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Abstract Data envelopment analysis (DEA) is a mathemat-
ical method to evaluate the performance of decision-making
units. In the classic DEA theory, assume deterministic and
precise values for the input and output observations; however,
in the real world, the observed values of the inputs and out-
puts data are mainly fuzzy and random. In the present paper,
the fuzzy data were assumed random with a skew-normal
distribution, whereas previous works have been based on the
assumption of data normality, which might not be true in
practice. Therefore, the use of a normal distribution would
result in an incorrect conclusion. In the present work, the ran-
dom fuzzy DEA models were investigated in two states of
possibility—probability and necessity—probability in the pres-
ence of a skew-normal distribution with a fuzzy mean and
a fuzzy threshold level. Finally, a set of numerical example
is presented to demonstrate the efficacy of procedures and
algorithms.

Keywords Data envelopment analysis - Random fuzzy vari-

able - Skew-normal distribution - Possibility—probability -
Necessity—probability

1 Introduction

Efficiency and productivity measurement of organizations
have attracted extensive attention in recent years. DEA is
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a nonparametric method with multiple inputs and outputs
for evaluating the performance of commercial units; further-
more, it is a mathematical method for measuring relative
efficiency of DMUs. CCR model is one of the fundamental
models in DEA, which was initially proposed by Charnes
et al. (1978). Since then, due to the extensive use of DEA in
various problems, several models have been presented in this
regard. Many researchers assume that the input and output
data are constant and without change, while in practice, the
input and output data are mainly random fuzzy (Ra-Fu). So
far, various methods have been presented for solving DEA
problems with fuzzy data (Zhu 2003; Wu et al. 2006). Zadeh
(1978) defined the possibility theory for fuzzy sets as a math-
ematical framework in modeling.

A normal distribution is a continuous distribution which
is extremely important in statistics because of its behavior.
It has numerous characteristics which increase the applica-
bility. In their previous studies on DEA models with random
fuzzy data, researchers have assumed that input and output
variables follow a normal distribution (Tavana et al. 2012,
2013a,b; Khanjani et al. 2014a,b, 2017), while this may not
be true in the real world and data may be slightly skewed and
asymmetric. Therefore, if an asymmetrical distribution has
similar characteristics to a normal one, it can play a major
role in data analysis.

One of these distributions is the skew-normal (SN) dis-
tribution, first introduced by Azzalini (1985) and widely
considered by other researchers. This distribution has a skew-
ness regulation parameter which, if set to 0, can result in a
normal distribution. Thus, a SN distribution also includes a
normal distribution. In random fuzzy environments, inputs
and outputs are random fuzzy, and such data cannot be
directly applied in DEA models because they lead to incor-
rect conclusions. In the present paper, it was assumed that
the input and output variables were random fuzzy and fol-
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Fig. 1 Density functions of SN distribution for §s difference

lowed a skew-normal distribution with a fuzzy mean and a
fuzzy cutoff level. Accordingly, the models were presented in
possibility—probability and necessity—probability states and,
finally, the proposed models were investigated in two numer-
ical examples.

The rest of this paper is organized as follows. In the next
section, the normal-skewed distribution and primary fuzzy
definitions will be introduced. Section (2) presents some
models in possibility—probability and necessity—probability
states in the presence of the skew-normal distribution. In
Sect. (4), the models presented in the previous section will
be expressed in one numerical example, and finally, Sect. (5)
includes the discussion and conclusion.

2 Preliminaries

In this section, we first review some basic definitions of fuzzy
sets (Dubois and Prade 1978; Klir and Yuan 1995; Zimmer-
mann 2001) followed by several definitions associated with
fuzzy random variables (FRVs) (Kwakernaak 1978; Liu and
Liu 2002, 2003) and the SN distribution (Azzalini 1985;
Azzalini and Capitano 1999).

