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Abstract In most application problems, the exact values
of the input parameters are unknown, but the intervals in
which these values lie can be determined. In such problems,
the dynamics of the system are described by an interval-
valued differential equation. In this study, we present a new
approach to nonhomogeneous systems of interval differen-
tial equations. We consider linear differential equations with
real coefficients, but with interval initial values and forcing
terms that are sets of real functions. For each forcing term,we
assume these real functions to be linearly distributed between
two given real functions. We seek solutions not as a vector of
interval-valued functions, as usual, but as a set of real vector
functions.Wedevelop amethod tofind the solution and estab-
lish an existence and uniqueness theorem. We explain our
approach and solution method through an illustrative exam-
ple. Further, we demonstrate the advantages of the proposed
approach over the differential inclusion approach and the
generalized differentiability approach.
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1 Introduction

1.1 Applications where interval-valued differential
equations arise

The vast majority of real-world problems in fields such as
engineering mechanics, material science, and thermal ana-
lysis contain varying degrees of uncertainty (Blackwell and
Beck 2010). This uncertainty can be caused by environmental
factors, measurement errors, or lack of information. Depend-
ing on the type of uncertainty, the relevant mathematical
models can be stochastic, fuzzy, or interval-valued. In some
problems, it may be necessary to model some variables as
intervals and others as fuzzy numbers. For example, Wang
et al. (2015) considered some parameters to be intervals and
some to be fuzzy numbers in the fuzzy interval perturba-
tion method, which they proposed to solve the uncertain heat
conduction problem. For uncertainties determined by expert
opinion, the authors used fuzzy variables but, for uncertain-
ties of deterministic nature that change within certain limits,
they used interval variables.

In cases where we know that the values of the (uncer-
tain) input variable are uniformly distributed within a certain
interval, it is natural to use the methods of interval-valued
analysis. In these cases, the dynamic behavior of the sys-
tem is described by an interval-valued differential equation.
Interval-valued differential equations are a particular case of
set-valued differential equations.

Set-valued differential equations are also involved in the
investigation of fuzzy differential equations (Lakshmikan-
tham et al. 2003) and ordinary differential inclusions.

Set differential equations are encountered as well when
studying the classical optimal control problems (which do
not contain uncertainty). An optimal control problem, the
equation of motion of which is given by an ordinary differen-
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tial equation, can be transformed into a differential inclusion
problem, and the methods of set differential equations can
then be applied to solve the resulting problem (Blagodatskikh
and Filippov 1986; Komleva et al. 2008; Plotnikova 2005).

1.2 Related work

The first studies on set-valued analysis were reported in
Aubin and Frankowska (1990), Lakshmikantham et al.
(2006), and Moore (1966). To date, a number of signifi-
cant studies have examined interval (in particular) and set (in
general) differential equations (see Bede and Stefanini 2009;
Boese 1994; Dabbous 2012; Hoa 2015; Hoa et al. 2014; Lak-
shmikantham and Sun 1991; Lupulescu 2013; Pan 2015; Phu
et al. 2014; Quang et al. 2016; Sivasundaram and Sun 1992;
Stefanini 2010; Stefanini and Bede 2009; Azzam-Laouir and
Boukrouk 2015; Galanis et al. 2005; Komleva et al. 2008;
Malinowski 2012b, 2015; Plotnikov and Skripnik 2014).

Bede and Stefanini (2009) proposed a numerical method
for interval differential equations with generalized Hukuhara
differentiability. Hoa (2015) obtained the existence and
uniqueness results of solutions for the initial value problem
to interval-valued second-order differential equations under
generalizedH-differentiability. Lupulescu (2013) studied the
differentiability and the integrability for the interval-valued
functions on timescales. Pan (2015) investigated the Euler
rule and Simpson rule for the interval-valued differential and
integral equations. Sivasundaram and Sun (1992) applied
the interval analysis to impulsive differential equations.
Azzam-Laouir and Boukrouk (2015) proved the existence
and uniqueness of a solution for a second-order set-valued
differential equation with three-point boundary conditions.
Komleva et al. (2008) considered a special space of con-
vex compact sets and introduced the notions of derivative
and integral for a set-valued mapping that differ from the
previous ones. They also proved theorems on the existence
and uniqueness for the differential equations with set-valued
right-hand side satisfying theCarathéodory conditions.Mali-
nowski (2012b) introduced the notion of a second type
Hukuhara derivative and considered delay set-valued differ-
ential equations.

The main difference in the above-mentioned studies lies
in the derivatives they use. The point is that there is no com-
monly accepted concept of the set derivative, in contrast to
the real calculus.

