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Abstract Card-based cryptographic protocols can perform
secure computation of Boolean functions. In 2013, Cheung
et al. presented a protocol that securely produces a hidden
AND value using five cards; however, it fails with a prob-
ability of 1/2. The protocol uses an unconventional shuffle
operation called an unequal division shuffle; after a sequence
of five cards is divided into a two-card portion and a three-
card portion, these two portions are randomly switched so
that nobody knows which is which. In this paper, we first
show that the protocol proposed by Cheung et al. securely
produces not only a hidden AND value but also a hidden OR
value (with a probability of 1/2). We then modify their pro-
tocol such that, even when it fails, we can still evaluate the
AND value in the clear. Furthermore, we present two five-
card copy protocols (which can duplicate a hidden value)
using unequal division shuffle. Because the most efficient
copy protocol currently known requires six cards, our new
protocols improve upon the existing results. We also design
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a general copy protocol that produces multiple copies using
an unequal division shuffle. Furthermore, we show feasible
implementations of unequal division shuffles by the use of
card cases.
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1 Introduction

Suppose that Alice and Bob have Boolean values a ∈ {0, 1}
and b ∈ {0, 1}, respectively, each of which describes his/her
private opinion (or something similar), and they want to
conduct secure AND computation by themselves, i.e., they
wish to know only the value of a ∧ b. In such a situation,
a card-based cryptographic protocol is a convenient solu-
tion. Many such protocols for this purpose have already been
proposed (Boer 1990; Crépeau and Kilian 1994; Niemi
and Renvall 1998; Stiglic 2001; Mizuki and Sone 2009;
Mizuki et al. 2012; Cheung et al. 2013; Koch et al. 2015),
one of which can be selected by them for secure AND
computation. For example, if they select the six-card AND
protocol (Mizuki and Sone 2009), they can securely pro-
duce a hidden value of a ∧ b using six playing cards, e.g.,
♣ ♣ ♣ ♥ ♥ ♥ , along with a “random bisection cut,”
which will be explained later.

Cheung et al. (2013) presented a protocol that securely
produces a hidden AND value using only five cards
( ♣ ♣ ♣ ♥ ♥ ); however, it fails (and has to restart) with
a probability of 1/2 (we refer to it as the CHL AND protocol
in this paper). The protocol uses an unconventional shuffling
operation that we refer to as an “unequal division shuffle”;
after a sequence of five cards is divided into a two-card por-
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tion and a three-card portion, these two portions are randomly
switched so that nobody knows which is which. The objec-
tive of this paper is to improve the CHL AND protocol and
propose other efficient protocols using unequal division shuf-
fles.

This paper begins by presenting some definitions related
to card-based protocols.

1.1 Preliminary definitions

Throughout this paper, we assume that cards satisfy the fol-
lowing properties.

1. All cards of the same type (black ♣ or red ♥ ) are indis-
tinguishable from one another.

2. Each card has the same pattern ? on its back side, and
hence, all face-down cards are indistinguishable fromone
another.

We define the following encoding scheme to deal with a
Boolean value:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Given a bit x ∈ {0, 1}, when a pair of face-down cards ? ?
describes the value of x with encoding scheme (1), it is called
a commitment to x and is expressed as

? ?
︸ ︷︷ ︸

x

. (2)

For a commitment to x ∈ {0, 1}, we sometimes write

?
︸︷︷︸

x0

?
︸︷︷︸

x1

instead of expression (2), where x0 := x and x1 := x . In
other words, we sometimes use a one-card encoding scheme,
♣ = 0, ♥ = 1, for convenience.
Given commitments to players’ private inputs, a card-

based protocol is supposed to produce a sequence of cards as
its output. Committed-format protocols produce their output
as a commitment. For example, any committed-format AND
protocol outputs

? ?
︸ ︷︷ ︸

a∧b

from input commitments to a and b. It should be noted
that such an output commitment can be used as an input
for another computation. On the other hand, non-committed-
format protocols produce their output in another form.