Definition 1 SN Distribution: A random variable Z is said
to have a standard SN distribution with real parameters §,
denoted by Z ~ SN (), if its probability density function
(pdf) is given by

fz(2) =2 (2) P (8z2), ey

where ¢ and @ are the pdf and cumulative distribution func-
tion (cdf) of standard normal distribution, respectively. The
shape parameter § is called skewness control parameter. The
pdf (1) for 6 > 0 is skewness to right, § < 0 skewness to left
and, also, if § = 0O then itis symmetric and is transformed into
standard normal distribution. The pdf (1) for §s difference is
drawn in Fig. 1.
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u+oZ,u e No >0
pdf of random variable W with location parameter p, scale
parameter o and skew parameter § (henceforth called the
W ~ SN (1, 02, 8) distribution) is:

fw<w>=3¢(w_“)q>(a<w—“)). ®)
o o o

If W ~ SN (u, 02, §), then mean and variance are as follows:

With transformation W =

EW)=p+op, VOV =02 (1-42), 3)

_ 2 _ 8 ..

where p, = \/;y andy = i See Azzalini (1985).
Definition 2 Let U be a universe set. A fuzzy set A of U is
defined by a membership function u ; (x) — [0, 1], where
uj (x),Vx € U, indicates the degree of membership of A to
u.

Definition 3 The «-cut of fuzzy set A, Aa, is the crisp set
Ay = {x|u; (x) = @}. The support of A is the crisp set
Sup A = {x |/LA (x) > 0}.

Definition 4 A is a fuzzy number if and only if A is normal
and convex fuzzy subset of the set of real numbers.

Definition 5 A fuzzy number of LR type is denoted by A =
(m, o, B); p and its membership function can be expressed
as

,U«,g(t)={R<u) > m “)

where L and R are the left and right functions, respectively,
and o and B are the (nonnegative) left and right spreads,
respectively.
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Definition 6 The a-cut, « € [0, 1], of a L-R type fuzzy
number A is a closed interval as follows

A= {xlus @ z o) =[af, af]

_ [m —L '), m+ R (a)] )

where AL and AR are the left and right extreme points,
respectively.

Definition 7 Let (2, A, Pr) be probability space where 2
is a sample space, A is the s-algebra of subset of Q2 and
Pr is a probability measure on €2, and F (R) be the set of
all fuzzy numbers in the set of real numbers R. Generally,
F involves the normal convex fuzzy subsets. Thus, a fuzzy
random variable (FRV) is a mapping function £ : Q — F
such that for any Borel set B of R, and

Definition 8 Let £ = (£1,&,...,&,) be a fuzzy random
vector, and f : M" — N be a continuous function, then
f (&) is FRV.

Definition 9 Given a universe set U, let P (U) be a power
set of U. (U, P (U), Pos) . The triple (U, P (U), Pos) is
called a possibility space where Pos is a possibility measure
defined on P (U). For any set A and B, the properties of the
possibility measure are presented as

a. Pos (¥) = 0and Pos (U) = 1;

b. Monotonicity; A C B implies Pos (A) < Pos (B) for
any A, Be P (U);

c. Subadditivity; Pos (A U B) + Pos (AN B) < Pos (A) +
Pos (B) forany A, B € P (U).

The necessity measure of A, denoted by Nec(A), is also
defined on P (U) as Nec (A) = 1 — Pos (A€) where A€ is a
complement set of A. For any set A and B, the properties of
the necessity measure are presented as,

Nec (¥) = 0 and Nec (U) = 1;

Pos (A) > Nec (A) ;

Monotonicity; A C B implies Nec (A) < Nec (B);
Subadditivity; Nec (A U B)+Nec (A N B) > Nec (A)+
Nec (B).

o o

3 DEA with random fuzzy data

In this section, the CCR model of DEA with random fuzzy
data will be generalized. This model will be presented with
possibility—probability and necessity—probability constraints
with the possibility level and fuzzy necessity.

In the general state, the probability level might be inaccu-
rate and indefinite. In this section, a DEA model with a fuzzy

threshold level will be generalized; in fact, it is assumed that
§ is a fuzzy number.

