat-
isfaction in terms of QoS and cloud providers profit. Their
work focuses only on independent tasks; hence, it cannot be
applied for workflow scheduling. Liu et al. (2015) have also
considered Pareto optimization-based multiobjectives, max-
imizing system reliability and minimizing schedule length
in scheduling a distributed computing system. The schedule
optimization is based on the Tabu search algorithm, which
lacks in global optimum search compared to PSO.

However, many scheduling algorithm ignores security
constraints, which is themost vital one in cloud environment.
Considering the security-driven scheduling research works,
Xie and Qin (2006; 2008) have focused on integrating the
security module and the scheduling module. They have pro-
posed security-aware real-time heuristic strategy for clusters,
which integrates security requirements into the scheduling
of real-time applications in clusters. They tried to prove that
the overhead incurred in adding the security model does not
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result in performance bottleneck. They have also tested the
security level provided by various algorithms. They have
focused on the security parameters integrity, confidentiality
and authentication.

Tang et al. (2011) have designed security-driven schedul-
ing model for heterogeneous distributed systems. Their
scheduling algorithm makes use of the Heterogeneous Ear-
liest Finish Time (HEFT)-based approach for precedence-
constrained tasks. The trust manager computes the security
rank and it is used for finding the priority of the tasks in the
heuristics. Wang and his team have devised a trust model
based on Bayesian method. Then the trust value is integrated
with the dynamic level scheduling (Wang et al. 2012). Their
algorithm cloud DLS is applied to cloud environment and
they were the first to consider security constraints for task
scheduling in cloud. But they used only a soft security mech-
anism, i.e. the trust model. In the work done by Tan et al.
(2014), a trust-based workflow scheduling algorithm was
proposed. Their trust model mainly uses the fuzzy member-
ship function approach for finding the trusted service. The
best trustworthy service will be selected for each task in the
workflow. This is applicable only for SaaS or PaaS type of
services in cloud.

Bilogrevic et al. have introduced Privacy preserving
scheduling for mobile devices using cloud computing (Bilo-
grevic et al. 2011). Song and his associates (2006) have
developed Security-Assured Grid Job Scheduling. Their job
scheduling method uses genetic algorithm, which is a meta-
heuristic search algorithm.The risk factor in terms of security
for the jobs is measured. Their work focused on batch
scheduling, which deals with independent tasks. Hence, it
cannot be applied to workflow scheduling, where prece-
dence constraint tasks exist. Zeng et al. (2015) have devised
security-aware andbudget-aware (SABA)workflowschedul-
ing strategy in clouds. Their work uses security overhead
and monetary cost constraints while minimizing time. The
scheduling heuristic is towards the concept of immovable
dataset. Our paper is towards optimized scheduling using
metaheuristic approach and in workflows data gets trans-
ferred from parent task to child task. Liu and his team
(2012) have applied the PSO for optimizing the schedule
for workflow applications in distributed environment. They
have consideredminimizing themakespanwith security con-
straints in their scheduling approach. However, the security
constrain is considered as a single parameter, which does not
take any security mechanism into account.

Pondering on the security objective, security has been
incorporated either as trust model (Tang et al. 2011; Wang
et al. 2012; Tan et al. 2014) or with security mechanism (Xie
and Qin 2006, 2008; Song et al. 2006; Liu et al. 2012; Zeng
et al. 2015). Among these, trust-based security mechanism
is like soft security model. It cannot provide a more realis-
tic secured environment for cloud. Hence, we choose to use

security mechanisms such as integrity, confidentiality and
authentication for the virtual machines. Since we propose to
develop automated IaaS provisioning with minimal decision
time for scientific workflows, we go for merging list schedul-
ing heuristics into PSO algorithm. This has resulted in the
Smart Particle Swarm Optimization (SPSO) algorithm and
Smart Variable Neighbourhood Particle Swarm Optimiza-
tion (SVNPSO) algorithm. These algorithms aim to reduce
the number of iterations of the PSO algorithm considerably,
to support quick decision time for automated IaaS for sci-
entific workflows. The proposed SPSO algorithm is smart
since it not only reduces the number of iterations, but also
considers the dynamic provisioning and heterogeneity of the
VM resource pool at the cloud provider side. In addition to
that, a particle coding strategy is designed to solve the mul-
tiobjective problem.

3 Secured scheduling architecture

Any complex applications with precedence constraint can be
modelled as a workflow. Scientific workflows are logically
connected dependent tasks. A set of rules defines the linkage
between dependent tasks. In such a relationship, dependent
(child) task gets executed only after its parent task gets exe-
cuted. Tasks without a parent are termed as entry tasks and
those do not have a child are called as exit tasks. Figure 1
shows a sample workflow with ten different tasks. The entry
task is T1 and the exit task is T10. The task T2 and T3 are
the child tasks of the parent T1. The child tasks can be exe-
cuted only after the execution of their parent task. The best
optimized task–VM pair (task, VM) is to be found.

The system architecture for secured scheduling is shown
in Fig. 2. The cloud consumers who want to use the cloud

Fig. 1 Sample workflow graph
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Fig. 2 System architecture for secured scheduling

for executing their workflow applications will submit their
request to the cloud provider. Initially before performing the
scheduling and resource allocation process, the cloud con-
sumerwill negotiatewith the provider for the user’s quality of
service (QoS) in terms of service-level agreement (SLA).We
consider the following parameters in the SLA, namely SGL,
performance, availability, robustness, backup and service ini-
tialization time. Among them, SGL is the main parameter,
which we focus in our work. As a part of the SLA negoti-
ation, the user will provide their Security Demand (SD) to
the provider. Similarly, the provider will provide the different
SGLs available for different services along with their rates,
i.e. the amount the user has to pay for their usage. So in this
negotiation the security demand by the customerwill be final-
ized. Now the user will submit their workflow along with the
SD signed in the SLA. Now the cloud provider has to find an
optimized schedule for the submitted workflow and also the
best virtual machine (VM) that will optimize the makespan
of the algorithm.

The tasks in the workflow are precedence constrained.
Thus the child task in the workflow can be executed only
after the execution of its parent. To make all the tasks in the
workflow to execute in minimal makespan, we must gener-
ate a good schedule. Now, this schedule must incorporate the
precedence constraint of the tasks.We consider the execution
time and earliest start time to find the schedule order. Now
we incorporate the swarm intelligence to find the optimized
schedule. The objective function of the swarm optimization
is to minimize the makespan and the cost subjected to secu-
rity demand being satisfied. The overall execution time of the
generated schedule gives the makespan. The total execution
cost is decided by the required makespan of the workflow.

If the makespan is to be reduced, the cost is increased due
to the increased high end VM requirements. We consider the
solution only when the security demand of the workflow is
satisfied. Thus after some minimal number of iterations, the
algorithm will find the best optimized schedule. We summa-
rize the various notations used in this paper in Table 1.

