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Abstract The rough set theory is a successful tool to study
the vagueness in data, while the fuzzy bipolar soft sets have
ability to handle the uncertainty, as well as bipolarity of the
information in many situations. We connect the Pawlak’s
rough sets with the fuzzy bipolar soft sets and introduce the
concept of rough fuzzy bipolar soft sets. We also examine
some structural properties of rough fuzzy bipolar soft sets
and study the effects of the equivalence relation in Pawlak
approximation space on the roughness of the fuzzy bipolar
soft sets. We also discuss some similarity relations among
the fuzzy bipolar soft sets, based on their roughness. At the
end, an application of the rough fuzzy bipolar soft sets in a
decision-making problem is discussed and an algorithm for
this application is proposed, supported by an example.

Keywords Rough sets · Approximation space · Fuzzy sets ·
Bipolar information · Fuzzy bipolar soft sets

1 Introduction

Inmodern society,many concepts in engineering, economics,
environmental science, social science, medical science and
many other fields have vagueness and uncertainty in the data
collected and studied for several purposes. This vagueness
as well as volume and complexity in such data is increas-
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ing rapidly. In classical mathematics, all the mathematical
notions must be precise and exact. So, it is not always a
successful tool for dealing with the problems having uncer-
tainties. Over the years, many researchers and scientists were
trying to find out some suitable tools to deal with these uncer-
tainties. They created many tools for this purpose. The most
successful of all those are the fuzzy set theory (Zadeh 1965),
rough set theory (Pawlak 1982, 1991) and the soft set theory
(Molodtsov 1999). These theories reduced the gap between
the traditionalmathematical designs and the vague real-world
data.

The fuzzy set theory (Zadeh 1965) has become a vigor-
ous area of research in many sciences including computer
sciences (Arva and Csukas 1988; Frank and Seliger 1997),
automata theory (Doostfatemeh and Kremer 2005; Li and
Wang 2014), decision-making theory (Roy and Maji 2007;
Cagman et al. 2010; Feng et al. 2010b), medical sciences
(Kovalerchukab et al. 1997; Phuong and Kreinovich 2011),
management sciences (Guiffrida and Nagi 1998), engineer-
ing (Dubois and Prade 1993), graph theory (Swaminathan
2012; Akram et al. 2017). The rough set theory (Pawlak
1982, 1991; Pawlak and Skowron 2007) successfully pro-
vided a systematic scheme to handle the imprecision and
uncertainty in the data. Pawlak used the upper and lower
approximations of a collection of objects to investigate how
close the objects are to the information attached to them.
This theory has many valuable applications. Hence, this the-
ory attracted many scientists and researchers and initiated
research in many directions. Dubois and Prade (1990) intro-
duced the notions of rough fuzzy sets and fuzzy rough sets.
Yao (2010) discussed the three-way decisions with proba-
bilistic rough sets.

Molodtsov (1999) initiated the novel concept of soft sets,
a newmathematical tool to deal with imprecisions and uncer-
tainties. The parameters of information play a vital role while
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scrutinizing and analyzing a data or taking a decision. The
theory of soft sets has been evidenced to be an adequate
parameterization tool. Hence, this theory magically over-
came many difficulties raised while using the old theories.
Due to its diverse applications, this theory received much
attention of researchers and scientists. A rapid growth in the
research on soft sets can be seen in the last few years. Maji
et al. (2002) defined some basic operations on soft sets. Maji
et al. (2003) applied the soft set theory to a decision-making
problem. Aktas and Cagman (2007) related the soft sets to
the rough sets and the fuzzy sets. They also introduced the
soft groups and investigated their properties. Ali et al. (2009)
defined some new operations on soft sets. Feng et al. (2010a)
provided a framework to combine soft sets, rough sets and
fuzzy sets all together. Ali et al. (2011) discussed algebraic
structures of soft sets associated with new operations. Ali
(2012) presented another view on reduction in parameters in
soft sets.

In many types of data analysis, bipolarity of the infor-
mation is a core feature to be considered while constructing
mathematical models for many problems. Bipolarity speaks
about the positive and negative features of the information.
The positive information represents what is guaranteed to be
possible, while the negative information represents what is
impossible, forbidden or surely false. The idea which lies
behind the existence of bipolar information is that a wide
variety of human decision making is based on bipolar judg-
mental thinking. For instance, sweetness and sourness of
food, cooperation and competition, friendship and hostil-
ity, effects and side effects of medicines are the two sides
of information in decision-making and coordination. The
coexistence, equilibrium and harmony of these two sides
are considered a key for the stability of a social system.
The soft sets and the fuzzy sets, together with their com-
pliments, are not appropriate tools to handle this bipolarity;
for example, a dress which is not beautiful, may not be
necessarily ugly. Zhang (1994) introduced the concept of
the bipolar fuzzy sets, as an extension of fuzzy sets. Lee
(2004) compared the bipolar fuzzy sets with intuitionis-
tic fuzzy sets and interval-valued fuzzy sets. Three main
types of the bipolarity were discussed by Dubois and Prade
(2008). Naz and Shabir (2014) contributed toward the alge-
braic structure of fuzzy bipolar soft sets. The fuzzy bipolar
soft sets have potential to handle the bipolarity, as well as
fuzziness of the information about some objects with the
help of two mapping (from the universe U of object to the
collection of all fuzzy sets in U ). One mapping handles
the positivity of the information, while the other mapping
measures the negativity. This is the chief motivation for us
to introduce and study the roughness in fuzzy bipolar soft
sets.

The purpose of this paper is to establish the concept of
roughness in the fuzzy bipolar soft sets. The remaining part

of the paper is organized as follows: Sect. 2 recalls some basic
concepts and definitions. Sect. 3 is dedicated to the study of
rough fuzzy bipolar soft sets by defining the lower and upper
approximations of fuzzy bipolar soft sets in a Pawlak approx-
imation space. Some similarity relations among the fuzzy
bipolar soft sets are defined in Sect. 4. Section 5 presents an
application of the rough fuzzy bipolar soft sets in a decision-
making problem, supported by an example. The last section
comprises of the conclusions.

2 Preliminaries

2.1 Rough sets

The rough set theory (Pawlak 1982, 1991; Pawlak and
Skowron 2007) is based on the conjecture that we can always
associate some information (data) to every object in the
universe of discourse. Pawlak used the upper and lower
approximations of a collection of objects to investigate how
close the objects are to the information attached to them.
The pair (U, R) is referred to as Pawlak approximation space,
whereU is a nonempty universe of objects and R is an equiv-
alence relation defined on U. Objects characterized by the
same information are indiscernible. The relation R is taken
as the indiscernibility relation and serves as the foundation of
the rough set theory. The equivalence classes defined by R are
referred to as R−elementary granules and serve as the basic
building blocks of the information. The equivalence class in
U /R containing the element x ∈ U will be denoted by [x]R
(or sometimes by [x], for convenience). With the help of this
indiscernibility relation R, the following two operators on a
subset X of U are defined:

X = {x ∈ U : [x]R ⊆ X}
X = {x ∈ U : [x]R ∩ X �= φ}

The two subsets X and X of U, which are assigned to
X ⊆ U, are called the lower and upper rough approx-
imations of X with respect to R, respectively. Moreover,
PosR X = X , NegRX = U − X and BndRX = X − X
are called the positive, negative and boundary regions of X
inU, respectively. The semantics of these regions are as fol-
lows.