3.1 Possibility—probability CCR model in the presence
of SN distribution with Fuzzy threshold level

In this section, we evaluate the performance of decision-
making units (DMUs) with random fuzzy inputs and outputs.
Assume that we have n DMUs such that all DMUs are inde-
pendent from one another for the ith random fuzzy input,

i = 1,2,...,m and the rth random fuzzy output, r =
1,2,...,s. Also, assume )%ijNCSNl 1 (x,-],alj,é,],O o )
. . = _ (e 1 m2 B —
in which there are x;; = ( X Xij o X5 1]) per j =

L2 onand 5 ~CSN i (5, 73 65,0, r,/.),m which

= ﬁ ~
there are x;; = (xf‘jlxl.’jl , xZ’}z, xif)LR' Let us assume that §
is illustrated as in § = (8%, 8™, 6™, 8F); then, the CCR
model with possibility—probability constraints will be as
model (6):

Pos | Pr

B m
Pos | Pr (Z vi)%ip < 1)
L i=
m
Pos | Pr (Z ViXip > 1) >8>y,
m

s, i=1,...,m. 6)

where ¥;; and y,; have a closed skew-normal distribution
with fuzzy mean and § is a fuzzy threshold level. To convert
this model into a definite model, the following theorem is
used.

Theorem 1 Assume that A| and A> are two independent ran-
dom fuzzy numbers with a closed skew-normal distribution

as A1~CSN(/L1 01 ,01,0, ‘71) and A2NCSN(/L2, 02 , 62,0,

2). Then, the means will be as ji| = (A‘l’l, A AL )\’3)

LR

and i, = (kg‘, k;’“ , )\'2"2, kg)LR : thus, we have:
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(a) IfPos [Pr ():\1

(x”” —Am gL 1(a)( ))
() o

where

= )_»2) > 5] > « is true, then:

1 (@) 3“) 0. (7

_l(éml—L_l(c()(Sa)
fa (8)ds =8™ — L™ (a) 8%.

—00

(b) IfNec [Pr ():»1 < ):»2) > S] > o is true, then:

(A’l"z M AR (1 —a) (xg‘ + A{’))
+ (M) w! (5’”2 +R7! (a)5ﬂ) =0. (®

where
vl (8m2+ R (@)8f)
fa(8)ds =8" + R (a) 8
—00
Note: Normal case of this theorem introduced by Tavana
et al. (2013a,b).

Proof Assume that ):» 1 and iz are two independent ran-
dom fuzzy numbers with a closed skew- normal (CSN)

distribution as A1~CSN (/Ll,al ,01,0, 01) and )\,2’\’CSN
(fi2,03.8,0,03); thus, h = Ay — Apwill have a closed

skew-normal distribution with the following parameters:
IS =E[)_»1 —/_\2] =1 — 2
B B
= (M aaT = agale = a3t +29)

o}:lz = Var [):1 —)_»2] = 0'12 +022

D* — . 1 _ [310’1221|
o + 05 —5202
v* =10, 07
B%Uf 8152012022
cr|2+<722

2 22
oy +48505 —

ol 48202 —
% 1 171 7 62462
AT = 1772
81820‘12622

2 4
2
oy +05

2, 72
oy +05

The CSN distribution /2 with mean fuzzy parameters is as

follows:
f(fi) =c¢ (Z pz, o h)ébz (D* (’:l —Mﬁ> T A*).
-1 = @, (0; VE, A 4 D*al%D*)
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So that in this state and in ¢~! =272,

h—
By changing the variable W = b ,

following equation:

= 12 M= €
o= h
h

And V¥ is the cumulative distribution function (CDF) of
the standard closed skew-normal distribution of variable W.
Also, ¥ is an additive continuous function. Using the defi-
nition of a-cut, we will have the following equation:

L R L L
ljp( Mfl) lp( Mﬁ)
o= ’ o=
h o o

+00
wi), [ Fde =1

L
-1 B
(k7) =2 =242+ 17 @ (3 +25)

o 2 2
o =,4/0{ + 03

(3): — 5™ — L™ (@) 8

Proof of the second part is similar to the first part. O

Now, let us assume that there are » DMUs with m inputs
and s outputs as follows:

