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Abstract Intrusion detection systems are devoted to moni-
tor a network with aims at finding and avoiding anomalous
events. In particular, we focus on misuse detection systems,
which are trained to identify several known types of attacks.
These can be unauthorized accesses, or denial of service
attacks, among others. Whenever it scans a trace of a sus-
picious event, it is programmed to trigger an alert and/or to
block this dangerous access to the system. Depending on
the security policies of the network, the administrator may
seek different requirements that will have a strong depen-
dency on the behavior of the intrusion detection system. For
a given application, the cost of raising false alarms could be
higher than carrying out a preventive access lock. In other
scenarios, there could be a necessity of correctly identifying
the exact type of cyber attack to proceed in a given way. In
this paper, we propose a multi-objective evolutionary fuzzy
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system for the development of a system that can be trained
using differentmetrics. By increasing the search space during
the optimization of the model, more accurate solutions are
expected to be obtained. Additionally, this scheme allows the
final user to decide, among a broad set of solutions, which
one is better suited for the current network characteristics.
Our experimental results, using thewell-knownKDDCup’99
problem, supports the quality of this novel approach in con-
trast to the state-of-the-art for evolutionary fuzzy systems in
intrusion detection, as well as the C4.5 decision tree.

Keywords Intrusion detection systems · Computational
intelligence · Evolutionary fuzzy systems · Multi-objective
evolutionary algorithms ·Misuse detection

1 Introduction

Current networks are exposed to attacks frommalicious users
everyday. Among others, wemay stress flooding (that causes
denial of service), port scanning (that searches for vulnera-
bilities of the system), password guessing (trying to make
un unauthorized login), or buffer overflow attacks (a exploit
that can allow to gain root privileges). Therefore, intrusion
detection is a very important task for providing security and
integrity in information systems. Analyzing the information
gathered by security audit mechanisms, intrusion detection
systems (IDS) apply several rules that discriminate between
legitimate events or an undesirable use of the system (Vasilo-
manolakis et al. 2015).

When referring to IDS,wemust stress twomain categories
(Debar et al. 1999): (1)Misuse detection, that are trainedwith
an already established set of known attacks (Lee and Stolfo
2000); and (2) Anomaly detection that determines a profile
for the “normal behavior”, and sets up as “attack” any access
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with different characteristics from the standard (Patcha and
Park 2007). In this paper, we will focus on a static context,
which implies the use of the first type of approaches.

Among different machine learning solutions, Computa-
tional Intelligent and Soft Computing techniques have shown
a very robust behavior for detecting both known and unseen
intrusion attacks and to recognize normal network traffic
(Wu and Banzhaf 2010; Guo et al. 2014). In this area of
research, fuzzy systems are a valuable tool as they are capa-
ble for modeling complex and dynamic systems. This is due
to their good properties for representing uncertain knowl-
edge, as well as for presenting a smooth adaptation to the
context. We consider the use of fuzzy rule-based classifica-
tion systems (FRBCSs) (Ishibuchi et al. 2004), an extension
to classical rule-based systems, where its antecedents and
consequent are composed of fuzzy logic statements. Further-
more, we focus on fuzzy sets with linguistic labels, allowing
the output system to present a higher interpretability degree
for the expert (Gacto et al. 2011).

In our last study on the topic (Elhag et al. 2015), we
focused on the development of a methodology based on
this paradigm for misuse detection. Specifically, we made
use of the Fuzzy Association Rule-based Classification for
High-Dimensional problems (FARC-HD) (Alcalá-Fdez et al.
2011), a linguistic Evolutionary Fuzzy System (EFS) (Fer-
nandez et al. 2015) in synergy with the One-vs-One (OVO)
class decomposition technique (Galar et al. 2011), in which
binary subproblems are obtained by confronting all possible
pair of classes. The high potential of this fuzzy rule learn-
ing approach was determined by the goodness in the correct
identification for all types of attacks, including rare attack
categories.

However, in the context of IDS, there are several met-
rics of performance to be optimized. Among others, we must
stress the attack detection rate (ADR), which stands for the
accuracy obtained for the attack classes managed as a whole,
and the false alarm rate (FAR), i.e., the number of false pos-
itives. Additionally, we have emphasized the significance of
identifying correctly every single type of attack, as it allows
one being able to develop a different task in each case. For
the aforementioned reasons, a Multi-Objective Evolutionary
Algorithm (MOEA) (Coello-Coello et al. 2007) could be the
best-suited approach for the optimization of these different
measures in order to achieve several solutions which can
fit different conditions (Fernandez et al. 2015; Mohammadi
Shanghooshabad and Saniee Abadeh 2016).

In this work, we propose the integration of an MOEA
approach within the learning procedure of the FARC-HD
algorithm aiming for the achievement of a wide set of
accurate solutions. The synergy between the multi-objective
process and the fuzzy representation has already provided
several advantages under different scenarios such as pixel
classification from remote sensing imagery (Alok et al. 2016)

or market clearing of joint energy and reserves auctions
(Goroohi Sardou and Ameli 2016). Specifically, we must
stress the following ones:

– Any desired metrics can be selected for the optimization.
– It allows a decision among several configurations (codi-
fied in each solution) depending on the final requirements
of the system.

– The smoothness related to the linguistic fuzzy terms
allows the model to provide a better separability among
different types of alarms.

– Finally, a better understanding of the working procedure
of the IDS is implicit to the use of linguistic fuzzy rules
with a low number of antecedent values.

The goodness of our novel methodology will be tested
using several datasets from the area of IDS. Specifically,
we have selected the standard KDDCUP’99 dataset (Lee
and Stolfo 2000), the NSL-KDD (Tavallaee et al. 2009),
and the Gure-KDDCup (Perona et al. 2008). This way, the
experimental results will be directly comparable with most
of the Computational Intelligence approaches for intrusion
detection. Specifically, for the evaluation of the experimental
results, wewill compare them versus the standard FARC-HD
algorithm (Alcalá-Fdez et al. 2011), as well as our previous
approach on the topic, i.e., FARC-HD-OVO (Elhag et al.
2015), which was shown to outperform the state-of-the-art
EFS algorithms for misuse detection. Finally, we will com-
plement our comparison with the classical C4.5 decision tree
(Quinlan 1993).

The remainder of the manuscript is organized as follows.
Section 2 introduces some preliminary concepts, including
the context of IDS, some basic notions on FRBCSs and the
details for the working procedure of FARC-HD. Next, Sect.
3 presents our proposal for the development of the method-
ology integrating the MOEA and the fuzzy rule learning in
misuse detection. Next, in Sect. 4 we set up the experimen-
tal framework, including the features of the KDDCUP’99
dataset, metrics of performance, algorithms for comparison
and their parameters. Then, the analysis of the performance
of this novel approach with respect to the state-of-the-art is
shown in Sect. 5. Finally, Sect. 6 summarizes and concludes
the work.