• x ∈ PosR X means that X certainly contains the object
x of U.

• x ∈ NegRX means that X definitely does not contain x
of U.

• x ∈ BndRX means that X may or may not contain x of
U.
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Thus, the rough set theory studies the objects whosemem-
bership to a set is uncertain.

Definition 1 (Pawlak and Skowron 2007) Let (U, R) be
a Pawlak approximation space. A subset X ⊆ U is
R−definable if X = X ; otherwise, X is known as a rough
set.

2.2 Fuzzy sets and rough fuzzy sets

The theory of fuzzy sets (Zadeh 1965) measures the degree
of uncertainty of information about the objects with the help
of a mapping, termed as the membership function.

Definition 2 (Zadeh 1965) A fuzzy setμ in a nonempty uni-
verse U is defined by a membership function μ : U −→
[0, 1].

Thus, a fuzzy set μ assigns to each x ∈ U, a membership
valueμ(x) specifying the degree towhich x is amember ofμ.
The set of all fuzzy sets inU is denoted by FP(U ). Byμ ⊆ ν,
we mean that μ(x) ≤ ν(x) for all x ∈ U. Clearly, μ = ν if
μ ⊆ ν and ν ⊆ μ. Themappings ∅, I : U −→ [0, 1] defined
by ∅(x) = 0 and I (x) = 1 for all x ∈ U, are called the null
fuzzy set and the whole fuzzy set in U, respectively. The
operations of union, intersection and compliment of fuzzy
sets are defined componentwise as follows:

• (μ ∩ ν)(x) = μ(x) ∧ ν(x)
• (μ ∪ ν)(x) = μ(x) ∨ ν(x)
• μ′(x) = 1 − μ(x)

where μ, ν ∈ FP(U ) and x ∈ U.

Dubois and Prade (1990) defined the lower and upper
rough approximations of fuzzy sets in a Pawlak approxima-
tion space and introduced the notion of rough fuzzy sets.

Definition 3 (Dubois and Prade 1990) Let (U, R) be a
Pawlak approximation space and let μ ∈ FP(U ). The lower
and upper rough approximations ofμ in (U, R) are the fuzzy
sets denoted by μ and μ, respectively, and defined by

μ(x) = ∧
y∈[x]R

μ(y)

and

μ(x) = ∨
y∈[x]R

μ(y)

for all x ∈ U. If μ = μ, the fuzzy set μ is said to be
R−definable; otherwise, μ is a rough fuzzy set in U.

Theorem 1 (Dubois and Prade 1990) Let (U, R) be a
Pawlak approximation space and let μ, ν ∈ FP(U ). Then,
the following hold.

(1) μ ⊆ μ ⊆ μ

(2) (μ′) = (μ)′ and (μ′) = (μ)′

(3) (μ) = μ = (μ) and (μ) = μ = (μ)

(4) R(I ) = I = R(I ) and R(∅) = ∅ = R(∅)

(5) μ ∩ ν = μ ∩ ν

(6) μ ∪ ν ⊇ μ ∪ ν

(7) μ ∪ ν = μ ∪ ν

(8) μ ∩ ν ⊆ μ ∩ ν

(9) μ ⊆ ν implies that μ ⊆ ν and μ ⊆ ν.

2.3 Soft sets

Let E be a nonempty finite set of attributes (parameters, char-
acteristics or properties) which the objects in U possess and
let P(U ) denote the family of all subsets ofU.Then, a soft set
is defined with the help of a set-valuedmapping, as described
below.

Definition 4 (Molodtsov 1999) A pair (F, A) is called a soft
set overU,where A ⊆ E and F : A → P(U ) is a set-valued
mapping.

In simple words, a soft set (F, A) over U is a parameter-
ized family of subsets of U where each parameter e ∈ A is
associated with a subset F(e) of U. The set F(e) contains
the objects of U having the property e and is called the set
of e−approximate elements in (F, A).

2.4 Fuzzy bipolar soft sets

A fuzzy bipolar soft set (Naz and Shabir 2014) is obtained
with the help of two set-valued mappings, by considering not
only a set of parameters, but also an allied set of carefully
chosen parameters with opposite meanings, termed as “not
set of parameters.” The material in this subsection is taken
from Naz and Shabir (2014).

Definition 5 A triplet ω = (F,G, A) is called a fuzzy bipo-
lar soft set over U, where A ⊆ E and F,G are mappings
given by F : A → FP(U ) and G : ¬A → FP(U ) such
that

F(e)(x) + G(¬e)(x) ≤ 1

for all e ∈ A and for all x ∈ U,where¬A stands for the “not
set of A.”

The condition F(e)(x) + G(¬e)(x) ≤ 1 is imposed as
a consistency constraint. Here, F(e) and G(¬e) represent
fuzzy sets inU, F(e)(x) denotes the degree of presence of a
property e in an object x of U, while G(¬e)(x) denotes the
degree of presence of some implicit counter property ¬e in
x .Wedescribe and define the fuzzy bipolar soft set (F,G, A)

with the help of these two fuzzy sets F(e) and G(¬e) in U.
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The sum �
e∈EF(e)(x) of all the positive membership values

is termed as the degree of positivity of an object x , while
the sum �¬e∈¬E

G(¬e)(x) expresses the degree of negativity

of the object x . It is worth noting that the degree of lack-
ing of a property e in an object may not be equal to the
degree of having the opposite property ¬e. So, we may have
F(e)(x) + G(¬e)(x) � 1 for some e ∈ E and x ∈ U.

This is termed as the degree of hesitation of a fuzzy bipo-
lar soft set (F,G, A) over U and can be approximated by
h(e)(x) = 1− (F(e)(x) +G(¬e)(x)) for e ∈ A and x ∈ U.

Let us denote the collection of all fuzzy bipolar soft sets over
U by �.

Definition 6 For any two fuzzy bipolar soft sets ω1 =
(F1,G1, A1) and ω2 = (F2,G2, A2) over U, we say that
ω1 is a fuzzy bipolar soft subset of ω2, denoted by ω1˜⊆ ω2,
if

1) A1 ⊆ A2

2) F1(e) ⊆ F2(e) and G1(¬e) ⊇ G2(¬e) for all e ∈ A1.

The fuzzy bipolar soft setsω1 andω2 are equal, if F1(e)(x) =
F2(e)(x) for all e ∈ A1 and G1(¬e)(x) = G2(¬e)(x) for all
¬e ∈ ¬A1 and for all x ∈ U.

