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Abstract Graph theory that can be used to describe the
relationships among several individuals has numerous appli-
cations in diverse fields such as modern sciences and
technology, database theory, data mining, neural networks,
expert systems, cluster analysis, control theory, and image
capturing. As a generalization of fuzzy set (FS) and intu-
itionistic fuzzy set (IFS), the concept of neutrosophic set is a
more functional tool for handling indeterminate, inconsistent
and uncertain information that exist in real life compared to
FSs and IFSs. In this paper, we apply the graph theory to
the single-valued neutrosophic sets and investigate a new
kind of graph structure which is called single-valued neutro-
sophic graphs and is generalized the results concerning crisp
graphs, fuzzy graphs and intuitionistic fuzzy graphs. Then
we describe some of their theoretical properties, such as the
Cartesian product, composition, union and join. By applying
two different procedures to solve single-valued neutrosophic
decision-making problems, a neutrosophic graph-basedmul-
ticriteria decision-making model is developed to consider
relationships among themulti-input arguments which cannot
be handled well by means of the existing methods. Finally,
two illustrative examples are given to demonstrate the appli-
cability, feasibility, effectiveness and advantages of these two
proposed approaches.
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multicriteria decision making

Communicated by V. Loia.

B Rıdvan Şahin
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1 Introduction

To deal with vagueness and uncertainty in many real-life
areas, Zadeh (1965) introduced fuzzy sets (FSs) which
have been a great success in different disciplines including
group decision, engineering, medical diagnosis, expert sys-
tems, and pattern recognition. Atanassov (1986) added in
the definition of fuzzy set a new component which deter-
mines the degree of non-membership and introduced the
concept of intuitionistic fuzzy set (IFS), which is a gener-
alization of the notion of FS. However, the FSs and IFSs
face certain limitations, as they fail to present an overall
description of all of the information that is relevant to the
studied problems. As a generalization of the FS (Zadeh 1965)
and the IFS (Atanassov 1986), Smarandache (1999) inves-
tigated the neutrosophic set (NS) which is characterized by
a truth-membership function, an indeterminacy-membership
function, and a falsity-membership function. To easily use
in technical applications of the NSs, Wang et al. (2010)
introduced single-valued neutrosophic set (SVNS), in which
its membership are real numbers. Then Wang et al. (2005)
generalized SVNS to uncertain situations and introduced
the interval neutrosophic set (INS). In the INS, the truth
membership, indeterminacy membership and falsity mem-
bership are interval numbers. SVNS and INS are very useful
for describing the indeterminate, imprecise, incomplete, and
inconsistent information; they have received wide atten-
tion since their appearance in the different fields (Ye 2013,
2014a, b, c, d; Peng et al. 2014, 2016, 2015; Chi and Liu
2013; Liu et al. 2014; Liu and Wang 2014; Majumdar and
Samanta 2014; Biswas et al. 2016; Pramanik et al. 2017;
Broumi and Smarandache 2013a, b, 2014; Şahin and Küçük
2015; Şahin and Liu 2016; Şahin 2017; Şahin and Liu 2017).

Graph theory (Berge 1976; Diestel 2006) is a very con-
venient tool to describe the decision-making problems.
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Therefore, it has numerous applications to problems in
computer science, electrical engineering, system analysis,
operations research, economics, networking routing, and
transportation. However, in many cases, some aspects of a
graph-theoretic problem may be uncertain, vague and inde-
terminate. Kauffman (1973) proposed the definition of a
fuzzy graph based on fuzzy relations. Rosenfeld (1975) intro-
duced the fuzzy analogue of several basic graph-theoretic
concepts and Bhattacharya (1987) gave some remarks on
fuzzy graphs. Mordeson and Nair (1998) studied some oper-
ations on fuzzy graphs. Sunitha and Vijayakumar (2002)
proposed the definition of complement of a fuzzy graph.
Some researchers studied the fuzzy graphs from different
perspective Mordeson and Peng (1994), Bhutani and Rosen-
feld (2003), Bhutani and Battou (2003), Akram and Dudek
(2012). Shannon and Atanassov (1994) introduced the con-
cepts of intuitionistic fuzzy relation and intuitionistic fuzzy
graph and investigated someof their properties. Parvathi et al.
(2009) presented the intuitionistic fuzzy hypergraphs with
properties. Parvathi et al. (2009) investigated some oper-
ations on intuitionistic fuzzy graphs. Akram and Dudek
(2013), Akram and Davvaz (2012), Akram et al. (2012),
Akram and Alshehri (2014) introduced many new concepts
including intuitionistic fuzzy hypergraphs, strong intuition-
istic fuzzy graphs, intuitionistic fuzzy cycles, intuitionistic
fuzzy trees, intuitionistic fuzzy bridges, intuitionistic fuzzy
cut vertices, intuitionistic fuzzy cycles and intuitionistic
fuzzy trees and investigated some of their interesting prop-
erties.

Most of themulticriteria decision-making (MCDM)meth-
ods with single-valued neutrosophic information are to serve
a kind of problems that there exist no relationships among
criteria. However, these relationships should be taken into
account in the actual applications. Therefore, it is necessary
to pay attention to this issue. This paper applies the graph
theory to SVNSs and develops a new methodology called
the neutrosophic graph-based multicriteria decision mak-
ing (NGMCDM) for solving the complex problems under
single-valued neutrosophic environment. The desirable char-
acteristic of the methodology is its capability to capture
the relationships among the criteria which cannot be han-
dled well by means of the existing methods. In order to do
so, the rest of the paper is organized as follows: we first
introduce the notion of single-valued neutrosophic graphs
as a further generalization of fuzzy graphs and intuitionistic
fuzzy graphs and investigate some of their important prop-
erties. Then we define the operations of Cartesian product,
composition, union and join on single-valued neutrosophic
graphs. Finally, a methodology with two procedures is devel-
oped based on the single-valued neutrosophic graph, and
two numerical examples are presented to illustrate how to
deal with the NGMCDM problem with single-valued neu-

trosophic information. Some corresponding conclusions are
provided in the last section.

2 Preliminaries

In the subsection, we give some concepts related to NSs and
SVNSs.

2.1 Neutrosophic set

Definition 1 (Smarandache 1999) Let X be a universe of
discourse, then a neutrosophic set is defined as:

A = {〈x, TA (x) , IA (x) , FA (x)〉 : x ∈ X}

which is characterized by a truth-membership function TA :
X → ]0−, 1+[, an indeterminacy-membership function IA :
X → ]0−, 1+[ and a falsity-membership function FA : X →
]0−, 1+[.

There is not restriction on the sum of TA (x), IA (x) and
FA (x), so 0− ≤ sup TA (x)+sup IA (x)+sup FA (x) ≤ 3+.

In the following, it will be used the representations tA (x),
iA (x) and f A (x) instead of TA (x), IA (x) and FA (x),
respectively.

2.2 Single-valued neutrosophic sets

Definition 2 (Wanget al. 2010)Amapping A = (tA, iA, f A)

: X → [0, 1]×[0, 1]×[0, 1] is called a single-valued neutro-
sophic set in X if tA (x)+ iA (x)+ f A (x) ≤ 3 for all x ∈ X ,
where the mappings tA : X → [0, 1], iA : X → [0, 1] and
f A : X → [0, 1] represent the degree of truth membership
(that is, tA (x)), the degree of indeterminacy membership
(that is, iA (x)) and the degree of falsity membership (that
is, f A (x)), of x to A, respectively.

