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Abstract Over the last decade, several metaheuristic algo-
rithms have emerged to solve numerical function optimiza-
tion problems. Since the performance of these algorithms
presents a suboptimal behavior, a large number of studies
have been carried out to find new and better algorithms.
Therefore, this paper proposes a new metaheuristic algo-
rithm, namely the car tracking optimization algorithm; it is
inspired by observing the programming methods of other
metaheuristic algorithms. And the proposed algorithm has
been tested over 55 benchmark functions, and the results have
been compared with firefly algorithm (FA), cuckoo search-
ing algorithm (CS), and vortex search algorithm (VS). The
results indicate that the performance of the proposed algo-
rithm surpasses FA, CS, and VS algorithm.

Keywords Metaheuristic · Function optimization · Firefly
algorithm · Cuckoo searching algorithm · Vortex search
algorithm

1 Introduction

Finding a set of parameter values to satisfy the required
performance metric under certain constraints is called opti-
mization. When it comes to practical problems, it refers
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to choosing the best scheme. With engineering, manufac-
turing, medicine, finance, biology, chemistry, physics, and
other areas being deeply researched, many complicated opti-
mization problems occur. It is time consuming to solve
these optimization problems using single traditional opti-
mization methods which are based on gradient. Therefore,
since the 1970s, inspired by the nature of some physical, bio-
logical, and social phenomena, researchers have proposed a
series of intelligent optimization algorithms, which provide
a good solution to solve complex optimization problems.
These algorithms are called meta-heuristics algorithms. In
the 1980s, the simulated annealing algorithm (Gelatt et al.
1983; Goffe et al. 1994), random climbing algorithm (Gold-
feld et al. 1966; Choi and Yeung 2006), and evolutionary
algorithm (Holland 1975; Rechenberg 1965; Golberg 1989)
came into being. Since the 1990s, some scholars have gained
inspiration from the foraging behavior of natural swarm
biological, and a stochastic optimization algorithm is put for-
ward by simulating the foraging behavior of these creatures,
and then the swarm intelligence algorithms are established.
The current swarm intelligence algorithms include ant colony
algorithm (Colorni et al. 1991; Dorigo et al. 1996; Dorigo
and Stützle 1999), particle swarm optimization (Eberhart and
Kennedy 1995; Shi and Eberhart 1998), fish swarm algo-
rithms (Li et al. 2002;Wang et al. 2005), artificial bee colony
algorithm (Karaboga and Basturk 2007; Gao and Liu 2012),
firefly algorithm (Yang 2010b; Yang et al. 2012), cuckoo
search algorithm (Yang and Deb 2009, 2010), bat algorithm
(Yang 2010a; Yang and Hossein Gandomi 2012), fruit fly
algorithm (Pan 2012; Li et al. 2013). These proposed swarm
intelligence algorithms provide more choices to solve com-
plex optimization problems.

Although meta-heuristic algorithms show a strong ability
of optimization in solvingmodern nonlinear global optimiza-
tion problems, some algorithms will fall into local optimum
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when facing different optimization problems. Yang (2010c)
pointed out that all meta-heuristic algorithms strive for mak-
ing balance between randomization and local search to some
extent. Each optimization algorithm has its own strengths
and weaknesses. Therefore, it is necessary to come up with a
better algorithm that can solve most optimization problems,
and that is why so many swarm intelligence algorithms have
emerged in recent years.

We can summarize the rules of these algorithms by study-
ing these optimization algorithms: the set of all possible
solutions of the problembeing regarded as the solution space,
generate a new solution set by applying certain operator oper-
ation to a subset of the possible solutions of the problem,
and gradually evolve the population to optimal or near-
optimal solution. In these swarm intelligence optimization
algorithms, particle swarm algorithm (Eberhart andKennedy
1995) updates the velocity and position of all population
according to Eqs. (1) and (2):

vi (t + 1) = ωvi (t) + c1r1 (pi − xi (t))

+ c2r2
(
pg − xi (t)

)
(1)

xi (t + 1) = xi (t) + vi (t + 1). (2)

As can be seen from Eq. (1), the flight path of the par-
ticles consists of three parts: The first part is the inertial
motion of particleswhich contains the information of original
speed vi (t) of the particle itself; the second part is “cognitive
component,” which is reflected by the distance of optimum
position acquired from their experiences because this part
consider their own experience of the particles; the third part is
the “social part”, which indicates the sharing of social infor-
mation reflected by the distance between the particles and the
best position pg of swarm. c1, c2, ω are weighs that control
these three parts. The value of the speed of the next gener-
ation is updated, and then the particle positions are updated
by Eq. (2). We can see from the composition of the veloc-
ity update formula of the particle swarm algorithm that the
algorithm does not take the relationship between the parti-
cles into account, but take only the relationship between each
particle and the global optimal position pi and the relation-
ship between each particle and the optimal position pg of the
population.

Firefly algorithm (Yang 2010b) updates the speed and
location according to Eqs. (3) and (4):

vi (t + 1) = βi j
(
ri j

) (
x j (t) − xi (t)

) + αεi (3)

xi (t + 1) = xi (t) + vi (t + 1). (4)

It can be seen from Eq. (3) that firefly flight path con-
sists of two parts: The first part is reflected by the attraction
βi j

(
ri j

)
of firefly j whose absolute brightness is greater than

firefly i to firefly i and the relative distance in between; the

second part is a random term with a specific coefficient αεi .
We can see from the composition of the speed update formula
of the firefly algorithm that the algorithm only considers the
relationship between the fireflies and does not use the rela-
tionship between each firefly and the global optimal position
to improve the global optimization ability.

Cuckoo search algorithm (Yang and Deb 2009) performs
global random search according to Eq. (5) to update the
speed, where α is step size and L (λ) is Levy distribution
function. Equation (6) represents the global random search
trail of cuckoo according to Lévy flight process. L (λ) can
improve the global search ability, but the algorithm does not
use the relationship between the various populations and the
relationship between each population and the global optimal
population to improve the search ability.

vi (t + 1) = α ⊕ L (λ) (5)

xi (t + 1) = xi (t) + vi (t + 1) . (6)

Fruit fly algorithm (Pan2012) updates theX axis (Xi (t+1))
and Y axis (Yi (t + 1)) positions of fruit flies in the next
generation according to Eqs. (7) and (8); X_axisbest(t) and
Y_axisbest(t) are the best place found by all fruit flies search-
ing food in the last generation, the reciprocal of the distance
(Disti ) between that position and the origin is taken as a solu-
tion, as in Eqs. (9) and (10). The fruit fly algorithm considers
the position of the fruit flies population on the x, y axis and
updates the position using the random number, but it is seen
in Eqs. (7)–(10) that the algorithm does not use the relation-
ship between each population and the relationship between
each population and the global optimal population.

Xi (t + 1) = X_axisbest(t) + RandomValue (7)

Yi (t + 1) = Y_axisbest(t) + RandomValue (8)

Disti =
√(

X2
i + Y 2

i

)
(9)

Si = 1

Disti
. (10)

If we do not consider the background of these algorithms
and their advantages and disadvantages, and simply take
position and velocity updating formula of the four kinds of
algorithms above into account, we can find that the velocity
updating formula is constructed by the biological informa-
tion of themselves, as well as some stochastic number for the
particle swarm optimization algorithm (PSO) and the firefly
algorithm.While the velocity updating formula of the cuckoo
algorithm is derived by Levy distribution function, the fruit
fly algorithm is different from optimization architecture of
the former three algorithms; it can be seen from Eqs. (7) and
(8) that the first part of the two equation is not current location
xi (t) of each population, but the best position X_axisbest(t)
and Y_axisbest(t) is gained in last generation.
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Velocity update formula of different algorithms is differ-
ent, but these algorithmsbasically change the current position
using different operating operator to change the speed. So, in
away,we can also learn the speed updatemethod of the above
algorithms to design reasonable and effective speed update
formula artificially to get the new algorithm even without the
observation of the natural environment.