Definition 7 The relative whole fuzzy bipolar soft set is
(U ,�, A), denoted by UA, where U(e) = I and �(¬e) = ∅
for all e ∈ A. The whole fuzzy bipolar soft set is (U ,�, E).
The relative null fuzzy bipolar soft set is (�,U , A), denoted
by �A, where �(e) = ∅ and U(¬e) = I for all e ∈ A. The
null fuzzy bipolar soft set is (�,U , E).

Definition 8 Letω1 = (F1,G1, A1) andω2 = (F2,G2, A2)

be two fuzzy bipolar soft sets over a common universe U.

Then, their unions and intersections are defined as follows.

(1) The extended union of ω1 and ω2, denoted by ω1 ∪ε ω2,
is a fuzzy bipolar soft set (F1˜∪F2,G1˜∩G2, A1 ∪ A2)

over U, defined as:

(F1˜∪F2)(e) =
⎧

⎨

⎩

F1(e) if e ∈ A1 − A2
F2(e) if e ∈ A2 − A1
F1(e) ∪ F2(e) if e ∈ A1 ∩ A2

(G1˜∩G2)(¬e) =
⎧

⎨

⎩

G1(¬e) if ¬e ∈ (¬A1) − (¬A2)
G2(¬e) if ¬e ∈ (¬A2) − (¬A1)
G1(¬e) ∩ G2(¬e) if ¬e ∈ ¬(A1) ∩ (¬A2)

(2) The restricted union of ω1 and ω2, denoted by ω1 ∪r

ω2, is a fuzzy bipolar soft set (F1˜∪F2,G1˜∩G2, A1 ∩
A2) over U, where (F1˜∪F2)(e) = F1(e) ∪ F2(e) and
(G1˜∩G2)(¬e) = G1(¬e)∩G2(¬e) for all e ∈ A1∩A2,
provided A1 ∩ A2 �= φ.

(3) The extended intersection of ω1 and ω2, denoted by
ω1 ∩ε ω2, is a fuzzy bipolar soft set (F1˜∩F2,G1˜∪G2,

A1 ∪ A2) over U, defined as:

(F1˜∩F2)(e) =
⎧

⎨

⎩

F1(e) if e ∈ A1 − A2
F2(e) if e ∈ A2 − A1
F1(e) ∩ F2(e) if e ∈ A1 ∩ A2

(G1˜∪G2)(¬e) =
⎧

⎨

⎩

G1(¬e) if ¬e ∈ (¬A1) − (¬A2)
G2(¬e) if ¬e ∈ (¬A2) − (¬A1)
G1(¬e) ∪ G2(¬e) if ¬e ∈ ¬(A1) ∩ (¬A2)

(4) The restricted intersection of ω1 and ω2, denoted by
ω1 ∩r ω2, is a fuzzy bipolar soft set (F1˜∩F2,G1˜∪G2,

A1∩A2)overU,where (F1˜∩F2)(e) = F1(e)∩F2(e) and
(G1˜∪G2)(¬e) = G1(¬e)∪G2(¬e) for all e ∈ A1∩A2,
provided A1 ∩ A2 �= φ.

To find the extended union of ω1 and ω2, as in (1) of
Definition 8, we consider all the attributes of A1 and A2,
that is, the set A1 ∪ A2, and then, we partition A1 ∪ A2 into
three sets A1 − A2, A2 − A1 and A1 ∩ A2. The fuzzy set
(F1˜∪F2)(e) is evaluated as F1(e)∪ F2(e) for the attributes e
of A1 ∩ A2 only, while (F1˜∪F2)(e) is same as F1(e) for the
attributes e ∈ A1 − A2 and same as F2(e) for e ∈ A2 − A1.
Same is the case with fuzzy set (G1˜∩G2)(e) and (3) of the
same definition. We explain it in the following example.

Example 1 Let U = {h1, h2, h3, h4, h5} be a universe con-
taining five houses and E = {e1 =expensive, e2 =beautiful,
e3 = wooden, e4 =in green surroundings, e5 =in good
repair} be a set of attributes for U. Let the “not set of
E” be ¬E = {¬e1 = cheap, ¬e2 =ugly, ¬e3 =not
wooden, ¬e4 =in the commercial area, ¬e5 =in bad
repair}. We define, here, a fuzzy bipolar soft set ω1 =
(F1,G1, A1) over U, describing the opinion of Mr. X, who
intends to purchase a house, preferring the attributes A1 =
{e1, e2, e3}. Assume that Mr. X assigns the membership val-
ues {0.7, 0.6, 0.8, 0.5, 0.6} and {0.2, 0.3, 0.1, 0.5, 0.3} to the
houses in U for the attribute e1, describing the degrees of
expensiveness and cheapness in the houses, respectively.
Then, F1(e1) and G1(¬e1) are the fuzzy sets given below.

F1(e1) = {h1/0.7, h2/0.6, h3/0.8, h4/0.5, h5/0.6}
G1(¬e1) = {h1/0.2, h2/0.3, h3/0.1, h4/0.5, h5/0.3}

In the same way, we assume:

F1(e2) = {h1/0.8, h2/0.7, h3/0.8, h4/0.6, h5/0.6}
G1(¬e2) = {h1/0.1, h2/0.1, h3/0.2, h4/0.2, h5/0.3}
F1(e3) = {h1/0.4, h2/0.6, h3/0.4, h4/0.6, h5/0.5}
G1(¬e3) = {h1/0.5, h2/0.2, h3/0.5, h4/0.4, h5/0.5}

This fuzzy bipolar soft set can also be represented in tab-
ular form by setting the entry against ei and h j as (ai j , bi j ),
where ai j = F(ei )(h j ) and bi j = G(¬ei )(h j ). Hence,
the tabular representation of ω1 = (F1,G1, A1) is given in
Table 1.
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Table 1 Fuzzy bipolar soft set ω1 = (F1,G1, A1)

ω1 h1 h2 h3 h4 h5

e1 (0.7, 0.2) (0.6, 0.3) (0.8, 0.1) (0.5, 0.5) (0.6, 0.3)

e2 (0.8, 0.1) (0.7, 0.1) (0.8, 0.2) (0.6, 0.2) (0.6, 0.3)

e3 (0.4, 0.5) (0.6, 0.2) (0.4, 0.5) (0.6, 0.4) (0.5, 0.5)

We can also take another fuzzy bipolar soft set ω2 =
(F2,G2, A2) over U, with A2 = {e1, e2} as below.

F2(e1) = {h1/0.6, h2/0.6, h3/0.7, h4/0.7, h5/0.6}
G2(¬e1) = {h1/0.3, h2/0.2, h3/0, h4/0.2, h5/0.3}
F2(e2) = {h1/0.7, h2/0.6, h3/0.6, h4/0.7, h5/0.6}
G2(¬e2) = {h1/0.1, h2/0.2, h3/0.1, h4/0.1, h5/0.2}.

We find the restricted and extended unions of ω1 and
ω2, described as ω1 ∪ε ω2 = (F1˜∪F2,G1˜∩G2, A1 ∪ A2)

and ω1 ∪r ω2 = (F1˜∪F2,G1˜∩G2, A1 ∩ A2), respectively.
For the restricted union, the fuzzy sets (F1˜∪F2)(e) and
(G1˜∩G2)(¬e) are calculated for e ∈ A1 ∩ A2, that is, for
e = e1, e2 only, by using Definition 8, as below.