2 Preliminaries: intrusion detection systems and
fuzzy rule-based classification systems

In this section, we will introduce several concepts that will
present a clearer definition of the work context, as well as the
features of the type of classifier that will be used to build our
final solution. In this way, a summary of the main concepts
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for IDS will be presented first in Sect. 2.1. Next, in Sect. 2.2,
we will recall some brief details on FRBCSs. Finally, in
Sect. 2.3, we will describe the features of the FARC-HD
algorithm, which has been selected as baseline technique for
this research.

2.1 Intrusion detection systems

In this data age, we are witnessing how computer systems
are creating, processing, and sharing an overwhelming quan-
tity of information. According to this fact, computer security
must be regarded as a critical issue, so that the unauthorized
access to this data from a computer and/or computer net-
work, could imply a significant problem, as it compromises
the integrity, confidentiality and availability of the resources
(Chebrolu et al. 2005). This issue is of extreme importance in
several application areas such as have medical (Mitchell and
Chen 2015) or power systems (Pan et al. 2015). Therefore, a
wide amount of computer security tools such as antiviruses,
firewalls, data encryption, and so on. In addition to this, there
are some complementary tools thatmonitor the activity of the
network in order to detect and block intrusions.

Anomalous activities are thus identified by IDSs, which
comprise the process of monitoring and analyzing events
occurring in a computer system or network in order to detect
anomalous activity (Vasilomanolakis et al. 2015). In partic-
ular, IDS can be split into two categories according to the
detection methods they employ, including (1) misuse detec-
tion and (2) anomaly detection.

The main difference between both types of systems
is related to whether they use a signature detection or
anomaly detection paradigm. Misuse detection systems take
the majority of IDSs, and use an established set of known
attack patterns, and then monitor the net trying to match
incoming packets and/or command sequences to the sig-
natures of known attacks (Lee and Stolfo 2000). Hence,
decisions are made based on the prior knowledge acquired
from the model. The main advantage of this type of IDS
is that they provide high detection accuracy with few false
positives, but with the disadvantage that they are not able to
detect new attacks other than those previously stored in the
database.

On the other hand, anomaly detection IDS have the ability
to detect new attacks, but at the cost of increasing the number
of false positives. In an initial phase, the anomaly-based IDS
is trained in order to obtain a normal profile of activity in the
system (Patcha and Park 2007). The learned profiles of nor-
mal activity are customized for every system, making it quite
difficult for an attacker to know with certainty what activi-
ties it can carry out without getting detected. Then, incoming
traffic is processed in order to detect variations in comparison
with the normal activity, in which case it will be considered
as a suspicious activity. In addition to the higher number of

false alarms raised, another disadvantage of the development
a system of these characteristics is the higher the complexity
compared to the case of misuse detection.

2.2 Introduction to FRBCSs

Any classification problem consists of m training patterns
xp = (xp1, . . . , xpn,Cp), p = 1, 2, . . . ,m from M classes
where xpi is the i th attribute value (i = 1, 2, . . . , n) of the
pth training pattern.

In this work, we use fuzzy rules of the following form for
our FRBCSs:

Rule R j : If x1 is A j1 and . . . and xn is A jn

then Class = C j with RW j
(1)

where R j is the label of the j th rule, x = (x1, . . . , xn) is
an n-dimensional pattern vector, A ji is an antecedent fuzzy
set, C j is a class label, and RW j is the rule weight (Ishibuchi
and Yamamoto 2005). We use triangular MFs as antecedent
fuzzy sets.

When a new pattern xp is selected for classification, then
the steps of the fuzzy reasoning method (Cordón et al. 1999)
are as follows:

1. Matching degree, that is, the strength of activation of the
if-part for all rules in the Rule Base with the pattern xp.
A conjunction operator (t-norm) T , is applied in order to
carry out this computation:

µA j (xp) = T (µA j1(xp1), . . . , µA jn (xpn)),

j = 1, . . . , L (2)

2. Association degree To compute the association degree of
the pattern xp with the M classes according to each rule
in the Rule Base. To this aim, a combination operator
h, is applied to combine the matching degree with the
rule weight (RW). In our case, this association degree
only refers to the consequent class of the rule (i.e., k =
Class(R j )).

bkj = h
(
µA j (xp),RW

k
j

)
,

k = 1, . . . ,M; j = 1, . . . , L (3)

3. Pattern classification soundness degree for all classes
We use an aggregation function f , which combines the
positive degrees of association calculated in the previous
step.

Yk = f
(
bkj , j = 1, . . . , L and bkj > 0

)
, k = 1, . . . ,M

(4)
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4. Classification We apply a decision function F over the
soundness degree of the system for the pattern classifica-
tion for all classes. This function will determine the class
label l corresponding to the maximum value.

F(Y1, . . . ,YM ) = argmax(Yk), [k = 1, . . . ,M]
(5)

where L denotes the number of rules in the Rule Base and
M the number of classes of the problem.

2.3 Baseline fuzzy classifier: FARC-HD algorithm

The great challenge for IDS is to develop a system that
can guarantee both a high attack detection rate and a low
false alarm rate. In order to overcome this, Data Mining
techniques, especially Soft Computing and Computational
Intelligence approaches, have become essential pieces for
addressing this problem (Wu and Banzhaf 2010).

Among these, FRBCSs (Ishibuchi et al. 2004) have
emerged as a valuable solution in accordance with their inner
properties. First, the use of fuzzy labels allows a smoother
management for the user profile, i.e., decreasing false alarms.
Additionally, security itself includes fuzziness in the def-
inition between normal and abnormal behavior. Another
positive feature for FRBCSs is their extension to EFSs (Fer-
nandez et al. 2015), i.e., the hybridization between Fuzzy
Systems and Evolutionary Algorithms (Eiben and Smith
2003), which leads to a leap of quality as the fuzzy system
is adapted to the context of the problem.

Among different methods based in EFSs for their appli-
cation in IDS, in our last work on the topic, we have shown
the goodness of the FARC-HD approach (Alcalá-Fdez et al.
2011; Elhag et al. 2015) over the most representative algo-
rithms of this paradigm. FARC-HD algorithm is based on
association discovery (Zhang and Zhang 2002), whose inte-
gration with classification allows the achievement of precise
and interpretablemodels. In addition, it has shown to be quite
robust for high dimensional problems, a feature that is very
significant in the case of IDS (Bostani and Sheikhan 2017).