Various concepts of set derivative [such as the Huygens
derivative (Bridgland 1970), π -derivative (Banks and Jacobs
1970), Markov-derivative (Markov 1979), and T -derivative
(Plotnikov 2000)] have been proposed and used to investi-
gate differential equations (Chalco-Cano and Román-Flores
2011).

Most researchers use the Hukuhara derivative (Hukuhara
1967). The Hukuhara derivative has significant importance

in solving set-valued differential equations, but over time,
it has been observed that this derivative remains inadequate
in addressing certain real-world problems. This derivative is
only suitable for solutions in which the uncertainty increases
with time. To eliminate this deficiency, Stefanini and Bede
(2009) introduced a second concept of the Hukuhara deriva-
tive. This second type is suitable for describing decreasing
uncertainties (Malinowski 2012a, b, 2015; Pan 2015). The
next extension of the Hukuhara derivative was the general-
ized derivative (Amrahov et al. 2016; Bede and Gal 2005;
Plotnikov and Skripnik 2014; Stefanini and Bede 2009),
which allows alternating uncertainties to be modeled (Bede
and Stefanini 2009; Hoa 2015; Lupulescu 2013; Phu et al.
2014; Plotnikov and Skripnik 2014; Skripnik 2012). A fur-
ther extension of the Hukuhara derivative was proposed by
Stefanini (2010). He extended the Hukuhara difference to the
concept of a generalized Hukuhara difference and (based on
this new difference) introduced a new concept of the gen-
eralized derivative. This concept is employed for solving
differential equations byChalco-Cano et al. (2013), Stefanini
(2010), and Tao and Zhang (2016).

1.3 Shortcomings of the existing methods

The above-mentioned studies are mainly based on two
approaches: the differential inclusions approach and the set-
valued derivative approach. In the first approach, a set-valued
differential equation is interpreted as a differential inclu-
sion problem (Hüllermeier 1997). This is a powerful tool
for theoretical investigations, but there is no concept of
the derivative behind this approach. Consequently, we can-
not define an antiderivative (integral) operation. Therefore,
regarding set-valued differential equations, developing an
effective solution method based on differential inclusions is
a difficult task.

Most of the studies cited in Sect. 1.2 use the second
approach. Concerning this approach, our viewpoint is as fol-
lows. To solve set-valued differential equations, we have to
develop a set-valued calculus (similar to the real calculus).
For this, we must first define basic arithmetic operations on
sets. The Minkowski sum is used for the addition of two
sets of vectors, but a difficulty arises immediately when we
define subtraction. This is because theMinkowski difference
is not the opposite operation to the Minkowski sum. This
difficulty is resolved by using theHukuhara difference. How-
ever, using the Hukuhara difference causes a drawback since
it is not defined for every two sets. That is, for the Hukuhara
difference A − B to exist, A must be at least wider than
B (provided that A �= B). The generalized Hukuhara dif-
ference, suggested recently by Stefanini (2010), is defined
for every two sets, but is not the opposite operation to the
Minkowski sum. In summary, the present set-valued opera-
tions do not reflect the properties of the arithmetic operations
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on real numbers. Consequently, any attempt to create a set-
valued calculus, which would be similar to the real calculus,
fails. Another difficulty with the set derivatives is that, in
general, the uniqueness of the solution does not hold.

1.4 Motivation and the proposed approach

In this paper, our motivation is to overcome the above-
mentioned difficulties. Our starting point is that the set-
valued functions are not the only tool for modeling uncer-
tainties that change with time. We interpret a function with
interval uncertainty as a set (in other words, as a bunch) of
real functions. The proposed approach can be considered as
a further development of the approach employed by Gasilov
et al. (2014a, b, 2015) for fuzzy differential equations. The
proposed approach becomes useful from different perspec-
tives. First, it avoids the difficulties of set-valued derivatives.
Second, the solution exists and is unique under the proposed
approach.

1.5 Structure of the paper

The remainder of this paper is organized as follows. In
Sect. 2, we introduce the concept of a convex bunch gen-
erated by two real functions, which play a crucial role in
our solution method. Section 3 contains a description of the
system of interval differential equations of interest, an intro-
duction to the concept of a solution, and a description of
the solution method. In Sect. 4, we solve a practical exam-
ple that illustrates the proposed method. The advantages of
the proposed method over existing methods are discussed in
Sect. 5.