X;j~CSNj i (x:,,d,],&,,(), U,]> ) Xij
_fya m mp B
= (sfy i i 56)
.)_)erCSNl,l <yr]v Trj» €rjo 0, Tr]>a)_7rj
(e m1 ma B
- (yrjv yr] ’yrj vyrj)LR

Using the above theorem on the constraints of model (6), the
following definite model will be obtained:
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Table 3 Possibility—probability scores of the DMUs with their fuzzy thresholds

5 (0.1,0.1,0.1,0.1) (0.1,0.1,0.1,0.1) (0.1,0.3,0.3,0.1) (0.1,0.7,0.7,0.1)
Y 0.1 0.3 0.9 0.5 0.5 0.5
DMUI 0.9007 0.8466 0.7095 0.8757 0.8186 0.7740
DMU2 0.8229 0.7902 0.7920 0.8609 0.7862 0.7308
DMU3 0.9212 0.8693 0.7099 1.1625 0.8334 0.7784
DMU4 1.0653 1.0181 0.8877 1.0797 1.0020 0.9417
DMUS5 1.2470 1.1892 1.0324 3.2838 1.4912 1.0473
DMU6 0.9828 0.9399 0.8239 1.3384 0.9324 0.8657
DMU7 0.8463 0.8003 0.6727 0.8534 0.7832 0.7307
DMUS 0.7968 0.7638 0.6699 0.8379 0.7605 0.7134
DMU9 1.0145 0.9730 0.8553 1.0501 0.9645 0.7989
DMU10 1.1737 1.0877 0.8704 1.1229 1.0401 0.9760
DMUI11 1.2942 1.2161 1.1430 1.0237 1.2944 1.1430
DMUI12 1.0657 1.0092 0.8564 1.0745 0.9879 0.9215
DMUI13 1.1467 1.0904 0.9392 1.1684 1.0702 1.0009
DMU14 0.6862 0.6528 0.5634 0.6900 0.6398 0.6007
DMU15 1.3053 1.2274 1.0225 1.2841 1.1898 1.1181
DMU16 1.0986 1.0490 0.9203 1.1149 1.0341 0.9718
DMU17 0.7567 0.7221 0.6209 0.7743 0.7121 0.6654
DMU18 1.0449 1.0038 0.8838 1.1077 1.0024 0.9255
DMU19 0.7683 0.7338 0.6409 0.8007 0.7282 0.6747
DMU20 1.3443 1.2557 1.0260 1.3197 1.2131 1.1317
DMU21 0.8085 0.7785 0.6901 0.8595 0.7789 0.7197
DMU22 0.7162 0.6644 0.5503 0.7034 0.6468 0.6042
DMU23 0.8743 0.8385 0.7370 0.9037 0.8309 0.7197
DMU24 1.0564 0.9717 0.7606 1.0012 0,9238 0.8641
DMU25 0.9476 0.8935 0.7550 0.9288 0.8661 0.8171
, m
(9,1,) = Z vizaizp, max ¢
i=l s.t.

m m
2 _ 2.2 2 2
(h))" = Douieh + ) vio,
r=1 i=1
u,,v,-,@,f,@ll),)»jzO,r:1,...,s;i:1,...,m;j:1,...,n

klO)

Definition 10 DMU is called efficient at probability level
vy and fuzzy possibility level § if the objective function of
model (10) is equal to or bigger than 1; otherwise, it is called
inefficient.

3.2 Necessity—probability CCR model in the presence of
SN distribution with Fuzzy threshold level

In this section, the CCR model with necessity—probability
constraints and fuzzy threshold level will be generalized in
order to evaluate the DMUSs. Therefore, the CCR model with
necessity—probability constraints in the presence of SN distri-
bution with fuzzy level § = (8%, 8m1, 8m2, 8P is as follows:

@ Springer
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Again, let us consider the assumption of the previous section,

a summary of which is as follows:
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Table 4 Necessity—probability scores of the DMUs with their fuzzy thresholds