In summary, the FARC-HD method is based on the fol-
lowing three stages (as depicted in Fig. 1):

Stage 1 Fuzzy association rule extraction for classifica-
tionA search tree is employed to list all possible frequent
fuzzy item sets and to generate fuzzy association rules for
classification, limiting the depth of the branches in order
to find a small number of short (i.e., simple) fuzzy rules.
Stage 2 Candidate rule pre-screening Afterward, the
rule generation, the size of the rule set can be too large
to be interpretable by the end user. Therefore, a pre-
selection of the most interesting rules is carried out

by means of a “subgroup discovery” mechanism based
on an improved weighted relative accuracy measure
(wWRAcc’) (Kavsek and Lavrac 2006).
Stage 3 Genetic rule selection and lateral tuning Finally,
in order to obtain a compact and accurate set of rules
within the context of each problem, an evolutionary pro-
cess will be carried out in a combination for the selection
of the rules with a tuning of membership function, as its
positive synergy has been shown in previous work on the
topic (Alcala et al. 2007; Casillas et al. 2005).

3 Proposed methodology: a multi-objective
evolutionary fuzzy system approach for IDS

The premise behind our research is to develop amisuse detec-
tion tool that may provide several advantages in this area.
Specifically, we have focused on three different issues that
are of high interest for the community in IDS. First, the output
model must be interpretable by the final user, i.e., it should
easily allow to explain the phenomena that has been detected.
Second, it must have the ability to adapt to different require-
ments. Finally, it should be able not only to recognize an
suspicious behavior, but also to identify the particular type
of attack with a both good recall and precision.

To accomplish the first goal, we will use as baseline clas-
sifier the FARC-HD approach. As described in the previous
section, this FRBCS is based on linguistic fuzzy labels,which
enable rules’ semantic to be closer to human natural language
(Gacto et al. 2011). In addition to the former, during the learn-
ing stage of FARC-HD, themaximum total length of the final
rules can be limited to few antecedents. In case of problems
with a large number of variables, this is a clear advantage for
the compactness of the output model.

The second and third issues are closely related. We must
take into account that in the area of IDS there are many pos-
sible ways to determine the quality of the software system,
which will be described with detail in Sect. 4.3). Therefore,
for the user, it might be important to decide the desired main
objectives of the IDS among all the possible metrics of per-
formance (Kudlacik et al. 2016). However, most of thesemay
be in conflict one with another. A clear main example is the
achievement of a high attack detection rate and a low false
alarm rate. Therefore, our proposed approach must be able
not only to derive a different behavior according to the user
requirements, but also to be robust enough even in case of
conflicting objectives.

In accordance with the former, we must tune FARC-HD
toward the achievement of the highest results for a given set
of IDS metrics of performance. A straightforward way for
addressing the former task is by carrying out an optimization
of the initial FARC-HD RB so that we may accomplish the
user objectives with a high-quality fuzzy system.
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Fig. 1 Learning stages for the FARC-HD algorithm

Considering that we must manage a multi-objective prob-
lem, the most straightforward way to carry out this process
is to build a single function that aggregates every objectives.
However, this implies two main drawbacks: (1) to determine
the optimal weight for each one of the objectives; and (2) it
is only possible to obtain a single compromise solution.

For this reason, in these cases, it ismore reliable to proceed
via an MOEA, i.e., a Pareto-optimization (Coello-Coello
et al. 2007). It allows the optimization of several objectives
by evolving a set of non-dominated solutions. This “non-
dominance” term refers to the case when a given solution
s1 is equal or better than another s2 for all objectives but
one. For example, in a two-objective minimization problem,
s1 and s2 are considered to be a couple of non-dominated
solutions when s1 = (0.0, 0.5) and s2 = (0.1, 0.3); on the
contrary, s1 dominates s3 when s3 = (0.1, 0.6).

There are two main advantages related to this procedure.
The first one is to make the search space broader, thus result-
ing in a better exploration ability. The second one is providing
a set of solutions from which the user or expert can select the
one that is better suited to the system’s requirements. We
must stress that both issues cover our initial premises for
obtaining a robust IDS.

As stated previously, our proposal is acting on the opti-
mization procedure of FARC-HD, namely the “Genetic rule
selection and lateral tuning” that is carried out in the last stage
of the FARC-HDalgorithm (Alcalá-Fdez et al. 2011). Instead
of carrying out a single evolutionary process, we substitute
it with an MOEA approach that is able to generate different
Knowledge Bases in accordance with the objectives selected.

For developing ourmodel, wewillmake use of theNSGA-
II algorithm (Deb et al. 2002), as it is widely known for being
a high-performanceMOEA. Its twomain features are first the
fitness evaluation of each solution based on both the Pareto
ranking and a crowding measure, and the other is an elitist
generation update procedure.

In order to codify the solutions, and following the same
than in the original optimization process for FARC-HD, we

will make use of a chromosome with two well differentiate
parts: one (RS) for the rule selection and another one (DB)
for the tuning of the Data Base:

– The first part will have a binary codification. The length
of this part of the solution will be the number of rules
selected in Stage 2 (pre-screening) of the FARC-HD pro-
cess. Therefore, a 0 valuemeans that the rule will not take
part for generating the classification model, whereas a 1
value stands for the opposite case.

– The second part will have a real codification in the range
[0, 1]. Therewill be asmanygenes as different labels con-
tained in the Data Base. Following the 2-tuples linguistic
representation (Alcala et al. 2007; Fernández et al. 2010;
Herrera and Martínez 2000), values in [0.0, 0.5) imply
a lateral displacement to the left, whereas values in the
(0.5, 1] are displacements to the right in the original uni-
verse of discourse. Accordingly, the initial state of the
linguistic label corresponds to the value 0.5.

Chromosomes will be evaluated jointly with aims at
obtaining the best synergy between both characteristics,
instead of optimizing them separately. This issue is based
on the fact that it is not clearly defined which the best order
for carrying our both processes is. An initial chromosome
will be built with all binary genes equal to ‘1’ and real genes
to ‘0.5’ in order to implement the standard case study, i.e., the
original Knowledge Base, whereas the remaining individuals
will be generated at random.

In order to proceed with the evaluation of the chro-
mosomes, the decoding implies the generation of a new
Knowledge Base from the configuration parameters given
in the solution. Then, this model will be applied to training
set in order to obtain the values for the performance metrics
selected as objectives. The list of most commonly used per-
formance metrics in the context of IDS will be introduced in
Sect. 4.3.
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Finally, for the sake of allowing a better exploitation in
the search, we have limited the number of objectives to two.
In the experimental study (Sect. 5), we will present several
case studies from which we can conclude the best synergy
between the selected performance metrics.

4 Experimental framework

This section is devoted to establish the configuration for
the experiments in order to carry out a thorough analy-
sis. With this aim, Sect. 4.1 introduce the features of the
selected benchmark problems. The learning algorithms and
their configuration parameters will be presented in Sect. 4.2.
Finally, the metrics of performance applied to compare the
results obtained with the different classifiers are described in
Sect. 4.3.