Table 1 Protocols for making two copied commitments

# of cards Type of shuffle Avg. # of trials

(i) 8 RC 1

(ii) 6 RBC 1

Ours (Sect. 4) 5 UDS 2

(i) Crépeau and Kilian (1994)
(ii) Mizuki and Sone (2009)
RC Random cut, RBC random bisection cut, UDS unequal division
shuffle

Hereafter, for a sequence consisting of d ∈ N cards, each
card of the sequence is sequentially numbered from the left
(position 1, position 2, …, position d), e.g.,

1

?
2

♣
3

♥ · · ·
d

? .

1.2 Our results

As mentioned above, given commitments to Alice’s bit a
and Bob’s bit b together with an additional card ♣ , the
CHL AND protocol produces a commitment to a ∧ b with
a probability of 1/2; when it fails, the players have to create
their input commitments again. This paper shows that in the
last step of the CHL AND protocol, a commitment to the
OR value a ∨ b is also obtained when the protocol succeeds
in producing a commitment to a ∧ b. Next, we show that,
even when the protocol fails, we can still evaluate the AND
value (more precisely, any Boolean function) in the clear by
slightly modifying the last step of the protocol. Thus, the
improved protocol, which can be called a “hybrid protocol,”
never fails to compute the AND value.

Furthermore, we present two five-card copy protocols
using unequal division shuffles. Because the most efficient
copy protocol currently known requires six cards (Mizuki
and Sone 2009), our new protocols improve upon the exist-
ing results in terms of the number of required cards, as given
in Table 1. Note that our protocols require an average of two
trials,1 and the protocol (i) in Table 1 uses a random cut,
which is a cyclic shuffling operation as sometimes used in
usual card games.We also design a general copy protocol that
produces n copied commitments using an unequal division
shuffle for an arbitrary n ≥ 3. In addition, we show feasible
implementations of unequal division shuffles by the use of
card cases.

The remainder of this paper is organized as follows. Sec-
tion 2 first introduces the CHL AND protocol along with
known shuffle operations and then presents a more general
definition of unequal division shuffle. Section 3 describes our

1 As seen in Sect. 4, we repeat applying a shuffle until ♣ is found, and

the probability that ♣ appears is 1/2.
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slight modification to the last step of the CHL AND protocol
to expand its functionality. Section 4 proposes two new copy
protocols that outperform the previous protocols in terms
of the number of required cards. Section 5 presents a gen-
eral copy protocol. Section 6 demonstrates how to practically
implement unequal division shuffle with physical card cases.
Finally, Sect. 7 summarizes our findings and concludes the
paper.

An earlier version of this study was presented and
appeared as an lecture notes in computer science (LNCS)
paper (Nishimura et al. 2015). The present paper is sub-
stantially extended as compared to the LNCS paper: This
paper extends the previous results to designing a general
copy protocol that produces n copied commitments and also
demonstrates how to practically implement unequal division
shuffle in details. Sections 5 and 6 are devoted to these new
results.

2 Card shuffling operations and the CHL AND
protocol

In this section, we first introduce a random bisection
cut (Mizuki and Sone 2009). Then, we give a general defi-
nition of unequal division shuffle. Finally, we introduce the
CHL AND protocol (Cheung et al. 2013).

2.1 Random bisection cut

Suppose that there is a sequence of 2m face-down cards for
some m ∈ N:

◦
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

m cards

•
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

m cards

.

Then, a random bisection cut (Mizuki and Sone 2009) on
these cards (denoted by [·|·])
[

? ? · · · ?
∣

∣

∣ ? ? · · · ?
]

means that we bisect the sequence and randomly switch the
two portions (of size m). Thus, the result of the operation
will be either

◦
︷ ︸︸ ︷

? ? · · · ?

•
︷ ︸︸ ︷

? ? · · · ?

or
•

︷ ︸︸ ︷

? ? · · · ?

◦
︷ ︸︸ ︷

? ? · · · ? ,

where each occurs with a probability of exactly 1/2, and
nobody knows which is the current sequence.

The introduction of the random bisection cut led to a
significant reduction of the number of cards in AND and
XOR protocols (Mizuki et al. 2012; Mizuki and Sone 2009).
Using randombisection cuts, we can also construct a six-card
copy protocol (Mizuki and Sone 2009) (as given in Table 1),
adder protocols (Mizuki et al. 2013), protocols for any three-
variable symmetric functions (Nishida et al. 2013), and so
on.