4 Problem formation and outline

The cloud providers offer the IaaS with different types of
VMs. Each VM type has the specific VM configuration as
given in Table 3. The VMs are grouped into three categories,
namely green, yellow and red zones. Each zone is supposed
to have their own security levels. The SGL is used to repre-
sent the percentage of security that can be provided for the
VMs at the cloud provider side. The three types of zones
support different range of SGL. We fix the SGL range for
the green zone as [0.9,1]. Similarly, the SGL range for the
yellow zone is [0.70,0.89] and for the red zone is [0.4,0.69].
The SGL will address the three attributes of security, namely
authentication, confidentiality, integrity. Hence, apart from
other specification parameters the SGL of a vm j is described
as given in Eq. (1).

SGLVM j = Avg {SGLa,SGLc,SGLi} (1)

The values SGLa,SGLc,SGLi denote the Security Guar-
anteed Level values that a particular VMwill assure in terms
of authentication, confidentiality and integrity. Hence, the
SGL can be expressed as a percentage value, which lies in
the interval [0–1]. The different security guaranteed level
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Table 1 Definitions of notations
Notation Definition

ti The ith task ti in the workflow W =(T,E)

vmj The j th virtual machine available for allocation from the pool of
resources

SGLa Security Guaranteed Level for authentication

SGLc Security Guaranteed Level for confidentiality

SGLi Security Guaranteed Level for integrity

SGLVMj Security Guaranteed Level of jthvmj

wta Weight or percentage of the security demand for authentication factor

wtc Weight or percentage of the security demand for confidentiality factor

wti Weight or percentage of the security demand for integrity factor

SDti Security demand made by the cloud user for the ith task ti in the
workflow W.

OET Overall execution time (OET)

OEC Overall execution cost (OEC)

ω Weight factor

tentry Entry task

texit Exit task

child(tj) The set of child tasks of a task ti
parent(ti ) The set of parent tasks of the task ti
W Workflow application

w(vmj) Computation capacity of a VM

w(ti ) Computation cost of a task

ET(ti, vmj) Execution time of the task ti on the jth VM

ET(tı ) Average execution time of the task ti
CC(ti, tj) Communication cost between a parent and child task along an edge

e(i, j)

CC(ti, tj) Average communication cost of an edge e(i, j)

late(vmj) Latency of a VM

bwk The bandwidth of the link between the VMs

EST(ti, vmj) Earliest start time (EST) is the earliest possible start time of a task on a
VM.

ReadyTime(ti, vmj) Time in which the jth VM is ready for executing the task ti.

EET(ti , vm j ) Earliest end time (EET) of a task is the earliest possible completion
time of a task on a VM.

OET Overall execution time (OET) is the total schedule length

OEC Overall execution cost (OEC) is the total cost incurred in utilizing the
cloud resource and the user has to pay to the provider

ReleaseTime(vm j ) Time at which the VM has finished the execution of the task in the
workflow and is released to the provider

PRank(ti ) Priority rank of the task

|VMtype| Number of instance type of virtual machines

|WLevel| Number of levels in the DAG representation of the workflow

�pi (t) Particles’ position

�vi (t) Velocity of the particle

∝ Inertia weight

r1, r2 Random numbers

c1, c2 Acceleration constants
−−−→ppbest(t) Particle’s best position during the swarm
−−−→pGbest(t) Global best position of all the particles in the swarm, i.e. population
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Table 1 continued
Notation Definition

vupdate Velocity update used in SVNPSO, when the swarm movement is not
giving better results

vth Threshold velocity

PSecurity
(
ti , vm j

)
Probability of security in scheduling a task ti to a VM vm j

Psecurity(T ) Probability of security for the entire task set T

Table 2 Cryptographic algorithms for confidentiality and its Security
Guaranteed Level (SGL) (Xie and Qin 2006)

Cryptographic
algorithms

Security Guaranteed
Level

Computation time
(ms)

SEAL 0.08 168.75

RC4 0.14 96.43

Blowfish 0.36 37.5

Knufu/Khafre 0.40 33.75

RC5 0.46 29.35

Rijndael 0.64 21.09

DES 0.90 15

IDEA 1.00 13.5

values will be attained by implementing the corresponding
algorithms given in Table 2 for confidentiality. Similarly, the
type of security mechanism that was provided for each type
of security characteristics is evaluated in the work by Xie
and Qin (2006; 2008). Table 2 lists the methods that can be
adopted to secure the VMs in terms of confidentiality.

Figure 3 represents the flow of the proposed work for pro-
cessing the given scientific workflow. The workflow parser
will parse through the different tasks in the given work-
flow and initiate the workflow engine. Now an optimized
scheduling with suitable virtual machine selection has to be
done alongwith security constrain checking. Thus the heuris-
tic approach first selects the security zone followed by the
schedule generation and resource mapping. These activities
are done by the first algorithm genSchedule. This generated
schedule is then optimized by the Particle Swarm Optimiza-
tion algorithms, namely Smart Particle Swarm Optimization
(SPSO) and Smart Variable Neighbourhood Particle Swarm
Optimization

On the other hand, we use another parameter used from
the user perspective, i.e. Security Demand (SD). Similar
to the SGL the Security Demand can also be represented
as a percentage value normally in the interval [0,1]. The
SD is obtained by the provider as part of the SLA that
is negotiated between the provider and the user. For a
high value of SD such as 95%, requested by the user the
provider has to assign a most secured VM and it is to

Fig. 3 Schematic representation of workflow processing with security constraints and resource allocation (color figure online)
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be from the green zone. Since more sophisticated hard-
ware and algorithms has to be used for such request the
cost charges for those VMs will be high compared to
the VMs procurement from yellow and red zones. The
SD is also obtained as a three-valued parameter each
representing the weight values for authentication, confi-
dentiality and integrity. The system provides flexibility in
specifying the SD by the user. If the user is not both-
ered about the security with different parameters, then they
can specify it as a single-valued one. In that case, the
same weight value will be considered for all the three
parameters.

SDti = Avg {wta,wtc,wti} (2)

Equation (2) represents the weight of the security demand
for each security parameter authentication, confidentiality
and integrity as wta,wtc and wti, respectively. The security
demand for the workflowwill be applied to all the tasks in the
workflow by default. If the consumer wants different SD for
each task, then the consumer can specify as an array list. This
choice is provided by means of two modes, namely default
mode and selective mode. The consumer is free to choose
either the default mode or the selective mode to specify the
SD value specification in the SLA. In the default mode, the
consumer specifies their security demand as a single value.
This value is uniquely applied to all the tasks in theworkflow.
On the other hand, in the selective mode the consumer will
demand for different proportion of security demand for each
task in the workflow.