Although the algorithms above have good search ability,
they only use either the relationship among the various pop-
ulations, or the relationship between each population and
the global optimal population. Therefore, this paper designs
a new optimization algorithm to find optimal solutions for
more optimization problems by studying the advantages and
disadvantages of the above algorithms. This paper designs a
new adaptive global velocity updating method by using the
relationship between each population and the global optimal
population, and a new local speed update method by using
the relationship amongvarious groups. The algorithmdivides
the search population into two groups. One group uses the
adaptive global velocity update method to find the global
optimal solution, and the other group uses the adaptive local
velocity update method to help the algorithm jump out of the
local optimal when it falls into the local optimum. The initial
background of the algorithm is a scenario where a lot of cars
are looking for an object on a road, so the proposed algo-
rithm is named car tracking optimization algorithm. To test
the effectiveness of the algorithm, the algorithm will opti-
mize a total of 55 test functions mentioned in Doğugan and
Ölmez (2015) and Osuna-Enciso et al. (2016), and optimiza-
tion results obtained by this algorithmwill be compared with
results of the firefly algorithm, cuckoo search algorithm, and
VS algorithm, and it can be found that the proposed algo-
rithm is able to find more optimal solution to test functions
comparing to the results of above three algorithms.

The rest part of this article is arranged as follow: The fol-
lowing section will describe car tracking algorithm in detail.
The third part will analyze and discuss the experimental
results. Finally, the fourth section summarizes this paper.

2 The proposed car tracking algorithm

As shown in Fig. 1, assume that there are N cars on a road
(only A and B are shown in Fig. 1), which locates on both
sides of the origin, and that they are assigned to search an
object p on this road. Car A is on the left side of the origin,
so the value that represents car A is negative, car B is on the
right of the origin, so the value that car B is positive.

The characteristics of the car are the desired speed (VN )
to find object p and current position (XN ) of the car . The
cars can decide the magnitude and direction of the speed
(VN ) according to their own ideas to find the location (X p)
where the object p probably is. When a car finds the possible

Fig. 1 Illustration iterative object p searching of car

location of object p, all cars will move to that location, and
then restart searching the real location where the object p is.

In this article, based on the principle of cars searching
object p, the procedure can be divided into several steps, and
the readers can refer to programming example by following
steps:

(1) Randomly initialize the car population location
(X_axisi, j ), where i is the size of randomly generated
population, j represents that there are j cars in a popu-
lation. If the objective function is one-dimensional, then
j = 1. If the objective function is n-dimensional, then
j = n.

Init X_axisi, j . (11)

(2) Randomly initialize the speed (V _RandomValuei, j , pos-
itive andnegative represents direction) and the initialized
position (Xi, j (t)) of the car population (i, j) individu-
als, and the position is limited within a certain range, as
shown in Eq. (13), where t represents the iteration times.

Xi, j (t) = X_axisi, j + V _RandomValuei, j (12)

Xi, j (t)

=

⎧
⎪⎪⎨

⎪⎪⎩

rand (0, 1) · upperlimit j , Xi, j (t) > upperlimit j
Xi, j (t), lowerlimit j ≤ Xi, j (t) ≤ upperlimit j
rand (0, 1) · lowerlimit j , Xi, j (t) < lowerlimit j
.

(13)

(3) After the initial move, substitute car population posi-
tion (X i(t)) into objective judgment function (or called
fitness function) in order to obtain possible objects p
(P.Mighti (t)) that is found by every car population.

P.Mighti (t) = Function (Xi (t)) . (14)

(4) Seek the ibest (ibest = first, second, third, forth. . .) car
population which is most likely to find the object p in
all car population, P.Mightbest(t) is the optimal value
of the objective function found after the iteration for t
times, which can be seen as the object p most likely
to be found in the iteration of t , and compared with
historical optimum Pbest(Pbest in the first iteration can
be set as any solution). If it is better than Pbest, then
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Fig. 2 Description of the
proposed CTA

replace Pbest and the best position X_axisBest j (t) with
P.Mightbest(t) and Xbestindex, j (t), and replace the posi-
tionof the least possible objectp (X_axisWorst j (t))with
Xworstindex, j (t) in addition. After then all other car popu-
lations will be starting from that location (X_axisBest).

[
P.Mightbest(t) ibest

] = min (P.Might) (15)
[
P.Mightworst(t) iworst

] = max (P.Might) (16)

Pbest = P.Mightbest(t) (17)

X_axisBest j (t) = Xbestindex, j (t) (18)

X_axisWorst j (t) = Xworstindex, j (t) (19)

Xbestindex, j (t) = lowerlimit j

+ rand (0, 1) · (
upperlimit j − lowerlimit j

)
(20)

Xworstindex, j (t) = lowerlimit j

+ rand (0, 1) · (
upperlimit j − lowerlimit j

)
. (21)

(5) In order to make all cars which have arrived at that
place capable of searching object p more intelligently
after reaching this position, all cars are divided into
two groups, group A whose speed is Vi, j conducts local
searching, which is obtained from the Eqs. (22) to (24),
global searching for group B, speed is Ui, j , which is
obtained from Eqs. (25) and (26). Iterative search num-
ber is the MAXGEN, t on behalf of the car has searched
t times current, Eqs. (22) and (25) are updated in every
generation of searching.
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Table 1 Benchmark functions used in experiments

No. Range D C Function Formulation

F1 [−5.12, 5.12] 5 US Stepint f (x) = 25 + ∑5
i=1 �xi�

F2 [−100, 100] 30 US Step f (x) = ∑n
i=1 (�xi + 0.5�)2

F3 [−100, 100] 30 US Sphere f (x) = ∑n
i=1 (xi )2

F4 [−10, 10] 30 US Sumsquares f (x) = ∑n
i=1 (i xi )2

F5 [−1.28, 1.28] 30 US Quartic f (x) = ∑n
i=1 (i xi )4 + random [0, 1)

F6 [−4.5, 4.5] 5 UN Beale f (x) = (1.5 − x1 + x1x2)2 + (
2.25 − x1 + x1x22

)2 + (
2.625 − x1 + x1x32

)2

F7 [−100, 100] 2 UN Easom f (x) = − cos (x1) cos (x2) exp
(− (x1 − π)2 − (x2 − π)2

)

F8 [−10, 10] 2 UN Matyas f (x) = 0.26
(
x21 + x22

) − 0.48x1x2

F9 [−10, 10] 4 UN Colville f (x) = 100
(
x21 − x2

)2 + (x1 − 1)2 + (x3 − 1)2 + 90
(
x23 − x4

)2

−10.1 (x2 − 1)2 + (x4 − 1)2 + 19.8 (x2 − 1) (x4 − 1)