Whereas the committed-format AND protocol (Mizuki
and Sone 2009) using a random bisection cut requires
six cards as stated above, Cheung et al. introduced an
unequal division shufflewhereby they constructed a five-card
committed-format AND protocol that works with a probabil-
ity of 1/2. Its details are presented in the next two subsections.
It should be noted that Koch et al. (2015) reduced the num-
ber of cards further using unequal division shuffle and its
variant, that is, they proposed a four-card committed-format
AND protocol that never fails.

2.2 Unequal division shuffle

Here, we present a formal definition of unequal division shuf-
fle, which first appeared in the CHL AND protocol (Cheung
et al. 2013).

Suppose that there is a sequence of � ≥ 3 (� ∈ N) face-
down cards:

? ? · · · ?
︸ ︷︷ ︸

� cards

.

Divide it into two portions of unequal sizes, say, j cards and
k cards, where j + k = � , j 	= k, as follows:

� cards
︷ ︸︸ ︷

? ? · · · ?
︸ ︷︷ ︸

j cards

? ? · · · ?
︸ ︷︷ ︸

k cards

.

We consider an operation that randomly switches these two
portions of unequal sizes; we refer to it as an unequal division
shuffle or a ( j, k)-division shuffle (denoted by [·|·]) :
[

? ? · · · ?
︸ ︷︷ ︸

j cards

∣

∣

∣ ? ? · · · ?
︸ ︷︷ ︸

k cards

]

.

Thus, the result of the operation will be either

? ? · · · ?
︸ ︷︷ ︸

j cards

? ? · · · ?
︸ ︷︷ ︸

k cards

or

? ? · · · ?
︸ ︷︷ ︸

k cards

? ? · · · ?
︸ ︷︷ ︸

j cards

,
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where each case occurs with a probability of exactly 1/2.
We demonstrate feasible implementations (for humans) of

unequal division shuffle in Sect. 6.

2.3 The CHL AND protocol

In this subsection, we introduce the CHL AND protocol. It
requires an additional card ♣ to produce a commitment to
a ∧ b from two commitments

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

b

placed by Alice and Bob, respectively. As mentioned in
Sect. 2.2, the protocol uses unequal division shuffle, specifi-
cally a (2, 3)-division shuffle, as follows.

1. Arrange the cards of the two input commitments and the
additional card as

?
︸︷︷︸

a0

?
︸︷︷︸

♣
?

︸︷︷︸

a1

?
︸︷︷︸

b0

?
︸︷︷︸

b1

.

2. Apply a (2, 3)-division shuffle:

[

? ?
∣

∣

∣ ? ? ?
]

.

3. Reveal the card at position 1.

(a) If the card is ♣ , then the cards at positions 2 and 3
constitute a commitment to a ∧ b:

♣ ? ?
︸ ︷︷ ︸

a∧b
? ? .

(b) If the card is ♥ , then Alice and Bob create input
commitments again to restart the protocol.

This is the CHL AND protocol. We confirm its correct-
ness. As above, the input to the CHL AND protocol consists
of commitments to a, b ∈ {0, 1} along with an additional
card ♣ . There are two possibilities due to the outcome of
(2, 3)-division shuffle:

?
︸︷︷︸

a0

?
︸︷︷︸

♣
?

︸︷︷︸

a1

?
︸︷︷︸

b0

?
︸︷︷︸

b1

and ?
︸︷︷︸

a1

?
︸︷︷︸

b0

?
︸︷︷︸

b1

?
︸︷︷︸

a0

?
︸︷︷︸

♣
,

where each case occurs with a probability of 1/2. We enu-
merate all possibilities of input and card sequences after step
2 of the protocol in Table 2 [recall encoding scheme (1)].
Looking at the cards at positions 2 and 3 when the card at

Table 2 All possibilities of input and card sequences after step 2

Input Card sequences

(a, b) a0 ♣ a1 b0 b1 a1 b0 b1 a0 ♣
(0, 0) ♣ ♣ ♥ ♣ ♥ ♥ ♣ ♥ ♣ ♣
(0, 1) ♣ ♣ ♥ ♥ ♣ ♥ ♥ ♣ ♣ ♣
(1, 0) ♥ ♣ ♣ ♣ ♥ ♣ ♣ ♥ ♥ ♣
(1, 1) ♥ ♣ ♣ ♥ ♣ ♣ ♥ ♣ ♥ ♣

position 1 is ♣ in Table 2, we can easily confirm the cor-
rectness of the protocol, i.e., the cards at positions 2 and 3
surely constitute a commitment to a ∧ b.