4.1 Problem objective

The proposed work aims at devising a metaheuristic-based
scheduling for scientific workflow. A workflow application
is modelled as a directed acyclic graph,W = (T,E), as shown
in Fig. 1, where T is the set of n tasks and each task ti ∈
T represents an workflow application task. E is the set of
communication edges between tasks and each e (i, j) ∈ E
represents the task dependence constraint such that task Ti
should finish its execution before task Tj can be started.

The parent(ti ) and child(ti ) denote the set of predecessors
and successors of task ti , respectively. There is an entry task
and an exit task in a workflow W. The entry task Tentry is
the starting task of the application without any predecessors,
while the exit task Texit is the final task with no successors.
In case there is no common entry task, a dummy task will
be appended to have a single-entry task. Similarly, if there is
no common exit task is available then a dummy task will be
appended to have a single-exit task.

The objective of our proposed work is to minimize the
overall execution cost (OEC) and overall execution time
(OET) such that the security demand of the user is satisfied.

The proposed work aims at devising a balanced multiobjec-
tive schedule model. It provides a balance between the time
and cost by introducing a weight factor ω. The weight factor
would be used to choose the importance between the two
factors. If the customer wants to minimize the cost than the
time, then they can give more weightage to the weight factor
ω. Similarly if the customer wants tominimize the time taken
for execution more by compromising for more payment for
the high end VMs, then they can assign lesser weightage
value for the weight factor ω. The objective function is thus
defined in Eq. (3). Hence, the fitness of our problem can be
defined as

F = Min {ω ∗ OEC + (1 − ω) ∗ OET}
Subjected to SDti ≤ SGLVM j (3)

where OEC and OET is a set of values associated with the
varied virtual machines deployment for the required SD of
ith task deployed on the jthVMwith the required SGL.While
computing the objective function, the computational time
associated with the appropriate SGL is considered.

4.2 Security risk analysis

Since the cloud environment is risk-prone, we do evaluate
the security of our proposed system. We define probabil-
ity of security in scheduling a task ti to a VM vm j as
PSecurity

(
ti , vm j

)
. The security of a task execution on a vir-

tual machine increases with the increase in the difference
of the security demand of the task and the Security level
of the VM. This change follows an exponential distribution.
The probability of security is defined by an exponential dis-
tribution modelled as a function of the difference between
SD and SGL as defined in Eq. (4). The security risk coeffi-
cient λ is a fraction number. The negative exponent indicates
that the failure rate grows with the difference between
SDti and SGLvmj . The task failure at a site could result from
VM hijacking, VM theft, Hyper Jacking, severe network
attack or in accessibility from a security imposed barricade.

PSecurity
(
ti , vm j

)

=
{
0, SDti ≥ SGLvm j

1 − e
λ
(
SDti −SLvm j

)

, SDti < SGLvm j

(4)

The probability of security of a task is thus computed
using Eq. (5) based on the assignment of the task ti to virtual
machine vm j . The constant κij is assigned 1 if the virtual
machine vm j is assigned to task ti else it is assigned 0.
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Psecurity (ti ) =
m∑

j=1

κi j Psecurity
(
ti , vm j

)
/m (5)

When considering the entire workflow task set T, the
proposed methods’ probability of security is given by
Psecurity (T ) as given in Eq. (6). Psecurity (T ) specifies the
probability of security so that all tasks are free from being
attacked during their executions.

Psecurity (T ) = Average
(
Psecurity (ti )

)
(6)

5 Schedule primitives:

A common representation of a workflow application is the
directed acyclic graph (DAG), which includes the charac-
teristics of an application programme such as the execution
time of tasks, the data size to communicate between tasks
and task dependencies. We model the workflow as a directed
acyclic graph,W =(T,E), where T represents the set of tasks
T = {t1, t2, ..., tn} and each task ti ∈ T, 1 ≤ i ≤ n represents
an workflow application task. Similarly E represents the set
of communication edges between tasks and each edge e(i,j)
∈ E represents that the task t j depends on the task ti , i.e. task
ti should be executed prior to the execution of the task t j .

The task which has in degree as 0 is designated as tentry
entry task and similarly the task without degree as 0 is des-
ignated as texit exit task. The parent tasks of the task ti are
denoted parent(ti ) and the child tasks of a task ti are rep-
resented by child(t j ). In cloud environment, the provider
has enormous amount of resources. The user has to pay for
the resources. Let us consider the consumer has to purchase
m number of VMs from the provider. These VMs will be
of different instance types. The VMs computation capacity
depends on the processor cores and the MIPS of the VM.
Thus executing each task on different VMs will depend on
the MIPS and the number of cores. We denote the compu-
tation capacity of each VM as w

(
vm j

)
. The set of VMs is

represented by VM = {vm1, vm2, ..., vmm}. Similarly each
task has its own computation cost and it is designated as
w(ti ) for the task ti. The execution time of the task ti on the
jth VM of kth type is termed as ET

(
ti , vm j

)
and it is defined

in equation (7).

ET
(
ti , vm j

) = w (ti )

w
(
vm j

) (7)

The average execution time of the task ti is given in Eq. (8).

ET (tı ) =
∑m

j=1 ET
(
ti , vm j

)

m
(8)

The communication cost of an edge e(i, j) can be calculated
as given in Eq. (9).

CC
(
ti , t j

) = late
(
vm j

)

+ w (e (i, j))

bwk
∀ 1 ≤ j ≤ m, 1 ≤ i ≤ n (9)

The average communication cost of an edge e (i, j) can be
calculated as given in Eq. (10).

CC
(
ti , t j

) =
∑m

j=1 late
(
vm j

)

m
+ w (e (i, j))

∑o
k=1 bwk/k

(10)

where late
(
vm j

)
denotes the latency that a VMwill have for

executing any job. This will include the boot-up time for any
VM to start up and execute the task. If two tasks are assigned
within the same VM, then the latency late(vm j ) for those
two tasks is assumed to be 0.w(e(i, j)) is the amount of data
transferred between the two tasks i and j. The bandwidth
of the link between the VMs is denoted by bwk , where k
represents the number of links that exists between the VMs
used. It is to be noted that the bandwidth within a data centre
is the maximum that can be provided. Hence, it is assumed
to be uniform with in a data centre.

The earliest start time (EST) is the earliest possible start
time of a particular task on a VM. This can be computed by
Eq. (11)

EST
(
ti , vm j

) = max{ReadyTime(ti , vm j ),

max
tm∈parent(ti )

{
EET(tm, vm j )+CC(tm, ti )

}

ReadyTime
(
tentry, vm j

) = 0 (11)

TheEST is defined by the considering themaximumof the
ready time of vm j and the earliest end time of its parent task
on that VM. The ReadyTime

(
ti , vm j

)
denotes the time in

which the jth VM is ready for executing the task ti. The same
VM can be used to execute a task, provided it has completed
its earlier task and ready for executing the next task. The
ready time of the entry task is considered as 0. The earliest
end time of a task is evaluated by considering the earliest
start time of a task and the execution of the task on a VM.
The EST of a task is evaluated by finding the maximum of
the ready time of a VM for the task and the earliest end time
of the entire ancestral task along with the data transfer time
(Communication Cost).We consider initially all the VMs are
free and are ready to execute any task for simplicity. If any two
tasks are allotted with the sameVM, then the communication
cost of those two tasks CC (tm, ti ) = 0.