2 Convex bunch generated by two functions

First, we describe a representation for intervals. This repre-
sentation is used intensively throughout the paper. Consider
an interval A = [a, b]. Set c = a+b

2 and δ = b−a
2 . Then,

A = c + [−δ, δ]. Here, c is the central point of interval
A. Hereinafter, we interpret [−δ, δ] as the uncertainty of
A. Then, δ can be considered as the radius of uncertainty. To
summarize, each interval A = [a, b] can be represented as
A = c+ Aun (central point + symmetric uncertainty), where
Aun = [−δ, δ].

In this paper, we consider interval differential equations
with forcing terms involving uncertainties. The forcing terms
are interpreted as a bunch of real functions, rather than as
interval-valued functions.

First, we define the main concept of our approach.

Definition 1 (Bunch of functions). A set

F = {yα(·) | α ∈ Λ }

(where yα is a real function, andΛ is a set of indices) is called
a bunch of functions. The set

F(t) = {yα(t) | yα ∈ F }

is called the value of the bunch F at the point t .

In fact, a bunch is a set of real functions. Usually, these
functions are assumed to be related to each other. F(t) is the
set, consisting of the values of all functions (from the bunch
F) at t .

Definition 2 (Convex bunch). Let fa(·) and fb(·) be given
continuous functions on an interval I . The set (of functions),
determined by the formula

F = {y(·) | y = α fa + (1 − α) fb, α ∈ [0, 1] }

is called a convex bunch generated by the functions fa and
fb, and is denoted as F = 〈 fa, fb〉.
Geometrically, a convex bunch is a set of curves that is

linearly distributed between the graphs of fa and fb.
Let us introduce fc = fa+ fb

2 (the central function) and

δF = fb− fa
2 (the function that expresses the radius of uncer-

tainty). It can easily be checked that α fa + (1 − α) fb =
fa+ fb
2 + α

(
− fb− fa

2

)
+ (1 − α)

fb− fa
2 = fc + α (−δF ) +

(1 − α)δF . From here, we can conclude that each convex
bunch F = 〈 fa, fb〉 can be represented as F = fc + Fun
(central function + uncertainty), where Fun = 〈−δF , δF 〉.
Remark 1 Note that a bunch 〈− f, f 〉 consists of functions
k f , where k = 1 − 2α ∈ [−1, 1], (i.e., multiples of the
function f ).

Example 1 In Fig. 1, we depict the convex bunch F =
〈 fa, fb〉, where fa(t) = 3t − t2 − 3 (the bottom curve);
fb(t) = e−t (the upper curve).
Functions that correspond to α = 1

6 ,
2
6 ,

3
6 ,

4
6 , and

5
6 are

represented by (from up to bottom) dashed–dotted, dotted,
dashed, dotted, and dashed–dotted curves, respectively.

According to Definition 1, for the value of the bunch F =
〈 fa, fb〉 at a point t , we have:

F(t) = [min { fa(t), fb(t)} , max { fa(t), fb(t)}]

Note that the value F(t) is an interval.
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Fig. 1 A linear bunch F = 〈 fa, fb〉 consists of real functions, linearly
distributed between the graphs of two given functions, fa and fb. The
dashed line represents the central function fc

3 System of interval differential equations

In this section, we describe the problem of interest, our con-
cept of a solution, and a solution method.

For simplicity, we consider the two-dimensional case. We
will investigate the following system of linear differential
equations:

[
x ′
y′

]
=

[
a11 a12
a21 a22

] [
x
y

]
+

[
F
G

]
(1)

with the initial values

[
x(0)
y(0)

]
=

[
A
B

]
, (2)

where a11, a12, a21, a22 are given real numbers; A = [a1, a2]
and B = [b1, b2] are given intervals; F = 〈 fa, fb〉 and
G = 〈ga, gb〉 are given convex bunches of functions.

The initial value problem (IVP) (1)–(2) can be interpreted
in different ways. Usually, x and y are considered to be inde-
pendent interval-valued functions, and the derivative to be an
interval derivative (for example, the generalized derivative).

Our approach is essentially different. We interpret the
interval IVP (1)–(2) as a family of classical IVPs, where
such a classical IVP is obtained by taking an element from
each of four sets: u(·) from F , v(·) from G, c from A, and d
from B. Namely, we consider the family of classical IVPs

[
x ′
y′

]
=

[
a11 a12
a21 a22

] [
x
y

]
+

[
u(t)
v(t)

]
(3)

[
x(0)
y(0)

]
=

[
c
d

]
, (4)

where u(·) ∈ F and v(·) ∈ G are real functions; c ∈ A and
d ∈ B are real numbers.

Let us explain our concept of a solution.