4.1 Benchmark data: IDS problems

Among different benchmark problems for IDS, the KDD-
CUP’99 dataset is possibly the widest used one, being a
standard until today (Benferhat et al. 2013; Khor et al. 2012;
Chung and Wahid 2012). It was obtained by the Information
System Technology (IST) group of Lincoln laboratories at
MIT university under contract of DARPA and in collabora-
tion with ARFL (Lee and Stolfo 2000). It consisted of an
environment of a local area network (LAN) that simulates a
typical U.S. Air Force LAN, including several weeks of raw
TCP dump data with normal activities and various types of
attacks.

It comprises 41 attributes in total, which are divided three
main groups: intrinsic features (extracted from the headers’
area of the network packets), content features (extracted from
the contents area of the network packets), traffic features
(extracted with information about previous connections).

Class labels are divided into normal and attack activities.
This last class can be further divided into particular types
of attack, which are basically grouped into four major cate-
gories, namely:

– Denial of Service (DOS): make some machine resources
unavailable or too busy to answer to legitimate users
requests (SYN flooding).

– Probing (PRB): Surveillance for information gathering or
known vulnerabilities about a network or a system (port
scanning).

– Remote To Local (R2L): use vulnerability in order to
obtain unauthorized access from a remotemachine (pass-
word guessing).

– User To Root (U2R): exploit vulnerabilities on a system
to gain local super-user (root) privileges (buffer overflow
attack).

From this classical and well-known dataset, several alter-
native problems have been generated trying to both overcome
some of the limitations from the original data (such as the
number of redundant records), and to update its inner char-
acteristics for novel IDS requirements. Specifically, we have
made use of the NSL-KDD (Tavallaee et al. 2009) and the
Gure-KDDCUP (Perona et al. 2008) datasets.

The NSL-KDD dataset contains an informed subsample
from the original KDDCUP’99 dataset. First, all redundant
records in the train and test sets were removed, so that classi-
fiers will not be biased toward more frequent records. Then,
instances were selected in accordance to their difficulty level,
whose value is computed regarding the number of correct hits
obtained by 7 different learners, each ofwhich executed three
times. The number of attributes and classes remain the same
with respect to the KDDCUP’99 dataset.

Gure-KDDCUP problem is a novel IDS dataset which fol-
lowed an extraction process similar to that of KDDCUP’99.
In this sense, authors processed “TCP dump” files with bro-
ids1 and stored each connection with its attributes. Finally,
connectionswere labeled based on the connections-class files
(“tcpdump.list”) provided by MIT.

In the NSL-KDD dataset, the number of records in the
train and test sets are reasonable (1,074,992 records), mak-
ing affordable to run the experiments on the complete set.
However, in both KDDCUP’99 and Gure-KDDCUP prob-
lems, the total amount of data places them in the context of
Big Data (Fernandez et al. 2014), i.e., affecting the scala-
bility of current approaches. For this reason, usually a small
portion of thewhole data is randomly selected for its use with
standard classifiers.

In accordance with the former, for the KDDCUP’99
dataset we will select just a 10% of the instances for our
experiments. This implies a total of 494,021 connections.
Then, we have also removed all duplicated instances, reduc-
ing the data to a total of 145,585 examples.

Analogously to the previous case, authors of the Gure-
KDDCUP dataset made available a subset with a 6% of the
records. This sample contains all no-flood attacks matched
with tcpdump.list and a random subsample of normal con-
nections matched with tcpdump.list, thus including 178,858
connections. It is important to point out that, on the contrary
to KDDCUP’99 and NSL-KDDCUP problem, this particu-
lar case study does not contain any record for the PRB attack
type.

Finally, in order to carry out a validation procedure of the
results, we have selected a hold-out methodology. Specifi-

1 http://www.bro-ids.org/.
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cally, we will employ a 10% of the datasets for training and
the remaining 90% for test. However, in order to take into
account the original distribution of classes, we will include
a 50% of instances for U2R in both training and test. Table
1 shows the final distribution of examples for each parti-
tion/class.

4.2 Algorithms and parameters

In this paper, we have considered several algorithms for a fair
analysis of the behavior of our proposal. The choice ofFARC-
HD (Alcalá-Fdez et al. 2011) as the baseline classifier makes
mandatory to include its original version for this study. Addi-
tionally, we must make use of its multi-classifier extension,
i.e., FARC-HD-OVO (Elhag et al. 2015), as it was shown
to be one of the most accurate EFSs for the task of intru-
sion detection. Finally, we will include C4.5 (Quinlan 1993)
in the experimental study as a state-of-the-art rule induction
algorithm. In what follows, we detail the configuration of the
parameters for each approach:

1. FARC-HD (Alcalá-Fdez et al. 2011) First, we have
selected 5 labels per variables for the fuzzy sets, product
t-norm as conjunction operator and additive combination
for the inference procedure. As specific parameters of
the learning stage, we have set up the minimum support
to 0.05 and the minimum confidence to 0.8. Finally, we
have fixed the maximum depth of the tree to a value of 3,
and the k parameter for the pre-screening to 2. For more
details about these parameters, please refer to Alcalá-
Fdez et al. (2011).

We must stress that this configuration will be shared for
all three models based on FARC-HD, i.e., the standard
approach, FARC-HD-OVO, and our proposed model
FARC-HD-MOEA.

2. FARC-HD-OVO (Elhag et al. 2015) The learning proce-
dure will be performed using all possible pairs of classes.
In order to aggregate the outputs of each binary classifier
into a single solution, we will make use of the preference
relations solved byNon-DominanceCriterion (ND) (Fer-
nández et al. 2010).

3. FARC-HD-MOEATheparameters of theNSGA-IIMOEA
have been set up as follows: 50 individuals as popula-
tion size, with 20000 generations. The crossover and the
mutation (per gen) probabilities are 0.9 and0.025, respec-
tively.

4. C4.5 (Quinlan 1993) For C4.5 we have set a confidence
level of 0.25, the minimum number of item-sets per leaf
was set to 2 and the application of pruning was used
to obtain the final tree. We must point out that, for the
sake of allowing the output model to be compact and

interpretable, we have carried out an extensive pruning.
Specifically, we have limited the maximum depth of the
tree to 3. Therefore, rules obtained from C4.5 will be
of the same length than those learned by the FARC-HD
algorithms, establishing a fair comparison between both
techniques.