3 Improved CHL AND protocol

In this section, we analyze the CHL AND protocol and
change its last step to develop an improved protocol.

3.1 Bonus commitment to OR

When we succeed in obtaining a commitment to a ∧ b, i.e.,
when the card at position 1 is ♣ in the last step of the CHL
AND protocol, we are also able to simultaneously obtain a
commitment to the OR value a ∨ b. Thus, as indicated in
Table 2, if the card at position 1 is ♣ , then the cards at
positions 4 and 5 constitute a commitment to a ∨ b.

3.2 In case of failure

Suppose that the card at position 1 is ♥ in the last step of the
CHL AND protocol. This means that the AND computation
failed and we have to start from scratch, i.e., Alice and Bob
need to create their private input commitments again. How-
ever, we show that they need not do so: They can evaluate
the AND value even when the CHL AND protocol fails, as
follows.

From Table 2, if the card at position 1 is ♥ , the sequence
of five cards

♥ ? ? ? ? (3)

is one of the four possibilities given in Table 3, depending on
the value of (a, b).

Therefore, the card at position 4 indicates the value of
a ∧ b, i.e., if the card at position 4 is ♣ , then a ∧ b = 0,
and if the card is ♥ , then a ∧ b = 1. Note that opening the
card does not reveal any information about the inputs a and
b besides the value of a ∧ b. Thus, this protocol does not fail
to compute the AND value.

Actually, we can compute any Boolean function f (a, b)
in a non-committed format, given the sequence (3) above,
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Card-based protocols using unequal division shuffles 365

Table 3 Possible sequences when the CHL AND protocol fails

Input (a, b) Sequence of five cards

(0, 0) ♥ ♣ ♥ ♣ ♣
(0, 1) ♥ ♥ ♣ ♣ ♣
(1, 0) ♥ ♣ ♣ ♣ ♥
(1, 1) ♥ ♣ ♣ ♥ ♣

as follows. Note that, as given in Table 3, the position of
the face-down card ♥ (which is between 2 and 5) uniquely
determines the value of the input (a, b). We scramble all
cards at positions corresponding to f (a, b) = 1 (possibly
one card as in the case of f (a, b) = a∧b) and reveal all these
cards. If ♥ appears anywhere, then f (a, b) = 1; otherwise,
f (a, b) = 0. Thus, we can evaluate the desired function (in
a non-committed format).

3.3 Improved protocol

From the discussion above, we have the following improved
protocol.

1. Arrange the five cards as follows:

?
︸︷︷︸

a0

?
︸︷︷︸

♣
?

︸︷︷︸

a1

?
︸︷︷︸

b0

?
︸︷︷︸

b1

.

2. Apply (2, 3)-division shuffle:

[

? ?
∣

∣

∣ ? ? ?
]

.

3. Reveal the card at position 1.

(a) If the card is ♣ , then the cards at positions 2 and
3 constitute a commitment to a ∧ b; moreover, the
cards at positions 4 and 5 constitute a commitment to
a ∨ b:

♣ ? ?
︸ ︷︷ ︸

a∧b
? ?
︸ ︷︷ ︸

a∨b
.

(b) If the card is ♥ , then we can evaluate any desired
Boolean function f (a, b). Scramble all cards at posi-
tions corresponding to f (a, b) = 1 and reveal
them. If ♥ appears, then f (a, b) = 1; otherwise,
f (a, b) = 0.

Because this protocol is neither somewhat committed-
format nor non-committed format, we may call it a hybrid
protocol. From this hybrid protocol, we can immediately
derive two five-card protocols; the first one is a two-bit output

(AND and OR) protocol in committed format, and the sec-
ond one is a non-committed-format protocol for any Boolean
function. Both the protocols fail with a probability of 1/2 and
need to restart. The recent paper (Francis et al. 2017) showed
that six cards are necessary for producing commitments to
theANDandORvalues (without restarting), and hence the 5-
card AND-and-OR protocol implies that there is a possibility
to reduce the number of cards if we accept a failure causing
a restart. On the other hand, the second protocol, namely the
5-card non-committed-format protocol, is not so interesting
because we can have a 4-card non-committed-format proto-
col for any symmetric Boolean function by combining the
way in Step 3(b) above with the idea behind the four-card
non-committed-format AND protocol given in Mizuki et al.
(2012).