Definition 3 (Wang et al. 2010) Let A = 〈tA, iA, f A〉 and
B = 〈tB, iB, fB〉 be two single-valued neutrosophic sets.
Then,

(1) (A ∩ B) (x) = {〈x,min (tA (x) , tB (x)) ,max (iA (x) ,

iA (x)) ,max ( f A (x) , fB (x))〉 : x ∈ X};
(2) (A ∪ B) (x) = {〈x,max (tA (x) , tB (x)) ,min (iA (x) ,

iA (x)) ,min ( f A (x) , fB (x))〉 : x ∈ X}.

A single-valued neutrosophic number (SVNN) is denoted
by α = 〈t, i, f 〉 for convenience.
Definition 4 (Şahin and Liu 2016) Let α = t, i, f be a
SVNN. Then its score function s can be defined by

s (α) = 1 + t − 2i − f

2
(1)
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where s (α) ∈ [−1, 1]. For twoSVNNsα1 andα2, if s (α1) >

s (α2), then α1 	 α2.

Definition 5 Let α1 = 〈t1, i1, f1〉 and α2 = 〈t2, i2, f2〉 be
any two single-valued neutrosophic numbers, the Hamming
distance between α1 and α2 is defined as follows

d (α1, α2) = 1

3
(|t1 − t2| + |i1 − i2| + | f1 − f2|) . (2)

Then a similarity measure between α1 and α2 can be
defined as S (α1, α2) = 1 − d (α1, α2).

Peng et al. (2016) defined some operations for SVNNs,
which can be described as follows:

Definition 6 Let α1 = 〈t1, i1, f1〉 and α2 = 〈t2, i2, f2〉 be
any two single-valued neutrosophic numbers and λ > 0, then
the operational laws for SVNNs are defined as below.

(1) λα1 = 〈1 − (1 − t1)
λ , λi1, λ f1〉 (3)

(2) α1 ⊕ α2 = 〈t1 + t2 − t1t2, i1i2, f1 f2〉 (4)

2.3 Some definitions in graph theory

In this section, we give some basic concepts, which will be
used in the next sections.

Definition 7 (Diestel 2006) A graph is an ordered pairG∗ =
(V, E), where V is the set of vertices of G∗ and E is the set
of edges of G∗.

Two vertices x and y in an undirected graph G∗ are said
to be adjacent in G∗ if {x, y} is an edge of G∗. A simple
graph is an undirected graph that has no loops and no more
than one edge between any two different vertices. A com-
plete graph is a simple graph in which every pair of distinct
vertices is connected by an edge. A subgraph of a graph
G∗ = (V, E) is a graph H∗ = (W, F), where W ⊆ V and
F ⊆ E .

Note that there are various ways to construct new graphs
from existing graphs, such as Cartesian product, union, join,
composition.

Definition 8 (Diestel 2006) Let G∗
1 = (V1, E1) and G∗

2 =
(V2, E2) be two simple graphs. Then Cartesian product
of graphs G∗

1 and G∗
2 is a graph defined by G∗ =

G∗
1 × G∗

2 = (V, E) with V = V1 × V2 and E =
{(x, x2) (x, y2) : x ∈ V1, x2y2 ∈ E2} ∪ {(x1, z) (y1, z) :
z ∈ V2, x1y1 ∈ E1}.
Definition 9 (Diestel 2006) Let G∗

1 = (V1, E1) and G∗
2 =

(V2, E2) be two simple graphs. Then, the composition of
graphs G∗

1 and G∗
2 is a graph defined by G∗ = G∗

1

[
G∗

2

] =(
V1 × V2, E0

)
, where E0 = E ∪ {(x1, x2) (y1, y2) : x1y1

∈ E1, x2 
= y2} and E is defined as in G∗
1 × G∗

2. Note that
G∗

1

[
G∗

2

] 
= G∗
2

[
G∗

1

]
.

Definition 10 (Diestel 2006) Let G∗
1 = (V1, E1) and G∗

2 =
(V2, E2) be two simple graphs. Then the join of graphs G∗

1
and G∗

2 is a simple graph defined by G∗ = G∗
1 + G∗

2 =(
V1 ∪ V2, E1 ∪ E2 ∪ E ′), where E ′ is the set of all edges
joining the nodes of V1 and V2, and assume that V1∩V2 
= ∅.

Definition 11 (Diestel 2006) Let G∗
1 = (V1, E1) and G∗

2 =
(V2, E2) be two simple graphs. Then the union of two simple
graphs G∗

1 and G∗
2 is a simple graph defined by G∗ = G∗

1 ∪
G∗

2 = (V1 ∪ V2, E1 ∪ E2).

3 Single-valued neutrosophic graphs

The concept of a neutrosophic relation can be defined as
follows:

Definition 12 A single-valued neutrosophic relation R in a
universe X × Y is a neutrosophic set of the form

R (x, y) = {〈(x, y) , tR (x, y) , iR (x, y) , fR (x, y)〉
: (x, y) ∈ X × Y } ,

where tR : X × Y → [0, 1], iR : X × Y → [0, 1] and
fR : X × Y → [0, 1]. The neutrosophic relation satisfies
the property tR (x, y) + iR (x, y) + fR (x, y) ≤ 3 for all
x, y ∈ X .

Definition 13 A = 〈tA, iA, f A〉 and B = 〈tB, iB, fB〉
be single-valued neutrosophic sets on a set X . If A =
〈tA, iA, f A〉 is a single-valued neutrosophic relation on a set
X , then A = 〈tA, iA, f A〉 is called a single-valued neutro-
sophic relation on B = 〈tB, iB, fB〉 if

tA (x, y) ≤ min (tB (x) , tB (y)) , iA (x, y)

≥ max (iB (x) , iB (y)) and f A (x, y)

≥ max ( fB (x) , fB (y))

for all x, y ∈ X . A single-valued neutrosophic relation A on
X is called symmetric if tA (x, y) = tA (y, x), iA (x, y) =
iA (y, x) and f A (x, y) = f A (y, x).

Throughout this paper, G∗ will be a crisp graph, and G
a single-valued neutrosophic graph. Moreover, we use the
notation “xy′′ for an element “ (x, y)′′ of E .

Smarandache (2015) proposed a symbolic definition of
neutrosophic graphs. However, we give the following defi-
nition to apply a neutrosophic graph to a decision-making
problem.

Definition 14 Asingle-valuedneutrosophic graphof a graph
G∗ = (V, E) is a pair G = (A, B), where A =
〈tA, iA, f A〉 is a single-valued neutrosophic set on V and
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B = 〈tB, iB, fB〉 is a single-valued neutrosophic relation on
E such that

tB (xy) ≤ min (tA (x) , tA (y)) ,

iB (xy) ≥ max (iA (x) , iA (y))

fB (xy) ≥ max (vA (x) , vA (y))

and 0 ≤ tB (xy) + iB (xy) + fB (xy) ≤ 3 for all x, y ∈ V .
Then, the A is the single-valued neutrosophic vertex set

of G and B is the single-valued neutrosophic edge set of G,
respectively.Moreover,G = (A, B) is a strong single-valued
neutrosophic graph if

tB (xy) = min (tA (x) , tA (y)) , iB (xy)

= max (iA (x) , iA (y)) , fB (xy)

= max ( f A (x) , f A (y))

such that 0 ≤ tB (xy)+iB (xy)+ fB (xy) ≤ 3 for all xy ∈ E .

