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Abstract In this work, a comparative study of different
meta-heuristic techniques in the adaptive control for the
speed regulation of the DC motor with parameters uncer-
tainties is presented. The adaptive control is established as
the online solution of a constrained dynamic optimization
problem. Several adaptive strategies based on Differential
Evolution, Particle Swarm Optimization, Bat Algorithm,
FireflyAlgorithm,Wolf SearchAlgorithmandGeneticAlgo-
rithm are proposed in order to online tune the parameters of
the DCmotor control. Simulation results show that proposed
adaptive control strategies are a viable alternative to regulate
the speed of the motor subject to different operation sce-
narios. The statistical analysis given in this work shows the
features and the differences among strategies, their feasibility
to set them up experimentally and also a new hybrid strat-
egy to efficiently solve the problem. In addition, comparative
analysis with a robust control approach reveal the advantages
of the adaptive strategy based on meta-heuristic techniques
in the velocity regulation of the DC motor.
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1 Introduction

The DC motors are base elements in almost any engineer-
ing application that requires movement. These elements are
presented in vehicles (Bitar et al. 2015), in robotic manip-
ulators (Li et al. 2013) and in many industrial tools. The
use of DC motors has several advantages, some of them
are: their operation simplicity by varying their input voltage,
their relatively low cost and the great diversity of designs
that can fit to any prototype. Almost all applications that use
DC motors require an accurate operation (Yang and Chou
2009) and sometimes, an efficient operation in terms of ener-
getic consumption (Raslavičius et al. 2017). Nevertheless,
one of the main problems faced by engineers is the presence
of parametric uncertainties. Parametric uncertainties are due
to several causes such as a variational operating environment,
the presence of noise and thewear of the plant after a long and
continuous use. Parametric uncertainties may be variations
in DC motor parameters, noise in the input/output signal,
etc., usually unpredictable and responsible of inaccuracy in
the control system. In Mao et al. (2003), for example, the
friction induced by a DC motor had a negative effect in the
positioning accuracy of an aero-static slider.

Over time, many efforts in search for a solution to this
problem have been made. One way to handle the effect of
parametric uncertainties when their behavior is well known
(deterministic parametric uncertainties), is by designing an
optimal control system or by a correct off-line adjusting of its
parameters (Hashem Zadeh et al. 2016). However, this kind
of solutions is not so efficient when there are no confidence
about the behavior of the uncertainties.

An approach that deal with a set of bounded uncertainties
(Liu and Yao 2016) is the robust control approach where the
information about the differences between the actual system
and the systemmodel (model uncertainty) are used todesign a
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controller. Till the date, many robust control algorithms have
been developed for the speed regulation task of a DC motor
(Song and Jia 2016; Kim et al. 1997; Linares-Flores et al.
2012; Orozco et al. 2012). Despite the high performance of
robust controllers under unknown disturbances, themain dis-
advantage of this approach lies in the assumption of bounded
uncertainties behavior.

Anotherway to handle parametric uncertainties is by using
the adaptive control approach. Adaptive control refers to esti-
mate the plant parameters online using the feedback of the
system (Landau et al. 2011). Then, estimated parameters are
used in calculating the control signal that allows a desired
system operation. Unlike robust control approach, adaptive
control is not limited by or does not need information about
the uncertainties bounds.

Nowadays, there are many approaches from the adaptive
control theory. In nonlinear control, several adaptive control
laws have been designed and are based on the system model
(Slotine and Li 1991) and some controller tuning techniques
have been developed to improve the effectiveness in control
systems subject to uncertainties (Yavuz et al. 2012). In Kwan
et al. (1996), an adaptive control lawwas developed to control
the speed of a motor with parameter variations.

Another approach to adaptive control is based on the
use of artificial intelligence (AI) techniques for online tun-
ing of linear controllers. In Ahn and Truong (2009), a set
of fuzzy rules was used to tune the gains of a PID con-
troller online. The resulting controller was used in force
control of an electro-hydraulic system. In Le et al. (2013),
a neural network was used to obtain the gains of a con-
troller online for the control of a parallel robot manipulator
of two degrees of freedom. The AI approach has shown
to be effective in handling parametric uncertainties; nev-
ertheless, a disadvantage of the used AI techniques is the
required system information from the earlier to be adjusted
and trained off-line; in other words, they need a collection
of information previously acquired, about inputs and out-
puts of the system to be controlled, under different operation
scenarios.

With the goal of finding the controller parameters that
improve the accuracy of the controlled system operation,
researches have been chosen a different control approach
based on the formulation of an optimization problem, which
requires optimization techniques to be solved (Dasgupta and
McGregor 1992; Mori and Kita 2000). There are many com-
putational methods to solve optimization problems, among
them there are the bio-inspired meta-heuristic techniques
which base their operation in natural processes. This kind
of techniques has taken on great importance in the scien-
tific community, because of their ability to find appropriate
solutions with reasonable computation cost in highly nonlin-
ear optimization problems (Reeves and Sons 1993), which
are commonly presented in the real-world problems (Xu

et al. 2016). Another important feature of these techniques
is that several mechanisms can be added in order to han-
dle constraints presented in almost any real-world problem
(Mezura-Montes and Coello 2011). An application of this
kind of techniques in control area is shown in Fister et al.
(2016), where the parameters of a PID controller are tuned
off-line to control a SCARA robot by using different meta-
heuristic techniques. After a comparative analysis among
techniques, Particle Swarm Optimization (PSO) proved to
be the best alternative to solve this particular problem. In
Villarreal-Cervantes and Alvarez-Gallegos (2016), several
variants of the Differential Evolution algorithm were used
to obtain the optimal gains of a PID controller off-line.
The tuned PID parameters were used in the control of a
experimental parallel robot prototype in order to validate the
proposed tuningmethod.Oneway to obtain the optimal gains
of a controller, when the model of the system is unknown, is
presented inMishra et al. (2015). In thatwork, the parameters
of the PI controller to control a valve were obtained off-line
by using current system data which is handled by Differen-
tial Evolution. The obtained parameters were set in the real
controller, and they remained fixed through the execution
time. Nevertheless, one of the main issues in the bio-inspired
meta-heuristic techniques is that they does not guarantee the
optimality condition, such that, they require a comparative
analysis to find the most suitable bio-inspired meta-heuristic
technique for solving a particular problem.