4 Five-card copy protocols

In this section (and the next section), we focus on protocols
for copying a commitment.

From Table 1, using the six-card copy protocol (Mizuki
and Sone 2009), a commitment to bit a ∈ {0, 1} can be copied
with four additional cards:

? ?
︸ ︷︷ ︸

a

♣ ♣ ♥ ♥ → ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

♣ ♥ .

This is the most efficient copy protocol (in terms of the num-
ber of cards) known prior to this study. In contrast, we prove
that three additional cards (two ♣ s and one ♥ ) are suffi-
cient by proposing a five-card copy protocol using unequal
division shuffle. We also propose another copy protocol that
has fewer steps by considering a different shuffle in Sect. 4.2.

4.1 Copy protocol using unequal division shuffle

Given a commitment

? ?
︸ ︷︷ ︸

a

together with additional cards ♣ ♣ ♥ , our protocol makes
two copied commitments, as follows.

1. Arrange the five cards as

?
︸︷︷︸

♣
?

︸︷︷︸

a0

?
︸︷︷︸

♥
?

︸︷︷︸

a1

?
︸︷︷︸

♣
.

2. Apply a (2, 3)-division shuffle:

[

? ?
∣

∣

∣ ? ? ?
]

.
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Table 4 Possible sequences after step 3 of our first copy protocol

Input Card sequences

a ♣ ♥ ♣ a1 a0 ♥ ♣ a0 ♣ a1

0 ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♣ ♥
1 ♣ ♥ ♣ ♣ ♥ ♥ ♣ ♥ ♣ ♣

3. Rearrange the sequence of five cards as

? ? ? ? ?
��������

�
���

? ? ? ? ? .

4. Reveal the card at position 5.

(a) If the card is ♣ , then we have two commitments to
a as follows:

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

♣ .

(b) If the card is ♥ , then we have

? ?
︸ ︷︷ ︸

a

? ? ♥ .

Swap the cards at positions 1 and 2 to obtain a com-
mitment to a. After revealing the cards at positions 3
and 4 (which must be ♣ ♣ ), return to step 1.

After step 3, there are two possibilities due to the shuffle
outcome: The sequence of five cards is either ♣♥♣ a1 a0 or
♥♣ a0 ♣ a1. Table 4 enumerates all possibilities of input and
card sequences after step 3 of the protocol. As can be easily
seen in the table, we surely have two copied commitments
in step 4(a). Note that opening the card at position 5 does
not reveal any information about the input a. Thus, we have
designed a five-card copy protocol that improves upon the
previous results in terms of the number of required cards. It
should be noted that the protocol is a Las Vegas algorithm
with an average of two trials.

4.2 Copy protocol using double unequal division shuffle

In this subsection, we reduce the number of steps for achiev-
ing copy computation by modifying the unequal division
shuffle approach.

Remember that (2, 3)-division shuffle changes the order
of the two portions:

1

?
2

?
...

3

?
4

?
5

? →
3

?
4

?
5

?
...

1

?
2

? .

Here, we consider a further division of the three-card portion:

3

?
4

?
...

5

?
1

?
2

? →
5

?
...

3

?
4

?
1

?
2

? .

Thus, given a sequence of five cards

1

?
2

?
3

?
4

?
5

? ,

a shuffle operation resulting in either

1

?
2

?
3

?
4

?
5

? or
5

?
3

?
4

?
1

?
2

?

is called a double unequal division shuffle.
Using such a shuffle, we can avoid rearranging the cards

in step 3 of the protocol presented in Sect. 4.1, as follows.

1. Arrange the five cards as

?
︸︷︷︸

a0

?
︸︷︷︸

♣
?

︸︷︷︸

♥
?

︸︷︷︸

♣
?

︸︷︷︸

a1

.