F10 [−D2, D2] 6 UN Trid6 f (x) = ∑n
i=1 (xi − 1)2 − ∑n

i=2 xi xi−1

F11 [−D2, D2] 10 UN Trid10 f (x) = ∑n
i=1 (xi − 1)2 − ∑n

i=2 xi xi−1

F12 [−5, 10] 10 UN Zakharov f (x) = ∑n
i=1 x

2
i + (∑n

i=2 0.5i xi
)2 + (∑n

i=2 0.5i xi
)4

F13 [−4, 5] 24 UN Powell f (x) = ∑n/k
i=1 (x4i−3 + 10x4i−2)

2 + 5 (x4i−1 − x4i )2 + (x4i−2 − x4i−1)
4 +

10 (x4i−3 − x4i )4

F14 [−10, 10] 30 UN Schwefel 2.22 f (x) = ∑n
i=1 |xi | + ∏n

i=1 |xi |
F15 [−10, 10] 30 UN Schwefel 1.2 f (x) = ∑n

i=1

(∑i
j=1 x j

)2

F16 [−30, 30] 30 UN Rosenbrock f (x) = ∑n−1
i=1

[
100

(
xi+1 − x2i

)2 + (xi − 1)2
]

F17 [−10, 10] 30 UN Dixon–Price f (x) = (x1 − 1)2 + ∑n
2 i

(
2x2i − xi−1

)2

F18 [−65.536, 65.536] 2 MS Foxholes f (x) =
[

1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−ai j )6

]−1

F19 [−5, 10]× [0, 15] 2 MS Branin f (x) =
(
x2 − 5.1

4π2 x
2
1 + 5

π
x1 − 6

)2 + 10
(
1 − 1

8π

)
cos x1 + 10

F20 [−100, 100] 2 MS Bohachevsky1 f (x) = x21 + 2x22 − 0.3 cos (3πx1) − 0.4 cos (4πx2) + 0.7

F21 [−10, 10] 2 MS Booth f (x) = (x1 + 2x2 − 7)2 − (2x1 + x2 − 5)2

F22 [−5.12, 5.12] 30 MS Rastrigin f (x) = ∑n
i=1

[
x2i − 10 cos (2πxi ) + 10

]

F23 [−500, 500] 30 MS Schwefel f (x) = ∑n
i=1 −xi sin

(√|xi |
)

F24 [0, π ] 2 MS Michalewicz2 f (x) = − ∑n
i=1 − sin (xi )

(
sin

(
i x2i /π

))2m
,m = 10

F25 [0, π ] 5 MS Michalewicz5 f (x) = − ∑n
i=1 − sin (xi )

(
sin

(
i x2i /π

))2m
,m = 10

F26 [0, π ] 10 MS Michalewicz10 f (x) = − ∑n
i=1 − sin (xi )

(
sin

(
i x2i /π

))2m
,m = 10

F27 [−100, 100] 2 MN Schaffer f (x) = 0.5 +
sin2

(√
x21+x22

)
−0.5

(
1+0.001

(
x21+x22

))2

F28 [−5, 5] 2 MN Six Hump Camel Back f (x) = 4x21 − 2.1x41 + 1
3 x

6
1+x1x2 − 4x22 + 4x42

F29 [−100, 100] 2 MN Bohachevsky2 f (x) = x21 + 2x22 − 0.3 cos (3πx1) (4πx2) + 0.3

F30 [−100, 100] 2 MN Bohachevsky3 f (x) = x21 + 2x22 − 0.3 cos (3πx1+4πx2) + 0.3

F31 [−10, 10] 2 MN Shubert f (x) =
(∑5

i=1 i cos ((i + 1) x1 + i)
) (∑5

i=1 i cos ((i + 1) x2 + i)
)

F32 [−2, 2] 2 MN GoldStein–Price f (x) =
[
1 + (x1 + x2 + 1)2(
19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)
]

[
30 + (2x1 − 3x2)2(
18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)
]

F33 [−5, 5] 4 MN Kowalik f (x) = ∑11
i=1

(
ai − x1

(
b2i +bi x2

)

b2i +bi x3+x4

)2

F34 [0, 10] 4 MN Shekel5 f (x) = − ∑5
i=1

∑4
j=1

[(
x j − ai j

) (
x j − ai j

)T + ci
]−1
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Table 1 continued

No. Range D C Function Formulation

F35 [0, 10] 4 MN Shekel7 f (x) = − ∑7
i=1

∑4
j=1

[(
x j − ai j

) (
x j − ai j

)T + ci
]−1

F36 [0, 10] 4 MN Shekel10 f (x) = − ∑10
i=1

∑4
j=1

[(
x j − ai j

) (
x j − ai j

)T + ci
]−1

F37 [−D, D] 4 MN Perm f (x) = ∑n
k=1

[∑n
i=1

(
i k − β

) (
(xi/ i)k − 1

)]2

F38 [0, D] 4 MN PowerSum f (x) = ∑n
k=1

[(∑n
i=1

(
xki

)) − bk
]2

F39 [0, 1] 3 MN Hartman3 f (x) = − ∑4
i=1 ci exp

[
− ∑3

j=1 ai j
(
x j − pi j

)2]

F40 [0, 1] 6 MN Hartman6 f (x) = − ∑4
i=1 ci exp

[
− ∑6

j=1 ai j
(
x j − pi j

)2]

F41 [−600, 600] 30 MN Griewank f (x) = 1
4000

∑n
i=1 x

2
i − ∏n

i=1 cos
(

xi√
i

)
+ 1

F42 [−32, 32] 30 MN Ackley f (x) = −20 exp

(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp

( 1
n

∑n
i=1 cos (2πxi )

) + 20 + e

F43 [−50, 50] 30 MN Penalized

f (x) = π
n

{
10 sin2 (πy1) + ∑n−1

i=1 (yi − 1)2
[
1 + 10 sin2 (πyi+1)

]

+ (yn − 1)2
}

+ ∑n
i=1 u (xi , 10, 100, 4)yi = 1 + 1

4 (xi + 1) u (xi , a, k,m)

=
⎧
⎨

⎩

k (xi − a)m , xi > a
0,−a ≤ xi ≤ a
k (−xi − a)m , xi < −a

F44 [−50, 50] 30 MN Penalized2
f (x) = 0.1

{
sin2 (πx1) + ∑n−1

i=1 (xi − 1)2
[
1 + sin2 (3πxi+1)

]

+ (xn − 1)2
[
1 + sin2 (2πxn)

]}

+ ∑n
i=1 u (xi , 5, 100, 4)

F45 [0, 10] 2 MN Langerman2 f (x) =
− ∑m

i=1 ci
(
exp

(
− 1

π

∑n
j=1

(
x j − ai j

)2) cos
(
π

∑n
j=1

(
x j − ai j

)2))

F46 [0, 10] 5 MN Langerman5 f (x) =
− ∑m

i=1 ci
(
exp

(
− 1

π

∑n
j=1

(
x j − ai j

)2) cos
(
π

∑n
j=1

(
x j − ai j

)2))

F47 [0, 10] 10 MN Langerman10 f (x) =
− ∑m

i=1 ci
(
exp

(
− 1

π

∑n
j=1

(
x j − ai j

)2) cos
(
π

∑n
j=1

(
x j − ai j

)2))

F48 [−π , π ] 2 MN Fletcher Powell2
f (x) = ∑n

i=1 (Ai − Bi )2

Ai = ∑n
j=1

(
ai j sin α j + bi j cosα j

)
, Bi = ∑n

j=1

(
ai j sin x j + bi j cos x j

)

F49 [−π , π ] 5 MN Fletcher Powell5
f (x) = ∑n

i=1 (Ai − Bi )2

Ai = ∑n
j=1

(
ai j sin α j + bi j cosα j

)
, Bi = ∑n

j=1

(
ai j sin x j + bi j cos x j

)