Here, the triple (x, tA (x) , iA (x) , f A (x)) denotes the
degree of truth membership, the degree of indeterminacy
membership and the degree of falsity membership of the ver-
tex x . The triple (xy, tB (xy) , iB (xy) , fB (xy)) describes
the degree of truth membership, degree of indeterminacy
membership and degree of falsity membership of the edge
xy.

Thus, the single-valued neutrosophic graph G = (A, B)

reduces to an intuitionistic fuzzy graph (Parvathi et al. 2009)
if iA = ∅ such that 0 ≤ tA + f A ≤ 1, and reduces a fuzzy
graph (Rosenfeld 1975) if iA = ∅ and f A = ∅.
Example 1 Consider a graph G∗ = (V, E) such that V =
{a, b, c}, E = {ab, bc, ac} ⊆ V × V . Let A = 〈tA, iA, f A〉
be a single-valued neutrosophic subset of V and B =
〈tB, iB, fB〉 be a single-valued neutrosophic relation on
E ⊆ V × V defined by

A =
〈

a

0.5, 0.3, 0.6
,

b

0.4, 0.2, 0.5
,

c

0.6, 0.1, 0.3

〉
,

B =
〈

ab

0.4, 0.3, 0.6
,

bc

0.3, 0.3, 0.5
,

ac

0.5, 0.3, 0.6

〉

After routine computations, it is easy to see that G =
(A, B) is a single-valued neutrosophic graph of G∗(see
Fig. 1).

Next, we give some categorical properties of the single-
valued neutrosophic graphs such as Cartesian product, com-
position, union and so on.

Suppose that G1 = (A1, B1) and G2 = (A2, B2) are
two single-valued neutrosophic graphs of the graphs G∗

1 =
(V1, E1) and G∗

2 = (V2, E2), where A1 = 〈tA1 , iA1 , f A1〉
and A2 = 〈tA2 , iA2 , f A2〉 are two single-valued neutrosophic
subsets of V1 and V2, and B1 = 〈tB1 , iB1 , fB1〉 and B2 =

Fig. 1 The single-valued neutrosophic graph G

〈tB2 , iB2 , fB2〉 are single-valued neutrosophic subsets of E1

and E2, respectively.

Definition 15 Let G1 and G2 are two single-valued neutro-
sophic graphs. Then the Cartesian product of G1 and G2

denoted by G1 × G2 = (A1 × A2, B1 × B2) is defined as:

i.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
tA1 × tA2

)
(x1x2) = min

(
tA1 (x1) , tA2 (x2)

)

(
iA1 ×iA2

)
(x1x2)=max

(
iA1 (x1) ,iA2 (x2)

)

(
f A1 × f A2

)
(x1x2) = max

(
f A1 (x1) , f A2 (x2)

)
((x1x2)∈V1×V2=V ) ,

ii.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
tB1 × tB2

)
((xx2) (xy2)) = min

(
tA1 (x) , tB2 (x2 y2)

)

(
iB1×iB2

)
((xx2) (xy2))=max

(
iA1(x) ,iB2 (x2 y2)

)

(
fB1 × fB2

)
((xx2) (xy2))=max

(
f A1(x) , fB2 (x2 y2)

)
(x ∈V1, x2 y2∈E2),

iii.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
tB1 × tB2

)
((x1z) (y1z)) = min

(
tB1 (x1 y1) , tA2 (z)

)

(
iB1×iB2

)
((x1z) (y1z))=max

(
iB1 (x1 y1) ,iA2 (z)

)

(
fB1× fB2

)
((x1z) (y1z))=max

(
fB1 (x1 y1) , f A2 (z)

)
(z∈V2, x1 y1∈E1).

Proposition 1 Let G1 and G2 be two single-valued neutro-
sophic graphs. Then G1×G2 is a single-valued neutrosophic
graph.

Proof Let x ∈ V1, x2y2 ∈ E2. Then we have

(
tB1 × tB2

)
((xx2) (xy2))

= min
(
tA1 (x) , tB2 (x2y2)

)

≤ min
(
tA1 (x) ,min

(
tA2 (x2) , tA2 (y2)

))

= min
(
min

(
tA1 (x) , tA2 (x2)

)
,min

(
tA1 (x) , tA2 (y2)

))

= min
((
tA1 × tA2

)
(xx2) ,

(
tA1 × tA2

)
(xy2)

)
,

(
iB1 × iB2

)
((xx2) (xy2))

= max
(
iA1 (x) , iB2 (x2y2)

)

≥ max
(
iA1 (x) ,max

(
iA2 (x2) , iA2 (y2)

))

= max
(
max

(
iA1(x), iA2(x2)

)
,max

(
iA1(x) , iA2(y2)

))
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= max
((
iA1 × iA2

)
(xx2) ,

(
iA1 × iA2

)
(xy2)

)
,

(
fB1 × fB2

)
((xx2) (xy2))

= max
(
f A1 (x) , fB2 (x2y2)

)

≥ max
(
f A1 (x) ,max

(
f A2 (x2) , iA2 (y2)

))

= max
(
max

(
f A1(x), f A2 (x2)

)
,max

(
f A1(x) , f A2(y2)

))

= max
((

f A1 × f A2

)
(xx2) ,

(
f A1 × f A2

)
(xy2)

)
,

Let z ∈ V2, x1y1 ∈ E1. Then we have

(
tB1 × tB2

)
((x1z) (y1z))

= min
(
tB1 (x1y1) , tA2 (z)

)

≤ min
(
min

(
tA1 (x1) , tA1 (y1)

)
, tA2 (z)

)

= min
(
min

(
tA1 (x1) , tA2 (z)

)
,min

(
tA1 (y1) , tA2 (z)

))

= min
((
tA1 × tA2

)
(x1z) ,

(
tA1 × tA2

)
(y1z)

)
,

(
iB1 × iB2

)
((x1z) (y1z))

= max
(
iB1 (x1y1) , iA2 (z)

)

≥ max
(
max

(
iA1 (x1) , iA1 (y1)

)
, iA2 (z)

)

= max
(
max

(
iA1(x1), iA2(z)

)
,max

(
iA1 (y1), iA2(z)

))

= max
((
iA1 × iA2

)
(x1z) ,

(
iA1 × iA2

)
(y1z)

)
,

(
fB1 × fB2

)
((x1z) (y1z)) = max

(
fB1 (x1y1) , f A2 (z)

)

≥ max
(
max

(
f A1 (x1) , f A1 (y1)

)
, f A2 (z)

)

= max
(
max

(
f A1 (x1) , i f (z)

)
,max

(
f A1 (y1) , f A2 (z)

))

= max
((

f A1 × f A2

)
(x1z) ,

(
f A1 × f A2

)
(y1z)

)
.

This completes the proof. ��
Example 2 Let G∗

1 = (V1, E1) and G∗
2 = (V2, E2) be two

simple graphs such that V1 = {a, b}, V2 = {c, d}, E1 = {ab}
and E2 = {cd}. Consider two single-valued neutrosophic
graphs G1 = (A1, B1) and G2 = (A2, B2), where

A1 =
〈

a

(0.4, 0.3, 0.5)
,

b

(0.5, 0.2, 0.4)

〉
,

B1 =
〈

ab

(0.4, 0.4, 0.5)

〉

A2 =
〈

c

(0.6, 0.1, 0.6)
,

d

(0.6, 0.2, 0.2)

〉
,

B2 =
〈

cd

(0.5, 0.3, 0.6)

〉

Then we can construct the G1 × G2 as follows.