2. Apply a double unequal division shuffle:

[

? ?
∣

∣ ? ?
... ?

]

.

Remember that this results in one of the two possible
sequences.

3. Reveal the card at position 1.

(a) If the card is ♣ , then we have two commitments to
a:

♣ ? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

.

(b) If the card is ♥ , then we have

♥ ? ?
︸ ︷︷ ︸

a

? ? .

Swap the cards at positions 2 and 3 to obtain a com-
mitment to a. After revealing the cards at positions 4
and 5, return to step 1.

This protocol has two possibilities after step 2: The
sequence of five cards is either a0♣♥♣ a1 or a1 ♥♣ a0 ♣ .
Table 5 confirms the correctness of the protocol.

In the next section,wewill extend this protocol to a general
protocol that can produce three ormore copied commitments.
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Card-based protocols using unequal division shuffles 367

Table 5 Possible sequences after step 2 of our second copy protocol

Input Card sequences

a a0 ♣ ♥ ♣ a1 a1 ♥ ♣ a0 ♣
0 ♣ ♣ ♥ ♣ ♥ ♥ ♥ ♣ ♣ ♣
1 ♥ ♣ ♥ ♣ ♣ ♣ ♥ ♣ ♥ ♣

Table 6 Copy protocols for making n commitments

# of cards Type of shuffle Avg. # of trials

(i) 2n + 4 RC 1

(ii) 2n + 2 RBC 1

Ours (Sect. 5) 2n + 1 DUDS 2

RC Random cut, RBC random bisection cut, DUDS double unequal
division shuffle
(i) Crépeau and Kilian (1994)
(ii) Mizuki and Sone (2009)

5 General copy protocol

In this section, we propose a general copy protocol that
produces n identical copied commitments from a given com-
mitment to a ∈ {0, 1} using 2n + 1 cards, where n ≥ 2.

As a comparison to the previous results is given in Table 6,
this protocol reduces the number of cards required to obtain n
copied commitments by one, whereas the average number of
trials doubles. Note that n commitments to a can be obtained
using 2n + 1 cards by repeating the five-card copy protocols
presented in Sect. 4 n − 1 times; however, the following
protocol requires fewer steps and trials.

Our protocol is a generalization of the five-card copy pro-
tocol constructed in Sect. 4.2. Thus, we employ a double
unequal division shuffle. Specifically, given a sequence of
2n + 1 cards

1

?
2

?
3

?
4

? · · ·
2n

?
2n+1

? ,

we use the following double unequal division shuffle:

[ 1

?
2

?
∣

∣

∣

3

?
4

? · · ·
2n

?
...
2n+1

?
]

.

Therefore, the result of the operation must be either

1

?
2

?
3

?
4

? · · ·
2n

?
2n+1

? or
2n+1

?
3

?
4

? · · ·
2n

?
1

?
2

? ,

where each occurs with a probability of exactly 1/2.
The following is the procedure of our general copy proto-

col.

1. Arrange a given commitment to a and 2n − 1 additional
cards as

?
︸︷︷︸

a0

2n−1 cards
︷ ︸︸ ︷

?
︸︷︷︸

♣
?

︸︷︷︸

♥
?

︸︷︷︸

♣
· · · ?

︸︷︷︸

♥
?

︸︷︷︸

♣
?

︸︷︷︸

a1

.

2. Apply the following double unequal division shuffle:

[

?
︸︷︷︸

a0

?
︸︷︷︸

♣

∣

∣

∣ ?
︸︷︷︸

♥
?

︸︷︷︸

♣
· · · ?

︸︷︷︸

♥
?

︸︷︷︸

♣

... ?
︸︷︷︸

a1

]

.

3. Reveal the card at position 1.

(a) If the card is ♣ , then we have n commitments to a
as follows:

♣
2n cards

︷ ︸︸ ︷

? ?
︸ ︷︷ ︸

a

? ?
︸ ︷︷ ︸

a

· · · ? ?
︸ ︷︷ ︸

a

.

(b) If the card is ♥ , then we have n− 1 commitments to
negation of a as follows:

♥
2n−2 cards

︷ ︸︸ ︷

? ?
︸ ︷︷ ︸

a

· · · ? ?
︸ ︷︷ ︸

a

? ? .