F50 [−π , π ] 10 MN Fletcher Powell10
f (x) = ∑n

i=1 (Ai − Bi )2

Ai = ∑n
j=1

(
ai j sin α j + bi j cosα j

)
, Bi = ∑n

j=1

(
ai j sin x j + bi j cos x j

)

F51 [−100, 100] 100 MN Salomon f (x) = − cos

(
2π

√∑n
i=1 x

2
i

)
+ 0.1

√∑n
i=1 x

2
i + 1

F52 [−100, 100] 100 UN Rotated hyper-ellipsoid f (x) = ∑n
i=1

(∑i
j=1 x j

)2

F53 [−10, 10] 100 MS Alpine f (x) = ∑n
i=1 (|xi sin xi | + 0.1xi )

F54 [−1, 1] 100 US Hyper-ellipsoid f (x) = ∑n
i=1 i

2x2i

F55 [−10, 10] 100 MS Levy
f (x) = sin2 (πy0) + ∑n−1

i=1 (yi − 1)2
(
1 + 10 sin2 (πy1 + 1)

)

+ (yn−1 − 1)2
(
1 + sin2 (πxn−1)

)

yi = 1 + xi−1
4

D dimension, C characteristics, U unimodal, M multimodal, S separable, N non-separable

Vi, j =
{
Si/

(
Xi, j (t − 1) − Xi−1, j (t − 1)

)
, i = 2 : k/2

Si/Xi, j , i = 1

(22)

In Eq. (22),

Si = 10(10·rand(0,1)) · rand (0, 1) · (1/(m(i) · t)2),
i = 1 : k/2 (23)
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In Eq. (23),

m = m0 + P.Mightbest(t)/10,000 · randn (k/2, 1) (24)

The physical meaning of Eq. (24) is that if the distance of
car (i, j) and car (i −1, j) is smaller, then car (i, j) will con-
duct the next search at a relatively higher speed after it reaches
the best position, and vice versa. However, such definition
mode can increase local search range to some extent and pre-
vent the search range from being too dense. S is defined as a
local search speed change factor sequence, and it consists of
three parts of 10(10·rand(0,1)), rand (0, 1) and

(
1/ (m (i) · t)2),

multiple 10(10·rand(0,1)) by rand (0, 1) to get a randomnumber
between 0 and 1010 which is able to improve the ability of the
algorithm to jump out of the local optimal to a certain extent.(
1/ (m (i) · t)2) is a set ofm-determined sequences, andm is
a set of numbers whose mean value ism0 and standard devia-
tion is Mightbest/10,000. It can be seen thatm is positively
to P.Mightbest(t), so

(
1/ (m (i) · t)2) is a set of negative

correlations that are negatively related with P.Mightbest(t).
Because the general algorithm will gradually fall into the
local optimal in the optimization process, for the minimum
optimization, the smaller P.Mightbest(t) is, the bigger the(
1/ (m (i) · t)2) value is, and with the increase in the itera-
tions times t , the value of

(
1/ (m (i) · t)2) will continue to

increase in the optimization process, together with stronger
ability the algorithm to jump out of local best. Noting that
for the maximum optimization at the same time, it needs
to replace

(
1/ (m (i) · t)2) with (m (i) · t)2, which leads to

the same effect as the minimum optimization. Therefore,
the product of 10(10·rand(0,1)), rand (0, 1) ,

(
1/ (m (i) · t)2)

(or (m (i) · t)2) can be obtained to ensure that the local search
speed change factor sequence S is random and the algorithm
has the ability to jump out of local optimal. The local search
speed is related to the relative distance of Xi, j and Xi−1, j ,
and the distance of Xi, j and Xi−1, j will be closer in the opti-
mization process, and S is getting bigger and bigger, resulting
in a larger result of Eq. (22), and once again improve the algo-
rithm’s ability to jump out of the local optimal.

Ui, j = SS/
(
Xi, j (t − 1) − X_axisBest j (t − 1)

)

+ SS/(Xi, j (t − 1)

− X_axisWorst j (t − 1)), i = (1 + k) /2 : k. (25)

In Eq. (25),

SS = 10(−10·rand(0,1)) · rand (0, 1) · (t/mm)2 . (26)

The global search speed Ui, j is related to the relative dis-
tance of Xi, j (t − 1) , X_axisBest j (t − 1) and
X_axisWorst j (t − 1), obtained by Eq. (25). The physi-
cal meaning of Eq. (25) is that if the distance of car

Table 3 A summary of Table 2

Problem type FA CS VS CTA

US 1 4 2 6

UN 2 9 6 11

MS 2 6 5 10

MN 5 17 15 19

TOTAL 10 36 28 46

(i , j) position Xi, j (t − 1) and the current best car position
X_axisBest j (t − 1) is close, therefore car (i , j) is relatively
far to the current worst car position X_axisWorst j (t − 1),
then car (i, j) will use relatively greater speed in the next
search after it reaches the best position, and vice versa; this
defined way increases flexibility and intelligence of search-
ing; meanwhile, it has the advantage of increasing the global
search capability. The SS is a global search speed change fac-
tor, which is a random number defined by Eq. (26); it consists
of 10(−10·rand(0,1)), rand (0, 1) and (t/mm)2. 10(−10·rand(0,1))
is multiplied by rand (0, 1) to get a random number ranging
from 0 to 10−10. The optimization process of the algorithm
will gradually approach the optimal value. In this case, the
step size of optimization cannot be set too large so as to
avoid missing the optimal value in the process. (t/mm)2

increaseswith the increment of iteration times,which ensures
that the optimal size of the search is not too small to cause
the optimization process to be too slow and ineffective. The
multiplication of the three parts guarantees that the optimiza-
tion process of the algorithm will gradually approach the
optimal value. In the optimization process, both the relative
distance of Xi, j (t − 1) and X_axisBest j (t − 1) and the rel-
ative distance of Xi, j (t − 1) and X_axisWorst j (t − 1) will
be closer, while SS is getting bigger and bigger, resulting
in a larger result of Eq. (26), which can guarantee the algo-
rithm to jump out of the local optimal solution near the global
optimal solution. In addition, the reason why the relative dis-
tance between Xi, j (t − 1) and X_axisWorst j (t − 1) gets
closer is because the algorithm will make the optimal solu-
tion P.Mightbest(t) and the worst solution P.Mightworst(t)
closer in the optimization process, and it can be seen that the
relative distance of Xi, j (t − 1) and X_axisWorst j (t − 1)
will be getting closer in some sense.