After routine computations, it is easy to see that G =
G1 × G2 is a single-valued neutrosophic graph of G∗(see
Fig. 2).

Definition 16 Let G1 and G2 be two single-valued neutro-
sophic graphs. Then the composition of two single-valued
neutrosophic graphs G1 and G2 of G∗

1 and G∗
2 denoted by

G1 [G2] = (A1 ◦ A2, B1 ◦ B2) is defined as:

i.
⎧
⎨

⎩

(
tA1 ◦ tA1

)
(x1x2) = min

(
tA1 (x1) , tA2 (x2)

)
(
iA1 ◦ iA1

)
(x1x2) = max

(
iA1 (x1) , iA2 (x2)

)
(
f A1 ◦ f A1

)
(x1x2) = max

(
f A1 (x1) , f A2 (x2)

) ((x1x2) ∈ V ) ,

ii.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
tB1 ◦ tB1

)
((xx2) (xy2)) = min

(
tA1 (x) , tB2 (x2 y2)

)

(
iB1 ◦iB1

)
((xx2) (xy2))=max

(
iA1 (x) ,iB2 (x2 y2)

)

(
fB1 ◦ fB1

)
((xx2) (xy2))=max

(
f A1 (x) , fB2 (x2 y2)

)
(x ∈V1, x2 y2 ∈E2),

iii.
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
tB1 ◦ tB1

)
((x1z) (y1z)) = min

(
tB1 (x1 y1) , tA2 (z)

)

(
iB1 ◦ iB1

)
((x1z) (y1z))=max

(
iB1 (x1 y1) ,iA2 (z)

)

(
fB1 ◦ fB1

)
((x1z) (y1z))=max

(
fB1 (x1 y1) , f A2 (z)

)
(z∈V2, x1 y1∈E1),

iv.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
tB1 ◦ tB1

)
((x1x2) (y1y2))

= min
(
tA2 (x2) , tA2 (y2) , tB1 (x1y1)

)
(
iB1 ◦ B1

)
((x1x2) (y1y2))

= max
(
iA2 (x2) , A2 (y2) ,iB1 (x1y1)

)
(
fB1 ◦ fB1

)
((x1x2) (y1y2))

= max
(
f A2 (x2) , f A2 (y2) , fB1 (x1y1)

)

(
(x1x2) (y1y2) ∈ E0 − E

)
,

where E0 = E ∪ {(x1, x2) (y1, y2) : x1y1 ∈ E1, x2 
= y2}.
Proposition 2 Let G1 and G2 be two single-valued neutro-
sophic graphs. Then G1 [G2] is a single-valued neutrosophic
graph.

Proof Let x ∈ V1, x2y2 ∈ E2. Then we have

(
tB1 ◦ tB2

)
((xx2) (xy2)) = min

(
tA1 (x) , tB2 (x2y2)

)

≤ min
(
tA1 (x) ,min

(
tA2 (x2) , tA2 (y2)

))

= min
(
min

(
tA1 (x) , tA2 (x2)

)
,min

(
tA1 (x) , tA2 (y2)

))

= min
((
tA1 ◦ tA2

)
(xx2) ,

(
tA1 ◦ tA2

)
(xy2)

)
,

(
iB1 ◦ iB2

)
((xx2) (xy2)) = max

(
iA1 (x) , iB2 (x2y2)

)

≥ max
(
iA1 (x) ,max

(
iA2 (x2) , iA2 (y2)

))

= max
(
max

(
iA1(x) , iA2(x2)

)
,max

(
iA1(x) , iA2(y2)

))

= max
((
iA1 ◦ iA2

)
(xx2) ,

(
iA1 ◦ iA2

)
(xy2)

)
,

(
fB1 ◦ fB2

)
((xx2) (xy2)) = max

(
f A1 (x) , fB2 (x2y2)

)

≥ max
(
f A1 (x) ,max

(
f A2 (x2) , iA2 (y2)

))

= max
(
max

(
f A1(x) , f A2(x2)

)
,max

(
f A1(x), f A2(y2)

))

= max
((

f A1 ◦ f A2

)
(xx2) ,

(
f A1 ◦ f A2

)
(xy2)

)
,

Let z ∈ V2, x1y1 ∈ E1. Then we have

(
tB1 ◦ tB2

)
((x1z) (y1z)) = min

(
tB1 (x1y1) , tA2 (z)

)

≤ min
(
min

(
tA1 (x1) , tA1 (y1)

)
, tA2 (z)

)
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Fig. 2 The Cartesian product of G1 and G2

= min
(
min

(
tA1 (x1) , tA2 (z)

)
,min

(
tA1 (y1) , tA2 (z)

))

= min
((
tA1 ◦ tA2

)
(x1z) ,

(
tA1 ◦ tA2

)
(y1z)

)
,

(
iB1 ◦ iB2

)
((x1z) (y1z)) = max

(
iB1 (x1y1) , iA2 (z)

)

≥ max
(
max

(
iA1 (x1) , iA1 (y1)

)
, iA2 (z)

)

= max
(
max

(
iA1(x1) , iA2(z)

)
,max

(
iA1 (y1) , iA2 (z)

))

= max
((
iA1 ◦ iA2

)
(x1z) ,

(
iA1 ◦ iA2

)
(y1z)

)
,

(
fB1 ◦ fB2

)
((x1z) (y1z)) = max

(
fB1 (x1y1) , f A2 (z)

)

≥ max
(
max

(
f A1 (x1) , f A1 (y1)

)
, f A2 (z)

)

= max
(
max

(
f A1(x1), i f (z)

)
,max

(
f A1(y1), f A2 (z)

))

= max
((

f A1 ◦ f A2

)
(x1z) ,

(
f A1 ◦ f A2

)
(y1z)

)
.

Let (x1x2) , (y1y2) ∈ E0 − E , so x1y1 ∈ E1, x2 
= y2. Then
it follows that

(
tB1 ◦ tB2

)
((x1x2) , (y1y2))

= min
(
tA2 (x2) , tA2 (y2) , tA2 (x1y1)

)

≤ min
(
tA2 (x2) , tA2 (y2) ,min

(
tA1 (x1) , tA1 (y1)

))

= min
(
min

(
tA1(x1) , tA2(x2)

)
,min

(
tA1 (y1) , tA2 (y2)

))

= min
((
tA1 ◦ tA2

)
(x1x2) ,

(
tA1 ◦ tA2

)
(y1y2)

)
,

(
iB1 ◦ iB2

)
((x1x2) , (y1y2))

= max
(
iA2 (x2) , iA2 (y2) , iA2 (x1y1)

)

≥ max
(
iA2 (x2) , iA2 (y2) ,max

(
iA1 (x1) , iA1 (y1)

))

= max
(
max

(
iA1(x1), iA2(x2)

)
,max

(
iA1(y1), iA2(y2)

))

= max
((
iA1 ◦ iA2

)
(x1x2) ,

(
iA1 ◦ iA2

)
(y1y2)

)
,

(
fB1 ◦ fB2

)
((x1x2) , (y1y2))

= max
(
f A2 (x2) , f A2 (y2) , f A2 (x1y1)

)

≥ max
(
f A2 (x2) , f A2 (y2) ,max

(
f A1 (x1) , f A1 (y1)

))

= max
(
max

(
f A1(x1), f A2(x2)

)
,max

(
f A1(y1), f A2(y2)

))

= max
((

f A1 ◦ f A2

)
(x1x2) ,

(
f A1 ◦ f A2

)
(y1y2)

)
.