(F1˜∪F2)(e1) = F1(e1) ∪ F2(e1)

= {h1/0.7, h2/0.6, h3/0.8, h4/0.7, h5/0.6}
(F1˜∪F2)(e2) = F1(e2) ∪ F2(e2)

= {h1/0.8, h2/0.7, h3/0.8, h4/0.7, h5/0.6}
(G1˜∩G2)(¬e1) = G1(¬e1) ∩ G2(¬e1)

= {h1/0.2, h2/0.2, h3/0, h4/0.2, h5/0.3}
(G1˜∩G2)(¬e2) = G1(¬e2) ∩ G2(¬e2)

= {h1/0.1, h2/0.1, h3/0.1, h4/0.1, h5/0.2}

For the extended union, the fuzzy sets (F1˜∪F2)(e) and
(G1˜∩G2)(¬e) are also calculated for the attributes of A1−A2

and A2 − A1. As A1 − A2 = {e3} and A2 − A1 is empty,
we calculate (F1˜∪F2)(e) and (G1˜∩G2)(¬e) for e = e3, as
below.

(F1˜∪F2)(e3) = F1(e3)

= {h1/0.4, h2/0.6, h3/0.4, h4/0.6, h5/0.5}
(G1˜∩G2)(¬e3) = G1(¬e3)

= {h1/0.5, h2/0.2, h3/0.5, h4/0.4, h5/0.5}

Definition 9 The compliment of a fuzzy bipolar soft setω =
(F,G, A)overU is a fuzzy bipolar soft setωc = (Fc,Gc, A)

over U, where Fc(e) = G(¬e) and Gc(¬e) = F(e) for all
e ∈ A.

3 Rough fuzzy bipolar soft sets

Motivated by the idea of rough approximations of soft sets by
Feng et al. (2010b), we define the lower and upper approxi-
mations of the fuzzy bipolar soft sets and introduce the notion
of rough fuzzy bipolar soft sets as follows.

Definition 10 Let (U, R) be a Pawlak approximation space
and let ω = (F,G, A) ∈ �. The lower and upper rough
approximations of ω in (U, R) are the fuzzy bipolar soft sets

ωR = (FR,GR, A) and ωR = (F
R
,G

R
, A), respectively,

where FR(e), F
R
(e), GR(¬e), G

R
(¬e) are fuzzy sets inU,

defined by

FR(e)(x) = F(e)
R
(x) = ∧

y∈[x]R
F(e)(y)

F
R
(e)(x) = F(e)

R
(x) = ∨

y∈[x]R
F(e)(y)

GR(¬e)(x) = G(¬e)
R
(x) = ∨

y∈[x]R
G(¬e)(y)

G
R
(¬e)(x) = G(¬e)

R
(x) = ∧

y∈[x]R
G(¬e)(y)

for all e ∈ A. If ωR = ωR , then ω is said to be R−definable;
otherwise, ω is a rough fuzzy bipolar soft set over U.

The information about an object x of U depicted by the
above defined fuzzy sets is as follows.

• FR(e)(x) indicates the degree to which x definitely has
the property e.

• F
R
(e)(x) indicates the degree to which x probably has

the property e.
• GR(¬e)(x) indicates the degree to which x probably has

the property opposite to e.

• G
R
(¬e)(x) indicates the degree to which x definitely has

the property opposite to e.

If the relation R is understood, we will not write R as sub-
script or superscript (for convenience) in the above notations.
One can easily verify the following properties of the rough
fuzzy bipolar soft sets.

Theorem 2 Let (U, R) be a Pawlak approximation space
and let ω = (F,G, A) ∈ �. Then, the following assertions
are true.

(1) ω˜⊆ω˜⊆ω

(2) �A = �A = �A

(3) UA = UA = UA

(4) (ω) = ω = (

ω
)

(5) (ω) = ω = (ω)

(6) ωc = (

ω
)c

(7) ωc = (ω)c

123



1608 N. Malik , M. Shabir

Proof (1)–(5) These assertions can be verified by using Def-
initions 6, 7, 10 and Theorem 1.

(6) By using Definitions 9 and 10, the fuzzy bipolar soft
sets ωc and

(

ω
)c are described as ωc = (

Fc,Gc, A
)

and
(

ω
)c = ((F)c, (G)c, A). Notice that

Fc(e)(x) = ∨
y∈[x]F

c(e)(y) = ∨
y∈[x]G(¬e)(y)

= G(¬e)(x) = (F)c(e)(x)

Gc(¬e)(x) = ∧
y∈[x]G

c(¬e)(y) = ∧
y∈[x]F(e)(y)

= F(e)(x) = (G)c(¬e)(x)

hold for all e ∈ A and for all x ∈ U. By Definition 6, the
above assertions immediately give

ωc = (

ω
)c

(7) The proof is similar to the proof of (6). ��
Remark 1 Notice that for any two fuzzy bipolar soft sets
ω1 = (F1,G1, A) and ω2 = (F2,G2, B) over a common
universe U and for any e ∈ A ∪ B, we have the following
assertions, by using Theorem 1.

(1) F1(e) ∪ F2(e) = (F1˜∪F2)(e)
(2) F1(e) ∩ F2(e) ⊇ (F1˜∩F2)(e)
(3) F1(e) ∪ F2(e) ⊆ (F1˜∪F2)(e)
(4) F1(e) ∩ F2(e) = (F1˜∩F2)(e)

(5) G1(¬e) ∪ G2(¬e) ⊆ (G1˜∪G2)(¬e)
(6) G1(¬e) ∩ G2(¬e) = (G1˜∩G2)(¬e)
(7) G1(¬e) ∪ G2(¬e) = (G1˜∪G2)(¬e)
(8) G1(¬e) ∩ G2(¬e) ⊇ (G1˜∩G2)(¬e).

Theorem 3 Let (U, R) be a Pawlak approximation space.
Then, the following assertions are true for any ω1 =
(F1,G1, A), ω2 = (F2,G2, B) ∈ �.

(1) ω1˜⊆ω2 implies that ω1 ˜⊆ ω2 and ω1 ˜⊆ ω2

(2) ω1 ∩ε ω2 = ω1 ∩ε ω2

(3) ω1 ∩r ω2 = ω1 ∩r ω2

(4) ω1 ∪ε ω2 ˜⊇ ω1 ∪ε ω2

(5) ω1 ∪r ω2 ˜⊇ ω1 ∪r ω2

(6) ω1 ∩ε ω2 ˜⊆ ω1 ∩ε ω2

(7) ω1 ∩r ω2 ˜⊆ ω1 ∩r ω2

(8) ω1 ∪ε ω2 = ω1 ∪ε ω2

(9) ω1 ∪r ω2 = ω1 ∪r ω2.