V _RandomValuei, j =
{
Vi, j , i = 1 : k/2
Ui, j , i = (1 + k/2) : k (27)

X_axisi, j = X_axisBest j (t) (28)

Xi, j = Xibest, j = X_axisBest j (29)

Xi, j = Xiworst, j = X_axisWorst j . (30)

Equations (20) and (21) are set to prevent the situation of
Eqs. (29) or (30), which results in zero denominator of Eq.
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Table 4 Pair-wise statistical comparison of the algorithms by Wilcoxon signed-rank test (a = 0.05)

Function CTA versus FA CTA versus CS CTA versus VS

p value T+ T− Winner p value T+ T− Winner p value T+ T− Winner

F1 1 0 0 = 1 0 0 = 1 0 0 =
F2 2e−6 0 465 + 1 0 0 = 3e−6 6 459 +
F3 2e−6 0 465 + 1 0 0 = 1 0 0 =
F4 2e−6 0 465 + 1 0 0 = 2e−6 1 461 +
F5 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F6 2e−6 0 465 + 1 0 0 = 1 0 0 =
F7 8e−6 0 351 + 1 0 0 = 1 0 0 =
F8 2e−6 0 465 + 1 0 0 = 1 0 0 =
F9 2e−6 0 465 + 2e−6 465 0 − 2e−6 464 1 –

F10 2e−6 0 465 + 1 0 0 = 1 0 0 =
F11 2e−6 0 465 + 1 0 0 = 1 0 0 =
F12 2e−6 0 465 + 1 0 0 = 1 0 0 =
F13 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F14 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F15 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F16 2e−6 1 464 + 2e−6 465 0 − 2e−6 1 464 +
F17 2e−6 0 465 + 1 0 0 = 2e−6 0 465 +
F18 3e−6 0 435 + 1 0 0 = 1 0 0 =
F19 0.829013 243 222 = 0.926255 237 228 + 0.544006 203 262 =
F20 2e−6 0 465 + 1 0 0 = 1 0 0 =
F21 2e−6 0 465 + 0.765519 247 218 = 0.422433 271.5 193.5 =
F22 2e−6 0 465 + 2e−6 1 464 + 2e−6 0 465 +
F23 2e−6 0 465 + 2e−6 0 465 + 1 0 465 =
F24 0.031603 337 128 − 0.165027 300 165 = 0.082206 317 148 =
F25 2e−6 0 465 + 1 0 0 = 7e−6 0 351 +
F26 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F27 2e−6 0 465 + 0.592980 60 45 = 1 0 0 =
F28 0.152861 302 163 = 0.125438 307 158 = 0.893644 239 226 =
F29 2e−6 0 465 + 0.438578 72 48 = 0.563703 45.5 32.5 =
F30 2e−6 0 465 + 0.405381 56 35 = 1 0 0 =
F31 0.323454 280.5 184.5 = 0.901764 238.5 226.5 = 0.991794 232 233 =
F32 1 0 0 = 1 0 0 = 1 0 0 =
F33 0.016123 216 60 − 0.091652 91 209 = 0.435598 163.5 112.5 =
F34 2e−6 0 465 = 1 0 0 = 1 0 0 =
F35 0.245190 176 289 = 0.452807 269 196 = 0.125438 307 158 =
F36 0.149918 162.5 302.5 = 0.308589 282 183 = 0.636144 255.5 209.5 =
F37 2e−6 463 2 − 2e−6 465 0 − 0.102011 153 312 =
F38 0.530440 263 202 = 0.000332 407 58 − 0.614315 208 257 =
F39 1 0 0 = 1 0 0 = 1 0 0 =
F40 0.109280 133 273 = 2.2e−5 171 0 − 6.6e−5 426 39 –

F41 2e−6 0 465 + 0.317311 0 1 = 3e−6 0 406 +
F42 2e−6 0 465 + 0.002968 0 66 + 1e−6 0 465 +
F43 2e−6 0 465 + 0.770346 204 231 = 0.000167 49.5 415.5 +
F44 2e−6 0 465 + 1 0 0 = 1 0 0 =
F45 0.065641 322 143 = 1 0 0 = 1 0 0 =
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Table 4 continued

Function CTA versus FA CTA versus CS CTA versus VS

p value T+ T− Winner p value T+ T− Winner p value T+ T− Winner

F46 0.016706 81.5 269.5 + 0.002485 66 0 − 0.002485 66 0 –

F47 0.779825 164.5 186.5 = 0.000012 325 0 = 0.362340 243 163 =
F48 2e−6 0 465 + 0.085896 149 316 = 1 0 0 =
F49 2e−6 0 465 + 0.000490 63 402 + 0.289477 181 284 =
F50 4e−6 9 456 + 0.047162 136 329 + 0.184622 297 168 =
F51 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F52 2e−6 0 465 + 2e−6 0 465 + 7e−6 14 451 +
F53 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
F54 2e−6 0 465 + 5e−6 11 454 + 2e−6 0 465 +
F55 2e−6 0 465 + 2e−6 0 465 + 2e−6 0 465 +
+/ = /− 39/13/3 16/33/6 19/33/3

(25) when Eq. (25) tends to acquire speed (Ui, j ). In the for-
mulas above, m0 is 10,000 and mm is 500,000. The function
of randn (k/2, 1) is to generate k/2 numbers whose mean
value is 0 and standard deviation is 1.

(6) Repeat steps 2–4 to enter the iterative optimization, and
then determinewhether the current position is better than
previous iterations position, if so, enter step 5.

Figure 2 is pseudocode of complete car tracking optimiza-
tion algorithm procedure. Figure 2 shows that car tracking
optimization algorithm is not more complex compared with
the algorithms mentioned previously, the difference is that
the population is divided into two groups, designing a new
adaptive global velocity updating method by utilizing the
relationship between each population and the global optimal
population, as well as a new local speed update method by
utilizing the relationship among the various groups, thereby
changing the position of the population. But the idea of sep-
arating the population into groups is not new, which has
been mentioned in the literature (Dai et al. 2011; Askarzadeh
and Rezazadeh 2011; Han et al. 2013). At the same time,
the proposed CTA algorithm only has two parameters, mm
and m0, apart from the number of iterations (MAXGEN),
the number of population (k), the upper and lower lim-
its of the problem and the dimension of the problem (D),
we can use the method of trial and error to get these two
parameters. Here is a method for readers to refer to, the
reader can take mm as 500,000 on the basis, and multi-
plied or divided by 10 to select the appropriate mm, in
the same way of selection m0. For the vast majority of
test functions in this article, we will be able to find the
optimal solution when setting mm as 500,000, and m0 as
10,000.

Table 5 A summary of Table 4

Problem type CTA versus FA CTA versus CS CTA versus VS

US 5/1/0 2/4/0 4/2/0

UN 13/0/0 4/7/2 6/6/1

MS 9/1/1 6/5/0 5/6/0

MN 12/11/2 4/17/4 4/19/2

Total (+/=/−) 39/13/3 16/33/6 19/33/3

3 Experimental results

The proposed car tracking algorithm is tested on 55 bench-
mark functions, 50 of which are from the research of
Karaboga and Akay (2009). In their study, Karaboga and
Akay has compared ABC algorithm with GA, PSO, and DE
algorithms. After that, Berat and Tamer proposed VS algo-
rithm (Doğugan and Ölmez 2015), the performance of which
is tested using the same 50 functions, in comparison with
SA, PS, PSO2011, and ABC algorithms. Therefore, in this
study, by using the same 50 test functions, the performance
of CTAwill be compared with the FA, CS and VS algorithm.
FA and CS have been introduced in the first part, and VS
algorithm showed good optimization capabilities in the test
results of Doğugan and Ölmez (2015). In order to test the
optimization capability of algorithms on high-dimensional
functions, another five functions include Salomon, rotated
hyper-ellipsoid, Apline, hyper-ellipsoid, and Levy function
are added from study (Osuna-Enciso et al. 2016) of Valentín
and Erik, et al. the dimension of five functions all are 100.

In order to evaluate the performance of the algorithm, this
paper will test the optimization capability and the conver-
gence behavior of the algorithm. First, in order to test the
optimization capability, the algorithms are evaluated accord-
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Fig. 3 Average time of finding
the best value of all algorithms
for 55 benchmark functions

ing to the mean and best fitness values found from each
benchmark function repeated for a fixed number of evalu-
ations. Then in order to test the convergence behavior, the
average number of evaluations of finding the optimal solu-
tion by each algorithm are compared.