In adaptive control, meta-heuristic techniques are used to
find appropriate controller parameters online. In Lin et al.
(2004), the parameters of a PID controller were adjusted
online by using aGenetic Algorithm. The obtained controller
was able to minimize the position error of a linear induc-
tion motor. The above work shows the performance of the
parameter adjusting strategy based in a single meta-heuristic
technique, but there are no evidence of the behavior of
different commonly used or novel techniques under the opti-
mization approach to adaptive the control parameter. When
the control problem to be solved requires a quick response,
one of the big problems that must be afford by the adaptive
control approach based on meta-heuristic techniques, is the
convergence time of the algorithms, which usually exceeds
the minimum time required to update the control signal.

The estimation of the controller parameters online through
the optimization approach and by using meta-heuristic tech-
niques may reduce the negative effect of the parametric
uncertainties. Nevertheless, a formal study which reveal the
performance of such strategies and the viability in uncertain
scenarios has not been carried out. Hence, in this work, the
optimization approach is used for the adaptive control of aDC
motor. The use of several adaptive control strategies based
ondifferentmeta-heuristic techniques is proposed to estimate
the control parameters online. The main goal of the proposed
controllers is to minimize the error in the speed regulation of
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themotor. All techniques are adjusted and implemented purs-
ing their real implementation feasibility, and the optimization
technique parameters are obtained by using the irace pack-
age in order to make a fair comparative analysis. Through a
statistical analysis from simulated results, the qualities and
differences among adaptive control strategies in different sce-
narios of DC motor uncertainties are shown in order to find
better alternatives for use under this approach.

The main contribution of this work is the presentation of
an adaptive control strategy based on meta-heuristic opti-
mization, which shows to be efficient in the compensation
of uncertainties presented in the DC motor and feasible in
terms of practical experimental setting up. Another contri-
bution lies in the statistical study of different meta-heuristic
techniques used in the control strategy, which aids to select
the most representative features that promote the searching
of better solutions in order to propose more efficient tech-
niques and also reveals their applicability in the problem of
speed regulation of the DC motor.

The rest of the paper is organized as follows: In Sect. 2,
the closed-loop system related with the DC motor dynamics
and control system is presented. The adaptive control strat-
egy based on an online constrained dynamic optimization
problem is stated in Sect. 3. In Sect. 4 the meta-heuristic
optimization techniques and the new hybrid proposal are
described. The comparative analysis is performed and dis-
cussed inSect. 5. Finally, inSect. 6 the conclusions are drawn.

2 DC motor dynamics and control system

The dynamic model of the DC motor is described by (1)
and its electro-mechanic diagram is shown in Fig. 1, with
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b0
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the current

and estimated vectors of DC motor parameters, respectively,
where θm , θ̇m , θ̈m are the angle, the angular velocity and
the angular acceleration of the shaft, respectively, ia is the
armature current, J0 is the rotor moment of inertia, km is the
torque constant, b0 is the viscous friction constant, τL is the

Fig. 1 Electro-mechanic diagram of the DC motor

load torque, Ra is the armature resistance, La is the armature
inductance, ke is the electromotive force constant and V is
the input voltage.

dθ̇m
dt

= p2ia − p1θ̇m − p6

dia
dt

= p5V − p4ia − p3θ̇m (1)

The dynamic model in (1) can be expressed as ẋ =
f (p, x (t) , u (t)), where the current state vector is proposed
as x = [x1, x2, x3]T = [

θm, θ̇m, ia
]T

and the control signal
u = V is given in (2).

u = 1

p̄2 p̄5
(v + p̄1 ( p̄2x3 − p̄1x2 − p̄6)) + p̄3

p̄5
x2 + p̄4

p̄5
x3

(2)

The controller shown in (2) is used to regulate the speed
of the DC motor, where v = kpe − kd ẋ2, kp and kd are the
proportional and derivative gains, e = ωr − x2, ωr is the
desired speed and ẋ2 = p2x3 − p1x2 − p6.

3 Adaptive control strategy based on online
optimization approach

The adaptive control strategy proposed in this work is shown
in Fig. 2. The aim of this control strategy is to reduce the
error in the speed regulation task of the DC motor under
parametric uncertainties by obtaining the control parameters
based on the motor output.

The control parameters that are obtained in this approach
are those related to the estimation of the motor output.

It is important to mention that the online optimization
method for the control tuning, requires solving a constrained
dynamic optimization problem (CDOP) at each integration

Desired speed
ωr

u = f(x, p̄)

DC Motor
ẋ = f(p, x, u)

Estimated Motor
˙̄x = f(p̄, x̄, u)

minp̄∈R6
3
k=1[ (xk(t) − x̄k(t))2dt]

subject to : ˙̄x = f(p̄, x̄, u, t)
g(p̄, x̄) ≤ 0

∀t ∈ [topt w, topt]

Optimizer

+
−

x

x̄

p̄∗

p̄∗

Fig. 2 Proposed control strategy
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time �t , in order to give the optimum parameters to the con-
trol signal.

The estimation of the motor output to find the control
parameters in the CDOP requires an estimated DC motor
model with an estimated state vector x̄ . Hence, the aim of
the optimization problem is to find the vector of estimated
parameters of theDCmotorwhichminimizes the value of the
objective function given in (3). The function in (3) equitably
weights the error among each of the actual and estimated
state variables in the time interval � ∈ [topt − �w, topt], in
which topt is the time instant when the optimization process
is performed and �w is the time interval in which the past
states of the motor and of the dynamic model are used in the
error calculation.

min p̄∈R6 J =
3∑

k=1

[ ∫

t∈�

(xk(t) − x̄k(t))
2 dt

]
(3)

Additionally, the optimization problem is constrained by
the dynamic of the current DC motor in (4) and of the esti-
mated model in (5), by the initial conditions of the state
variables in (6) and by the maximum and minimum bounds
of the control signal in (7).