Proof (1) Given that ω1 ˜⊆ ω2, that is, (F1,G1, A)˜⊆(F2,
G2, B). Then, F1(e), F2(e), G1(¬e), G2(¬e) are fuzzy sets
in U, such that F(e) ⊆ F2(e) and G(¬e) ⊇ G1(¬e) for all
e ∈ A, where A ⊆ B. By using Definition 10 and Theorem
1, we get

F(e) = F(e) ⊆ F2(e) = F2(e)

and

G(¬e) = G(¬e) ⊇ G1(¬e) = G1(¬e)

for all e ∈ A. Thus, ω1 ˜⊆ ω2 by Definition 6. Similarly, one
can verify that ω1 ˜⊆ ω2.

(2) By using Definition 8, the fuzzy bipolar soft sets
ω1 ∩ε ω2 and ω1 ∩ε ω2 are described as ω1 ∩ε ω2 =
(F1˜∩F2,G1˜∪G2, A∪ B) and ω1∩ε ω2 = (F1˜∩F2,G1˜∪G2,

A ∪ B). Now, Remark 1 states that the equations

(F1˜∩F2)(e) = F1(e) ∩ F2(e) = (F1˜∩F2)(e)

and

(G1˜∪G2)(¬e) = G1(¬e) ∪ G2(¬e) = (G1˜∪G2)(¬e)

hold for all e ∈ A ∪ B. By Definition 6, the above equations
assert that

ω1 ∩ε ω2 = ω1 ∩ε ω2

(3) This equation can be deduced from (2).
(4) The fuzzy bipolar soft sets ω1 ∪ε ω2 and ω1 ∪ε ω2

in the equation to be proved are described as ω1 ∪ε ω2 =
(F1˜∪F2,G1˜∩G2, A∪ B) and ω1∪ε ω2 = (F1˜∪F2,G1˜∩G2,

A ∪ B). Remark 1 states that the expressions

(F1˜∪F2)(e) ⊇ F1(e) ∪ F2(e) = (F1˜∪F2)(e)

and

(G1˜∩G2)(¬e) ⊆ G1(¬e) ∩ G2(¬e) = (G1˜∩G2)(¬e)

hold for all e ∈ A∪B. ByDefinition 6, the above expressions
prove that

ω1 ∩ε ω2 ˜⊇ ω1 ∩ε ω2

(5) This expression can be deduced from (4).
(6–9) These assertions can be verified in the same way as

the assertions (2–5) above. ��
For the illustration of the above theorem, we consider the

following example.

Example 2 Consider the universe U of five houses, E , ¬E
and the fuzzy bipolar soft set ω1, as defined in Example 1.
Let the house h1 be in some locality A, the houses h2 and h3
be in a locality B and the houses h4 and h5 be in a locality C.
We define a binary relation R onU, such that two houses are
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related in R if they are in same locality. Then, R is an equiv-
alence relation on U, given by {(h1, h1), (h2, h2), (h3, h3),
(h4, h4), (h5, h5), (h2, h3), (h3, h2), (h4, h5), (h5, h4)}. The
equivalence classes defined by R are [h1], [h2, h3], [h4, h5].
In this example, we show how to determine the lower
and upper rough approximations of a fuzzy bipolar soft
set by verifying the assertion (1) of Theorem 2. In order
to determine the lower rough approximation (F1,G1, A1)

and the upper rough approximation (F1,G1, A1) of ω1 =
(F1,G1, A1), in the approximation space (U, R), the fuzzy
sets F1(e),G1(¬e), F1(e) and G1(¬e) are to be calculated
for each e ∈ A1 by using Definition 10 and the relation R.
First, we calculate the fuzzy set F1(e) for e = e1, in detail.

F1(e1) =
{

h1/ ∧
y∈[h1]

F1(e1)(y), h2/ ∧
y∈[h2]

F1(e1)(y), ...,

h5/ ∧
y∈[h5]

F1(e1)(y)

}

=
{

h1/ ∧
y=h1

F1(e1)(y), h2/ ∧
y=h2,h3

F1(e1)(y), ...,

h5/ ∧
y=h4,h5

F1(e1)(y)

}

= {h1/0.7, h2/(0.6 ∧ 0.8), h3/(0.6 ∧ 0.8),

h4/(0.5 ∧ 0.6), h5/(0.5 ∧ 0.6)}
= {h1/0.7, h2/0.6, h3/0.6, h4/0.5, h5/0.5}

In the same way, the following fuzzy sets are calculated for
all e ∈ A1.

F1(e2) = {h1/0.8, h2/0.7, h3/0.7, h4/0.6, h5/0.6}
F1(e3) = {h1/0.4, h2/0.4, h3/0.4, h4/0.5, h5/0.5}
G1(¬e1) = {h1/0.2, h2/0.3, h3/0.3, h4/0.5, h5/0.5}
G1(¬e2) = {h1/0.1, h2/0.2, h3/0.2, h4/0.3, h5/0.3}
G1(¬e3) = {h1/0.5, h2/0.5, h3/0.5, h4/0.5, h5/0.5}
F1(e1) = {h1/0.7, h2/0.8, h3/0.8, h4/0.6, h5/0.6}
F1(e2) = {h1/0.8, h2/0.8, h3/0.8, h4/0.6, h5/0.6}
F1(e3) = {h1/0.4, h2/0.6, h3/0.6, h4/0.6, h5/0.6}
G1(¬e1) = {h1/0.2, h2/0.1, h3/0.1, h4/0.3, h5/0.3}
G1(¬e2) = {h1/0.1, h2/0.1, h3/0.1, h4/0.2, h5/0.2}
G1(¬e3) = {h1/0.5, h2/0.2, h3/0.2, h4/0.4, h5/0.4}

By comparingmembership values of the above fuzzy sets,
one can see that F1(e) ⊆ F1(e) ⊆ F1(e) and G1(¬e) ⊇
G1(¬e) ⊇ G1(¬e) for all e ∈ A1. This verifies ω1 ˜⊆ ω1 ˜⊆
ω1, by using Definition 6.

Now we verify (5) of Theorem 3 for the fuzzy bipolar
soft sets ω1 and ω2, given in Example 1. We have already
determined ω1. The restricted union ω1 ∪r ω2 is determined
in Example 1. So, we need to determine only ω2, ω1 ∪r ω2

and ω1 ∪r ω2. First, the fuzzy sets F2(e) and G2(e) of ω2 =
(F2,G2, A2) are calculated for e ∈ A2, as below.

F2(e1) = {h1/0.6, h2/0.6, h3/0.6, h4/0.6, h5/0.6}
F2(e2) = {h1/0.7, h2/0.6, h3/0.6, h4/0.6, h5/0.6}
G2(¬e1) = {h1/0.3, h2/0.2, h3/0.2, h4/0.3, h5/0.3}
G2(¬e2) = {h1/0.1, h2/0.2, h3/0.2, h4/0.2, h5/0.2}

The fuzzy sets (F1˜∪F2)(e) and (G1˜∩G2)(e) of the
restricted union ω1 ∪r ω2 = (F1˜∪F2,G1˜∩G2, A1 ∩ A2)

are calculated for e ∈ A1 ∩ A2, as below.