5 (0.1,0.1,0.1,0.1) (0.1,0.1,0.1,0.1) (0.1,0.3,0.3,0.1) (0.1,0.7,0.7,0.1)
y 0.1 0.3 0.9 0.5 0.5 0.5
DMUI1 0.5455 0.5523 0.5339 0.6050 0.5731 0.5392
DMU2 0.5138 0.5256 0.5526 0.6189 0.5654 0.5154
DMU3 0.5598 0.5189 0.5515 0.8046 0.5872 0.5154
DMU4 0.6303 1.6556 0.7433 0.7881 0.7417 0.6958
DMUS5 0.8310 0.8178 0.8577 1.8803 1.0881 1.8181
DMUG6 0.6560 0.6541 0.6013 0.9266 0.6872 0.6218
DMU7 0.5032 0.5181 0.5617 0.6080 0.5574 0.5028
DMUS 0.4919 0.5026 0.5316 0.5956 0.5412 0.4904
DMU9 0.6100 0.6231 0.5983 0.7037 0.6596 0.6153
DMU10 0.6121 0.6257 0.6408 0.6693 0.7006 0.6506
DMUI1 0.7463 0.7478 0.7487 0.8586 0.7853 0.7178
DMUI2 0.6126 0.6405 0.7266 0.7419 0.6954 0.6374
DMU13 1.6774 1.6919 1.7563 1.8179 1.7475 1.6472
DMU14 0.4030 0.4080 0.4235 0.4693 0.4320 0.3958
DMUI15 0.7278 0.7407 0.7890 0.8559 0.8086 0.7614
DMU16 0.7139 0.7260 0.7456 0.8069 0.7596 0.7124
DMU17 0.4630 0.4780 0.5171 0.5616 0.5263 0.4265
DMUI18 0.6702 0.6279 0.7045 1.8254 0.7443 0.6439
DMU19 0.4906 1.4806 0.4159 0.5463 0.4953 1.4311
DMU20 1.7248 0.7344 0.7516 0.8528 0.7793 0.6750
DMU21 0.4919 0.5026 0.5121 0.6301 0.5694 0.4958
DMU22 0.4083 0.4144 0.4575 0.4915 1.4519 0.4143
DMU23 0.5270 0.5457 0.5983 0.6254 0.5860 0.5476
DMU24 0.5337 0.5491 0.5923 0.6201 0.5842 0.5412
DMU25 0.5799 0.5448 0.5379 0.6347 0.5997 0.5644

)E,'j’VCSNl,l ()E,-j,olj,

a mp my P
= (xij,xl.j s X ,xij>LR,
y.:~CSN Vi T eri, 0, T2
Yrj L1\ Yrjs rj Erj> Vs Ty

mi

my B
= (y;’f/, Yej o yrj27 yrj)LR .

By applying the second part of Theorem 1 and solving
the CCR model with necessity—probability constraints with
fuzzy probability level, the following definite model is

obtained:

max ¢

S.t.

N

2 2\ -
i, 6ij, 0, Gij),xij

)v)_)rj

5= u (v + R A= p)yh)

r=1

+pow (8™ + R (y)8P) <0

m
i=

1

Vi (xl.";f +R'(1 - y)xgj)

oW (8™ + R(y)8P) < 1,

m

Zvi (xlf’;l +R'(1- y)xiﬂp>

i=1

—op (8™ R()8F) = 1,

s
mi
uryrj
r=1

m

— Zv,’xi’;z +R'(1—y)

i=1

s
(2t +
r=1

m
o
Z ViXij

i=1

+h e (™ +R()SP) <0,j=1,...,n,
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Table 5 Possibility—probability scores of the DMUs with their fuzzy thresholds and normal distribution