Definition 3 (Solution). Consider the interval IVP (1)–(2).
We interpret this problem as the family of classical IVPs
(3)–(4), where u(·) ∈ F , v(·) ∈ G, c ∈ A, and
d ∈ B. Each IVP (3)–(4) has a unique solution, say
(xuvcd(·), yuvcd(·)). The set (bunch) of all such real vector
functions (xuvcd(·), yuvcd(·)) is defined to be the solution X
of the interval IVP (1)–(2).

The above definition determines the solution X formally,
but the main issue is to find X (t), the value of X at a given
time t . By definition, X is a bunch of real vector functions.
At t , each vector function has a value that can be interpreted
as a point in the coordinate space. Hence, X (t) is the set of
these points, i.e., it is a region. Thus, our task is to determine
the region X (t) geometrically and calculate it effectively.

We now describe the solution method. First, we represent
all interval values as the sum of the central value and the
interval uncertainty:

A ≡ [a1, a2] = ac + Aun; ac = a1+a2
2 ;

Aun = [−δA, δA] ; δA = a2−a1
2

B ≡ [b1, b2] = bc + Bun; bc = b1+b2
2 ;

Bun = [−δB, δB] ; δB = b2−b1
2

F ≡ 〈 fa, fb〉 = fc + Fun; fc = fa+ fb
2 ;

Fun = 〈−δF , δF 〉 ; δF = fb− fa
2

G ≡ 〈ga, gb〉 = gc + Gun; gc = ga+gb
2 ;

Gun = 〈−δG , δG〉 ; δG = gb−ga
2

(5)

The IVP (1)–(2) is a linear problem.Hence,we can employ
the superposition principle to find the solution. Namely, we
can split the given problem (1)–(2) into the following three
subproblems.

1) The first subproblem is the nonhomogeneous problem
with the central values (we will call this the central problem
and its solution the central solution):

[
x ′
y′

]
=

[
a11 a12
a21 a22

] [
x
y

]
+

[
fc
gc

]
(6)

[
x(0)
y(0)

]
=

[
ac
bc

]
(7)

The solution xc = (xc(t), yc(t)) of this classical IVP is
a vector function. It is unique and can be calculated using
well-known methods.

2) The second subproblem, which gives the uncertainty
XunIV of the solution resulting from the initial values, is the
homogeneous problem

[
x ′
y′

]
=

[
a11 a12
a21 a22

] [
x
y

]
(8)
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[
x(0)
y(0)

]
=

[
Aun

Bun

]
(9)

Let us describe how to calculate XunIV (t), the value of
this uncertainty at a given time t .

The solution of the corresponding classical problem

{
x′ = Ax
x(0) = u

(10)

is x(t) = eA t u, where A =
[
a11 a12
a21 a22

]
is the matrix of the

system. This fact can be interpreted as the point x(t) being the
image of the initial point u under the linear transformation
x = L(v) = eA t v.

The initial values of the problem (8)–(9) constitute the
rectangle Aun ×Bun in the coordinate plane. Then, XunIV (t)
is the image of this rectangle under the linear transformation
L:

XunIV (t) = eA t
[
Aun

Bun

]

=
{
eA t u

∣∣∣∣ u =
[
a
b

]
, a ∈ Aun, b ∈ Bun

}

As the image of a parallelogram (or rectangle, in particu-
lar) under a linear transformation is another parallelogram,
at each time t , the value XunIV (t) of the solution forms a
parallelogram (Gasilov et al. 2011).

Remark 2 An alternative way of calculating XunIV is as
follows. According to Definition 3, we consider the prob-
lem (8)–(9) as a family of classical problems (10), where

u =
[
a
b

]
with a ∈ Aun and b ∈ Bun . Set α = a/δA and

β = b/δB . Then, α ∈ [−1, 1] and β ∈ [−1, 1]. Repre-

sent u =
[
a
b

]
= α

[
δA
0

]
+ β

[
0
δB

]
= αu1 + βu2. For

u = u1 =
[

δA
0

]
and u = u2 =

[
0
δB

]
, let the solutions of

(10) be x1 and x2, respectively. Then, the solution of (10) for

u =
[
a
b

]
is x = α x1+β x2. The set of these vector functions

x constitutes the solution of (8)–(9). Consequently,

XunIV (t) = {v | v = α x1(t) + β x2(t); α, β ∈ [−1, 1] }

3) The third subproblem, which determines the uncer-
tainty XunF of the solution resulting from the forcing terms,
is the nonhomogeneous problem

[
x ′
y′

]
=

[
a11 a12
a21 a22

] [
x
y

]
+

[ 〈−δF , δF 〉
〈−δG , δG〉

]
(11)

[
x(0)
y(0)

]
=

[
0
0

]
(12)