Table 1 shows the tested 55 functions, which includes
many different kinds of problems, such as unimodal and
separable problems, unimodal and non-separable problems,
multimodal and separable problems, multimodal and non-
separable problems. In Table 1, the parameters used in some
functions can be seen in “Appendix A.” Specific introduction
of these types of functions can be referred to in Doğugan and
Ölmez (2015) and Karaboga and Akay (2009). F51–F55 are
the additional five high-dimensional test functions, as previ-
ously described in Osuna-Enciso et al. (2016).

3.1 Parameter settings

The basic parameters of all algorithms are the same, includ-
ing population size and the maximum number of function
evaluations. Population size of each algorithms is 50, and the
maximum number of function evaluations of all algorithms
is 500,000. The other specific parameters of algorithms are
given as follows:

FA settings: the largest attractiveness β0 is chosen to be
1, the light absorption coefficient γ is set to 1, take α as 0.2,
as recommended in Yang (2010b).

CS settings: the probability pa that the host bird can find
the egg laid by a cuckoo is 0.25, and the step size is set to 1,
as recommended in Yang and Deb (2009).

VS settings: the x of gamma function is set to 0.1 as rec-
ommended in Doğugan and Ölmez (2015).

3.2 Results

3.2.1 Optimization performances comparison

For each algorithm, all benchmark functions are run for 30
times, and the mean, the best values, the standard deviation,
and average time of finding the best value are recorded in
Table 2. In addition, the best ones are highlighted in bold,
and the values below 10−16 are assumed to be 0, being the
same as in Doğugan and Ölmez (2015). All algorithms are
coded in MATLAB and run in a PC using an Intel Core i5-
2450M with 8GB RAM workstation.

After no more than 500,000 evaluations, the number of
minimum of various types of functions found by each algo-
rithm in Table 2 are summarized in Table 3. It can be seen
from Table 3 that for the test function of all types, the opti-
mization performance of FA is the worst the CS algorithm
performs better than VS algorithms and the performance of
the CTA proposed in this paper are better than that of the
other three kinds of optimization algorithms. However, in
order to better compare the proposed algorithm with other
algorithms, the results of each function obtained from 30
runs are used in a Wilcoxon signed-rank test which is per-
formed with a statistical significance value a = 0.05 as in
Doğugan and Ölmez (2015). The p values, T+, T− (i.e., T+
and T−, as defined in Civicioglu (2013)) and Winner after
each algorithmperformspair-wiseWilcoxon signed-rank test
are recorded in Table 4. ‘+’ indicates that the CTA exhibits a
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Table 6 Average number of function evaluations to find the optimal value and mean value of 30 runs to study the convergence behavior of the
algorithms

No. Min FA CS VS CTA

Mean/MNFE Mean/MNFE Mean/MNFE Mean/MNFE

F1 0 0/1625 0/22,080 0/5525 0/21,975

F2 0 1.11e−04/250,000 0/148,125 3.2/242,665 0/102,140

F3 0 1.12e−04/250,000 0/146,455 0/228,265 0/59,730

F4 0 6.50e+01/250,000 0/148,970 1.55e−09/250,000 0/66,055

F5 0 0.1879/250,000 0.0418/250,000 0.5355/250,000 0.0012/250,000

F6 0 9.67e−12/250,000 0/20,205 0/219,090 0/8860

F7 −1 −1/250,000 −1/20,855 −1/223,260 −1/5775

F8 0 2.39e−12/250,000 0/12,080 0/217,375 0/4905

F9 0 3.85e−07/250,000 0/73,880 7.47e−11/250,000 3.0339e−05/250,000

F10 −50 −50/250,000 −50/31,655 −50/221,040 −50/46,500

F11 −210 −210/250,000 −210/56,465 −210/228,220 −210/234,545

F12 0 9.67e−08/250,000 0/83,640 0/224,780 0/29,665

F13 0 0.1678/250,000 1.7525e−04/250,000 0.0259/250,000 0/69,845

F14 0 1.4002/250,000 2.0199e−15/250,000 1.37e−06/250,000 6.7972e−15/250,000

F15 0 0.0089/250,000 0.0015/250,000 3.68e−07/250,000 0/109,645

F16 0 128.0511/250,000 8.8135/250,000 73.5233/250,000 23.7702/250,000

F17 0 0.7563/250,000 0.6667/250,000 0.7148/250,000 0.6667/250,000

F18 0.998 450.0998/250,000 0.998/250,000 0.998/250,000 0.998/250,000

F19 0.398 0.398/43,030 0.398/250,000 0.398/116,695 0.398/250,000

F20 0 5.6502e−08/250,000 0/17,975 0/224,730 0/5350

F21 0 5.9342e−11/250,000 0/14,430 0/220,760 0/4595

F22 0 15.2949/250,000 20.7132/250,000 79.1985/250,000 7.8684/213,420

F23 −12,569.5 −8.2364e+03/250,000 −9.5999e+03/250,000 −9.5114e+03/250,000 −1.1724e+04/250,000

F24 −1.8013 −1.8013/74,945 −1.8013/4120 −1.8013/151,155 −1.8013/1335

F25 −4.6877 −4.2161/250,000 −4.6877/250,000 −4.4893/250,000 −4.6877/250,000

F26 −9.6602 −8.3413/250,000 −9.6548/250,000 −8.5155/250,000 −9.6592/250,000

F27 0 9.7159e−04/250,000 0/127,530 0/223,030 0/66,095

F28 −1.0316 −1.0316/64,700 −1.0316/2435 −1.0316/114,930 −1.0316/1605

F29 0 3.4653e−09/250,000 0/17,325 0/250,000 0/4625

F30 0 2.1928e−08/250,000 0/19,535 0/250,000 0/7850

F31 −186.7309 −186.7309/173,900 −186.7309/14,215 −186.7309/186,760 −186.7309/3025

F32 3 3/250,000 3/15,010 3/217,605 3/3725

F33 0.00031 6.2316e−04/215,335 4.5288e−04/209,225 4.3838e−04/205,865 3.0976e−04/159,295

F34 −10.15 −8.6329/250,000 −10.1532/250,000 −10.1532/250,000 −10.1532/250,000

F35 −10.4 −8.2850/195,830 −10.4029/16,975 −10.4029/187,715 −10.4029/38,110

F36 −10.53 −9.4595/199,460 −10.5364/19,790 −10.5364/190,000 −10.5364/22,330

F37 0 5.2947e−06/250,000 2.2877e−07/234,335 0.0167/250,000 0.0767/250,000

F38 0 2.1604e−04/250,000 9.4799e−05/250,000 2.1276e−04/250,000 3.4566e−04/250,000

F39 −3.86 −3.8628/250,000 −3.8628/250,000 −3.8628/250,000 −3.8628/250,000

F40 −3.32 −3.2507/250,000 −3.3220/250,000 −3.2745/190,700 −3.2625/250,000

F41 0 0.0200/250,000 7.3960e−04/185,430 0.0108/250,000 0/118,115

F42 0 0.7497/250,000 2.3928e−13/250,000 1.3696e−13/250,000 6.9278e−15/250,000

F43 0 1.2149/250,000 0.0415/214,050 11.0322/242,695 4.1634e−16/129,035

F44 0 3.9138e−06/250,000 0/169,760 0/226,640 0/124,510

F45 −1.08 −1.0809/33,105 −1.0809/4460 −1.0809/96,055 −1.0809/3890
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Table 6 continued