(F1˜∪F2)(e1) = {h1/0.7, h2/0.6, h3/0.6, h4/0.6, h5/0.6}
(F1˜∪F2)(e2) = {h1/0.8, h2/0.7, h3/0.7, h4/0.6, h5/0.6}
(G1˜∩G2)(¬e1) = {h1/0.2, h2/0.2, h3/0.2, h4/0.3, h5/0.3}
(G1˜∩G2)(¬e2) = {h1/0.1, h2/0.2, h3/0.2, h4/0.2, h5/0.2}

Now we calculate the fuzzy sets (F1˜∪F2)
(e) and (G1˜∩G2)(e) of ω1 ∪r ω2 = (F1˜∪F2,G1˜∩G2, A1 ∩
A2) for e ∈ A1 ∩ A2, as below.

(F1˜∪F2)(e1) = {h1/0.7, h2/0.6, h3/0.6, h4/0.6, h5/0.6}
(F1˜∪F2)(e2) = {h1/0.8, h2/0.7, h3/0.7, h4/0.6, h5/0.6}
(G1˜∩G2)(¬e1) = {h1/0.2, h2/0.2, h3/0.2, h4/0.3, h5/0.3}
(G1˜∩G2)(¬e2) = {h1/0.1, h2/0.1, h3/0.1, h4/0.2, h5/0.2}

Notice that

(G1˜∩G2)(¬e2)(h2) � (G1˜∩G2)(¬e2)(h2)

By Definition 6, we immediately get

ω1 ∪r ω2 ˜⊇ ω1 ∪r ω2

The other assertions can also be observed by doing the same
calculations.

Theorem 4 Let (U, R) be a Pawlak approximation space
and letω ∈ �. Then, the following assertions are equivalent.

(1) ω˜⊆ω

(2) ω˜⊆ω

(3) ω is R−definable.

Proof This proof follows from Theorem 2 and Theorem 3.
��

Theorem 5 Let (U, R) be a Pawlak approximation space.

(1) If R is the identity relation on U, then each fuzzy bipolar
soft set over U is R−definable.
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(2) If R is the universal binary relation U ×U, then the only
R−definable fuzzy bipolar soft sets overU are {UA,�A :
A ⊆ E}.

Proof Straightforward. ��
The above theorem demonstrates that if the relation R in

the Pawlak approximation space is identity relation, the no
fuzzy bipolar soft set is rough. On the other hand, each fuzzy
bipolar soft set over U is rough, except the relative whole
and relative null fuzzy bipolar soft sets if the relation R is the
universal binary relation on U.

It is worth noting that in the Pawlak approximation space,
if we replace the equivalence relation R by some other equiv-
alence relation σ on U containing R, then the upper rough
approximation of a fuzzy bipolar soft set ω with respect to
σ also contains the upper rough approximation of ω with
respect to R. But, this order is reversed in the case of lower
rough approximation. This interesting result is highlighted
in the following theorem.

Theorem 6 Let (U, R) be a Pawlak approximation space
and let σ be an equivalence relation on U such that R ⊆ σ .
Then, ωσ

˜⊆ ωR and ωR
˜⊆ ωσ for any fuzzy bipolar soft set

ω over U.

Proof Take ω = (F,G, A) ∈ � for any A ⊆ E . Since
R ⊆ σ , we have [x]R ⊆ [x]σ for all x ∈ U. Thus, we get

Fσ (e)(x) = ∧
y∈[x]σ

F(e)(y) ≤ ∧
y∈[x]R

F(e)(y) = FR(e)(x)

for all x ∈ U and for all e ∈ A. Hence, Fσ (e) ⊆ FR(e) for
all e ∈ A. Similarly, Gσ (¬e) ⊇ GR(¬e) for all ¬e ∈ ¬A.
Thus, ωσ

˜⊆ ωR . In the same way, one can verify ωR
˜⊆ ωσ .

��

4 Similarity relations associated with rough fuzzy
bipolar soft sets

Feng et al. (2010a) studied some binary relations between
the soft rough sets. In this section, we define some binary
relations between the fuzzy bipolar soft sets based on their
rough approximations and investigate their properties.

Definition 11 Let (U, R) be a Pawlak approximation space.
We define the following binary relations for ω1, ω2 ∈ �,

ω1 � ω2 i f and only i f ω1 = ω2

ω1 � ω2 i f and only i f ω1 = ω2

ω1 ≈ ω2 i f and only i f ω1 = ω2 and ω1 = ω2.

These binary relations may be called as the lower RFBS
(rough fuzzy bipolar soft) similarity relation, upper RFBS

similarity relation andRFBS similarity relation, respectively.
Obviously, ω1 and ω2 are RFBS similar if and only if they
are both, lower and upper RFBS similar.

Proposition 1 The relations �, � and ≈ are equivalence
relations on �.

Proof Straightforward. ��

Theorem 7 Let (U, R) be a Pawlak approximation space
and let {ωi = (Fi ,Gi , Ai ) : i = 1, 2, 3, 4} ⊆ �. Then, the
following assertions hold.

(1) ω1 � ω2 if and only if ω1 � (ω1 ∪ε ω2) � ω2

(2) ω1 � ω2 and ω3 � ω4 imply that (ω1 ∪ε ω3) � (ω2 ∪ε

ω4)

(3) ω1 ˜⊆ ω2 and ω2 � �A2 imply that ω1 � �A1

(4) ω1 ˜⊆ ω2 and ω1 � UA1 imply that ω2 � UA2 , provided
that A1 = A2

(5) (ω1 ∪ε ω2) � �A1∪A2 if and only if ω1 � �A1 and
ω2 � �A2

(6) (ω1 ∩ε ω2) � UA1∪A2 implies that ω1 � UA1 and ω2 �
UA2 .

Proof (1) Let ω1 � ω2. Then, ω1 = ω2. By Theorem 3, we
get

ω1 ∪ε ω2 = ω1 ∪ε ω2 = ω1 = ω2

So ω1 � (ω1 ∪ε ω2) � ω2.
Converse holds by transitivity of the relation �.
(2) Given that ω1 � ω2 and ω3 � ω4. Then, ω1 = ω2 and

ω3 = ω4. By Theorem 3, we get

ω1 ∪ε ω3 = ω1 ∪ε ω3 = ω2 ∪ε ω4 = ω2 ∪ε ω4

Thus, (ω1 ∪ε ω3) � (ω2 ∪ε ω4).
(3) Given that ω2 � �A2 . This implies that ω2 = �A2 =

�A2 . Also ω1˜⊆ω2 implies that ω1˜⊆ω2 = �A2 . Restricting
the attribute set of �A2 to A1 ⊆ A2, we get ω1˜⊆�A1 . But,
�A1

˜⊆ω1. So, ω1 = �A1 = �A1 which shows ω1 � �A1 .
(4) ω1 � UA1 implies that ω1 = UA1 = UA1 . By A1 =

A2, we get UA1 = UA2 . Also given that ω1˜⊆ω2. So, we get
ω2˜⊆UA2 = UA2 = UA1 = ω1˜⊆ ω2. This gives ω2 = UA2 ,
and hence, ω2 � UA2 .