This completes the proof. ��
Example 3 Consider two single-valued neutrosophic graphs
G1 = (A1, B1) and G2 = (A2, B2) given in Example 2 .

Then we can construct the G1 ◦ G2 in Fig. 3.

Definition 17 Let G1 and G2 be two single-valued neutro-
sophic graphs. Then the union of single-valued neutrosophic
graphsG1 andG2 ofG∗

1 andG
∗
2 denoted byG = G1∪G2 =

(A1 ∪ A2, B1 ∪ B2) is defined as:

i.
⎧
⎨

⎩

(
tA1 ∪ tA2

)
(x) = tA1 (x) if x ∈ V1 ∩ V̄2(

tA1 ∪ tA2

)
(x) = tA2 (x) if x ∈ V2 ∩ V̄1(

tA1 ∪ tA2

)
(x) = max

(
tA1 (x1) , tA2 (x2)

)
if x ∈ V1 ∩ V2

ii.
⎧
⎨

⎩

(
iA1 ∩ iA2

)
(x) = iA1 (x1) if x ∈ V1 ∩ V̄2(

iA1 ∩ iA2

)
(x) = iA2 (x1) if x ∈ V2 ∩ V̄1(

iA1 ∩ iA2

)
(x) = min

(
iA1 (x1) , iA2 (x2)

)
if x ∈ V1 ∩ V2

iii.
⎧
⎨

⎩

(
f A1 ∩ f A2

)
(x) = f A1 (x1) if x ∈ V1 ∩ V̄2(

f A1 ∩ f A2

)
(x) = f A2 (x1) if x ∈ V2 ∩ V̄1(

f A1 ∩ f A2

)
(x) = min

(
f A1 (x1) , f A2 (x2)

)
if x ∈ V1 ∩ V2

iv.
⎧
⎨

⎩

(
tB1 ∪ tB2

)
(xy) = tB1 (xy) if xy ∈ E1 ∩ Ē2(

tB1 ∪ tB2
)
(xy) = tB2 (xy) if xy ∈ E2 ∩ Ē1(

tB1 ∪ tB2
)
(xy) = max

(
tB1 (xy) , tB2 (xy)

)
if xy ∈ E1 ∩ E2

v.
⎧
⎨

⎩

(
iB1 ∩ iB2

)
(xy) = iB1 (xy) if xy ∈ E1 ∩ Ē2(

iB1 ∩ iB2
)
(xy) = iB2 (xy) if xy ∈ E2 ∩ Ē1(

iB1 ∩ iB2
)
(xy) = min

(
iB1 (x1) , iB2 (x2)

)
if xy ∈ E1 ∩ E2
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Fig. 3 The composition product of G1 and G2

Fig. 4 The single-valued neutrosophic graph G1

vi.

⎧
⎨

⎩

(
fB1 ∩ fB2

)
(xy) = fB1 (xy) if xy ∈ E1 ∩ Ē2(

fB1 ∩ fB2
)
(xy) = fB2 (xy) if xy ∈ E2 ∩ Ē1(

fB1 ∩ fB2
)
(xy) = min

(
fB1 (x1) , fB2 (x2)

)
if xy ∈ E1 ∩ E2

Example 4 Let G∗
1 = (V1, E1) and G∗

2 = (V2, E2)

be two simple graphs such that V1 = {a, b, c, d, f },
V2 = {a, b, c, e}, E1 = {ab, bc, c f, ad} and E2 =
{ab, bc, ce, be, ae} (see Figs. 4, 5). Consider two single-
valued neutrosophic graphs G1 = (A1, B1) and G2 =
(A2, B2), where

A1 =
〈

a

(0.5, 0.3, 0.2)
,

b

(0.4, 0.1, 0.3)
,

c

(0.2, 0.4, 0.5)
,

d

(0.3, 0.2, 0.2)
,

f

(0.6, 0.1, 0.2)
,

〉

B1 =
〈

ab

(0.4, 0.3, 0.3)
,

bc

(0.2, 0.4, 0.5)
,

c f

(0.2, 0.5, 0.5)
,

ad

(0.3, 0.3, 0.2)

〉

A2 =
〈

a

(0.4, 0.2, 0.3)
,

b

(0.5, 0.3, 0.2)
,

Fig. 5 The single-valued neutrosophic graph G2

c

(0.6, 0.4, 0.4)
,

e

(0.3, 0.5, 0.2)
,

〉

B2 =
〈

ab

(0.4, 0.3, 0.3)
,

bc

(0.5, 0.4, 0.4)
,

ce

(0.3, 0.5, 0.4)
,

be

(0.3, 0.5, 0.2)
,

ae

(0.3, 0.5, 0.3)

〉

Then we can construct the G1 ∪ G2 in Fig. 6.
After routine computations, it is easy to see thatG = G1∪

G2 = (A1 ∪ A2, B1 ∪ B2) is a single-valued neutrosophic
graph of G∗

1 ∪ G∗
2.

Proposition 3 Let G1 and G2 are two single-valued neutro-
sophic graphs. Then G1∪G2 is a single-valued neutrosophic
graph.

Proof Let xy ∈ E1 ∩ E2. Then

(
tB1 ∪ tB2

)
(xy) = max

(
tB1 (xy) , tB2 (xy)

)

≤ max
(
min

(
tA1 (x) , tA1 (y)

)
,min

(
tA2 (x) , tA2 (y)

))

= min
(
max

(
tA1 (x) , tA2 (x)

)
,max

(
tA1 (y1) , tA2 (y)

))

= min
((
tA1 ∪ tA2

)
(x) ,

(
tA1 ∪ tA2

)
(y)
)
,
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Fig. 6 The union of G1 and G2

(
iB1 ∪ iB2

)
(xy) = min

(
iB1 (xy) , iB2 (xy)

)

≥ min
(
max

(
iA1 (x) , iA1 (y)

)
,max

(
iA2 (x) , iA2 (y)

))

= max
(
min

(
iA1 (x) , iA2 (x)

)
,min

(
iA1 (y) , iA2 (y)

))

= max
((
iA1 ∪ iA2

)
(x) ,

(
iA1 ∪ iA2

)
(y)
)
,

(
fB1 ∪ fB2

)
(xy) = min

(
fB1 (xy) , fB2 (xy)

)

≥ min
(
max

(
f A1 (x) , f A1 (y)

)
,max

(
f A2 (x) , f A2 (y)

))

= max
(
min

(
f A1 (x) , f A2 (x)

)
,min

(
f A1 (y) , f A2 (y)

))

= max
((

f A1 ∪ f A2

)
(x) ,

(
f A1 ∪ f A2

)
(y)
)
,

Similarly, let xy ∈ E1 ∩ Ē2. Then

(
tB1 ∪ tB2

)
(xy) ≤ min

((
tA1 ∪ tA2

)
(x) ,

(
tA1 ∪ tA2

)
(y)
)
,

(
iB1 ∪ iB2

)
(xy) ≥ max

((
iA1 ∪ iA2

)
(x) ,

(
iA1 ∪ iA2

)
(y)
)
,

(
fB1 ∪ fB2

)
(xy) ≥ max

((
f A1 ∪ f A2

)
(x) ,

(
f A1 ∪ f A2

)
(y)
)
,

If xy ∈ E2 ∩ Ē1, it follows that

(
tB1 ∪ tB2

)
(xy) ≤ min

((
tA1 ∪ tA2

)
(x) ,

(
tA1 ∪ tA2

)
(y)
)
,

(
iB1 ∪ iB2

)
(xy) ≥ max

((
iA1 ∪ iA2

)
(x) ,

(
iA1 ∪ iA2

)
(y)
)
,

(
fB1 ∪ fB2

)
(xy) ≥ max

((
f A1 ∪ f A2

)
(x) ,

(
f A1 ∪ f A2

)
(y)
)
,

This completes the proof. ��
Proposition 4 Let {Gi : i ∈ I } be a family of single-valued
neutrosophic graphs with the underlying set V. Then ∩Gi is
a single-valued neutrosophic graph.