ẋ = f (p, x, u, t) (4)
˙̄x = f ( p̄, x̄, u, t) (5)

x̄(topt − �w) = x(topt − �w), x(0) = x0 (6)

umin ≤ u(topt) ≤ umax (7)

4 Meta-heuristic optimizers

In this study, six different meta-heuristic techniques reported
in the literature are used to find a solution to the optimization
problem stated above and are detailed next. In addition, one
hybrid meta-heuristic technique is proposed to enhance the
capabilities in searching reliable solutions.

4.1 Differential Evolution

Differential Evolution (DE) bases its operation in the pro-
cess of natural evolution (Price et al. 2005). Algorithm 1
shows the rand/1/bin variant of DE. In this variant an ini-
tial population with NP individuals is generated randomly
in the search space. During Gmax generations, the individ-
uals in the population can mutate using (8) which F is
the mutation rate randomly selected per generation in range
[Fmin, Fmax]. Also, three randomly selected individuals are
recombined using (9) where CR is the crossover rate and
r1 �= r2 �= r3 �= i are the random indexes of the parents. For
a new generation, the individuals are selected according to

(10). In the last generation, the best individuals will be found
in population.

Algorithm 1 Differential Evolution
1: G = 0
2: Generate initial population X0 with N P individuals
3: Evaluate X0
4: while G < Gmax do
5: for each xi ∈ XG do
6: Generate a mutant individual vi (see (8))
7: Generate a child individual ui (see (9))
8: end for
9: Select individuals for G+1 (see (10))
10: G = G + 1
11: end while

vi = xr1 + F(xr2 − xr3) (8)

ui, j =
{

vi, j if rnd(0, 1) ≤ CR
xGi, j otherwise

(9)

xi =
{
ui if f (ui ) < f (xi )
xi otherwise

(10)

4.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) emulates the collabora-
tive behavior of many species in search of food (Kennedy
and Eberhart 1995). Algorithm 2 shows the basic operation
of PSO where NP members of a particle swarm are initially
distributed in the search space. During Gmax generations,
particles modify their velocity using (12) where C1 and C2

are factors that weight the knowledge of the best known posi-
tion by a particle and by the swarm, and ω is a factor which
reduce the velocity of all particles (Shi and Eberhart 1998)
obtained with (11) within the range [Vmin, Vmax]. Using its
velocity, each particle modify its position using (13) and at
the end of the cycle, the particles will be in the best places.

Algorithm 2 Particle Swarm Optimization
1: G = 0
2: Generate initial swarm X0 with N P particles
3: Evaluate X0
4: For each particle xi initialize its best known position xbesti = xi
5: Initialize the best known position of the swarm xbestswarm
6: Initialize the velocity of each particle ẋi
7: while G ≤ Gmax do
8: Update the velocity factor w (see (11))
9: for each xi ∈ XG do
10: Update its velocity ẋi (see (12))
11: Update its position xi (see (13))
12: Update its best known position xbesti = xi
13: end for
14: Update the best known position of the swarm xbestswarm
15: G = G + 1
16: end while
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ω = Vmax − G

Gmax
(Vmax − Vmin) (11)

ẋi = ωẋi + rnd(0, 1) · C1
(
xbesti − xi

)
+rnd(0, 1) · C2

(
xbestswarm − xi

) (12)

xi = xi + ẋi (13)

4.3 Bat Algorithm

Bat Algorithm (BAT) is based on the behavior of a group of
bats in search of prey by echolocation (Yang 2010). Algo-
rithm 3 shows the behavior of BAT where a group of NP bats
is distributed in the search space. During Gmax generations,
each bat uses a fixed amplitude of its echolocation signal
by adjusting the frequency Qi in the range [ fmin, fmax] as
in (14). Qi is used to drive the search of a bat to the best
position using (15) and (16). Depending on its pulse rate ri ,
each bat can make a random search around the best posi-
tion using (17). Each bat can fly randomly as shown in (18)
with Ā the average loudness of bats. If the new position of
the bat improves its conditions, the bat reduces its loudness
Ai and increases its pulse rate ri using (19) and (20) with
α, γ ∈ [0, 1] and r0 the maximum frequency. At the end
generation, the bats will be near their prey.

Algorithm 3 Bat Algorithm
1: G = 0
2: Generate initial population X0 with N P bats
3: Evaluate X0
4: Initialize the best known position of the population xbestswarm
5: Initialize the velocity of each bat ẋi
6: while G ≤ Gmax do
7: for each xi ∈ XG do
8: Update its pulse frequency fi (see (14))
9: Update its velocity ẋi (see (15))
10: Update its position xi (see (16))
11: Fly close to xbestswarm (see (17))
12: Fly randomly (see (18))
13: end for
14: Update the best known position of the population xbestswarm
15: G = G + 1
16: end while

fi = fmin + rnd(0, 1) · ( fmax − fmin) (14)

ẋi = ẋi + fi
(
xi − xbestswarm

)
(15)

xi = xi + ẋi (16)

xi =
{
xbestswarm + rnd(0, 1) · Ai if rnd(0, 1) > ri
xi otherwise

(17)

xi =
{
xnew = xi + rnd(0, 1) · Ā if f (xnew) < f (xi )
xi otherwise

(18)

Ai = αAi (19)

ri = r0 (1 − exp (−γG)) (20)

4.4 Firefly Algorithm

Firefly Algorithm (Yang 2009) bases its operation on the
behavior of fireflies in matchmaking. Algorithm 4 shows the
operation of FFA. FFA uses a population of NP fireflies dis-
tributed in the search space. During Gmax generations, each
firefly can move toward the fireflies with greater lumines-
cence (based on the value of the objective function) using
(22), (23) and (24) where r is the Euclidean distance between
the positions of a pair of fireflies, γ is an absorption coef-
ficient, βmin ∈ [0, 1] is the minimum value of β, and α is
a step size. The step size is reduced in each generations as
shown in (21) with w ∈ [0, 1]. At the end of the algorithm,
the fireflies will have the higher luminescence.