(5) Let ω1 � �A1 and ω2 � �A2 . Then, ω1 = �A1 =
�A1 and ω2 = �A2 = �A2 . By Theorem 3, we get

ω1 ∪ε ω2 = ω1 ∪ε ω2 = �A1 ∪ε �A2 = �A1∪A2 = �A1∪A2

Thus, (ω1 ∪ε ω2) � �A1∪A2 . Converse follows from (3).
(6) This assertion follows from (4). ��
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Note that in (1) and (2) of Theorem 7, ω1 � ω2 means
that ω1 = ω2 which indicates A1 = A2 by using Definition
6. Thus, the attribute sets of RFBS similar (lower, upper or
both) fuzzy bipolar soft sets are same; hence, their restricted
and extended unions as well as intersections coincide. Same
is the case when ω1 � ω2 or ω1 ≈ ω2.

Theorem 8 Let (U, R) be a Pawlak approximation space
and let {ωi = (Fi ,Gi , Ai ) : i = 1, 2, 3, 4} ⊆ �. Then, the
following assertions hold.

(1) ω1 � ω2 if and only if ω1 � (ω1 ∩ε ω2) � ω2

(2) ω1 � ω2 and ω3 � ω4 imply that (ω1 ∩ε ω3) � (ω2 ∩ε

ω4)

(3) ω1˜⊆ω2 and ω2 � �A2 imply that ω1 � �A1

(4) ω1˜⊆ω2 and ω1 � UA1 imply that ω2 � UA2 , provided
that A1 = A2

(5) (ω1 ∪ε ω2) � �A1∪A2 implies that ω1 � �A1 and ω2 �
�A2

(6) (ω1 ∩ε ω2) � UA1∪A2 if and only if ω1 � UA1 and
ω2 � UA2 .

Proof The proof is similar to the proof of Theorem 7. ��
Theorem 9 Let (U, R) be a Pawlak approximation space
and let {ωi = (Fi ,Gi , Ai ) : i = 1, 2, 3, 4} ⊆ �. Then, the
following assertions hold.

(1) ω1 ≈ ω2 if and only if ω1 � (ω1 ∪ε ω2) � ω2 and
ω1 � (ω1 ∩ε ω2) � ω2

(2) ω1˜⊆ω2 and ω2 ≈ �A2 imply that ω1 ≈ �A1

(3) ω1˜⊆ω2 and ω1 ≈ UA1 imply that ω2 ≈ UA2 , provided
that A1 = A2

(4) (ω1 ∪ε ω2) ≈ �A1∪A2 implies that ω1 ≈ �A1 and ω2 ≈
�A2

(5) (ω1 ∩ε ω2) ≈ UA1∪A2 implies that ω1 ≈ UA1 and ω2 ≈
UA2 .

Proof The proof is direct consequence of Theorems 7 and 8.
��

5 Applications in decision-making problems

Decision making is a major area to be conferred in almost all
kinds of data analysis. The researchers and experts use their
knowledge to design algorithms in order to find a wise deci-
sion. As far as the information system (U, E) is concerned,
one often requires to decide for the best optimum object in
U. But sometimes, one may be unable to take the best deci-
sion, even when the best decision is known. In that case, it
may be helpful if the worst decision also becomes visible.
We propose an algorithm which provides the best, as well as,

the worst decision. With the help of this algorithm, one can
avoid taking the worst decision as well. Let U be the sets of
objects under consideration and E = {ei : 1 ≤ i ≤ n} be
the set of attributes forU. The information about the objects
is represented by a fuzzy bipolar soft set ω = (F,G, E). In
this section, we use the tabular representation of the fuzzy
bipolar soft set as given in Table 1 of Example 1. It is already
discussed that the objects having same characteristics are
indiscernible. Firstwe assign an indiscernibility value to each
object and thendefine the indiscernibility relations associated
with ω.

Definition 12 The indiscernibility parameter N has the val-
ues n j corresponding to each object x j ∈ U, given by

n j = n
�
i=1

(ai j − bi j )

Adjoin the row of N at the bottom of the table of ω to get the
indiscernibility table of ω.

This parameter represents the difference between the
degree of positivity and the degree of negativity for each
object x j . In the same way, the values of the parameter N
can be calculated by n j = �i (ai j − bi j ) and the parameter

N by n j = �i (ai j − bi j ), where (ai j , bi j ) and (ai j , bi j ) are
the (i, j)th entries in the tables of ω and ω, respectively.

Definition 13 The decision parameter D has the values d j

corresponding to each object x j ∈ U, given by

d j = n j + n j

Now we give the concept of indiscernibility relations on
U, associated with ω. For ei ∈ E , denote

C1(ei ) = {x j ∈ U : ai j � bi j }
C2(ei ) = {x j ∈ U : ai j = bi j }
C3(ei ) = {x j ∈ U : ai j � bi j }

Then, for each ei ∈ E , the set U can be partitioned into
the (atmost three) classes, C1(ei ),C2(ei ) and C3(ei ) due
to the indiscernibility in U. Clearly, each ei ∈ E corre-
sponds to an equivalence relation ξ(ei ) on U, such that two
objects are ξ(ei ) equivalent if they belong to the same class
C1(ei ),C2(ei ) or C3(ei ). Denote

I N D(E) = n∩
i=1

ξ(ei )

Then I N D(E) is also an equivalence relation on U. The
indiscernibility table of ω is consistent if and only if
I N D(E) ⊆ I N D(N ), where I N D(N ) is the equivalence
relation onU, dividingU into the classes having same values
n j .
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Table 2 Fuzzy bipolar soft set
ω = (F,G, A)

ω c1 c2 c3 c4 c5 c6

e1 (0.6, 0.2) (0.5, 0.5) (0.6, 0.3) (0.3, 0.5) (0.6, 0.2) (0.4, 0.4)

e2 (0.6, 0.4) (0.5, 0.4) (0.6, 0.2) (0.7, 0.3) (0.5, 0.5) (0.3, 0.4)

e4 (0.7, 0.1) (0.4, 0.4) (0.6, 0.2) (0.3, 0.5) (0.5, 0.4) (0.4, 0.4)

e6 (0.5, 0.5) (0.6, 0.3) (0.4, 0.5) (0.6, 0.3) (0.4, 0.5) (0.5, 0.4)

e7 (0.4, 0.5) (0.3, 0.6) (0.6, 0.2) (0.7, 0.2) (0.6, 0.4) (0.4, 0.4)

e10 (0.7, 0.1) (0.6, 0.3) (0.5, 0.3) (0.5, 0.4) (0.4, 0.5) (0.3, 0.5)