5 (0.1,0.1,0.1,0.1) (0.1,0.1,0.1,0.1) (0.1,0.3,0.3,0.1) (0.1,0.7,0.7,0.1)
y 0.1 0.3 0.9 0.5 0.5 0.5
DMUI1 1.8906 1.8466 1.7095 1.8757 1.8186 1.7970
DMU2 1.9223 1.7902 1.7920 1.8609 1.7862 1.7591
DMU3 0.6243 0.6389 0.9079 1.5216 0.9348 0.8042
DMU4 1.1467 1.0904 0.9392 1.1684 1.0702 0.9728
DMUS5 0.7043 0.2891 1.0324 3.2838 1.9421 1.4331
DMU6 0.7280 0.7863 0.9250 1.6672 0.5409 0.6920
DMU7 0.7981 0.7003 0.5691 0.7591 0.5698 0.6519
DMUS8 0.7968 0.7638 0.5509 0.7062 0.7605 0.7326
DMU9 1.3275 0.9960 0.9642 1.1576 0.9886 0.9256
DMU10 1.1903 1.3581 0.9837 1.2644 1.1009 1.5538
DMUI11 1.3572 1.6511 1.2580 1.1362 1.1294 1.0653
DMU12 1.0073 1.0001 0.7629 1.0083 0.7803 0.8791
DMU13 1.3782 1.0081 0.8920 1.3100 1.1151 1.0366
DMU14 0.4716 0.7491 0.6152 0.8791 0.7191 0.7820
DMUI5 1.6763 1.2274 1.0225 1.2841 1.1898 1.1547
DMUI16 1.3617 1.3610 0.9203 1.1149 1.0341 1.0039
DMU17 0.7865 0.7221 0.6209 0.7743 0.7121 0.6894
DMUI18 1.7623 1.2006 0.9875 1.3042 1.0024 0.9647
DMU19 0.3871 0.8931 0.6409 0.8007 0.7282 0.7021
DMU20 1.5447 1.6557 1.0046 1.2644 1.4371 1.1736
DMU21 1.0001 0.8884 0.5994 0.8935 0.6698 0.6920
DMU22 0.8158 0.7680 0.4450 0.7051 0.7220 0.6260
DMU23 0.9589 0.9875 0.6537 0.9537 0.8664 0.7942
DMU24 1.1148 1.7393 0.7213 1.0012 0,8226 0.8948
DMU25 0.9177 0.9274 0.7426 0.6953 0.7559 0.8424
Ur, v, 0;, 9;, Aj=0,r=1,...,5; In this section, we will provide an example and compares
i=1,....mij=1,....n (12) the results of the efficiency of DMUSs when inputs and outputs

And ¥ is the cumulative distribution function (CDF) of the
standard closed skew-normal distribution.

Definition 11 DMU is called efficient at probability level
y and fuzzy necessity level § if the objective function of
model (12) is equal to or bigger than 1; otherwise, it is called
inefficient.

We should note that although we used this models in the
paper, we could alternatively use the envelopment models.

4 Numerical examples

In this paper, we developed the possibility—probability and
necessity—probability DEA models with Ra-Fu parameters
in presence of SK distribution with fuzzy thresholds. We
provide a numerical example to illustrate the applications of
models.

@ Springer

are normal distributed or SN distribution. Suppose that 25
DMUs with three inputs and five outputs. All these data are
stochastic, and also, inputs and outputs for different DMUs
are independent. These data are given in Tables 1 and 2.

By using the data of Tables 1 and 2, we apply model (10)
and model (12) the results with what is obtained from solving
the models with input orientation. The computational results
of models (10) and (12) are presented in Tables 3 and 4.
Information of Table 3 is the results of efficiency and slacks
of DMUs with real distribution of data (SN distribution).

We used § = (0.1,0.1,0.1) for = 0.1, 0.3 and 0.9
and for fixed y = 0.5 and three fuzzy numbers for
§ = {(0.1,0.1,0.1),(0.1,0.3,0.1), (0.1,0.7,0.1)} such
that (0.1,0.1,0.1) < (0.1,0.3,0.1) < (0.1,0.7,0.1). The
results derived from model (10) are given in Table 3. As
given in Table 3, for § = (0.1,0.1,0.1) and = 0.1, 0.3, 0.5
and 0.9, DMUs 5 and 14 have the highest and lowest scores.
The results of the model (12) in Table 4 are lower compared
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Table 6 Necessity—probability scores of the DMUs with their fuzzy thresholds and normal distribution