Proof For any x, y ∈ V , we have that

⋂
tB (xy) = inf

i∈I tB (xy) ≤ inf
i∈I min

{
tAi (x) , tAi (y)

}

= min

{
inf
i∈I tAi (x) , inf

i∈I tAi (y)

}

= min
{∩ tAi (x) ,∩ tAi (y)

}
,

⋂
iB (xy) = sup

i∈I
iB (xy) ≥ sup

i∈I
max

{
iAi (x) , iAi (y)

}

= max

{
sup
i∈I

iAi (x) , sup
i∈I

iAi (y)

}

= max
{∩ iAi (x) ,∩ iAi (y)

}

⋂
fB (xy) = sup

i∈I
fB (xy) ≥ sup

i∈I
max

{
f Ai (x) , f Ai (y)

}

= max

{
sup
i∈I

f Ai (x) , sup
i∈I

f Ai (y)

}

= max
{∩ f Ai (x) ,∩ f Ai (y)

}

Thus, ∩Gi is a single-valued neutrosophic graph. ��
Definition 18 Let G1 and G2 be two single-valued neutro-
sophic graphs. Then the join of single-valued neutrosophic
graphs G1 and G2 of the graphs G∗

1 and G∗
2 denoted by

G∗ = G1 + G2 = (A1 + A2, B1 + B2) is defined as:

i.
⎧
⎨

⎩

(
tA1 + tA2

)
(x) = (

tA1 ∪ tA2

)
(x)(

iA1 + iA2

)
(x) = (

iA1 ∩ iA2

)
(x)(

f A1 + f A2

)
(x) = (

f A1 ∩ f A2

)
(x) if x ∈ V1 ∪ V2

ii.

⎧
⎨

⎩

(
tB1 + tB2

)
(xy) = (

tB1 ∪ tB2
)
(xy) = tB1 (xy)(

iB1 + iB2
)
(xy) = (

iB1 ∩ iB2
)
(xy) = iB1 (xy)(

fB1 + fB2
)
(xy) = (

fB1 ∩ fB2
)
(xy) = fB1 (xy) if xy ∈ E1 ∩ E2

iii.
⎧
⎨

⎩

(
tB1 + tB2

)
(xy) = max

(
tA1 (x) , tA2 (x)

)
(
iB1 + iB2

)
(xy) = min

(
iA1 (x) , iA2 (x)

)
(
fB1+ fB2

)
(xy) = min

(
f A1 (x) , f A2 (x)

)
If xy ∈E ′,

where E ′ is the set of all edges joining the nodes of V1 and
V2.

Proposition 5 Let G1 and G2 are two single-valued neutro-
sophic graphs. Then G1+G2 is a single-valued neutrosophic
graph.

Proof It is carried out analogous manner to other proposi-
tions. ��

4 Neutrosophic graph-based multicriteria decision
making (NGMCDM)

The single-valued neutrosophic set proposed by Wang et al.
(2010) is characterized by the truth membership, the inde-
terminacy membership and the falsity membership indepen-
dently, which is a powerful tool to deal with incomplete,
indeterminate and inconsistent information. Recently, the
single-valued neutrosophic sets have become an interest-
ing research topic and attracted widely attentions. Therefore,
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the single-valued neutrosophic graph can well describe the
uncertainly in real-life word. Here, we apply the graph
theory to decision-making problems with single-valued neu-
trosophic information and then develop two new procedures.

Suppose that P = {p1, p2, . . . , pm} is a set of alterna-
tives, B = {α1, α2, . . . , αn} is the set of criteria, and ω =
(ω1, ω2, . . . ωn)

T be the potential weighting vector of the cri-
terion α j ( j = 1, 2, . . . , n), where ω j ≥ 0, j = 1, 2, . . . , n,
n∑

j=1
ω j = 1. If the decision maker provide a single-valued

neutrosophic value for the alternative pk (k = 1, 2, . . . ,m)

under the attribute α j ( j = 1, 2, . . . , n), it can be charac-
terized by a single-valued neutrosophic number (SVNN)
dkj = {

tk j , ik j , fk j
}

( j = 1, 2, . . . , n; k = 1, 2, . . . ,m).
Assume that D = [

dkj
]
m×n is the decision matrix, where dkj

is expressed by SVNN. If there exists a neutrosophic relation
between two criteria αi = 〈ti , ii , fi 〉 and α j = 〈t j , i j , f j 〉,
we denote the neutrosophic relation as ei j = {

ti j , ii j , fi j
}

with the properties ti j ≤ min
(
ti , t j

)
, ii j ≥ max

(
ii , i j

)
and

fi j ≥ max
(
fi , f j

)
(i, j = 1, 2, . . . ,m); otherwise, ei j =

〈0, 1, 1〉.
On the basis of the developed graph structure, two

procedures are developed to solve neutrosophic decision-
making problems with single-valued neutrosophic informa-
tion, which involve the following steps:

Procedure 1

Step 1.Compute the influence coefficient between the cri-
teria αi and α j (i, j = 1, 2, . . . , n) in decision process
by

ξi j = ti j + (
1 − ii j

) (
1 − fi j

)

3
, (5)

where ei j = 〈ti j , ii j , fi j 〉 is the single-valued neutro-
sophic edge between the vertexes αi and α j (i, j = 1, 2,
. . . , n). We have ξi j = 1 and ξi j = ξ j i , for i = j .
Step 2. Obtain the overall criterion value of the alterna-
tive pk (k = 1, 2, . . . ,m) by

p̃k =
〈
t̃k, ĩk, f̃k

〉
=
〈

n∑

j=1

ω j

(
n∑

s=1

ξs j dks

)〉

(6)

where es j = 〈ts j , is j , fs j 〉 is clearly a SVNN and
ω = (ω1, ω2, . . . ωn)

T is the potential weighting vec-
tor of the criteria α j ( j = 1, 2, . . . , n), where ω j ≥ 0,
j = 1, 2, . . . , n,

∑n
j=1 ω j = 1.

Step 3. Compute the score value of the alternative
p̃k (k = 1, 2, . . . ,m) by

s ( p̃k) = 1 + t̃k − 2ĩk − f̃k
2

(7)

Step 4. Rank all the alternatives pk (k = 1, 2, . . . ,m)

and select the best one(s) in accordance with s ( p̃k)
Step 5. End.

Procedure 2
Suppose that p = 〈t j , i j , f j 〉 ( j = 1, 2, . . . , n) is a decision
solution. Here, the approach developed is based on the neu-
trosophic graph, and the similaritymeasure between SVNNs.
Its advantage is that it can capture the relationships among
multi-input arguments via the graph approach.