The earliest end time (EET) of a task is the earliest possible
completion time of a particular task on a VM. This can be
computed by Eq. (12)

EET
(
ti , vm j

) = EST
(
ti , vm j

)

+ w (ti )

w
(
vm j

) ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m (12)
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Overall execution time (OET) is the total schedule length
can be obtained by considering the EET of exit task and it is
defined in Eq. (13). If there is no common exit task, then a
dummy exit task will be appended to make a common end
point in a workflow.

OET = makespan = EET
(
texit, vm j

)
(13)

Overall execution cost (OEC) is the total cost incurred in
utilizing the cloud resource for executing the workflow. OEC
is the amount the user has to pay to the cloud provider. OEC
of the workflow is given in Eq. (14).

OEC =
m∑

j=1

Cost
(
vm j

)

∗
[
ReleaseTime

(
vm j

) − ReadyTime
(
vm j

)]

τ
(14)

where Cost
(
vm j

)
is the cost fixed by the cloud provider

for that VM type for one unit of time. We have used the
cost values as per the Amazon AWS EC2 services. The
ReadyTime

(
vm j

)
is the time at which the chosen VM

is ready for executing the task in the workflow and the
ReleaseTime

(
vm j

)
is the time at which the VM has fin-

ished the execution of the task in the workflow and is ready
to shut down. The time unit by which the metering is done is
denoted by τ .

5.1 Priority rank

The tasks in the graph G are first ordered with their priority.
In the list scheduling heuristics, the tasks are first prioritized
based on the rank of the tasks. Similarly, in our schedule
generation we adopt the prioritization phase for ordering the
tasks. The priority rank of the tasks is evaluated by Eq. (15).
The prioritization is done from the exit task to the parent. The

exit task’s priority rank is derived from the average execution
time of the exit task in the workflow. Similarly, the priority
rank of other parental tasks is calculated by the recursive
calculation of priority rank of parent task and communication
cost added with the average execution time of the task.

PRank (ti ) = ET (ti ) + max
t j∈child(ti )

{
PRank

(
t j

) + CC
(
ti , t j

)}

PRank (texit) = ET (texit) (15)

6 Schedule generation

The VM types that we used for our experiments are listed in
Table 3. Besides different types of VMs, the provider main-
tains the VMs in three different security zones. To select the
initial set of resource pool, we need to provide all the hetero-
geneous types of VM. On the other hand, we have to be more
concerned about the initial pool of VMs which is available
for the PSO algorithm to search with. In order to make the
initial pool of resources optimal, we devise a strategy, such
that the search space is not exhaustive as well as it is not
minimal. Selection of optimal initial resource pool paves the
way for earlier convergence.

Our strategy for devising the initial resource pool is based
on the security demand submitted by the customer. Instead
of choosing the VMs from all the zones, we incorporate the
strategy of selecting theVMs only from the zone inwhich the
security demand value matches with the SGL interval of that
zone. Also for allowing different tasks to choose different
VMs we consider the tasks in parallel in the workflow. The
initial resource pool is selected in such a manner that the
total number of available VMs for consideration is equal to
the |VMtype| × |WLevel|. Thus the number of VMs selected
in the initial resource pool is product of the total number of
VM types |VMtype| and the total number of levels |WLevel|
in the directed acyclic graph G representing the tasks.

Table 3 List of virtual machine
types used in experiments

Type vCPU Memory (GB) Storage (GB) MIPS Cost ($)

t2.small 1 2 1 × 160 1000 0.06

t2.medium 2 4 2 × 240 2000 0.12

m3.medium 1 3.75 1 × 400 2000 0.10

m3.large 2 7.5 2 × 320 4000 0.18

m3.xlarge 4 15 4 × 320 8000 0.24
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The above schedule generation algorithm works on the
basis of list scheduling heuristics. The input VMk

j is initial-
ized from the available list of virtual machines at the data
centre based on the total number of VM types and the total
number of levels in the directed acyclic graph W represent-
ing the workflow tasks. This same VM pool will be used in
the subsequent Smart Particle Swarm Optimization (SPSO)
algorithm. Overall execution time (OET) and overall execu-
tion cost (OEC) are initialized to zero. Then the computation
of the execution time, communication cost and priority rank
is done. The priority rank is calculated from exit task. Thus it
represents the bottom level of the task in the workflow DAG.
Hence, we sort it by the reverse topological sorting method.
The while loop comprising the lines from 7 to 22 creates the
schedule and identifies the best VM for the task. The first for
loop from line 10 to 18 focuses on the computation of the ear-
liest end time of the tasks on different types of VM instances

provided the Security demand of the user is satisfied by the
VM. The OET and OEC values are also computed. Minimiz-
ing these time and cost values is our main objective. Once the
values of OET and OEC are computed, the algorithm checks
for the best feasible task–VM pair for a particular task. This
is done by the for loop at line 19. Line 20 assigns the best
feasible task–VM pair to the schedule for the ith task. Then
it is appended to the final schedule S, at the end of the while
loop.

The output generated by this algorithm is converted to
the particle’s position in the SPSO algorithm. Now, we have
all the information needed to begin decoding the particle’s
position and constructing the schedule. The search space
available for the particle is the VM set which has the ini-
tialized VM pool. The virtual machine assignment made at
line 20 gives the resource mapping done for the task ti . Now,
this is to be optimized with the SPSO algorithm for getting
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the optimized schedule for the given workflow application.
The fitness function will use the OEC and OET calculated
by this algorithm.

The time complexity of this genSchedule(W, VMs) is
O(n2). Here n is the number of tasks in the workflow W.
The while loop at line 7 iterates for ‘n’ times considering
one task at a time. The first inner for loop at line 10 iterates
only for the number of VM instance types, which is always
less than the number of tasks. On the other hand, the for loop
at line 19 will be executed for another ‘n’ number of times.
Thus the overall time complexity of this algorithm is O(n2).

7 PSO-based Optimization

7.1 Smart Particle Swarm Optimization—SPSO
algorithm

Particle Swarm Optimization (PSO) is a heuristic search
method which is inspired by the swarming or collaborative
behaviour of biological populations such as flocks of birds,
schools of fish and herds of animals. PSO is a population-
based search method. The population can be assumed like
the set of points, particle or potential solution in the problem
of study. In PSO, the population move from a set of points
to another set of points, in each iteration with a velocity. The
movement of the particle contributes to probable improve-
ment. The velocity function is devised using a combination
of deterministic and probabilistic rules.