Algorithm 4 Firefly Algorithm
1: G = 0
2: Generate initial population X0 with N P fireflies
3: while G ≤ Gmax do
4: Evaluate XG
5: Sort XG ascending based on the luminescence of the fireflies

(value of the objective function)
6: for each xi ∈ XG do
7: for each x j ∈ XG do
8: Move xi towards x j (see (23) and (24))
9: end for
10: end for
11: G = G + 1
12: end while

α = wα (21)

β = (1 − βmin) exp
(
−γ r2

)
(22)

xnew = xi + β
(
x j − xi

) + α

(
rnd(0, 1) − 1

2

)
(23)

xi =
{
xnew if f (x j ) < f (xi )
xi otherwise

(24)

4.5 Wolf Search Algorithm

Wolf Search Algorithm (WSA) is based on the behavior of
groups of wolves in search of food (Tang et al. 2012). Algo-
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rithm 5 shows the operation of WSA where a group of NP
wolves are distributed in the search space. During Gmax gen-
erations, each wolf can move within its radius of visibility
using (25) and (30) where v is the range of visibility and α

is the speed factor of the wolves. Each wolf looks for the
best near partner within its radius of visibility according to
(26), if there is any, the wolf moves toward it using (27) and
(30) with r the Euclidean distance. If there is no partner, the
wolf moves again randomly. If a wolf feels threatened, it can
escape to a new position in a wider radius using (28) and (29)
where s is the step size for escape and pa is the probability
of not finding threat. At the end of the algorithm, the wolves
will be near the food.

Algorithm 5 Wolf Search Algorithm
1: G = 0
2: Generate initial population X0 with N P wolves
3: Evaluate X0
4: while G ≤ Gmax do
5: for each xi ∈ XG do
6: Look for food (see (25) and (30))
7: for each x j ∈ XG do
8: Look for the best near partner (see (26))
9: end for
10: if xbest �= xi then
11: Move toward xbest (see (27) and (30))
12: else
13: Look for food (see (25) and (30))
14: end if
15: Escape (see (28) and (29))
16: end for
17: G = G + 1
18: end while

xnew = xi + rnd(−1, 1) · αv (25)

xbest =
{
x j if f (x j ) < f (xi ) and dist

(
xi , x j

) ≤ αv

xi otherwise

(26)

xnew = xi + e−r2 (xbest − xi ) + rnd(−1, 1) · αv (27)

xnew = xi + rnd(−1, 1) · sv (28)

xi =
{
xnew if rnd(0, 1) < Pa and f (xnew) < f (xi )
xi otherwise

(29)

xi =
{
xnew if f (xnew) < f (xi )
xi otherwise

(30)

4.6 Genetic Algorithm

Genetic Algorithms (GAs) are stochastic optimization tech-
niques whose operation is based in the processes of natural
selection and evolutionary genetics (Sivanandam and Deepa
2007). Algorithm 6 shows the working of a Genetic Algo-
rithm (GA) in which initially, a group of NP chromosomes
have different genotypic configurations codedwith real num-
bers. Along Gmax generations, NP pairs of parents are
selected by tournament as shown inAlgorithm 7, where TS is
the number of contestants. Each pair of parents is combined
to generate a child chromosome using a heuristic crossover
method (Michalewicz et al. 1994) according with (31) and
(32),whereCR is the crossover rate.A child chromosomecan
mutate by using a non-uniform mutation operation (NUM)
(Michalewicz 1995) shown in (33), (34) and (35), where F
is the mutation rate and b = 1 is a factor that controls the
non-uniformity of the mutation. At the end of the algorithm,
the chromosomes will have better qualities.

Algorithm 6 Genetic Algorithm
1: G = 0
2: Generate initial population X0 con N P chromosomes
3: Evaluate X0
4: while G < Gmax do
5: for each xi ∈ XG do
6: Select two parents x j and xk by tournament (see Algorithm

7))
7: Generate child ui (see (31) and (32))
8: Genera mutant vi (see (33) and (34))
9: end for
10: Replace parents with mutants
11: G = G + 1
12: end while

Algorithm 7 Selection by tournament for GA.
1: function Selection()
2: rand = random(1, N P)

3: xbest = xrand
4: t = 0
5: while t < T S do
6: rand = rnd(1, N P)

7: if f (xrand ) < f (xbest ) then
8: xbest = xrand
9: end if
10: t = t + 1
11: end while
12: return xbest
13: end function

ui =
{
xchild if rnd(0, 1) ≤ CR
x j |xk otherwise

(31)
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xchild =
{
rnd(0, 1) · (

x j − xk
) + x j if f (x j ) < f (xk)

rnd(0, 1) · (
xk − x j

) + xk otherwise

(32)

vi =
{
xmut if rnd(0, 1) ≤ F
ui otherwise

(33)

xmut,j =
{
ui, j + � (

G,Uj − ui, j
)

if rnd(0, 1) < 0.5
ui, j − � (

G, ui, j − L j
)

otherwise

(34)

� (G, y) = y

(
1 − rnd(0, 1)

(
1− G

Gmax

)b)
(35)

4.7 Proposed hybridization

According to the statistical study presented later in this paper,
a hybridization of the most promising meta-heuristic tech-
niques is proposed in order to enhance their capabilities
in searching reliable solutions. The hybridization consists
in including to the PSO a change in the velocity formula
related to the essence of the DE. This modifications consider
a different topology with a binomial crossover operation and
the inclusion of a selection mechanism into the position and
velocity of the particle.

The general operation of the PSO/DE hybridization is
observed in Algorithm 8. In this proposal, NP particles of
a swarm are initially distributed in the search space. During
Gmax generations, particles estimate the future velocity. The
topology of the velocity equation is given in (36) where the
main difference is the inclusion of two random selected parti-
cles or nodes into the graph denoted by indexes r1 �= r2 �= i .
The terms C1 and C2 are factors that weight the knowledge
of the best known position by a particle and by the swarm,
C3 weight the position of two randomly selected particles.

vi = ωẋi + rnd(0, 1) · C1
(
xbesti − xi

)
+ rnd(0, 1) · C2

(
xbestswarm − xi

)
+ rnd(0, 1) · C3

(
xr1 − xr2

) (36)

The future velocity is estimated through a binomial
crossover process where exchanges some components of
the velocity equation between (36) and ωẋi . This process
is expressed in (37), where CR is the probability of chang-
ing the current velocity and ω is a factor which reduce the
velocity of all particles obtained with (11) within the range
[Vmin, Vmax].