Let us describe our solution method for (11)–(12). By
Definition 3, we interpret problem (11)–(12) as a set of clas-
sical problems.According toRemark1, the bunch 〈−δF , δF 〉
consists of functions of the form r δF , (−1 ≤ r ≤ 1). Anal-
ogously, the bunch 〈−δG , δG〉 consists of functions of the
form s δG , (−1 ≤ s ≤ 1). Consequently, we consider prob-
lem (11)–(12) as a set of classical problems such as

[
x ′
y′

]
=

[
a11 a12
a21 a22

] [
x
y

]
+

[
r δF
s δG

]
(13)

[
x(0)
y(0)

]
=

[
0
0

]
, (14)

where−1 ≤ r ≤ 1 and−1 ≤ s ≤ 1.The solution (x(·), y(·))
of (13)–(14) is a member of the solution set. The bunch of all
vector functions (x(·), y(·)) constitutes the solution of (11)–
(12), XunF . To express this solution in an effective manner,
we apply the following procedure.

Each of problems (13)–(14) is of the form

{
x′ = Ax + f
x(0) = 0

(15)

We solve this problem for two particular cases of f . For

f = f1 =
[

δF
0

]
and f = f2 =

[
0
δG

]
, let the solutions of

(15) be x3 and x4, respectively. Then, the solution of (15)

for f =
[
r δF
s δG

]
is x = r x3 + s x4. The set (bunch) of all

vector functions such as x gives the solution XunF of (11)–
(12). Therefore, XunF (t), the value of the solution at time t ,
is determined by the following formula:

XunF (t) = {v | v = r x3(t) + s x4(t); r, s ∈ [−1, 1] }

In the coordinate plane, this value forms a parallelogram.
The Minkowski sum of uncertainties from the initial val-

ues XunIV (t) and from the forcing terms XunF (t), which are
parallelograms in the coordinate plane, gives the total uncer-
tainty Xun(t). The Minkowski sum of two parallelograms is
a polygon (rectangle, parallelogram, hexagon, or octagon).
Furthermore, this polygon is convex and symmetric about
its center. Therefore, in the coordinate plane, the value of the
total uncertainty Xun(t) forms a convex, centrally symmetric
polygon.

If we add the total uncertainty Xun to the central solution
xc, we obtain the solution to the given problem (1)–(2).

According to the above arguments, all three subproblems
have unique solutions. Thus, we have proved the following
theorem.
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Theorem 1 In the sense of Definition 3, the solution of the
interval IVP (1)–(2) exists and is unique.

Summarizing the above steps, we can suggest a solution
algorithm.

3.1 Solution algorithm

Let the interval IVP (1)–(2) be given.

1. Represent each interval value as the sum of the central
value and the interval uncertainty, as in (5).

2. Solve IVP (6)–(7) and find the central solution xc =
(xc(t), yc(t)).

3. Solve (10) for u = u1 =
[

δA
0

]
and u = u2 =

[
0
δB

]
.

Let the solutions be x1 and x2, respectively. Then, the
uncertainty resulting from the initial values is the bunch

XunIV = {α x1 + β x2 | α ∈ [−1, 1] , β ∈ [−1, 1] }
(16)

4. Solve (15) for f = f1 =
[

δF
0

]
and f = f2 =

[
0
δG

]
.

Let the solutions be x3 and x4, respectively. Then, the
uncertainty resulting from the forcing terms is the bunch

XunF = {r x3 + s x4 | r ∈ [−1, 1] , s ∈ [−1, 1] } (17)

5. The solution to thegivenproblem (1)–(2) is theMinkowski
sum

X = {xc} + XunIV + XunF

Remark 3 Note that, we only need to solve five classical
IVPs in order to determine the solution to the given interval
IVP (to calculate xc, x1, x2, x3, and x4).

4 Example

Wenow clarify the proposed solutionmethod using an exam-
ple.

Example 2 Let us consider the system of differential equa-
tions

[
x ′
y′

]
=

[
3 −1
4 −2

] [
x
y

]
+

[
F
G

]
(18)

with the initial values

[
x(0)
y(0)

]
=

[
A
B

]
=

[
[14.75, 15.25]
[5, 7]

]
, (19)

where

F = 〈 fa, fb〉
=

〈
5t2 − 15t − 25 − 1.5e−t , 5t2 − 15t − 25 + 1.5e−t

〉

G = 〈ga, gb〉 =
〈
10t2 − 10t − 40.6, 10t2 − 10t − 39.4

〉

Using the central values, we represent

A = [14.75, 15.25] = ac + Aun = 15 + [−0.25, 0.25]

B = [5, 7] = bc + Bun = 6 + [−1, 1]

F = fc + Fun; fc = 5t2 − 15t − 25;
Fun = 〈−δF , δF 〉 = 〈−1.5e−t , 1.5e−t 〉

G = gc + Gun; gc = 10t2 − 10t − 40;
Gun = 〈−δG , δG〉 = 〈−0.6, 0.6〉

First, let us explain once again our concept of a solution
on the basis of the example under consideration.