7.1.1 Particle encoding strategy

In our work, we use the Particle Swarm Optimization algo-
rithm by representing the tasks in the workflow as particle.
Each particle maintains a position, composed of the candi-
date solution and its evaluated fitness, and its velocity.

To address the multiobjective problem, we define the
encoding strategy for the particle with its dimension. We
design our particle to be of four dimension. A particle
pi = (

ti , vm j , vm Type, SGLvm j

)
. The first dimension rep-

resents the ith task in the workflow, i.e. the task for which
the particle is designated. The second dimension vm j rep-
resents the VM id that was selected in the current iteration
for evaluating the fitness based on the previous position and
the velocity. The third dimension represents the vm Type as
specified in Table 3. Finally, the fourth dimension represents
the SGL of the VM according to Eq. (1). Thus each particle
can be viewed as a structure represented in Table 4. The fig-
ure shows the particle’s dimension for the sample workflow
shown in Fig. 1 as a population. Each task in the workflow
have four dimension or can be said as a coordinate associated
with it. The dimension represents the position and the veloc-
ity at which the task can move in the solution space. Hence,

Table 4 Particle structure representation for the sample workflow
shown in Fig. 1

Tasks in the workflow Dimension of the particle
corresponding to the task

T1 (1,1, t2.medium, 0.9)

T2 (2,3, m3.medium, 0.95)

T3 (3,2, m3.large, 0.9)

T4 (4,3, m3.medium, 0.95)

T5 (5,1, t2..medium, 0.9)

T6 (6,3, m3.mediium, 0.95)

T7 (7,4, m3.medium,0.95)

T8 (8,2, m3.large, 0.9)

T9 (9,1,t2.medium, 0.9)

T10 (10,4,m3.medium,0.95)

the position of the particle is consolidated by the dimension
of the particle.

7.1.2 Basic terms

The PSO algorithm works in such a way that these gener-
ated particles swarm as a population such as the swarm of
birds searching for the optimal solution. In our proposed
work, the particle moves with a velocity searching for the
best schedule and the best VM that can be allocated for it,
so that it can give best optimized results. PSO algorithm
does have two main parameters generally called as Pbest
and Gbest. Pbest is the particle’s best position that it main-
tained during its swarm. Similarly, Gbest is the global best
that the population experienced during the swarm. During
the execution of the PSO algorithm, the particle’s velocity
is stochastically accelerated towards its best position and
towards the global best. The particle’s position is repre-
sented as �pı (t) = (pi1 (t) , pi2 (t) , . . . , pin (t)) at time t
and the velocity of the particle is represented as �vı (t) =
(vi1 (t) , vi2 (t) , . . . , vin (t)). At the next time step (t + 1),
the particle moves to a new position and the updated position
can be computed using Eq. (17). In the proposed work the
task ti moves to another virtualmachine vm j in search for the
best optimal virtual machine. The search for the next virtual
machine depends on the velocity of the particle. The speed
in which the particle moves is determined by the velocity.
The velocity vector is updated using Eq. (16). The particles
movewith this velocity in search of a new solutionwith better
fitness. The fitness of the particle is evaluated using Eq. (3).

�vı (t + 1) = α �vı (t) + c1r1
(−−−→ppbest (t) − �pı (t)

)

+ c2r2
(−−−→pGbest (t) − �pı (t)

)
(16)

�pı (t + 1) = �pı (t) + �vı (t + 1) (17)

where ∝ is the inertia weight. It is used to control the influ-
ence of earlier velocity on the new velocity. Larger inertia
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weight makes an extensive search, whereas smaller inertia
weights focus on smaller region. In our work, we have to
make the task select a best VM for it so that its makespan
and money to be paid to the cloud provider have to be min-
imized. Hence, we choose smaller value for inertia weight.
This helps in fast convergence too. The symbols r1r2 are
random numbers which are randomly selected in the inter-
val [0,1]. These random values make the candidate solution
distinct. The symbols c1 and c2 are called as acceleration con-
stants. Kennedy has studied (Kennedy 1998; Kennedy et al.
2001) the effect of these variables on the particle lights and
asserted the favourable condition for the swarm is c1+c2 ≤ 4.
Otherwise it may explode towards infinity. The second term
in Eq. (17) is the cognitive component and the third term is
the social component influencing the swarm movement.

A sample value of the particle’s position at an iteration is
shown in Table 5. For simplicity, we have shown this with
fourVMsand ten tasks. The position value computed for each
task is given inTable 5. The coordinate valueswill be rounded
off and the resultant value represents the selected VM for
each task. Based on this allocation the overall execution ost
(OEC) and overall execution time (OET) will be computed.
After updating the particle’s position and velocity in the next
iteration the fitness of the new solution will be checked.

This process will be repeated till convergence in the fitness
function.

7.1.3 Smart Particle Swarm Optimization (SPSO) algorithm

The proposed Smart Particle Swarm Optimization (SPSO)
algorithm has a smart initialization procedure. Traditional
PSO algorithms used to initialize the particle’s position in a
random way. But here we use a schedule generation algo-
rithm ‘genSchedule’, which works out a list-based heuristics
for the given workflow. The output of this ‘genSchedule’
algorithm is itself an optimal schedule. But here we want
to optimized the generated schedule further by using the
metaheuristic approach. The idea of integrating the list-based
heuristicwith themetaheuristic approach is twofold. First,we
will get the best optimized schedule with resource allocation
for the given workflow. Second, the number of iterations is
reduced to fewer numbers, thus reducing the execution time
of the algorithm,which is very critical in cloud environments.

At each iteration, the fitness value will be compared with
the Pbest and then with Gbest. If the new values are giving
better results, then the new values will be updated in Pbest
and Gbest accordingly. The detailed methodology is given in
SPSO algorithm given below.
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Table 5 Allocation of VM for
different task’s based on its
position

Tasks in the workflow acting as particle T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Position 1.3 2.2 3.6 1.4 3.2 2.4 4.3 1.2 2.1 4.2

VM assigned 1 2 3 1 3 2 4 1 2 4

The algorithm SPSO(S, |T|) takes the schedule generated
by algorithm 1 and the number of tasks as input. The dimen-
sion of the population is set to the number of tasks in the
workflow *4. The particles are going to represent the tasks
in the scientific workflow and the position will represent the
virtual machine selected. This is described in Table 3. The
for loop from lines 2 to 8 will do the needed initialization. At
line 4, the particles position is initialized with the position
from the schedule. That is, the particles are initialized with
the virtual machine assignment decided from the schedule S.
This initialization makes the SPSO algorithm smarter by ini-
tializing the particles in the near optimal locations. This will
aid in faster convergence of the schedule. The velocity is ini-
tialized randomly at line 5. The particle’s Pbest is initialized
with the initial particle’s position at line 6. The global best
of the population, Gbest is initialized at line 7. The Gbest is
initialized in such a way that the best of the entire particle’s
position is selected. Lines 9–23 will be executed for each
iterations of the swarm search. Line 13 calculates the fitness
value for each particle. Then it is compared with the Pbest.
If a better result is obtained in the search, then the Pbest is
updated. Similarly, lines 17–19 check for the improvement
in the Gbest. If any improvement is identified, then the Gbest
will be updatedwith that improvement. In lines 20 and 21, the
velocity and the positions are updated, so that the particles
move in the right direction by using the knowledge gained
in the current iteration. The until loop will be iterated till
the objective values of OET and OEC converge. Our SPSO
algorithm does converge within 20 iterations on an average.