ẋnexti, j =
{

ωvi, j if rnd(0, 1) ≤ CR
ωẋi, j otherwise

(37)

The future position is estimated according to (38).

xnexti = xi + ẋnexti (38)

After estimating its velocity and position, the elitist selec-
tion mechanism decides if the updated velocity and position
of the i − th particle (ẋnexti and xnexti ) or the previous cal-
culated one (ẋi and xi ) pass to the next generation, i.e., it
decides if it is better to move to the next states or wait in the
same state for the next generation. This mechanism is rep-
resented in (39) and (40). Using the appropriate decisions,
each particle will be in the best position at the end of the
cycle.

xi =
{
xnexti if f (xnexti ) < f (xi )
xi otherwise

(39)

ẋi =
{
ẋnexti if f (xnexti ) < f (xi )
ẋi otherwise

(40)

Algorithm 8 PSO/DE hybridization
1: G = 0
2: Generate initial swarm X0 with N P particles
3: Evaluate X0
4: For each particle xi initialize its best known position xbesti = xi
5: Initialize the best known position of the swarm xbestswarm
6: Initialize the velocity of each particle ẋi
7: while G ≤ Gmax do
8: Update the velocity factor w (see (11))
9: for each xi ∈ XG do
10: Estimate its possible future velocity ẋnexti (see (36) and (37))
11: Estimate its possible future position xnexti (see (38))
12: Decide where to move (see (39) and (40))
13: Update its best known position xbesti = xi
14: end for
15: Update the best known position of the swarm xbestswarm
16: G = G + 1
17: end while

4.8 Constraint handling

Tohandle the constraints of the optimization problem, the cri-
terion of Deb was used in each algorithm to decide whether
one solution is better than another (Deb 2000). Addition-
ally to the criterion of Deb shown in the first three points of
the following list, the fourth point is included to handle two
solutions whose features do not allow to distinguish if one is
better than other:

– Any feasible is preferred to any infeasible solution.
– Among two feasible solutions, the one having better
objective function value is preferred.

– Among two infeasible solutions, the one having smaller
constraint violation is preferred.
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Table 1 Algorithm parameters
(obtained with irace)

Algorithm Parameters

DE NP = 25, CR = 0.92, Fmin = 0.29, Fmax = 0.89

PSO NP = 25, C1 = 0.5, C2 = 0.4, Vmin = −1.0, Vmax = 0.66

BAT NP = 25, A0 = 0.85, r0 = 0.12, fmin = 0.0, fmax = 1.51

FFA NP = 25, α = 0.86, βmin = 0.77, γ = 0.15

WSA NP = 25, α = 0.19, Pa = 0.68, s = 4.9, v = 1.0

GA NP = 25, CR = 0.2, F = 0.25 TS = 15

PSO/DE NP = 25, C1 = 1.1, C2 = 0.62, C3 = 0.99, Vmin = 0.06, Vmax = 0.1, CR = 0.39

– Among two infeasible solutions with the same constraint
violation, one of them is preferred randomly with same
probability.

5 Results

5.1 Experiment design

In this work, three experiments were made based on dif-
ferent kind of parametric uncertainties in the DC motor.
In each experiment, the efficacy of the strategies AC-DE,
AC-PSO, AC-BAT, AC-FFA, AC-WSA, AC-GA and AC-
PSO/DE (adaptive controllers based in DE, PSO, BAT, FFA
WSA, GA and PSO/DE, respectively) is proven.

The aim of each adaptive control strategy is regulating the
speed of aDCmotor toωr = 52.35 rad/swithin a timeperiod
of t ∈ [0, 3] s. The current motor has the following nominal
parameters: La = 102.44 × 10−3 H , Ra = 9.665 �, km =
0.3946 Nm, ke = 0.4133 v/rad, b0 = 5.85×10−4 Nms and
J0 = 3.45×10−4 Nms2. Additionally, a discontinuous load
is implemented, i.e., the use of a torque load τL = 0.05 Nm
when t ∈ [1, 2] s is proposed and a torque load τL = 0 Nm
is used otherwise. The gains of the controller in (2) are set
as kp = 2500 and kd = 100 and are obtained by trial and
error procedure. For each adaptive strategy, a sampling time
of �t = 5 ms is taken and the time interval �w = 50 ms
is proposed. For the time interval t ∈ [0,�w), a constant
control signal u = 20 V is used, whereas for t ≥ �w the
control signal in (2) is given. Furthermore, the bounds of the
control signal are set as −50 V ≤ u ≤ 50 V.

In the first experiment named as EX1, there are no
parametric uncertainties in the DC motor. For the second
experiment EX2, the DC motor parameters vary dynam-
ically 10% from their nominal parameters as: La(t) =
La + 0.1La sin(π t), Ra(t) = Ra + 0.1Ra sin(2π t/3),
km(t) = km + 0.1km sin(2π t), ke(t) = ke + 0.1ke sin(2π t),
b0(t) = b0 + 0.1b0 sin(π t), J0(t) = J0 + 0.1J0 sin(2π t/3).
In the last experiment EX3, the DC motor parameters vary
dynamically as in EX2 and in addition a random noise signal
is added to the vector of states for each sampling instant �t

Table 2 Bounds of design variables

Bound p̄1 p̄2 p̄3 p̄4 p̄5 p̄6

Upper 2 1200 5 100 10 150

Lower 0 0 0 0 0 −150

in order to simulate the noise in the sensor signals. The noise
signal has the following maximum values: ±0.01, ±0.1 and
±0.001 for the angular position x1, angular velocity x2 and
current x3, respectively.

In order to provide a fair comparison among the differ-
ent adaptive control strategies, the parameter tuning for each
algorithm was made by the irace package of the statisti-
cal analysis software R (López-Ibáñez et al. 2016), using
the conditions of the first experiment. Table 1 shows the
obtained parameters for each algorithm. The stop criterium
is the number of evaluation of the objective function. 1500
evaluations is set as the stop criterium in the adaptive control
strategy based on meta-heuristic algorithms. The lower and
upper bounds of the vector of design variables p̄ are shown
in Table 2.

All experiments were performed on a PC with a 3.2GHz
i5-6500 processor. The simulations were developed using
C++ programming language and were compiled using
Microsoft Visual C++.