Assume we have taken an element from each of the inter-
vals and bunches involved in the formulation of the problem.
For instance, let u(t) = 5t2−15t−25+0.3e−t ∈ F , v(t) =
10t2 − 10t − 40− 0.4 ∈ G, c = 15− 0.125 = 14.875 ∈ A,
and d = 6 + 0.75 = 6.75 ∈ B. We solve (3)–(4) and find
the solution (xuvcd(·), yuvcd(·)):
{
xuvcd(t) = 5(t + 2) − 0.2 + (0.625 − 0.1t)e−t + 4.45e2t

yuvcd(t) = 5t2 − 0.6 + (2.900 − 0.4t)e−t + 4.45e2t

Then, we say that the vector function (xuvcd(·), yuvcd(·)) is a
member of the solution set. The set (bunch) of all such vector
functions is defined as the solution X of (18)–(19).

Now, we apply the proposed solution method step by step.
We split the given problem (18)–(19) into the following three
subproblems.

1) First, we solve the central nonhomogeneous problem

[
x ′
y′

]
=

[
3 −1
4 −2

] [
x
y

]
+

[
fc
gc

]
(20)

[
x(0)
y(0)

]
=

[
15
6

]
(21)

The solution (see Fig. 2) is

[
xc(t)
yc(t)

]
=

[
5(t + 2) + 1

3e
−t + 14

3 e
2t

5t2 + 4
3e

−t + 14
3 e

2t

]

2) Second, to find the uncertainty of the solution resulting
from the initial values, we solve the homogeneous problem

[
x ′
y′

]
=

[
3 −1
4 −2

] [
x
y

]
(22)
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Fig. 2 Central solution
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Fig. 3 Uncertainty of the solution as a result of the initial values at
t = 0, t = 0.25, and t = 0.5 (from left to right)

[
x(0)
y(0)

]
=

[
[−0.25, 0.25]
[−1, 1]

]
(23)

To do this, we solve (10) for two particular cases of u.

For u = u1 =
[

δA
0

]
=

[
0.25
0

]
, we have

x1 =
[
x1(t)
y1(t)

]
=

[ (
4e2t − e−t

)
/12(

e2t − e−t
)
/3

]

For u = u2 =
[
0
δB

]
=

[
0
1

]
, we obtain

x2 =
[
x2(t)
y2(t)

]
=

[ (
e−t − e2t

)
/3(

4e−t − e2t
)
/3

]

The solution of (22)–(23) is determined by formula (16)
and is represented in Fig. 3. Note again that the uncertainty of
the solution resulting from the initial values is a parallelogram
at each time t .

3) Third, to find the uncertainty of the solution resulting
from the forcing terms, we solve the nonhomogeneous prob-
lem

[
x ′
y′

]
=

[
3 −1
4 −2

] [
x
y

]
+

[ 〈−δF , δF 〉
〈−δG , δG〉

]
(24)
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Fig. 4 Uncertainty of the solution as a result of the forcing terms at
t = 0, t = 0.25, and t = 0.5 (from left to right)
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Fig. 5 Total uncertainty of the solution at t = 0, t = 0.25, and t = 0.5
(from left to right)

[
x(0)
y(0)

]
=

[
0
0

]
(25)

For this, we solve (15) for two particular cases of f .

For f = f1 =
[

δF
0

]
=

[
1.5e−t

0

]
, we have

x3 =
[
x3(t)
y3(t)

]
=

[ (−(3t + 4)e−t + 4e2t
)
/6(−(12t + 4)e−t + 4e2t
)
/6

]

For f = f2 =
[
0
δG

]
=

[
0
0.6

]
, we have

x4 =
[
x4(t)
y4(t)

]
=

[ (
3 − 2e−t − e2t

)
/10(

9 − 8e−t − e2t
)
/10

]

Thus, the solution XunF of (24)–(25) is determined by
formula (17). At each time t , the value XunF (t) forms a par-
allelogram in the coordinate plane. We represent XunF , the
uncertainty of the solution resulting from the forcing terms,
in Fig. 4.

The Minkowski sum of the uncertainties from the initial
values and from the forcing terms (i.e., the sum of two par-
allelograms) gives the total uncertainty. This is represented
in Fig. 5.