The time complexity of this SPSO(S, |T|) is O(qn). Here n
is the number of tasks in the workflow W. The for loop from
line 2 to 8will be executed for ‘n’ times. Because the particles
population dimension is n. The do–until loop starting at line
9 will be executed for ‘q’ times. The q value set in the exper-
iment is 25. On an average case, the results converged within
17 iterations for smaller workflows and around 20 for larger
workflows. The for loop starting at line 11 will be iterated for
‘n’ times accounting for the ‘n’ times in the time complexity.
Hence, the time complexity of this algorithm is O(qn).

7.2 Smart Variable Neighbourhood Particle Swarm
Optimization (SVNPSO) algorithm

The major drawback of PSO algorithm is that at some worst
cases it will suffer from local minima problem. In such cases,
the results will not converge even with more number of itera-

tions. In order to escape from local minima problem, we have
also tried another variant of PSO algorithm called Variable
Neighbourhood Particle Swarm Optimization (VNPSO). It
is a combination of the Variable Neighbourhood Search
(VNS) and Particle Swarm Optimization (PSO) (Liu et al.
2012; Abraham et al. 2006). The VNS approach is used for
various applications. One among is the usage for schedul-
ing. Marinakis and Marinaki (2013) has used the variable
neighbourhood search strategy and a path re-linking strategy
for permutation flow shop scheduling. VNPSO algorithm is
based on repeated exploration of neighbourhoods in progres-
sively increasing size to identify better local optima using so
called shaking strategies. Shaking phase normally generates
a new point at random from the kth neighbourhood of the
particle ‘p’. The Variable Neighbourhood Search framework
exploits systematically the idea of neighbourhood change,
both in the descent to local minima and in the escape from
the valleys which contain them (Liu et al. 2012; Hansen
et al. 2010; Liu and Abraham 2007). These searches are
done in steps and are repeated until a given termination con-
dition is met. Since our algorithm’s fitness function checks
for the security demand being satisfied in its constraints, we
name our algorithm as Smart Variable Neighbourhood Par-
ticle Swarm Optimization (SVNPSO) algorithm.

Like the previous algorithm, here also we have used the
smart initialization of the particles in the population. The
population size is the number of tasks in the workflow.

7.2.1 Basic terms

In SVNPSO, we use a threshold velocity to identify when
to apply the shaking strategy. If the velocity of the particle
decreases below the threshold velocity vth, the new updated
velocity is computed using Eqs. (18) and (19).

�vı (t + 1) = αvupdate + c1r1
(−−−→ppbest (t)

− �pı (t)) + c2r2
(−−−→pGbest (t) − �pı (t)

)
(18)

vupdate =
{ �vı if | �vı | ≥ vth
xvmax/μ if | �vi | < vth

(19)

The updated velocity is represented by vupdate and it is
computed using Eq. (19), where x represents a random
numbers generated by uniform distribution in the interval
[−1,1]. The efficiency of the algorithm is characterized by
two parameters vth and x. The value of x is responsible for
changing the direction of the variable neighbourhood search.
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The value of vth is responsible for escaping from the local
minima. A larger value for vth makes the particle to be in
its flying state, which prevents them from converging to a
solution (Liu et al. 2012).

7.2.2 SVNPSO algorithm

The algorithm SVNPSO(S, |T|) takes the schedule gener-
ated by algorithm 1 and the number of tasks as input. The
particles usage is the same as in the previous algorithm. The
variable l used in line 2 represents the neighbourhood search
limit. This will check whether there is any improvement in

the search by the swarm particles. When there is no improve-
ment, it is incremented or else it is reinitialized to 0. This
helps in making decision whether to apply the shaking strat-
egy or not. We define a limit value for this as 7. That means
for 7 consecutive swarm search iterations there is no possi-
bility of improvement. This is checked in line 26. When it

is understood that for seven consecutive iterations there is
no improvement; then, we update the velocity using vupdate
which implements the shaking strategy. The for loop from
lines 3 to 8 will do the needed initialization. At line 5, the
particles’ position is initialized with the position from the
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schedule. That is, the particles are initialized with the virtual
machine assignment decided from the schedule S. This ini-
tialization makes the SVNPSO algorithm smarter in such a
way the particles are initialized with the near optimal loca-
tions. This will aid in faster convergence of the schedule.
The velocity is initialized randomly at line 6. The particle’s
Pbest is initialized with the initial particle’s position at line
7. The global best of the population, Gbest is initialized at
line 14. The Gbest is initialized in such a way that the best
of the entire particle’s position is selected. Lines 9–32 will
be executed for each iterations of the swarm search. Line 13
calculates the fitness value for each particle by considering
the OET and OEC values subjected to satisfying the security
constraints. The particles’ fitness value is compared with the
Pbest. If a better result is obtained in the search, then the Pbest
is updated from lines 20–22. Similarly, lines 23–25 check for
the improvement in the Gbest. If any improvement is identi-
fied, then the Gbest will be updated with that improvement.
In lines 26 and 30 the velocity and the positions are updated
based on the neighbourhood search limit, so that the particles
move in the right direction by using the knowledge gained
in the current iteration. The until loop will be iterated till the
objective values of OET and OEC converge.

The time complexity of this SVNPSO(S, |T|) is also
O(qn). Here n is the number of tasks in the workflow W.
The for loop from line 3 to 8 will be executed for ‘n’ times.
The particles’ population dimension is n. The do–until loop
starting at line 9will be executed for ‘q’ times. The q value set
in the experiment is 30. On an average case, the results con-
verged within 20 iterations for smaller workflows and around
22 for larger workflows. This SVNPSO algorithm will suit
for overcoming local minimum. The for loop starting at line
11 will be iterated for ‘n’ times accounting for the ‘n’ times
in the time complexity. Hence, the time complexity of this
algorithm is O(qn).