No. Min FA CS VS CTA

Mean/MNFE Mean/MNFE Mean/MNFE Mean/MNFE

F46 −1.5 −1.1317/250,000 −1.5000/250,000 −1.5/250,000 −1.2689/250,000

F47 NA −0.4200/250,000 −0.8679/250,000 −0.5093/250,000 −0.4601/250,000

F48 0 8.7879e−09/250,000 6.7451e−17/71,780 0/223,945 0/4800

F49 0 252.6494/250,000 0.0517/250,000 0.0056/243,170 3.7724e−05/100,870

F50 0 788.6028/250,000 4.4787/250,000 5.7301/250,000 35.2304/250,000

F51 0 2.48e+00/250,000 3.7479/250,000 1.7699/250,000 5.7732e−16/250,000

F52 0 7.86e+05/250,000 9.9472e+05/250,000 4.2735e+05/250,000 1.0316e+05/111,505

F53 0 4.00e+02/250,000 7.9200/250,000 13.3810/250,000 0.0903/250,000

F54 0 143.7616/250,000 7.6171e−07/250,000 15.1937/250,000 0/10,9635

F55 0 141.0008/250,000 2.3020/250,000 886.6409/250,000 0.1109/250,000

statistically superior performance than compared algorithm;
‘_’ indicates the CTA exhibits an inferior performance than
compared algorithm; and ‘=’ indicates cases inwhich there is
no statistical difference between the two algorithms. Table 5
is a summary of Table 4, each cell in Table 5 shows the total
count of the three statistical significance cases (+/ = /−)
in the pair-wise comparison obtained from Table 4, it can be
found from Table 5 that the proposed CTA outperforms other
algorithms on three types of function including US, UN and
MS. For MN problem, the optimization performance of CTA
and CS algorithm is almost the same, but the VS and FA
underperform the CTA. In summary, the optimization per-
formance of CTA proposed in this paper is superior to the
other three algorithms.

Doğugan and Ölmez (2015) indicates that VS is very sim-
ple, and it is not population based algorithms. Furthermore,
the it can be concluded that with the same iterations, the aver-
age computational time of VS algorithm is smaller than the
other population based algorithms (ABC, PSO2011). While
the algorithms compared with VS algorithm in this paper
are all population based algorithms, therefore, it can be pre-
dicted that the results should be similar as that in Doğugan
and Ölmez (2015). So this paper does not compare the aver-
age computational time for same iterations, but the average
time of finding the best value of all algorithms, as shown in
Fig. 3. It shows that the proposed CTA is quite competitive
comparing with VS algorithm. Although the average time of
finding the best value of VS algorithm is much faster than
others on most of the function, it is not the fastest on a few
of test functions. Moreover, it can be seen by observing the
optimization time of CS algorithm and CTA that the running
time of CTA is shorter than the CS algorithm.

3.2.2 Convergence behavior comparison

It can be seen in Table 2 that for a large proportion of
functions, the optimal value can be obtained after 500,000

Table 7 A summary of Table 6

Problem type CTA versus FA CTA versus CS CTA versus VS

US 5/0/1 6/0/0 5/0/1

UN 12/0/1 7/1/5 11/0/2

MS 10/0/1 8/3/0 9/1/1

MN 22/1/2 15/2/8 17/2/6

Total (a/b/c) 49/1/5 36/6/13 42/3/10

evaluations, so in order to compare the capability of conver-
gence behavior of the algorithms, the number of evaluations
is reduced to 250,000 times. The mean value and the average
number of evaluations is counted to find the optimal value of
30 runs. The results are shown in Table 6. Method of com-
parison is that if the algorithms are able to find the optimal
value within 250,000 evaluations, the algorithm which runs
the least average evaluations to find the optimal value has bet-
ter convergence performance; if the algorithms are unable to
find the optimal value after 250,000 evaluations, the final
results are compared and the smaller optimization result of
the algorithm is, the better the performance convergence of
that algorithm is.

The optimal solution in Table 6 displays in bold. The
results of the algorithms are compared, the method of com-
parison is described above and the comparison results are
expressed in the form of a/b/c shown in Table 7, where ‘a’
represents the number of evaluations where convergence per-
formance of CTA is better than compared algorithm, ‘b’
represents the number where convergence performance of
CTA is similar to compared algorithm, ‘c’ represents the
number where convergence performance of CTA is rela-
tively inferior to compared algorithm. It can be drawn that
the proposed CTA has shown greater convergence behavior
compared with the other three algorithms on different types
of functions. In addition, for some of the functions, more
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number of evaluation is required in order to find the optimal
solution for all of the algorithms.

In order to show how the proposed algorithms dominate
the others, we selected 11 out of 55 benchmark functions and
plotted the error iteration graphs obtained by each algorithm
solving function as shown inFigs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
and 14. Figures 4, 5, 6, 10, 11 show that the CTA algo-

rithmdominates the others before the 1000th iterations,while
Figs. 7, 8, 9, 12, 13 and 14 show that the CTA algorithm dom-
inates the others at the beginning. So we can conclude that
the solving speed of CTA is quite efficient compared to other
algorithms.

Fig. 4 Error iteration curve of
Quartic function obtained by
each algorithm

Fig. 5 Error iteration curve of
Powell function obtained by
each algorithm
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Fig. 6 Error iteration curve of
Schwefel 1.2 function obtained
by each algorithm

Fig. 7 Error iteration curve of
Rastrigin function obtained by
each algorithm
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Fig. 8 Error iteration curve of
Michalewicz10 function
obtained by each algorithm

Fig. 9 Error iteration curve of
Ackley function obtained by
each algorithm

123



3874 J. Chen et al.

Fig. 10 Error iteration curve of
Salomon function obtained by
each algorithm

Fig. 11 Error iteration curve of
Rotated hyper-ellipsoid function
obtained by each algorithm

123



A new metaheuristic algorithm: car tracking optimization algorithm 3875

Fig. 12 Error iteration curve of
Alpine function obtained by
each algorithm

Fig. 13 Error iteration curve of
Hyper-ellipsoid function
obtained by each algorithm
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Fig. 14 Error iteration curve of
Levy function obtained by each
algorithm

4 Conclusion

This paper presents a new swarm intelligence optimization
algorithm named CTA, which is different from the previous
swarm intelligence algorithms. It is not obtained by observ-
ing the foraging behavior of biological, but created artificially
through observing the programming methods of these algo-
rithms. This algorithm divides the car population into two
groups, and uses global and local iterative search strategy to
find the optimal solution, respectively. Global search strategy
adaptively adjusts the pace based on the best and the worst
current position, while the local search strategy adaptively
adjusts the pace based on the relative distance between the
position of the cars around

The proposed CTA is tested over a large set of 55 bench-
mark, and these 55 functions are rich in typewhich comprises
unimodal, multimodal, separable and non-separable prob-

lems, and range covers 100-dimensional function as well.
The results are compared with those of FA, CS and VS; the
results showed thatCTA is highly competitive comparedwith
the other algorithms. Because the CTA algorithm is a new
algorithm and the velocity updating formula is not perfect,
so it needs further discussion and improvement.
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Appendix A

See Tables 8, 9, 10, 11, 12, 13, 14 and 15.