We add the total uncertainty to the central solution to
obtain the solution to the given problem (18)–(19) (see Fig.
6).
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14 16 18 20 22 24 26 28 30
4

6

8

10

12

14

16

18

x

y

Fig. 6 Values of the solution at t = 0, t = 0.25, and t = 0.5 (from
left to right)

5 Comparison with existing methods

5.1 Comparison with the method of differential
inclusions

In this subsection, we demonstrate the difference between the
proposed method and the method of differential inclusions
with the help of a numerical example. For simplicity, we
consider the one-dimensional case.

Example 3 Let us consider the IVP

{
x ′ = F
x(0) = 0

, (26)

where

F = 〈 fa, fb〉 = 〈− sin t, sin t〉 (27)

First, we solve IVP (26) using our method. For this, we
consider the corresponding classical IVP

{
x ′(t) = f (t)
x(0) = 0

For f = fb = sin t , the solution is found to be

xb(t) = 1 − cos t

Hence, the solution of IVP (26) given by our method is the
convex bunch

x = 〈−xb, xb〉 = 〈−(1 − cos t), 1 − cos t〉 (28)

(see Fig. 7, dashed lines).

Fig. 7 Boundaries of the solutions obtained by the proposed approach
(dashed lines) and by the differential inclusions approach (continues
lines)

Now, we solve (26) using the method of differential inclu-
sions. We must solve

{
x ′(t) ∈ [− |sin t | , |sin t |]
x(0) = 0

(29)

To find the boundaries of the solution, we solve the IVP

{
x ′(t) = |sin t |
x(0) = 0

(30)

It can be checked that the solution of (30) is

x(t) = 2k + 1 − (−1)k cos t, t ∈ [kπ, (k + 1)π ] , (31)

where k = 0, 1, 2, 3, . . .. Therefore, the solution of (26) given
by the method of differential inclusions is the interval-valued
function

x(t) = [−x(t), x(t)] (32)

(see Fig. 7, continues lines).

Remark 4 What conclusion can be drawn from the above
calculations? The initial value of the given differential equa-
tion (26) is zero, and the right-hand side is periodic. Thus, it
is natural to expect the solution to be periodic too. However,
the solution given by the method of differential inclusions is
not periodic, as it expands with time. In contrast, our method
gives a periodic solution, in accordance with expectations.

To summarize, we can conclude the following. Although
the idea of our approach is close to that of differential inclu-
sions, there is a class of problems for which our method
provides more adequate solutions.
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5.2 Comparison with generalized derivative

In this subsection, we compare our method with the method
of the generalized derivative. For this purpose, we use Exam-
ple 2. For clarity, we consider subproblem (22)–(23), where
only the initial values are intervals. The solution of (22)–(23)
given by our method is depicted in Fig. 3.

Below, we solve (22)–(23) using the generalized deriva-
tive. We consider x(t) and y(t) to be intervals. To emphasize
that they are sets, we rename them X (t) and Y (t), respec-
tively. Therefore, we must solve the following interval IVP:

X ′(t) = 3X (t) − Y (t)
Y ′(t) = 4X (t) − 2Y (t)
X (0) = [−0.25, 0.25]
Y (0) = [−1, 1]

(33)

Let the solution of (33) be X (t) = [
x(t), x(t)

]
and

Y (t) =
[
y(t), y(t)

]
. As the initial values are symmetric

with respect to 0, the solution is also symmetric. Then,
X (t) = [−u(t), u(t)] and Y (t) = [−z(t), z(t)], where
u(t) = x(t) and z(t) = y(t).

To follow the calculations below, note that
−Y (t) ≡ (−1)Y (t) = [−z(t), − (−z(t))] = [−z(t), z(t)]
and (−2)Y (t) = [−2z(t), 2z(t)].

The interval-valued function X (t) can have two general-
ized derivatives (of type 1 or 2). The same is true for Y (t).
Therefore, to solve (33), we have to examine four cases.

First, we examine the case where X (t) and Y (t) both have
generalized derivatives of type 1. We call this the (1, 1)-
derivative case. In this case, X ′(t) = [−u′(t), u′(t)

]
and

Y ′(t) = [−z′(t), z′(t)
]
. From (33), for u and z, we have the

following IVP:

u′ = 3u + z

z′ = 4u + 2z

u(0) = 0.25

z(0) = 1

Therefore,

u (t) = 0.397853e
5+√

17
2 t − 0.147853e

5−√
17

2 t

z (t) = 0.621268e
5+√

17
2 t + 0.378732e

5−√
17

2 t

It can be seen (see Fig. 8) that X (t) = [−u(t), u(t)] and
Y (t) = [−z(t), z(t)] determine a valid solution for (33) on
the entire interval [0, ∞).