Step 1. It is the same as step1 in Procedure1.
Step 2.Obtain the associatedweighted values of criterion
α j ( j = 1, 2, . . . , n) over other criteria by

d̃k j =
〈
t̃k j , ĩk j , f̃k j

〉
=
〈

ω j

(
n∑

s=1

ξs j dks

)〉

, (8)

where es j = 〈ts j , is j , fs j 〉 is clearly a SVNN and ω =
(ω1, ω2, . . . ωn)

T is the potential weighting vector of the
criterion α j ( j = 1, 2, . . . , n) , where ω j ≥ 0, j =
1, 2, . . . , n,

n∑

j=1
ω j = 1.

Step 3. Use the similarity measure between the decision
solution p = {〈t j , i j , f j 〉 : j = 1, 2, . . . , n

}
and each

alternative pk (k = 1, 2, . . . ,m) as follows:

S (p, pk) = 1 − 1

3n

n∑

j=1

∣∣t j − t̃k j
∣∣

+
∣∣∣i j − ĩk j

∣∣∣+ ∣∣ f j − fk j
∣∣ . (9)

Step 4. Determine the ranking order of all alternatives
according to S (p, pk) (k = 1, 2, . . . ,m).
Step5. End.

5 Numerical example

In this section, an example for a NGMCDM problem
with single-valued neutrosophic information are used to
demonstrate the application of the proposed decision-making
method.

Let us consider a decision-making problem adapted from
Peng et al. (2016).

Example 5 Suppose that an investment company that wants
to invest a sum of money in the best option. There is a panel
with four possible alternatives in which to invest the money:
(1) p1 is a car company, (2) p2 is a food company, (3) p3
is a computer company, and (4) p4 is an arms company.
The investment company must make a decision according
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e13

e12 

e23 

Fig. 7 The graph relationships among the criteria

to the three criterions: (1) α1 is the risk analysis; (2) α2 is the
growth analysis, and (3) α3 is the environmental impact anal-
ysis. Then, the weight vector of the criteria is given by ω =
(0.35, 0.25, 0.40). The four possible alternatives are to be
evaluated under these three criterions and are presented in the
form of single-valued neutrosophic information by decision
maker according to three criterions α j ( j = 1, 2, 3), and the
evaluation information on the alternative pk (k = 1, 2, 3, 4)
under the factors α j ( j = 1, 2, 3) can be shown in the fol-
lowing single-valued neutrosophic decision matrix D:

D =

⎡

⎢⎢
⎣

〈0.4, 0.2, 0.3〉 〈0.4, 0.2, 0.3〉 〈0.2, 0.2, 0.5〉
〈0.6, 0.1, 0.3〉 〈0.6, 0.1, 0.2〉 〈0.5, 0.2, 0.2〉
〈0.3, 0.2, 0.3〉 〈0.5, 0.2, 0.3〉 〈0.5, 0.3, 0.2〉
〈0.7, 0.0, 0.1〉 〈0.6, 0.1, 0.2〉 〈0.4, 0.3, 0.2〉

⎤

⎥⎥
⎦

Moreover, we assume that the relationships among the cri-
teria α j ( j = 1, 2, 3) can be described by a complete
graph G = (A, E), where A = {α1, α2, α3} and E =
{α1α2, α1α3, α2α3} (see Fig. 7). By Eq. (5), we can obtain
all influence coefficients to quantify the relationships among
the criteria.

Suppose that the neutrosophic edges denoting the connec-
tion among the criteria is described as follows:

e12 = 〈t12, i12, f12〉 = 〈0.3, 0.3, 0.4〉
e13 = 〈t13, i13, f13〉 = 〈0.2, 0.4, 0.5〉
e23 = 〈t23, i23, f23〉 = 〈0.2, 0.3, 0.6〉.

Note that G = (A, E) describes a single-valued neutro-
sophic graph according to the relationship among criteria for
each alternatives

To get the best alternative(s), the following steps are
involved:

Step1.We apply only all computations in the alternative
p1. Others can be similarly proved.
The influence coefficients between criteriaα j ( j =1, 2, 3)
were computed as follows:

ξ12 = t12 + (1 − i12) (1 − f12)

3

= 0.3 + (1 − 0.3) (1 − 0.4)

3
= 0.240,

ξ13 = t13 + (1 − i13) (1 − f13)

3

= 0.2 + (1 − 0.4) (1 − 0.5)

3
= 0.166,

ξ23 = t23 + (1 − i23) (1 − f23)

3

= 0.2 + (1 − 0.3) (1 − 0.6)

3
= 0.160.

Step 2. The overall criterion value of the alternative p1
was obtained as follows:

p̃1 = ω1 × (ξ11d11 + ξ21d12 + ξ31d13)

+ω2 × (ξ12d11 + ξ22d12 + ξ32d13)

+ω3 × (ξ13d11 + ξ23d12 + ξ33d13)

= 0.35 × (〈0.4, 0.2, 0.3〉 + 0.240 × 〈0.4, 0.2, 0.3〉
+0.166 × 〈0.2, 0.2, 0.5〉)
+0.25 × (0.240 × 〈0.4, 0.2, 0.3〉
+〈0.4, 0.2, 0.3〉 + 0.160 × 〈0.2, 0.2, 0.5〉)
+0.40 × (0.166 × 〈0.4, 0.2, 0.3〉
+0.160 × 〈0.4, 0.2, 0.3〉 + 〈0.2, 0.2, 0.5〉)

= 〈0.4275, 0.1098, 0.2470〉

Similarly, p̃2 = 〈0.6822, 0.0599, 0.1098〉, p̃3 = 〈0.5466,
0.1345, 0.1565〉 and p̃4 = 〈0.6966, 0.000, 0.0789〉.
Step 3. The score value of p̃1 was computed as follows:

s ( p̃1) = 1 + t̃1 − 2ĩ1 − f̃1
2

= 1 + 0.4275 − 2 × 0.1098 − 0.2470

2
= 0.4804.

Similarly, it follows that s (α̃2) = 0.7263, s ( p̃3) =
0.5607 and s ( p̃4) = 0.8088.
Step 4. Thus, we rank these alternatives as: p4 	 p2 	
p3 	 p1.

From the above numerical results, we say that the alter-
native p4 is the ideal alternative in the decision-making
problem. Note that the ranking is the same as Peng et al.
(2016). Then, the above example shows that this kind of
developed method is well suitable for single-valued neutro-
sophic information and is a useful technical that provides a
different perspective than others for neutrosophic environ-
ment.

In the following example, wewill also discuss themedical
diagnosis problem inYe (2015).Actually, this is also a pattern
recognition problem.
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Table 1 Characteristic values of the considered diseases

r1 (Fever) r2 (Headache) r3 (Stomach pain) r4 (Cough) r5 (Chest pain)

p1(Viral fever) 〈0.4, 0.6, 0.0〉 〈0.3, 0.2, 0.5〉 〈0.1, 0.3, 0.7〉 〈0.4, 0.3, 0.3〉 〈0.1, 0.2, 0.7〉
p2 (Malaria) 〈0.7, 0.3, 0.0〉 〈0.2, 0.2, 0.6〉 〈0.0, 0.1, 0.9〉 〈0.7, 0.3, 0.0〉 〈0.1, 0.1, 0.8〉
p3 (Typhoid) 〈0.3, 0.4, 0.3〉 〈0.6, 0.3, 0.1〉 〈0.2, 0.1, 0.7〉 〈0.2, 0.2, 0.6〉 〈0.1, 0.0, 0.9〉
p4 (Gastritis) 〈0.1, 0.2, 0.7〉 〈0.2, 0.4, 0.4〉 〈0.8, 0.2, 0.0〉 〈0.2, 0.1, 0.7〉 〈0.2, 0.1, 0.7〉
p5 (Stenocardia) 〈0.1, 0.1, 0.8〉 〈0.0, 0.2, 0.8〉 〈0.2, 0.0, 0.8〉 〈0.2, 0.0, 0.8〉 〈0.8, 0.1, 0.1〉

Example 6 Assume that a set of diagnoses and a set of symp-
toms are given as follows, respectively

P = {p1 (viral fever), p2 (malaria),

p3 (typhoid) , p4 (gastritis) , p5 (stenocardia)} ,

R = {r1 (fever) , r2 (headache) ,

r3 (stomach pain) , r4 (cough) , r5 (chest pain)} .