8 Experimentation and performance analysis

We implemented the proposed algorithms using Work-
flowSim Chen and Deelman (2012) to evaluate their perfor-
mance. WorkflowSim is the extension of CloudSim Simula-
tor (Calheiros et al. 2011). It is an open-source simulator and
it provides a complementary level of managing the work-
flows. The workflow applications considered to evaluate
the proposed system are the real-world scientific workflow
applications such as Montage (2015,Berriman et al. 2004),
Epigenomics (USC Epigenome Center 2015) and Cyber-
Shake (Graves et al. 2010). All these workflows are delivered
to the scientific community in a robust and scalable way by
the Pegasus Workflow Management System tools (Pegasus
Workflow Management System 2015). All the three work-
flows, namely Montage, Epigenomics and Cybershake, have

Fig. 4 Montage workflow structure

different structures as given in Figs. 4, 5 and 6 and have
different computational and data characteristics. Workflow
management system (WfMS) is used to manage scientific
workflows.The scientificworkflows canbe characterized and
used for testing the workflow scheduling (Workflow Gener-
ator 2015).

WorkflowSim consists of a Workflow Mapper to map
abstract workflows to concrete workflows depending on
their execution sites; a Workflow Engine to handle the data
dependencies; and a Workflow Scheduler to match jobs to
resources.

The DAX is a description of an abstract workflow in XML
format that is used as the primary input in our model. The
documentation of the schema and its elements can be found
in (Schema of workflow in XML format 2015). The DAX
file consists of the following three parts:

1. List of all referenced files (optional).
2. Definition of all jobs (1..*).
3. List of control flow dependencies (optional).

Let the unit of time be represented as τ . If there is any
partial utilization of the leased VM, that can be also be con-
sidered as full time utilization. For example, consider that
τ = 60 min then, if a VM is used for 61 minutes, then the
user will pay for 2 periods of 60 min, that is, 120 min. Also,
there is no limitation for the number of VMs to be leased.
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Fig. 5 Epigenomic workflow structure

Fig. 6 Cybershake workflow structure

The different types of VMs and cost per unit time of the VMs
used in our experiments are given in Table 3.

8.1 Performance analysis with real workflows based on
makespan

Montage is an application for constructing custom astronom-
ical imagemosaics of the sky.WeconsideredMontage graphs
with 25, 50 and 100 tasks. TheEpigenomicsworkflow is used
to map the epigenetic state of human cells on a genome-wide
scale. As was the case for the other real application graphs,
the structure of this application is known. In our experiment,

we used graphs with 24, 46 and 100 tasks. The Cyber-
Shake workflow is used to characterize earthquake hazards
in a region using the Probabilistic Seismic Hazard Analysis
technique. The CyberShake workflows with 30, 50 and 100
tasks are used for experimentation. The Montage 25 tasks,
Epigenomics 24 tasks and Cybershake 30 tasks workflow are
considered as the small group. Similarly Montage 50 tasks,
Epigenomics 46 tasks and Cybershake 50 tasks workflow are
considered as themedium-sizedworkflows. FinallyMontage
100 tasks, Epigenomics 100 tasks and Cybershake 100 tasks
workflow are considered as the large-sized workflows.

To show the efficiency of our proposed SPSO and
SVNPSO algorithms, we have considered two algorithms
with list heuristic approach, namely HEFT algorithm
(Topcuoglu et al. 2002) and PEFT algorithm (Arabnejad and
Barbosa 2014). At the same time, we consider two more
PSO-based algorithms, namely PSO algorithm (Rodriguez
and Buyya 2014), RDPSO algorithm (Wu et al. 2010). These
four algorithms are used to comparewith our proposed SPSO
and SVNPSO algorithms.

The experiments were executed for 50 times and the
results were plotted with the average value of those fifty
experiments. Thus the makespan plotted in Table 6 is the
average makespan of 50 different trials.

PSO Parameters: The population size is fixed as the num-
ber of tasks in the workflow W. The search space for the
particles is the initial virtual machine pool initialized by
|VMtype| × |WLevel|. For instance, for the sample workflow
given in figure the number of VMs in the initial pool is 25
VMs (5×5=25). The number of VM types considered is 5 as
per Table 3 and the number of level is 5 as per Fig. 1. In Sect.
5, we have considered that the consumer has to purchase m
number of VMs from the provider. This m will be decided
by the SPSO algorithm depending on the security guaran-
teed level being satisfied. In our experiments, the minimum
number of VM being allocated for the tasks in the workflow
is 3 and the maximum number depends on the dynamic allo-
cation of the algorithm depending on the availability of the
VM and the SGL being satisfied.

We have varied the value of ∝, the inertia weight from
0.2 to 0.7. We observed that this inertia weight has a higher
impact on the convergence of results. The best results can
be had when the inertia is fixed as 0.4–0.6. On an average
case, the results converged within 17 iterations for smaller
workflows and around 20 for larger workflows for the SPSO
algorithm. For the SVNPSO algorithm, the results converged
within 20 iterations for smaller workflows and around 22
for larger workflows on an average. The extra iterations
needed are due to the search for overcoming the local min-
ima. The values of c1 and c2 are varied from 1.5 to 2.0 in our
experiments. But change in these values does not affect the
convergence ratemuch. On an average, we have preferred 1.9
for both c1 and c2, so that the sum of c1 and c2 is within 4.
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Table 6 Tabulation of
makespan for different sized
scientific workflow applications

Size Workflow used HEFT PEFT RDPSO PSO SPSO SVNPSO

Small Montage 243 210 223 136 49.833 51.823

CyberShake 356 324 566 213 181 186

Epigenomics 292 245 278 253 195 212

Medium Montage 162 142 156 112 68.25 77.33

CyberShake 454 421 1242 402 312 310

Epigenomics 440 425 435 398 356 365

Large Montage 332 310 325 256 212 230

CyberShake 654 612 1132 578 488 498

Epigenomics 624 596 612 568 534 545

Table 7 Tabulation of speedup
for different sized scientific
workflow applications

Size Workflow used HEFT PEFT RDPSO PSO SPSO SVNPSO

Small Montage 16.2 15.4 14.911 12.673 9.937 13.108

CyberShake 26 23 23.14 19.57 16.94 18.725

Epigenomics 10.2 9 6.99 10.03 6.96 7.431

Medium Montage 27 24 24.9 21.371 16.169 24.67

CyberShake 36 33 32.66 28.32 25.14 32.13

Epigenomics 14 12 11.613 18.44 10.472 11.731

Large Montage 44 42 40.4 38 27.5 33

CyberShake 56 53 49.5 47 41 46

Epigenomics 17 16 12 36 14 13

The makespan of Montage, Cybershake and Epigenomics
workflow applications for small, medium and large task
groups is tabulated in Table 6. The results show that the pro-
posedSPSOandSVNPSOalgorithmgives a bettermakespan
than the existing algorithms such as HEFT, PEFT, RDPSO
and PSO algorithms. In this, the RDPSO algorithm doesn’t
work good for Cybershake, which is more breadthwise dis-
tributed. Also we can infer that SVNPSO algorithm achieves
good makespan for random structures such as partial paral-
lel and sequential. But for workflow such as Epigenomics,
which has a good parallel structure, it lags a little bit in
yielding a good makespan. The structure of Montage and
Cybershake gives good random structure. Montage has both
depth and breadth in its structure, whereas Cybershake has
breadth structure. Epigenomics has good depth structure.
Thus we have considered both depth and breadth struc-
ture in the workflow for our experiments and our SPSO
and SVNPSO is able to achieve good makespan and also
able to find the possibly secured VM for the tasks to be
allocated.