Table 3 Indiscernibility table of
ω

ω c1 c2 c3 c4 c5 c6

e1 (0.6, 0.2) (0.5, 0.5) (0.6, 0.3) (0.3, 0.5) (0.6, 0.2) (0.4, 0.4)

e2 (0.6, 0.4) (0.5, 0.4) (0.6, 0.2) (0.7, 0.3) (0.5, 0.5) (0.3, 0.4)

e4 (0.7, 0.1) (0.4, 0.4) (0.6, 0.2) (0.3, 0.5) (0.5, 0.4) (0.4, 0.4)

e6 (0.5, 0.5) (0.6, 0.3) (0.4, 0.5) (0.6, 0.3) (0.4, 0.5) (0.5, 0.4)

e7 (0.4, 0.5) (0.3, 0.6) (0.6, 0.2) (0.7, 0.2) (0.6, 0.4) (0.4, 0.4)

e10 (0.7, 0.1) (0.6, 0.3) (0.5, 0.3) (0.5, 0.4) (0.4, 0.5) (0.3, 0.5)

N 1.7 0.4 1.6 0.9 0.5 −0.2

Definition 14 Let T be the consistent indiscernibility table
of the fuzzy bipolar soft set ω and Tr be a table obtained
from T by deleting the row of an attribute r ∈ E . Then, r is
dispensable in T if

(1) Tr is consistent, that is, I N D(E − r) = I N D(Nr )

(2) I N D(N ) = I N D(Nr )

Otherwise, r is indispensable or core attribute. The set of
all core attributes of E is denoted by CORE(E).

Algorithm 1 The algorithm to decide for the best and the
worst object in U is as follows.

(1) Input the set of choice attributes A ⊆ E.
(2) Input the fuzzy bipolar soft set ω = (F,G, A).
(3) Adjoin the row of the parameter N at the bottom of the

table of ω to get the indiscernibility table of ω.
(4) Check the consistency of the table of ω. Identify the core

attributes and delete the rows of dispensable attributes.
(5) Evaluate (F,G,CORE(A)) and (F,G,CORE(A))

for the fuzzy bipolar soft set (F,G,CORE(A))obtained
in step 4, using the equivalence relation
R = I N D(CORE(A)). Also find the values n j and
n j .

(6) Find the decision values d j = n j + n j for each object
x j ∈ U.

(7) Construct the decision table having columns of U and
the decision parameter D only, by rearranging in the
descending order with respect to the decision values d j .
Choose k and l, so that dk = max

j
d j and dl = min

j
d j .

Then, xk is the best optimal object, while xl is the worst
optimal object to be decided. If k has more than one
values, then any one of xk’s can be chosen.

For the illustration, we apply this algorithm to an example.

Example 3 Let U = {c1, c2, c3, c4, c5, c6} be a collection
of some construction companies considered by Mr. X for
the construction of his home and consider the attribute set
E = {e1 = strong structure, e2 = innovative designs, e3 =
high-quality materials, e4 = good reputation, e5 = well
organized, e6 = competitive pricing, e7 = having own crew,
e8 = decisiveness, e9 =flexibility, e10 = skilled crew} and
¬E = {¬e1 =weak structure, ¬e2 = traditional designs,
¬e3 = low-quality materials, ¬e4 = ill reputation, ¬e5 =
disorganized, ¬e6 = high pricing, ¬e7 = not having own
crew, ¬e8 = indecisive, ¬e9 = rigidity, ¬e10 = unskilled
crew}. Let the “Quality Analysis” of construction work be
described by a bipolar soft set ω = (F,G, A).

(1) Input A = {e1, e2, e4, e6, e7, e10}.
(2) Input the bipolar soft set ω = (F,G, A) as shown in

Table 2.
(3) The indiscernibility table of ω is given in Table 3:
(4) We find that

I N D(A) = {(c1, c1), (c2, c2), (c3, c3), (c4, c4),
(c5, c5), (c6, c6)} = I N D(N )

which indicates that the indiscernibility table of ω is
consistent. Also note that CORE(A) = A.
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Table 4 Calculation of decision
values

U c1 c2 c3 c4 c5 c6

e1 (0.6, 0.2) (0.5, 0.5) (0.6, 0.3) (0.3, 0.5) (0.6, 0.2) (0.4, 0.4)

e2 (0.6, 0.4) (0.5, 0.4) (0.6, 0.2) (0.7, 0.3) (0.5, 0.5) (0.3, 0.4)

e4 (0.7, 0.1) (0.4, 0.4) (0.6, 0.2) (0.3, 0.5) (0.5, 0.4) (0.4, 0.4)

e6 (0.5, 0.5) (0.6, 0.3) (0.4, 0.5) (0.6, 0.3) (0.4, 0.5) (0.5, 0.4)

e7 (0.4, 0.5) (0.3, 0.6) (0.6, 0.2) (0.7, 0.2) (0.6, 0.4) (0.4, 0.4)

e10 (0.7, 0.1) (0.6, 0.3) (0.5, 0.3) (0.5, 0.4) (0.4, 0.5) (0.3, 0.5)

N 1.7 0.4 1.6 0.9 0.5 −0.2

D 3.4 0.8 3.2 1.8 1.0 −0.4

Table 5 Decision table of ω U D

c1 3.4

c3 3.2

c4 1.8

c5 1.0

c2 0.8

c6 −0.4

(5) Note that R = I N D(CORE(A)) is the identity rela-
tion. So ω is R−definable by Theorem 5, that is, ω = ω.
This gives n j = n j = n j for each c j ∈ U.

(6) The decision values are d j = n j + n j = 2n j for each
c j ∈ U. These values are calculated in Table 4.

(7) Table 5 is the decision table.
We get max

j
d j = d1 = 3.4 and min

j
d j = d6 = −0.4.

Hence, k = 1 and l = 6. Thus, the company c1 is the
best selection. If Mr. X could not make a deal with c1 for
some reason, then c3 will be the second best decision.
But, in any case, he must not go for c6.

6 Conclusions

The rough set theory is emerging as a powerful theory and
has diverse applications in many areas. On the other hand,
the fuzzy bipolar soft sets are a suitable mathematical model
to handle the uncertainty along with the bipolarity, that is, the
positivity and negativity of the information or data. In this
study, we have applied Pawlak’s concept of rough sets on the
fuzzy bipolar soft sets and introduced the rough fuzzy bipolar
soft sets by defining the rough approximation of a fuzzy bipo-
lar soft set in a Pawlak approximation space. This work may
be viewed as the extension of Feng et al. (2010a). We have
also examined their structural properties and investigated
how the equivalence relation affects the rough approxima-
tions of a fuzzy bipolar soft set. In addition, some similarity
relations between the fuzzy bipolar soft sets regarding their

rough approximations are studied. At the end, an applica-
tion of the rough fuzzy bipolar soft sets in a decision-making
problem is presented and an algorithm for that application
is proposed. This algorithm not only decides for the best
object, but is also capable of identifying the worst object so
that the worst decision may also be avoided.We have applied
this algorithm to an example. Further study can be done to
investigate the roughness in different bipolar fuzzy and soft
substructures of U to establish fruitful results utilizing the
notions put forth.
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