4.3 Performance metrics for IDS

In the specialized literature for IDS in general, and for mis-
use detection in particular, authors have made use of several
metrics of performance for the evaluation of their results in
comparison with the state-of-the-art. In this paper, we have
selected different measures which will allow us to analyze
the behavior of our approach under several perspectives:

1. Accuracy It stands for the global percentage of hits. In
our case (IDS), its contribution is low as it does not take
into account the individual accuracies of each class, but
it has been selected as a classical measure.

Acc =
∑C

i=1 T Pi
N

(6)

where C stands for the number of classes, N stands for
the number of examples and TPi is the number of True
Positives of the i th class.

2. Mean F-measure In the binary case, the standard f-
measure computes a trade-off between precision and
recall of both classes. In this case, we compute the aver-
age for the F-measure achieved for each class (taken as
positive) and the remaining ones (taken as a whole as
negative):

MFM =
∑C

i=1 FMi

C
(7)

FMi = 2 · Recalli · Precisioni
Recalli + Precisioni

(8)

Precisioni = TPi
TPi + FPi

(9)

Recalli = TPi
TPi + FNi

(10)

where TPi , FPi and FNi are the number of true posi-
tives, false positives and false negatives of the i th class,
respectively, percentage).

3. Average accuracy It is computed as the average of the
individual hits for each class. For this reason, it is also
known as the average recall:

AvgAcc = 1

C

C∑
i=1

Recalli (11)
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Table 1 Number of examples
per class in each dataset partition
for KDDCUP’99, NSL-KDD
and Gure-KDDCUP problems

Class KDDCUP’99 NSL-KDDCUP Gure-KDDCUP

#Ex. training #Ex. test #Ex. training #Ex. test #Ex. training #Ex. test

Normal 8783 79,049 6674 60,669 17,488 157,385

DOS 5457 49,115 4648 41,279 112 1012

PRB 213 1917 103 892 – –

R2L 100 899 1173 10,483 274 2465

U2R 26 26 26 26 37 37

Total 14,579 131,006

Table 2 Case studies for
different metrics of performance
selected as objectives within the
MOEA approach

Case Study Metric 1 Metric 2

Case 1 Attack detection rate (ADR) False alarm rate (FAR)

Case 2 Average accuracy (Avg-Acc) False alarm rate (FAR)

Case 3 Attack accuracy (Att-Acc) False alarm rate (FAR)

Case 4 Mean F-measure (MfM) False alarm rate (FAR)

Case 5 Mean F-measure (MfM) Average accuracy (Avg-Acc)

4. Attack accuracy In this case we omit the “Normal”
instances and we focus in checking whether we guess
correctly the different “Attack” types individually.

AttAcc = 1

C − 1

C∑
i=2

Recalli (12)

In this case, the first class (i = 1) is considered to be the
“Normal” class.

5. Attack detection rate It stands for the accuracy rate for
the attack classes. Therefore, it is computed as:

ADR =
∑C

i=2 TPi∑C
i=2 TPi + FNi

(13)

Reader must take into account that also in this case, the
first class (i = 1) is considered to be the “Normal” class.

6. False alarm rate In this case, we focus on the “Nor-
mal” examples, and we check which is the percentage
of “false negatives” found, i.e., those instances identified
as “alarms” but which are actually normal behavior.

FAR = FP1
TP1 + FP1

(14)

As in the former metric (ADR), the “Normal” class has
the first index (i = 1).

5 Experimental study

This section includes the experimental results and the anal-
ysis of the former to support the goodness of our proposed
approach. In particular, we will first perform a selection of
the best combination of objectives to carry out the search, i.e.,
those whose synergy allows a better exploration of the search
space and thus show an good overall performance (Sect. 5.1).
Then, once the best parameters have been found, we will
contrast the behavior of this novel methodology with that
of the state-of-the-art for rule learning and fuzzy rule learn-
ing, i.e., the C4.5 decision tree (Quinlan 1993), the original
FARC-HD algorithm (Alcalá-Fdez et al. 2011), and FARC-
HD-OVO (Elhag et al. 2015) (Sect. 5.2). Finally, we provide
additional information for the experimental study by show-
ing the whole Pareto fronts for all case studies in training
and test, as well as the confusion matrices in the test parti-
tion (Sect. 5.3).

5.1 Analysis of the best objectives’ combination

The field of IDS has several metrics of performance depend-
ing on the user’s requirements. Section 4.3 introduced the
main objectives that are commonly used to measure the qual-
ity of the designed models to address this task. In this work,
we do not seek a particular goal, but an “multi-purpose”
method that will be able to adapt well under several sce-
narios, trying to maximize the precision and recall among all
classes, regardless of their type.

According to the previous fact, our first step is to find the
better combination of objectives that leads to a robust aver-
age performance. Among all available metrics, we consider
that the “False Alarm Rate” (FAR) is the mandatory one to
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control the bias toward the majority class, i.e., Normal activ-
ity. Therefore, we will carry out the combination for all the
remaining metrics together with the former one. Addition-
ally, we will also combine the “mean F-measure” with the
“average accuracy” as both try to balance the correct recog-
nition among all classes. Specifically, all combinations are
summarized in Table 2. We must point out that the standard
accuracy was not considered as it does not take into account
the individual rates for the different concepts of the problem.

Tables 3, 4, 5, 6 and 7 show the experimental results for
the training and test partitions of the three selected problems,
namely KDDCUP’99, NSL-KDDCUP and Gure-KDDCUP.
All performance measures are considered, as introduced in
Sect. 4.3: Accuracy (Acc), Mean F-measure (MFM), Aver-
age Accuracy (AvgAcc), Attack average accuracy (AttAcc),
Attack Detection Rate (ADR), and False Alarm Rate (FAR).
Since we must extract a single KB from a single solution of
the final set, we have chosen three different points from the
Pareto. Specifically, we have considered the maximal values
for each objective, as well as the “knee point” (Branke et al.
2004), since this solution is likely to be the most relevant to
the decision maker, as it represents the compromise between
both objectives.

We acknowledge that if we focus on individual measures,
the case study that has selected it for the learning process will
achieve unequivocally the highest results. It is interesting to
point out that, when the “False alarm rate” metric is selected
in combination with different metrics, the obtained results
vary. This fact implies the benefits of the use of the MOEA
to seek for a wide variety of IDS depending on the desired
behavior.

Among all case studies that have been analyzed, the
one that probably shows the best results is the combination
between “mean F-measure” and “False alarm rate.” Specif-
ically, if we focus on the values obtained using the “best
MfM,” we must highlight a superior behavior in most of the
metrics, or at least a similar performance, thus stressing the
advantage of this configuration for the search procedure.