To obtain one more commitment to a, after revealing
the last two cards (which must be ♣ ♣ ), execute
the five-card copy protocol shown in Sect. 4.2.

Table 7 shows all possibilities before revealing the card at
position 1. Note that this protocol takes an average number
of two trials.

6 Implementation of unequal division shuffle and
double unequal division shuffle

This section discusses how to implement unequal division
shuffle and double unequal division shuffle with everyday
objects.

Note that a random bisection cut (introduced in Sect. 2.1)
can be easily implemented by humans [see Ueda et al. (2016)
for details]; after bisecting a given card sequence, Alice and
Bob take turns to randomly switch the two portions until
they are satisfied. On the other hand, if Alice and Bob try
to implement unequal division shuffle in the same way, then
they will realize the current order of the two portions because
of the different sizes of the portions. To avoid such informa-
tion leakage, we propose to utilize physical cases that satisfy
some properties.
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Table 7 Possible sequences
after step 2 of our general copy
protocol

a Card sequences

a0 ♣ ♥ · · · ♣ ♥ ♣ a1 a1 ♥ ♣ · · · ♥ ♣ a0 ♣
0 ♣ ♣ ♥ · · · ♣ ♥ ♣ ♥ ♥ ♥ ♣ · · · ♥ ♣ ♣ ♣
1 ♥ ♣ ♥ · · · ♣ ♥ ♣ ♣ ♣ ♥ ♣ · · · ♥ ♣ ♥ ♣

Fig. 1 A box suitable for a card
case

Fig. 2 An envelope suitable for
a card case

Specifically, we consider the card cases shown in Fig. 1.
Each case can store a portion of cards and has two sliding
covers, an upper cover and a lower cover. We assume that
the weight of a deck of cards is negligible compared to the
case. We think, for instance, that boxes (Fig. 1) or envelopes
(Fig. 2) can be used as such cases.

In the sequel, we implement every unequal division shuf-
fle appearing so far in this paper using card cases; the use
of different tools will be illustrated. It should be noted that
these card cases can be used for implementing “non-uniform”
shuffles, see Nishimura et al. (2016) for the details.

6.1 How to implement the (2, 3)-division shuffle

Here, we propose an implementation of the (2, 3)-division
shuffle using two cases.

Remember that, after applying the (2, 3)-division shuffle

[ 1

?
2

?
∣

∣

∣

3

?
4

?
5

?
]

,

we must have either

1

?
2

?
3

?
4

?
5

? or
3

?
4

?
5

?
1

?
2

? ,

where each occurs with a probability of 1/2.
The following steps perform the (2, 3)-division shuffle

used in the CHL AND protocol (Sect. 2.3), its improved pro-
tocol (Sect. 3.3), and the five-card copy protocol (Sect. 4.1).

1. Divide a given five-card sequence into a two-card portion
and a three-card portion; then, store the first portion in
the first case C1, and the second portion in the second
case C2 (Fig. 3):

1

?
2

? → C1

∣

∣

∣

3

?
4

?
5

? → C2.

Fig. 3 Storing the two portions

Fig. 4 Switching C1 and C2 randomly

Fig. 5 Stacking up the cases

Fig. 6 Removing the two
covers

2. Switch C1 and C2 randomly (Fig. 4).2 This operation
results in two possible outcomes:

C1 C2 or C2 C1,

where each occurs with a probability of 1/2.
3. Stack up these cases, as illustrated in Fig. 5.
4. Remove the two middle sliding covers simultaneously,

as illustrated in Fig. 6. Then, we have a sequence of five
cards.

As a result of this operation, we have either

1

?
2

?
3

?
4

?
5

?

2 If players have difficulty to shuffle the two boxes publicly, they may
shuffle the two boxes behind their backs (Ueda et al. 2016).
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Fig. 7 Storing the three portions

(in the case of C1 C2), or

3

?
4

?
5

?
1

?
2

?

(in the case of C2 C1).
Therefore, the (2, 3)-division shuffle can be implemented

by humans with card cases.

6.2 Implementation of double unequal division shuffle
used in five-card copy protocol

In Sect. 4.2, a five-card copy protocol using double unequal
division shuffle was proposed. We show that it is possible
to perform the double unequal division shuffle using three
cases.