5 (0.1,0.1,0.1,0.1) (0.1,0.1,0.1,0.1) (0.1,0.3,0.3,0.1) (0.1,0.7,0.7,0.1)
v 0.1 0.3 0.9 0.5 0.5 0.5
DMUI1 0.6546 0.99414 0.6235 0.6406 0.6189 0.8471
DMU2 0.61656 0.9460 0.6469 0.6631 0.6106 0.8666
DMU3 0.6717 0.9340 0.6577 0.6617 0.6341 1.1264
DMU4 0.7563 1.1800 0.8523 0.8916 0.8010 1.1034
DMUS5 0.9971 1.4720 0.9648 1.0224 1.1748 2.6324
DMU6 0.7872 1.1773 0.7731 0.72155 0.7421 1.2924
DMU7 0.6038 0.9325 0.6434 0.67404 0.6019 0.8512
DMUS 0.5902 0.9046 0.6208 0.6379 0.5844 0.8338
DMU9 0.7320 11215 0.7695 0.7796 0.7123 0.9858
DMU10 0.7345 1.1262 1.8127 0.7896 0.7566 0.9302
DMUI1 0.8955 1.3460 0.9059 0.8844 0.8481 1.2204
DMUI2 0.7351 1.1529 0.8114 0.8719 0.7510 1.3866
DMU13 0.8128 1.2454 0.8632 1.9075 0.8073 1.1450
DMU14 0.4836 0.7343 0.4994 0.5082 0.4665 0.6570
DMUI15 0.8733 1.3332 0.9479 1.9468 1.8732 1.1982
DMU16 0.8566 1.3068 0.8887 0.8947 0.8203 1.1296
DMU17 0.5556 0.8603 0.5972 0.6205 1.5684 0.7862
DMUI18 0.8042 1.1302 0.8524 0.8454 0.8034 1.1556
DMU19 0.5887 0.8650 0.5676 0.4990 1.5349 0.7648
DMU20 0.8697 1.3219 0.8999 0.9019 0.8416 1.1939
DMU21 0.5902 0.9046 0.6342 0.6145 0.6149 0.8821
DMU22 0.4899 0.7459 0.5227 0.5469 0.4880 0.6880
DMU23 0.6324 0.9822 0.6342 0.7179 0.6328 0.8755
DMU24 0.6404 0.9883 0.6828 0.7107 0.6336 0.8681
DMU25 0.6958 0.9806 0.7031 0.6454 0.7676 0.8888

to the results of the model (10) in Table 3. The efficiency of
model (12) is less than the efficiency of model (10); when
y = 0.5 is fixed and § is increased, the score of model (12)
is decreased.

If skewness control parameter equals to zero, we have
normal distribution. Using normal data, we fit the models in
normal mode (Tavana et al. 2013a,b). Results are presented
in Tables 5 and 6. The results of Table 5 show that DMUs 1
and 2 are efficient, but in Table 3 these DMUSs are inefficient.
DMU 14 with real distribution of data in Table 3 is efficient,
whereas with unsuitable choice of distribution it is inefficient.
The results show that an inefficient DMU may be wrongly
diagnosed as an efficient DMU and vice versa.

5 Discussion and conclusion

In the classic DEA theory, it is assumed that the data are
definite. The nonparametric programming method in DEA

is so popular due to its simplicity and applicability. The use
of DEA in recent years in various fields including economy,
operational research, statistics, marketing, and public ser-
vices has led to completely new results; furthermore, the
use of DEA as a powerful tool for evaluating the perfor-
mance of DMUs with the applied programs has resulted in
a new challenge. The real input data were mostly vague,
random, and/or fuzzy, and the outputs were the same. In
a real problem, we may face the two random and fuzzy
states simultaneously. In previous works, it has been assumed
that the random fuzzy data follow a normal distribution
so that if the fitness of this distribution is not suitable
for the data, it will lead to incorrect conclusions. How-
ever, in the present paper, it was assumed that the input
and output variables were random fuzzy and followed a
SN distribution; furthermore, the possibility—probability and
necessity—probability models were fitted with the condi-
tions that the use of the skew-normal distribution in random
fuzzy state instead of the previous method would be more
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general and better. In other words, this method embraced
the previous methods in a specific state. The advantage
of this theorem was also represented in two numerical
examples.
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