5.2 Discussion

This section is divided into three discussion cases named as
the Case A, the Case B and the Case C. In the Case A, the
comparisons of the adaptive control strategies based on the
six different meta-heuristic techniques (AC-DE, AC-PSO,
AC-BAT, AC-FFA, AC-WSA and AC-GA) are detailed in
order to know the most reliable strategies to solve the speed
regulation problem of the DCmotor under parametric uncer-
tainties. Those comparisons are related with meta-heuristic
techniques reported in the literature. Then, in the Case B,
the proposed AC-PSO/DE is discussed and compared to the
six meta-heuristic techniques reported in the literature. For
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Table 3 Results of the regulation problem considering the experiment EX1, i.e., static DC motor parameters

Controller ‖e‖best ‖e‖worst ‖e‖ std(‖e‖) ‖u‖best ‖u‖worst ‖u‖ texec(s) texec/n(s)

AC-DE 7.8592 13.3111 9.7884 0.9069 555.7000 556.0960 555.6708 1.3204 0.0022

AC-PSO 9.3721 22.4361 14.7825 3.0443 556.0610 557.8100 556.4355 1.1589 0.0020

AC-BAT 51.4368 194.6410 74.9646 15.7524 568.1670 1138.1700 581.1571 2.1191 0.0036

AC-FFA 7.7906 18.7228 11.6178 2.3380 555.7100 556.9890 555.8016 4.0855 0.0069

AC-WSA 9.2605 253.5490 19.0906 28.5732 555.8710 1399.5600 578.4469 2.6772 0.0045

AC-GA 7.5284 194.6360 16.3826 21.7629 555.7310 1076.1900 565.2337 1.6688 0.0028

Table 4 Results of the regulation problem considering the experiment EX2, i.e., dynamic DC motor parameters

Controller ‖e‖best ‖e‖worst ‖e‖ std(‖e‖) ‖u‖best ‖u‖worst ‖u‖ texec(s) texec/n(s)

AC-DE 14.2482 21.3301 16.8103 1.3608 556.8310 556.2540 556.9652 1.3487 0.0023

AC-PSO 12.5794 21.2095 14.8619 1.8995 556.9260 559.2760 557.8749 1.1040 0.0019

AC-BAT 55.4770 125.9430 78.7608 13.8810 569.6160 831.3740 577.3526 2.2710 0.0039

AC-FFA 12.1161 19.5922 15.1051 1.5246 557.5290 556.9910 557.1327 3.9670 0.0067

AC-WSA 14.2502 1506.0500 36.8529 152.9521 557.8190 8101.6000 653.8842 2.6936 0.0046

AC-GA 13.0528 92.5447 17.9173 9.4084 557.5710 693.0750 560.1773 1.6606 0.0028

Table 5 Results of the regulation problem considering the experiment EX3, i.e., dynamic DC motor parameters and noise

Controller ‖e‖best ‖e‖worst ‖e‖ std(‖e‖) ‖u‖best ‖u‖worst ‖u‖ texec(s) texec/n(s)

AC-DE 14.8856 21.3003 16.7840 1.1851 556.9250 555.9230 556.9366 1.3131 0.0022

AC-PSO 11.8634 23.7810 14.9437 2.0950 557.0500 560.7820 557.6454 1.1438 0.0019

AC-BAT 58.1029 127.2550 80.4205 12.5628 569.0190 661.9910 573.1904 2.2557 0.0038

AC-FFA 12.3510 22.8277 15.6198 2.1701 557.7670 556.0330 557.1785 4.0406 0.0069

AC-WSA 14.0450 710.0560 25.6302 69.9167 557.4980 4866.6600 604.3889 2.8748 0.0049

AC-GA 13.5486 96.3305 18.6915 11.3825 557.7490 707.7740 560.5306 1.6776 0.0028

the Case C, comparisons with a robust control approach are
given.

5.2.1 Case A

For each experiment 100 different executions were per-
formed. Tables 3, 4 and 5 contain the results obtained from
the execution of each experiment using the different adap-
tive control strategies. In these tables, the standard deviation
of the error velocity std(‖e‖), the magnitude average for the
velocity error ‖e‖ and for the control signal ‖u‖ in the time
interval t ∈ [�w, 3]s from the 100 executions are shown.
The best (‖e‖best, ‖u‖best) and the worst (‖e‖worst, ‖u‖worst)
execution with respect to the magnitude of the velocity error
and the control signal are also included. In addition, themean
time to compute the simulation results in the time period
t ∈ [0, 3] s for 100 executions is displayed in texec, and also
the convergence time of the meta-heuristic strategies to find
a new control design parameter vector at each integration
time �t is given in texec/n, where n is the number of times

that the meta-heuristic strategies find a new control design
parameter vector in t ∈ [0, 3] s. Boldface is used to represent
the best results for each column. Figure 3 shows the motor
speed behavior and the control signal applied at each time
instant for the best run of each adaptive control strategies for
the experiments EX1, EX2 and EX3.

It is observed in Table 3 that AC-DE is the controller that
more effectively regulates the speed of the DC motor for
the experiment EX1 when there are no uncertainties. For
the experiment EX2 where the DC motor parameters are
dynamical, Table 4 shows that AC-PSO is more effective to
compensate uncertainties. In the last experiment EX3, where
additionally a noise signal is included into the system, Table 5
shows that AC-PSO is also the best controller. Figure 4 shows
more clearly the behavior of the speed regulation error for
the best execution of each controller. It can also be observed
that almost all adaptive control strategies have a good perfor-
mance in the DCmotor speed regulation.When a torque load
is introduced to the motor, the speed regulation error for all
controllers does not surpass ±5% of the desired speed with
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Fig. 3 Performance of adaptive controllers based on different meta-heuristic techniques in the speed regulation for the DC motor in experiments
EX1, EX2 and EX3
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Fig. 4 Error behavior of the adaptive controllers based on different meta-heuristic techniques in the speed regulation of DC motor, when t ≥ �w

for experiments EX1, EX2 and EX3. AC-DE, AC-FFA andAC-PSO show to be the best controllers for experiments EX1, EX2 and EX3, respectively

exception of AC-BAT, which sometimes surpasses ±10%.
When the torque load remains fixed or is null, the speed reg-
ulation error for all controllers with exception of AC-BAT do
not surpass ±2% of the desired speed.