5.2 Comparison versus the state-of-the-art

Once we have selected the best combination of objectives
for the genetic learning, we will analyze the goodness of
this approach versus the methods from the state-of-the-art
selected in the experimental framework, i.e., the original
FARC-HD (Alcalá-Fdez et al. 2011) and FARC-HD-OVO
(Elhag et al. 2015), and theC4.5decision tree (Quinlan1993).
Experimental results are divided with respect to the bench-
mark IDS problem. Performance values for theKDDCUP’99
dataset are shown in Table 8, for the NSL-KDD dataset in
Table 9, and for the Gure-KDDCUP in Table 10.

For all selected problems, FARC-HD-MOEA improves
the results of FARC-HD is most of the considered metrics
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Table 8 Complete experimental results for our proposed approach
(FARC-HD-MOEA (MfM+FAR)) versus the state-of-the-art (FARC-
HD, FARC-HD-OVO, and C4.5) over the reducedKDDCUP’99 dataset

for different metrics of performance: accuracy (Acc), mean F-measure
(MFM), average accuracy (AvgAcc), attack average accuracy (AttAcc),
attack detection rate (ADR), and false alarm rate (FAR)

Metric FARC-HD-MOEA FARC-HD FARC-HD-OVO C4.5

Tr Tst Tr Tst Tr Tst Tr Tst

Acc 98.11 97.89 98.42 98.30 99.18 99.00 99.49 99.44

MfM 91.99 86.06 90.69 84.26 97.72 84.12 92.96 80.85

AvgAcc 89.57 89.30 88.31 87.76 96.50 89.32 91.20 86.84

AttAcc 87.06 86.77 85.44 84.77 95.64 86.70 89.04 83.61

ADR 95.84 95.53 96.27 96.17 98.07 97.77 98.96 98.93

FAR 0.3871 0.5528 0.1708 0.2948 0.0797 0.1910 0.1594 0.2277

Bold values correspond to the best result in test for each metric and dataset

Table 9 Complete experimental results for our proposed approach
(FARC-HD-MOEA (MfM+ FAR)) versus the state-of-the-art (FARC-
HD, FARC-HD-OVO, and C4.5) over the NSL-KDD dataset for

different metrics of performance: accuracy (Acc), mean F-measure
(MFM), average accuracy (AvgAcc), attack average accuracy (AttAcc),
attack detection rate (ADR), and false alarm rate (FAR)

Metric FARC-HD-MOEA FARC-HD FARC-HD-OVO C4.5

Tr Tst Tr Tst Tr Tst Tr Tst

Acc 97.80 97.64 97.77 97.86 98.10 98.10 97.36 97.12

MfM 89.26 78.66 72.40 71.49 90.70 79.24 86.08 78.80

AvgAcc 85.39 80.28 69.38 68.58 87.52 82.91 84.91 81.88

AttAcc 81.93 75.60 61.92 60.95 84.59 78.86 81.90 78.20

ADR 96.17 96.07 96.13 96.44 96.79 96.91 97.85 97.72

FAR 0.7492 0.9956 0.7642 0.9000 0.7342 0.8588 3.0716 3.3955

Bold values correspond to the best result in test for each metric and dataset

Table 10 Complete experimental results for our proposed approach
(FARC-HD-MOEA (MfM+ FAR)) versus the state-of-the-art (FARC-
HD, FARC-HD-OVO, and C4.5) over the Gure-KDDCUP dataset for

different metrics of performance: accuracy (Acc), mean F-measure
(MFM), average accuracy (AvgAcc), attack average accuracy (AttAcc),
attack detection rate (ADR), and false alarm rate (FAR)

Metric FARC-HD-MOEA FARC-HD FARC-HD-OVO C4.5

Tr Tst Tr Tst Tr Tst Tr Tst

Acc 99.38 99.20 99.37 99.24 99.40 99.24 99.35 99.51

MfM 90.86 75.60 88.17 74.15 91.27 75.98 70.43 70.30

AvgAcc 87.76 78.80 84.02 73.87 88.75 78.71 68.06 67.94

AttAcc 83.75 71.85 78.77 65.26 85.07 71.72 57.42 57.27

ADR 82.74 78.12 81.80 78.29 83.45 78.69 73.29 79.17

FAR 0.2173 0.3253 0.2059 0.2916 0.2116 0.3050 0.0229 0.0318

Bold values correspond to the best result in test for each metric and dataset

Table 11 Comparison of number of rules (#Rules) and average number of antecedents (#Avg. Ant.) for the algorithms selected in the experimental
study

Dataset FARC-HD-MOEA FARC-HD FARC-HD-OVO C4.5

#Rules #Avg. Ant. #Rules #Avg. Ant. #Rules #Avg. Ant. #Rules #Avg. Ant.

KDDCUP’99 44 2.6590 25 2.3600 84 2.2238 150 2.1385

NSL-KDD 72 2.7777 46 2.6956 111 2.3249 168 2.5128

GURE-KDD 31 2.1935 17 2.1176 44 1.6408 41 2.8133
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Table 12 Confusion Matrix in the test partition for the FARC-HD-
MOEA approach (MfM vs. FAR, best solution for MfM) in the
KDDCUP’99 dataset

Normal DOS PRB R2L U2R Recall

Normal 78,612 214 75 130 18 99.45

DOS 2056 47027 32 0 0 95.75

PRB 90 32 1789 4 2 93.32

R2L 91 2 5 798 3 88.77

U2R 4 0 0 4 18 69.23

Precision 97.23 99.48 94.11 85.26 43.90 –

of performance. We must recall that the same configuration
is shared by both approaches. In this sense, the initial KB
obtained afterward stages 1 and 2 (refer to Sect. 2.3) will be
the same for both models. This fact suggests the goodness in
the design and capabilities of the proposedMOEA optimiza-

Table 13 Confusion Matrix in the test partition for the FARC-HD-
MOEA approach (MfM vs. FAR, best solution for MfM) in the NSL-
KDD dataset

Normal DOS PRB R2L U2R Recall

Normal 60,331 37 143 119 39 99.44

DOS 3796 37267 0 216 0 90.28

PRB 290 0 599 0 3 67.15

R2L 622 136 0 9725 0 92.77

UR2 11 0 4 0 11 42.31

Precision 92.75 99.54 80.29 96.67 20.75 –

tion procedure versus the standard Genetic Algorithm when
dealing with IDS problems. In particular, we must stress the
differences with respect to the values of the mean f-measure,
average accuracy, and attack accuracy are especially remark-
able, improving up to 10–15 points in some cases.