Second, we consider the case where X (t) and Y (t) have
generalized derivatives of types 1 and 2, respectively. In this
(1, 2)-derivative case, X ′(t) = [−u′(t), u′(t)

]
and Y ′(t) =[

z′(t), −z′(t)
]
. Then, from ( 33), we have:

Fig. 8 (1, 1)-solution for IVP (33)

u′ = 3u + z

z′ = −4u − 2z

u(0) = 0.25

z(0) = 1

Hence,

u (t) = 2

3
e2t − 5

12
e−t

z (t) = 5

3
e−t − 2

3
e2t

The solution (X (t), Y (t)) is depicted in Fig. 9. Let us
focus on X (t) = [−z(t), z(t)]. Since z′ (t)
= −

(
5
3e

−t + 4
3e

2t
)

< − 4
3e

2t < −1 (for t > 0), the upper

solution (z(t)) decreases at speedmore than 1. In contrary, the
lower solution (−z(t)) increases at speedmore than 1. There-
fore, the upper and lower solutions intersect at some point
t = t∗. (For t > t∗, the values of z (t) become negative and,
consequently, X (t) = [−z(t), z(t)] becomes an improper
interval). Consequently, the (1, 2)-solution (X (t), Y (t)) is
valid only on [0, t∗] ≈ [0, 0.305431].
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Fig. 9 (1, 2)-solution for IVP ( 33)

In the case of the (2, 1)-derivative, where X ′(t) =[
u′(t), −u′(t)

]
and Y ′(t) = [−z′(t), z′(t)

]
, we have:

u′ = −3u − z

z′ = 4u + 2z

u(0) = 0.25

z(0) = 1

From this, we obtain:

u (t) = 2

3
e−2t − 5

12
et

z (t) = 5

3
et − 2

3
e−2t

The solution (X (t), Y (t)) (see Fig. 10) is valid on [0, t∗] ≈
[0, 0.156668].

In the case of the (2, 2)-derivative, where X ′(t) =[
u′(t), −u′(t)

]
and Y ′(t) = [

z′(t), −z′(t)
]
, from (33), we

have:

u′ = −3u − z

z′ = −4u − 2z

Fig. 10 (2, 1)-solution for IVP ( 33)

u(0) = 0.25

z(0) = 1

Therefore,

u (t) = 0.397853e− 5+√
17

2 t − 0.147853e− 5−√
17

2 t

z (t) = 0.621268e− 5+√
17

2 t + 0.378732e− 5−√
17

2 t

The solution (X (t), Y (t)) (see Fig. 11) is valid on [0, t∗] ≈
[0, 0.240077].

Remark 5 Let us comment on the results of the above calcu-
lations.

1) On the interval [0, t∗] ≈ [0, 0.156668], there are
four solutions under generalized derivative. In the n-
dimensional case, the number of solutions may be up
to 2n . How can we build a final solution from these 2n

solutions? This question has not been answered in the
existing literature.

2) The (1, 1)-solution is the only one that is valid on the
entire time interval [0,∞). Consequently, it is the only
one that can be compared with our solution.
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Fig. 11 (2, 2)-solution for IVP ( 33)
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Fig. 12 Values of (1, 1)-solution for IVP ( 33) at t = 0, t = 0.25, and
t = 0.5 (from left to right)

In the coordinate plane, the value of the (1, 1)-solution
at t = 0.5 forms the rectangle R = X (0.5) ×
Y (0.5) = [−u(0.5), u(0.5)] × [−z(0.5), z(0.5)] ≈
[−3.70861, 3.70861] × [−6.55022, 6.55022] (see Fig.
12). The value of the solution obtained by our method is
in the form of a parallelogram (see Fig. 3). This paral-
lelogram P is much smaller than the rectangle R and
is completely contained within R. Consequently, our
method evaluates the uncertainty more precisely.

3) The generalized derivative only allows the uncertainty at
time t to be evaluated as a rectangle (see Fig. 12). In con-
trast, our method provides a wider range of evaluations
(rectangles, parallelograms, hexagons, and octagons)
(see Figs. 3, 4, 5).

The above comparison of the proposed method with the
generalized derivative and differential inclusions techniques
can be summarized as follows.

1) The proposed method allows the uncertainty to be eval-
uated more meticulously than with the other methods.

2) Under the proposed approach, the solution exists and is
unique.

3) The proposed method is easy to implement. The set-
valued solution is calculated on the basis of the knowl-
edge of the real calculus.

Therefore, the proposed method is more effective for the
class of systems of differential equations.
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