Suppose that the weight vector of symptoms is ω =
(0.25, 0.15, 0.10, 0.20, 0.30).

In addition, the performance values of the considered dis-
eases are characterized by the form of SVNSs and this results
are listed in Table 1.

A sample from a patient p with all the symptoms is repre-
sented by the following SVN information:

p = {〈r1, 0.8, 0.2, 0.1〉, 〈r2, 0.6, 0.3, 0.1〉, 〈r3, 0.2, 0.1, 0.8〉,
〈r4, 0.6, 0.5, 0.1〉, 〈r5, 0.1, 0.4, 0.6〉} .

Suppose that the neutrosophic edges denoting the con-
nection among the symptoms (see Fig. 8) are described as
follows:

e12 = 〈t12, i12, f12〉 = 〈0.1, 0.6, 0.8〉
e13 = 〈t13, i13, f13〉 = 〈0.0, 0.6, 0.8〉
e14 = 〈t13, i13, f13〉 = 〈0.1, 0.7, 0.9〉
e15 = 〈t13, i13, f13〉 = 〈0.1, 0.6, 0.9〉
e23 = 〈t23, i23, f23〉 = 〈0.0, 0.5, 0.9〉
e24 = 〈t13, i13, f13〉 = 〈0.0, 0.6, 0.8〉
e25 = 〈t13, i13, f13〉 = 〈0.0, 0.4, 0.9〉
e34 = 〈t13, i13, f13〉 = 〈0.0, 0.5, 0.9〉
e35 = 〈t13, i13, f13〉 = 〈0.0, 0.3, 0.9〉
e45 = 〈t13, i13, f13〉 = 〈0.1, 0.5, 0.9〉

The influence coefficients between symptoms are com-
puted as follows:

ξ12 = t12 + (1 − i12) (1 − f12)

3

e12 e15 

e23 

e34 

e45 

e13 e14 

e35 e24 

e25 

r1 

r2 

r3 
r4 

r5

Fig. 8 The graph relationships among the criteria

= 0.1 + (1 − 0.6) (1 − 0.8)

3
= 0.060.

Similarly,

ξ13 = 0.027, ξ14 = 0.043, ξ15 = 0.047, ξ23 = 0.017

ξ24 = 0.027, ξ25 = 0.020ξ34 = 0.017, ξ35 = 0.023,

ξ45 = 0.050.

Then the associated weighted values of diseases are
obtained by

d̃k j = ω j

(
n∑

s=1

ξs j dks

)

,

where d̃k j = 〈t̃k j , ĩk j , f̃k j 〉 is a SVNN. For example,

d̃11 = ω1 × (ξ11d11 + ξ12d12

+ξ13d13 + ξ14d14 + ξ15d15)

= 0.25 × (〈0.4, 0.6, 0.0〉
+0.060 × 〈0.6, 0.3, 0.1〉 + 0.027 × 〈0.6, 0.3, 0.1〉
+0.043 × 〈0.7, 0.3, 0.3〉 + 0.047

×〈0.4, 0.4, 0.5〉) = 〈0.131, 0.826, 0.000〉.

So, the results obtained are given in Table 2.
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Table 2 The associated weighted values of diseases

r1 (Fever) r2 (Headache) r3 (Stomach pain) r4 (Cough) r5 (Chest pain)

p1(Viral fever) 〈0.131, 0.826, 0.000〉 〈0.059, 0.772, 0.000〉 〈0.013, 0.878, 0.000〉 〈0.104, 0.760, 0.000〉 〈0.048, 0.591, 0.000〉
p2 (Malaria) 〈0.267, 0.684, 0.000〉 〈0.067, 0.764, 0.000〉 〈0.006, 0.784, 0.000〉 〈0.224, 0.748, 0.000〉 〈0.005, 0.949, 0.000〉
p3 (Typhoid) 〈0.101, 0.000, 0.708〉 〈0.057, 0.000, 0.888〉 〈0.025, 0.000, 0.957〉 〈0.053, 0.000, 0.880〉 〈0.046, 0.581, 0.862〉
p4 (Gastritis) 〈0.041, 0.000, 0.620〉 〈0.058, 0.759, 0.000〉 〈0.150, 0.839, 0.000〉 〈0.053, 0.602, 0.000〉 〈0.048, 0.573, 0.000〉
p5 (Stenocardia) 〈0.028, 0.000, 0.914〉 〈0.059, 0.000, 0.891〉 〈0.026, 0.000, 0.971〉 〈0.060, 0.000, 0.930〉 〈0.037, 0.000, 0.890〉

ByEq. (8), the similaritymeasures between the ideal solu-
tion p and each diseases pk (k = 1, 2, 3, 4, 5) are calculated
as follows:

S (p, p1) = 1 − d (p, p1) = 0.602,

S (p, p2) = 1 − d (p, p2) = 0.609,

S (p, p3) = 1 − d (p, p3) = 0.607,

S (p, p4) = 1 − d (p, p4) = 0.631,

S (p, p5) = 1 − d (p, p5) = 0.568.

Then, the patient p can be assigned to the diagnosis
p4 (gastritis) according to the recognition principle. The
result is not the same as the one obtained in Ye (2015). The
reason for this difference is that the developed method not
only considers the relationships among the symptoms but
also involves their weight information in the process. This
can directly affect the decision process and change the final
results. Therefore, the result obtained by Ye (2015) is not
always reliable. Then the final result obtained by the pro-
posed approach is more conclusive than one produced by Ye
(2015), and it is evident that the proposed approach is accu-
rate and reliable for solving the single-valued neutrosophic
decision-making problems.

6 Conclusions

The single-valued neutrosophic sets are a generalization of
Zadeh’s fuzzy set theory (Zadeh 1965) and Atanassov’s
intuitionistic fuzzy set theory (Atanassov 1986). So, the
single-valued neutrosophicmodels givemore precision, flex-
ibility and compatibility to the system as compare to the
classic and fuzzy models. Moreover, graph theory has been
applied widely in various areas of engineering, computer
science, database theory, expert systems, neural networks,
artificial intelligence, signal processing, pattern recogni-
tion, robotics, computer networks, and medical diagnosis. In
this study, the information carried by the truth-membership
degree, indeterminacy-membership degree and the falsity-
membership degree in SVNSs was considered as a graph
representation with the two elements, and the single-valued
neutrosophic graphs with their properties were defined.

Then, some technical operators to derive new graphs were
discussed, which are the Cartesian product, composition,
intersection, join, and union. Finally, considering the impor-
tant of relationships among criteria in decision process, two
new procedures based on the single-valued neutrosophic
graph were developed to solve complex problems with the
single-valued neutrosophic information. Finally, two numer-
ical examples was presented to illustrate how to deal with
the NGMCDM problems under single-valued neutrosophic
environment.
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