Table 8 A parameter of the
Fletcher–Powell function

i Ai j , j = 1, . . . , 10

1 −79 56 −62 −9 92 48 −22 −34 −39 −40

2 91 −9 −18 −59 99 −45 88 −14 −29 26

3 −38 8 −12 −73 40 26 −64 29 −82 −32

4 −78 −18 −49 65 66 −40 88 −95 −57 10

5 −1 −43 93 −18 −76 −68 −42 22 46 −14

6 34 −96 26 −56 −36 −85 −62 13 93 78

7 52 −46 −69 99 −47 −72 −11 55 −55 91

8 81 47 35 55 67 −13 33 14 83 −42

9 5 −43 −45 46 56 −94 −62 52 66 55

10 −50 66 −47 −75 89 −16 82 6 −85 −62
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Table 9 B parameter of the
Fletcher–Powell function

i Bi j , j = 1, . . . , 10

1 −65 −11 76 78 30 93 −86 −99 −37 52

2 59 67 49 −45 52 −33 −34 29 −39 −80

3 21 −23 −80 86 86 −30 39 −73 −91 5

4 −91 −75 20 −64 −15 17 −89 36 −49 −2

5 −79 99 −31 −8 −67 −72 −43 −55 76 −57

6 −89 −35 −55 75 15 −6 −53 −56 −96 87

7 −76 45 74 12 −12 −69 2 71 75 −60

8 −50 −88 93 68 10 −13 84 −21 65 14

9 −23 −95 99 62 −37 96 27 69 −64 −92

10 −5 −57 −30 −6 −96 75 25 −6 96 77

Table 10 α parameter of the
Fletcher–Powell function

α j , j = 1, . . . , 10

−2.7910

2.5623

−1.0429

0.5097

−2.8096

1.1883

2.0771

−2.9926

0.0715

0.4142

Table 11 A parameter of the
Foxholes function

j ai j , i = 1, 2

1 −32 −32

2 −16 −32

3 0 −32

4 16 −32

5 32 −32

6 −32 −16

7 −16 −16

8 0 −16

9 16 −16

10 32 −16

11 −32 0

12 −16 0

13 0 0

14 16 0

15 32 0

16 −32 16

17 −16 16

18 0 16

19 16 16

20 32 16

Table 11 continued j ai j , i = 1, 2

21 −32 32

22 −16 32

23 0 32

24 16 32

25 32 32

Table 12 a and b parameters of
the Kowalik function

i ai b−1
i

1 0.1957 0.25

2 0.1947 0.5

3 0.1735 1

4 0.1600 2

5 0.0844 4

6 0.0627 6

7 0.0456 8

8 0.0342 10

9 0.0323 12

10 0.0235 14

11 0.0246 16

Table 13 a and c parameters of
the Shekel functions

i ai j , j = 1, 2, 3, 4 ci

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5
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Table 14 a, c and p parameters
of the 3-parameter Hartman
function

i ai j , j = 1, 2, 3 ci pi j , j = 1, 2, 3

1 3 10 30 1 0.3689 0.1170 0.2673

2 0.1 10 35 1.2 0.4699 0.4387 0.7470

3 3 10 30 3 0.1091 0.8732 0.5547

4 0.1 10 35 3.2 0.03815 0.5743 0.8828

Table 15 a, c and p parameters
of the 6-parameter Hartman
function

i ai j , j = 1, . . . , 6 ci pi j , j = 1, . . . , 6

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0 .0124 0.8283 0.5886

2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650

4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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Doğugan B, Ölmez T (2015) A new metaheuristic for numerical
function optimization: vortex search algorithm. Inf Sci (Ny)
293:125–145

Dorigo M, Stützle T (1999) The ant colony optimization metaheuristic.
In: New ideas in optimization, pp 11–32

Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by
a colony of cooperating agents. IEEE Trans Syst Man Cybern Part
B Cybern A Publ IEEE Syst Man Cybern Soc 26:29–41

Eberhart R, Kennedy J (1995) A new optimizer using particle swarm
theory. In: International symposium on micro machine and human
science, pp 39–43

Gao WF, Liu SY (2012) A modified artificial bee colony algorithm.
Comput Oper Res 39:687–697

GelattCD,VecchiMPet al (1983)Optimization by simulated annealing.
Science 220:671–680

Goffe WL, Ferrier GD, Rogers J (1994) Global optimization of statis-
tical functions with simulated annealing. J Econom 60:65–99

Golberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. Addison Wesley, London, p 102

Goldfeld SM,QuandtRE,TrotterHF (1966)Maximization by quadratic
hill-climbing. Econometrica 34:541–551

Han M-F, Liao S-H, Chang J-Y, Lin C-T (2013) Dynamic group-based
differential evolution using a self-adaptive strategy for global opti-
mization problems. Appl Intell 39:41–56

Holland JH (1975) Adaptation in natural and artificial systems. Control
Artif Intell Univ Michigan Press 6:126–137

KarabogaD,AkayB (2009)A comparative study of artificial bee colony
algorithm. Appl Math Comput 214:108–132

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algo-
rithm. J Glob Optim 39:459–471

Li X, Shao Z, Qian J (2002) An optimizing method based on
autonomous animats: fish-swarm algorithm. Syst Eng Theory
Pract 22:32–38

Li H-Z, Guo S, Li C-J, Sun J-Q (2013) A hybrid annual power load
forecasting model based on generalized regression neural network
with fruit fly optimization algorithm. Knowl-Based Syst 37:378–
387

Osuna-Enciso V, Cuevas E, Oliva D et al (2016) A bio-inspired evo-
lutionary algorithm: allostatic optimisation. Int J Bio-Inspired
Comput 8:154–169

Pan W-T (2012) A new fruit fly optimization algorithm: taking the
financial distress model as an example. Knowl-Based Syst 26:69–
74

Rechenberg I (1965) Cybernetic solution path of an experimental prob-
lem

Shi Y, Eberhart R (1998) Modified particle swarm optimizer. In: IEEE
international conference on evolutionary computation proceed-
ings, 1998. IEEE world congress on computational intelligence,
pp 69–73

WangC-R,ZhouC-L,Ma J-W(2005)An improved artificial fish-swarm
algorithm and its application in feed-forward neural networks. In:
2005 International conference on machine learning and cybernet-
ics, pp 2890–2894

Yang X-S (2010a) A new metaheuristic bat-inspired algorithm. In:
Nature inspired cooperative strategies for optimization (NICSO
2010). Springer, pp 65–74

YangX-S (2010b) Firefly algorithm, stochastic test functions and design
optimisation. Int J Bio-Inspired Comput 2:78–84

Yang X-S (2010c) Nature-inspired metaheuristic algorithms. Luniver
Press, Frome

Yang XS, Deb S (2009) Cuckoo Search via Lévy flights. In: World
congress on nature and biologically inspired computing, 2009.
NaBIC 2009, pp 210–214

Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int
J Math Model Numer Optim 1:330–343

Yang X-S, Hossein Gandomi A (2012) Bat algorithm: a novel approach
for global engineering optimization. Eng Comput 29:464–483

Yang XS, Hosseini SSS, Gandomi AH (2012) Firefly algorithm for
solving non-convex economic dispatch problems with valve load-
ing effect. Appl Soft Comput 12:1180–1186

123


	A new metaheuristic algorithm: car tracking optimization algorithm
	Abstract
	1 Introduction
	2 The proposed car tracking algorithm
	3 Experimental results
	3.1 Parameter settings
	3.2 Results
	3.2.1 Optimization performances comparison
	3.2.2 Convergence behavior comparison


	4 Conclusion
	Appendix A
	References