8.2 Performance analysis of real workflows based on
speedup

Speedup The speedup of our algorithm is calculated as the
fraction of cumulative computation costs and fitness function

computation of the tasks in the workflow with the makespan
of the output schedule. It is defined in Eq. (20).

speed up =
∑

ti∈T ET (ti ) + time taken for F

makespan
(20)

The speedup of Montage, Cybershake and Epigenomics
workflow applications for small, medium and large task
groups is tabulated in Table 7. The results show that the pro-
posed PSO algorithm gives the best speedup compared to
other algorithms. For the Epigenomics workflow, which has
a good depth structure the SVNPSO algorithm works better
compared to other workflows.

The SPSO and SVNPSO algorithms have converged with
minimum number of iterations. Our results for overall exe-
cution cost and overall execution time has converged within
20 iterations.

8.3 Performance analysis with synthetic workflows

To evaluate the performance of the proposed algorithm,
with larger-sized workflows we have used workflow gen-
erator. The workflow generator is used to generate synthetic
workflows with various structures. The workflow graph gen-
erator uses several parameters such as number of tasks as
DAG size, number of levels, link density, maximum and
minimum expected values of task processing times and inter-
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Fig. 7 Comparison of makespan with different sized workflows

task communication times. The task processing time on
every VM follows uniform distribution. The communica-
tion time on each edge is based on uniform distribution.
The communication-to-computation ratio (CCR) encodes
the complexity of the computation of a task depending on
the number of elements in the workflow application. We
have generated workflows of sizes 1000, 2000 and 5000.
We have also experimented with different CCR values. The
range of values we used in our simulation is 0.1, 0.5, and
1 for CCR. In order to differentiate the virtual machines’
computational capacity, each virtual machine has been cre-
ated by varying MIPS rate and PesNumber according to
Table 3.

We have generated workflows with 1000, 2000 and 5000
tasks and plotted the makespan in Fig. 7. It can be inferred
from the diagram that the proposed SPSO an SVNPSO algo-
rithm gives better results even for larger workflows. On an
average, the SPSO algorithm gives 18.7 % improvement
with respect to HEFT algorithm, 14.5% improvement with
respect to RDPSO algorithm and 11.2% improvement with
respect to PSO algorithm. Similarly, the SVNPSO algorithm
gives 19.6 % improvement with respect to HEFT algorithm,
15.5% improvement with respect to RDPSO algorithm and
12.3% improvement with respect to PSO algorithm. This
proves the efficiency of our proposed SPSO and SVNPSO
algorithm.

We have tested the synthetic workflows with differ-
ent CCR values for workflows. The communication-to-
computation ratio (CCR) of a workflow is used to repre-
sent graph characteristics, which is either communication-
intensive or computation-intensive. For higher value of CCR,
the graph is more communication-intensive and if the CCR
value is low then graph is computation-intensive. It is cal-
culated by the average communication cost divided by the
average computation cost on a target computing system. The
range of CCR values that we used in our simulation is 0.1,
0.5 and 1. The comparison of makespan with different CCR
values for workflows with 1000 tasks, 2000 tasks and 5000
tasks are shown in Table 8. It can be noted that the pro-
posed SPSO and SVNPSO algorithms give better makespan
compared to other algorithms. The RDPSO algorithm which
didn’t work well for Cybershake workflow shows the same
effect when the CCR values are increased. The SPSO and
SVNPSO algorithm is able to give improvements even with
higher CCR values, which proves the consistency of our
approach.

8.4 Performance analysis on security

Probability of security with different risk coefficient λ for
the SPSO algorithm is plotted in Figs. 8 and 9. Similarly, the
probability of security with different risk coefficient λ for the
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Fig. 8 Probability of security with different risk coefficient λ for small
workflow applications using SPSO algorithm

Table 8 Tabulation of
makespan for different sized
synthetic workflows

Size CCR value HEFT PEFT RDPSO PSO SPSO SVNPSO

1000 0.1 1897 1812 1789 1723 1510 1456

0.5 2276 2210 3021 2100 1895 1890

1 4100 3950 4966 3789 3554 3521

2000 0.1 3152 3112 3002 2850 2560 2555

0.5 4123 4012 4556 3750 3550 3560

1 5988 5850 6952 5600 5200 5190

5000 0.1 7250 7122 6952 6778 6023 6033

0.5 8120 8025 8788 7800 7500 7560

1 9452 9396 11242 9152 8950 8965
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Fig. 9 Probability of security risk with different risk coefficient λ for
medium workflow applications using SPSO algorithm

Fig. 10 Probability of security with different risk coefficient λ for
small workflow applications using SVNPSO algorithm

Fig. 11 Probability of security risk with different risk coefficient λ for
medium workflow applications using SVNPSO algorithm

SVNPSO algorithm is plotted in Figs. 10 and 11. From the
bar chart, we can infer that the probability of security is in
the interval [0.1]. The proposed model ensures to increase
the security as the risk factor increases. Our method will
allocate the VMs, which are having better security Level.
This has been proved with the probability of security plotted
in Figs. 8, 9, 10 and 11. Thus the proposed model generates a
good secured schedule for theworkflow applications in cloud
computing.

9 Conclusion

In the present work, we have proposed SPSO and SVNPSO
algorithm with secured scheduling approach for scientific

workflows in cloud computing. It gives an effective method
for the utilization of the resources by proposing to use
the metaheuristic optimization for resource allocation and
scheduling. The proposed method for scheduling the work-
flow in the IaaS of cloud uses the naturally driven optimizing
algorithm, and PSOprovides an automated IaaS provisioning
with minimal decision time in cloud for scientific work-
flows. The proposed algorithm provides a trade-off between
security and minimummakespan and cost for workflow exe-
cution in cloud. Security constraints are introduced into the
optimization model. The proposed algorithms SPSO and
SVNPSO uses the coding strategy designed for encoding the
particle to solve the multiobjective problem. Experimental
results show that the proposed algorithm gives comparatively
good results than the previous methods with minimum iter-
ations which is well suited for cloud environment.
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