In terms of the control signal average value (‖u‖), it can
be seen in Tables 3, 4 and 5 that all control strategies for
the three experiments EX1, EX2 and EX3 have a similar
energy consumption. Nevertheless, there can be noticed in
‖u‖worst that in some executions of the adaptive control
strategies, the consumption is more than twice the control
signal average value ‖u‖. This fact indicates that some exe-
cutions of the adaptive control strategies provide violations
in the maximum control signal constraint, which means that
those strategies are not viable to be implemented experimen-
tally. Based on the constraint violation of the control signal
from the 100 executions, the strategies that violated such con-

straints in the three experiments are AC-BAT, AC-WSA and
AC-GA.

Toensure that one controllerworks better than another, it is
necessary to check the statistical validity of the results using
a non-parametric test as in Derrac et al. (2011). Tables 6,
7 and 8 show the results of the Wilcoxon test to compare
all controllers by pairs. The winner between each pair of
strategies is shown in boldface. Wilcoxon test was applied
to the 100 ‖e‖ samples of the experiments EX1, EX2 and
EX3 for each controller. The statistical significance of the
test was set as 5%, and a two-sided alternative hypothesis
was selected. The two-sided hypothesis establishes that two
controllers have different distributions of ‖e‖. Additionally,
the rank sums R+ and R− expose the best algorithm of a pair
when the statistical significance denoted by p value does not
surpasses 5%. In Table 6, it can be observed that the distribu-
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Table 6 Results of Wilcoxon test for EX1

Wilcoxon test R− R+ p value

AC-DE versus AC-PSO 7 5043 <0.0001

AC-DE versus AC-BAT 0 5050 <0.0001

AC-DE versus AC-FFA 718 4332 <0.0001

AC-DE versus AC-WSA 28 5022 <0.0001

AC-DE versus AC-GA 596 4454 <0.0001

AC-PSO versus AC-BAT 0 5050 <0.0001

AC-PSO versus AC-FFA 4426 624 <0.0001

AC-PSO versus AC-WSA 2823 2227 0.1332

AC-PSO versus AC-GA 3721 1329 <0.0001

AC-BAT versus AC-FFA 5050 0 <0.0001

AC-BAT versus AC-WSA 4868 182 <0.0001

AC-BAT versus AC-GA 4949 101 <0.0001

AC-FFA versus AC-WSA 854 4196 <0.0001

AC-FFA versus AC-GA 1999 3051 0.1933

AC-WSA versus AC-GA 3387 1663 0.0002

tion of ‖e‖ for AC-DE controller is different to distributions
of the other controllers. In addition, the rank sums show that
the elements of the samples of AC-DE surpass to almost all
elements of the samples of the other controllers, so AC-DE
can be considered as the best controller for speed regula-
tion when there are no parametric uncertainties (experiment
EX1), followed by the AC-FFA and AC-GA controllers. For
Tables 7 and 8, which contain the results of Wilcoxon test
over the samples of ‖e‖ when there are uncertainties (exper-
iments EX2 and EX3), the AC-PSO and AC-FFA controllers
showed to be the best ones (based on the rank sums). Table 9
summarizes the number of wins of each controller for every
experiment based on the Wilcoxon test. The results indicate
that controllers can be ordered from best to worst based on
their performance as follows: AC-FFA, AC-PSO, AC-GA,
AC-DE, AC-WSA and AC-BAT.

One way to observe the variations of the speed error using
different adaptive control strategies is by paying attention
to the rank sums of the Wilcoxon test when a controller
is compared versus the worst one, which turned out to be
AC-BAT (according to Table 9). Based on the information
in Tables 6, 7 and 8, it is observed that in some compar-
isons versus AC-BAT, some strategies have a nonzero value
in rank sum. This indicates that some executions of the adap-
tive control strategies, the error vector norm ‖e‖ is worse
than the best execution of AC-BAT (see Tables 3, 4 and 5),
i.e., ‖e‖ ≥ 51.4368. The above means that AC-GA, AC-
WSA and AC-BAT present more variation in the speed error
than the other adaptive control strategies and it can also be
confirmed with the value of std(‖e‖) in Tables 3, 4 and 5.
The value of std(‖e‖) indicates what extent the speed error
remains without changing drastically, i.e., the variation with

Table 7 Results of Wilcoxon test for EX2

Wilcoxon test R− R+ p value

AC-DE versus AC-PSO 4434 616 <0.0001

AC-DE versus AC-BAT 0 5050 <0.0001

AC-DE versus AC-FFA 4511 539 <0.0001

AC-DE versus AC-WSA 1758 3292 0.1332

AC-DE versus AC-GA 2977 2073 0.0120

AC-PSO versus AC-BAT 0 5050 <0.0001

AC-PSO versus AC-FFA 2046 3004 0.0352

AC-PSO versus AC-WSA 459 4591 <0.0001

AC-PSO versus AC-GA 1087 3963 <0.0001

AC-BAT versus AC-FFA 5050 0 <0.0001

AC-BAT versus AC-WSA 4851 199 <0.0001

AC-BAT versus AC-GA 5049 1 <0.0001

AC-FFA versus AC-WSA 412 4638 <0.0001

AC-FFA versus AC-GA 1309 3741 0.0004

AC-WSA versus AC-GA 3390 1660 0.0009

Table 8 Results of Wilcoxon test for EX3

Wilcoxon test R− R+ p value

AC-DE versus AC-PSO 4381 669 <0.0001

AC-DE versus AC-BAT 0 5050 <0.0001

AC-DE versus AC-FFA 3842 1208 <0.0001

AC-DE versus AC-WSA 1635 3415 0.0120

AC-DE versus AC-GA 2897 2153 0.0210

AC-PSO versus AC-BAT 0 5050 <0.0001

AC-PSO versus AC-FFA 1763 3287 0.0569

AC-PSO versus AC-WSA 479 4571 <0.0001

AC-PSO versus AC-GA 923 4127 <0.0001

AC-BAT versus AC-FFA 5050 0 <0.0001

AC-BAT versus AC-WSA 4949 101 <0.0001

AC-BAT versus AC-GA 5045 5 <0.0001

AC-FFA versus AC-WSA 760 4290 <0.0001

AC-FFA versus AC-GA 1579 3471 0.0066

AC-WSA versus AC-GA 3380 1670 0.0009

respect to ‖e‖. Hence, using these criteria, AC-DE, AC-FFA
and AC-PSO strategies are more reliable while AC-GA, AC-
WSA and AC-BAT are not reliable.