(a) (b)

Fig. 2 Pareto front obtained in the test stage with FARC-HD-MOEA
approach. Objectives selected during the search were the mean F-
measure (MfM) and the false alarm rate (FAR). a Pareto front in

KDDCUP’99 dataset with FARC-HD-MOEA approach. b Pareto front
in KDDCUP’99 dataset with FARC-HD-MOEA approach

(a) (b)

Fig. 3 Pareto front obtained in the test stage with FARC-HD-MOEA
approach. Objectives selected during the search were the mean F-
measure (MfM) and the false alarm rate (FAR). a Pareto front in

KDDCUP’99 dataset with FARC-HD-MOEA approach. b Pareto front
in NSL-KDD dataset with FARC-HD-MOEA approach
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(a) (b)

Fig. 4 Pareto front obtained in the test stage with FARC-HD-MOEA
approach. Objectives selected during the search were the mean F-
measure (MfM) and the false alarm rate (FAR). a Pareto front in

KDDCUP’99 dataset with FARC-HD-MOEA approach. b Pareto front
in Gure-KDD dataset with FARC-HD-MOEA approach

Regarding the comparison versus FARC-HD-OVO, we
must stress that the performance values are more similar in
this case.However, there is a clear advantageof our novel pro-
posed technique, which relies in the use of a single classifier,
instead of a whole ensemble. This fact avoids a combina-
tion among different outputs during the inference, which can
degrade the system response.

When our proposed FARC-HD-MOEA is contrasted ver-
sus theC4.5 decision tree,weobserve an interesting behavior.
Whereas global metrics of performance such as accuracy
and/or attack detection rate are usually higher for C4.5, the
goodness of FARC-HD-MOEA lies in the ability of provid-
ing a good average recognition, if we focus on the mean
f-measure and the average accuracy. Furthermore, the false
alarm rate obtained with our approach is always below the
1%, whereas C4.5 raises this value for the NSL-KDD dataset
up to the 4% (Tables 11, 12, 13).

In accordance with the whole analysis that has been car-
ried out, we must stress that our FARC-HD-MOEA proposal
is a robust choice for the IDS problem. Its main advantage in
contrast to the remaining methods is its ability to achieve a
good trade-off between recall (average accuracy) and preci-
sion (mean F-measure). This issue implies that our approach
reaches a high average performance for all concepts/classes
of the problem. Additionally, it enhances the false alarm
rate from the baseline FARC-HD approach, also maintain-
ing a very close value compared to that of the remaining
algorithms. Finally, we have observed that a low number of
simple (compact) linguistic rules are enough to cover the
whole problem space accurately.

5.3 Complementary results: Pareto front of solutions
and confusion matrices

For the sake of complementing this study,we show in Figs. 2,
3 and 4 the complete Pareto front obtained from the genetic

Table 14 Confusion Matrix in the test partition for the FARC-HD-
MOEA approach (MfM vs. FAR, best solution for MfM) in the GURE-
KDD dataset

Normal DOS R2L U2R Recall

Normal 15,6873 11 443 58 99.67

DOS 46 966 0 0 95.45

R2L 696 3 1761 5 71.44

UR2 14 1 4 18 48.65

Precision 99.52 98.47 79.76 22.22 –

optimization for the KDDCUP’99, NSL-KDD and GURE-
KDD datasets. In all cases of study, we may observe a wide
amount of non-dominated solutions from both the training
and test sets, all of which are homogeneously distributed in
the solution space. This issue reflects the good properties of
the search procedure, as it covers a wide amount of different
cases from which the expert can select the most appropriate
one for a desired profile of behavior.

Finally, we include in Tables 12, 13, 14 the confusion
matrices obtained in the test partition for FARC-HD-MOEA
algorithm for all three IDS problems. This is done with
aims at showing additional information for the experimental
results, so that any interested research could reproduce and
extend the current study for additional future work.

6 Concluding remarks

In the context of IDS, profiles may change depending on
the users’ requirements. In this sense, we must usually face
confronting objectives for the working procedure of this type
of system, mainly between achieving a low number of false
alarms, and a good average recognition for different types of
attacks.

With this aim, in this research, we have proposed the inte-
gration of a MOEA within a linguistic fuzzy association rule
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mining, the FARC-HD algorithm. Specifically, the genetic
optimization has been focused on the last stage to carry out
the rule selection and data base tuning. The goodness for the
use of the MOEA is related to the simultaneous optimization
of different metrics of performance in the scenario of IDS.
The aim for this procedure is being able to both extending
the search space and obtaining a wide amount of accurate
solutions. By doing so, the final user may select the most
suitable classification system for the current work context.

On thefirst part of our analysis,wehave considered several
case studies depending on the combination of metrics for the
learning process. Among them, we have found out that the
synergy between the mean F-measure and the false alarm
rate was the most relevant for achieving good average results
under the different IDS benchmark problems. Nevertheless,
wemust recall any other configuration could be also valuable
according to the final requirements of the application.

Finally, the comparison of this approach versus the
state-of-the-art, which included both the original FARC-HD
classifier, FARC-HD with OVO, and the C4.5 decision tree,
supported the high quality of our novel methodology. In par-
ticular, we remarked the good trade-off obtained between
precision and interpretability for all cases of study, in accor-
dance with the length of the RB and average antecedents per
rule.

Acknowledgements This paper was funded by King Abdulaziz Uni-
versity, underGrantHiCi. The authors therefore, acknowledge technical
and financial support of KAU.

Compliance with ethical standards

Conflict of interest None

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Alcala R, Alcalá-Fdez J, Herrera F (2007) A proposal for the genetic
lateral tuning of linguistic fuzzy systems and its interaction with
rule selection. IEEE Trans Fuzzy Syst 15(4):616–635

Alcalá-Fdez J, Alcalá R, Herrera F (2011) A fuzzy association rule-
based classification model for high-dimensional problems with
genetic rule selection and lateral tuning. IEEE Trans Fuzzy Syst
19(5):857–872

Alok AK, Saha S, Ekbal A (2016) Multi-objective semi-supervised
clustering for automatic pixel classification from remote sensing
imagery. Soft Comput 20(12):4733–4751

Benferhat S, Boudjelida A, Tabia K, Drias H (2013) An intrusion detec-
tion and alert correlation approach based on revising probabilistic
classifiers using expert knowledge. Appl Intell 38(4):520–540

Bostani H, Sheikhan M (2017) Hybrid of binary gravitational search
algorithm andmutual information for feature selection in intrusion
detection systems. Soft Comput 21(9):2307–2324

Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-
objective optimization. In: Yao X, Burke EK, Lozano JA, Smith J,

Guervós JJM, Bullinaria JA, Rowe JE, Tiño P, Kabán A, Schwefel
HP (eds) PPSN, Lecture Notes in Computer Science, vol 3242.
Springer, New York, pp 722–731

Casillas J, Cordón O, del Jesús MJ, Herrera F (2005) Genetic tuning
of fuzzy rule deep structures preserving interpretability and its
interaction with fuzzy rule set reduction. IEEE Trans Fuzzy Syst
13(1):13–29