Remember that the used double unequal division shuffle

[ 1

?
2

?
∣

∣

∣

3

?
4

?
...

5

?
]

results in either

1

?
2

?
3

?
4

?
5

? or
5

?
3

?
4

?
1

?
2

? .

The following steps perform the desired shuffle.

1. Divide a given five-card sequence into two two-card por-
tions and a one-card portion; then, store the first portion
in the first case C1, the second portion in the second case
C2, and the third portion in the third case C3 (Fig. 7):

1

?
2

? → C1

∣

∣

∣

3

?
4

? → C2

∣

∣

∣

5

? → C3.

2. Switch C1 and C3 randomly (Fig. 8). This operation
results in two possible outcomes:

C1 C2 C3 or C3 C2 C1,

where each occurs with a probability of 1/2.
3. Stack up these cases (without changing the order), as

illustrated in Fig. 9.
4. Remove all sliding covers except for the top-most and

bottom-most covers simultaneously, as illustrated in
Fig. 10. Then, we have a five-card sequence.

Fig. 8 Switching C1 and C3 randomly

Fig. 9 Stacking up the cases

Fig. 10 Removing the four
covers

As a result of this operation, we have either

1

?
2

?
3

?
4

?
5

?

(in the case of C1 C2 C3), or

5

?
3

?
4

?
1

?
2

?

(in the case of C3 C2 C1).
Therefore, the double unequal division shuffle can also be

implemented.

6.3 Implementation of double unequal division shuffle
used in general copy protocol

We proposed a general copy protocol using 2n + 1 cards in
Sect. 5. It is also possible to implement the double unequal
division shuffle used in the protocol with three cases.

Remember that the used double unequal division shuffle
[ 1

?
2

?
∣

∣

∣

3

?
4

? · · ·
2n

?
...
2n+1

?
]

results in either

1

?
2

?
3

?
4

? · · ·
2n

?
2n+1

? or
2n+1

?
3

?
4

? · · ·
2n

?
1

?
2

? .
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Fig. 11 Putting the three portions

Fig. 12 Switching C1 and C3 randomly

Implementing this shuffle is achieved by almost same
operation as the previous subsection. The difference is only

the portion to be stored in C2. We just substitute
3

?
4

?

· · ·
2n

? for
3

?
4

? . Storing the first two cards in C1 and the
last card in C3 is the same.

Thus, the following steps should be performed. We now
use envelopes instead of boxes to illustrate the cases.

1. Divide a given sequence into three portions, and store
them in cases C1, C2, and C3, as illustrated in Fig. 11:

1

?
2

?
∣

∣

∣

3

?
4

? · · ·
2n

?
...
2n+1

? .

2. Switch C1 and C3 randomly (Fig. 12). This operation
results in two possible outcomes:

C1 C2 C3 or C3 C2 C1,

where each occurs with a probability of 1/2.
3. Heap up the three cases (without changing the order), as

illustrated in Fig. 13.
4. Take all cards out of the envelopes, so as not to change

the order of cards and leak any information. We may put
the three envelopes in a larger envelop and remove all the
cards inside the larger envelop, as illustrated in Fig. 14.
Then, we have a sequence of 2n + 1 cards

2n+1cards
︷ ︸︸ ︷

? ? ? ? ? · · · ? ? .

Fig. 13 Heaping up the three
cases

Fig. 14 Using a large envelop

One can easily verify the correctness of our implementa-
tion.

7 Conclusion

In this paper, we discussed the properties of the AND pro-
tocol designed by Cheung et al. and proposed an improved
protocol. Although their original protocol produces only a
commitment to the AND value with a probability of 1/2, our
improved protocol either produces commitments to the AND
and OR values or evaluates any Boolean function. Thus, the
improved protocol does not fail at all.

Furthermore, we proposed two five-card copy protocols
that can securely copy an input commitment using three addi-
tional cards. Each of our protocols uses unequal division
shuffle. Because the most efficient copy protocol currently
known requires six cards, our new protocols improve upon
the existing results in terms of the number of required cards.

Extending the results, we also designed a general copy
protocol that produces n copied commitments using double
unequal division shuffle. In addition, we demonstrated how
to practically implement unequal division shuffle in details.
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