Chebrolu S, Abraham A, Thomas JP (2005) Feature deduction and
ensemble design of intrusion detection systems. Comput Secur
24(4):295–307

Chung YY, Wahid N (2012) A hybrid network intrusion detection
system using simplified swarm optimization (SSO). Appl Soft
Comput 12(9):3014–3022

Coello-Coello CA, Lamont G, van Veldhuizen D (2007) Evolutionary
algorithms for solving multi-objective problems, genetic and evo-
lutionary computation, 2nd edn. Springer, Berlin

Cordón O, del Jesus MJ, Herrera F (1999) A proposal on reasoning
methods in fuzzy rule-based classification systems. Int J Approx
Reason 20(1):21–45

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197

Debar H, Dacier M, Wespi A (1999) Towards a taxonomy of intrusion-
detection systems. Comput Netw 31(8):805–822

Eiben AE, Smith JE (2003) Introduction to evolutionary computation.
Springer, Berlin

Elhag S, Fernández A, Bawakid A, Alshomrani S, Herrera F (2015) On
the combination of genetic fuzzy systems and pairwise learning for
improving detection rates on intrusion detection systems. Expert
Syst Appl 42(1):193–202

FernándezA,CalderónM,BarrenecheaE,BustinceH,Herrera F (2010)
Solving multi-class problems with linguistic fuzzy rule based
classification systems based on pairwise learning and preference
relations. Fuzzy Sets Syst 161(23):3064–3080

Fernández A, del Jesus MJ, Herrera F (2010) On the 2-tuples based
genetic tuning performance for fuzzy rule based classification sys-
tems in imbalanced data-sets. Inf Sci 180(8):1268–1291

Fernandez A, del Rio S, Lopez V, Bawakid A, del Jesus MJ, Benitez
JM, Herrera F (2014) Big data with cloud computing: an insight on
the computing environment, mapreduce and programming frame-
works.Wiley Interdisc RevDataMinKnowl Discov 4(5):380–409

Fernandez A, Lopez V, del Jesus MJ, Herrera F (2015) Revisiting evo-
lutionary fuzzy systems: taxonomy, applications, new trends and
challenges. Knowl Based Syst 80:109–121

Gacto M, Alcalá R, Herrera F (2011) Interpretability of linguistic fuzzy
rule-based systems: an overview of interpretability measures. Inf
Sci 181(20):4340–4360

Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F (2011)
An overview of ensemble methods for binary classifiers in multi-
class problems: experimental study on one-vs-one and one-vs-all
schemes. Pattern Recogn 44(8):1761–1776

Goroohi Sardou I, Ameli MT (2016) A fuzzy-based non-dominated
sorting genetic algorithm-II for joint energy and reserves market
clearing. Soft Comput 20(3):1161–1177

Guo C, Zhou Y, Ping Y, Zhang Z, Liu G, Yang Y (2014) A dis-
tance sum-based hybridmethod for intrusion detection. Appl Intell
40(1):178–188

Herrera F, Martínez L (2000) A 2-tuple fuzzy linguistic representa-
tion model for computing with words. IEEE Trans Fuzzy Syst
8(6):746–752

Ishibuchi H, Yamamoto T (2005) Rule weight specification in fuzzy
rule-based classification systems. IEEE Trans Fuzzy Syst 13:428–
435

Ishibuchi H, Nakashima T, Nii M (2004) Classification and modeling
with linguistic information granules: advanced approaches to lin-
guistic data mining. Springer, Berlin

123



1336 S. Elhag et al.

Kavsek B, Lavrac N (2006) Apriori-sd: Adapting association rule learn-
ing to subgroup discovery. Appl Artif Intell 20(7):543–583

Khor KC, Ting CY, Phon-Amnuaisuk S (2012) A cascaded classifier
approach for improving detection rates on rare attack categories in
network intrusion detection. Appl Intell 36(2):320–329

Kudlacik P, Porwik P, Wesołowski T (2016) Fuzzy approach for
intrusion detection based on user’s commands. Soft Comput
20(7):2705–2719

Lee W, Stolfo S (2000) A framework for constructing features and
models for intrusion detection systems. ACMTrans Inf Syst Secur
3(4):227–261

Mitchell R, Chen I (2015) Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems. IEEE
Trans Dependable Secure Comput 12(1):16–30

Mohammadi Shanghooshabad A, Saniee Abadeh M (2016) Sifter:
an approach for robust fuzzy rule set discovery. Soft Comput
20(8):3303–3319

PanS,Morris T,AdhikariU (2015)Developing a hybrid intrusion detec-
tion system using data mining for power systems. IEEE Trans
Smart Grid 6(6):3104–3113

Patcha A, Park JM (2007) An overview of anomaly detection tech-
niques: existing solutions and latest technological trends. Comput
Netw 51(12):3448–3470

Perona I, Gurrutxaga I, Arbelaitz O, Martín JI, Muguerza J, Pérez JM
(2008) Service-independent payload analysis to improve intrusion
detection in network traffic. In: Proceedings of the 7thAustralasian
Data Mining Conference (AusDM08), pp 171–178

Quinlan J (1993) C4.5: programs for machine learning. Morgan Kauff-
man, San Mateo

Tavallaee M, Bagheri E, Lu W, Ghorbani A (2009) A detailed analy-
sis of the KDD cup 99 data set. In: Second IEEE symposium on
computational intelligence for security and defense applications
(CISDA09), pp 53–58

Vasilomanolakis E, Karuppayah S, Muhlhauser M (2015) Taxonomy
and survey of collaborative intrusion detection.ACMComput Surv
47(4):55:1–55:33

Wu SX, Banzhaf W (2010) The use of computational intelligence in
intrusion detection systems: a review. Appl Soft Comput 10(1):1–
35

Zhang C, Zhang S (2002) Association rule mining, models and algo-
rithms, Lecture Notes in Computer Science, vol 2307. Springer,
Berlin

123


	A multi-objective evolutionary fuzzy system to obtain a broad  and accurate set of solutions in intrusion detection systems
	Abstract
	1 Introduction
	2 Preliminaries: intrusion detection systems and fuzzy rule-based classification systems
	2.1 Intrusion detection systems
	2.2 Introduction to FRBCSs
	2.3 Baseline fuzzy classifier: FARC-HD algorithm

	3 Proposed methodology: a multi-objective evolutionary fuzzy system approach for IDS
	4 Experimental framework
	4.1 Benchmark data: IDS problems
	4.2 Algorithms and parameters
	4.3 Performance metrics for IDS

	5 Experimental study
	5.1 Analysis of the best objectives' combination
	5.2 Comparison versus the state-of-the-art
	5.3 Complementary results: Pareto front of solutions and confusion matrices

	6 Concluding remarks
	Acknowledgements
	References