The main objective in the dynamic optimization problem
into the adaptive strategies is to track the current state vector
x by the estimated state vector x̄ , and using such vector x̄ to
provide the adaptive control parameters at each time inter-
val. In Fig. 5 it is verified that the behavior of the current
state vector x and the estimated state vector x̄ for the AC-
FFA controller (which resulted to be the most invariant with
respect to the speed regulation error) is similar. In addition
in Fig. 6, the behavior of the adaptive control parameters p̄
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Table 9 Wins of each controller
according to Wilcoxon test

Experiment AC-DE AC-PSO AC-BAT AC-FFA AC-WSA AC-GA

EX1 5 1 0 3 1 3

EX2 1 5 0 4 1 3

EX3 2 4 0 4 1 3

Total 8 10 0 11 3 9
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Fig. 5 Behavior of estimated state vector x̄ of the DC motor for AC-FFA controller, when t ≥ �w for experiment EX3

is shown. This behavior is related with the operation of the
meta-heuristic techniques, which search into a wide space
for solutions that provide the major benefits for a particular
problem.

On the other hand, it is an important fact to know whether
the adaptive control strategies can be implemented in an
embedded system. Based on the column texec/n in Table 3,
4 and 5, only AC-FFA cannot be used in the experimental
implementation due to the convergence time of the algorithm
exceeds the sampling time �t = 5ms.

Given the statistical evidence in this work and the feasible
to be experimentally implementedwithout violate constraints
and with a computational time less than the sampling time,
the AC-PSO and AC-DE are the most viable strategies to
solve the speed regulation problem of the DC motor sub-
ject to parametric uncertainties. These strategies are the most
effective, trustworthy and feasible for experimentally imple-
mentation, because of their capacity to regulate the motor
speedwith a reasonable convergence timeof their algorithms.

5.2.2 Case B

The adaptive control strategy based on this PSO and DE
hybridization (AC-PSO/DE) was tested over 100 indepen-
dent runs under the same experiment conditions in EX1, EX2
and EX3.

The results of using AC-PSO/DE are shown in Table 10.
The boldface results in Table 10 indicate the outstanding
results with respect to the ones obtained from the other adap-
tive strategies presented in Tables 3, 4 and 5. In EX1, the
AC-PSO/DE alternative has an improvement in performance
with respect to AC-PSO. The AC-PSO/DE performance in
EX1 is also near to the one of AC-DE which turned out
to be the best alternative when there are no parametric
uncertainties. For EX2 and EX3, the AC-PSO/DE alterna-
tive significantly overcomes the others according to the ‖e‖
value and its behavior is more reliable if taking into account
the value of std(‖e‖).
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Fig. 6 Behavior of estimated parameters p̄ of the DC motor for AC-FFA controller, when t ≥ �w for experiment EX3. The solid line indicates
the behavior of p and dots are the values of p̄ for each instant �t

Table 10 Results of the regulation problem by using the AC-PSO/DE alternative

Experiment ‖e‖best ‖e‖worst ‖e‖ std(‖e‖) ‖u‖best ‖u‖worst ‖u‖ texec(s) texec/n(s)

EX1 9.5292 16.5754 12.0754 1.3076 555.3320 556.8170 555.9418 1.5613 0.0027

EX2 11.9610 21.4727 14.1146 1.2366 557.6340 562.3800 557.2886 1.5338 0.0026

EX3 11.3433 19.0645 13.8674 0.8415 558.1310 556.9860 557.2309 1.6255 0.0028

Fig. 7 Performance of adaptive controllers based on PSO/DE hybridization in the speed regulation for the DC motor in experiments EX1, EX2
and EX3
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Fig. 8 Error behavior of the adaptive controller based on PSO/DE
hybridization in the speed regulation of DC motor, when t ≥ �w for
experiments EX1, EX2 and EX3

Table 11 Results of Wilcoxon test for EX1 including the AC-PSO/DE
alternative

Wilcoxon test R− R+ p value

AC-DE versus AC-PSO/DE 132.5 4917.5 <0.0001

AC-PSO versus AC-PSO/DE 4392 658 <0.0001

AC-BAT versus AC-PSO/DE 5050 0 <0.0001

AC-FFA versus AC-PSO/DE 1919 3131 0.0209

AC-WSA versus AC-PSO/DE 3966 1084 0.0008

AC-GA versus AC-PSO/DE 2526 2524 0.6173

Table 12 Results of Wilcoxon test for EX2 including the AC-PSO/DE
alternative

Wilcoxon test R− R+ p value

AC-DE versus AC-PSO/DE 4957 93 <0.0001

AC-PSO versus AC-PSO/DE 3349 1701 0.0569

AC-BAT versus AC-PSO/DE 5050 0 <0.0001

AC-FFA versus AC-PSO/DE 3965 1355 <0.0001

AC-WSA versus AC-PSO/DE 5014 36 <0.0001

AC-GA versus AC-PSO/DE 4694 356 <0.0001

Table 13 Results of Wilcoxon test for EX3 including the AC-PSO/DE
alternative

Wilcoxon test R− R+ p value

AC-DE versus AC-PSO/DE 5049 1 <0.0001

AC-PSO versus AC-PSO/DE 3769 1281 0.0017

AC-BAT versus AC-PSO/DE 5050 0 <0.0001

AC-FFA versus AC-PSO/DE 4442 608 <0.0001

AC-WSA versus AC-PSO/DE 4997 53 <0.0001

AC-GA versus AC-PSO/DE 4871 179 <0.0001

The behavior of the best run of AC-PSO/DE can be
observed in Fig. 7 and its error in speed regulation is shown
in Fig. 8. It must be noticed that the error signals in Fig. 8 are
smoother than the error signals obtained by the other adaptive
controllers displayed in Fig. 4.

To ensure that the proposed AC-PSO/DE alternative has
the most promising behavior, the Wilcoxon test is also per-
formed among AC-PSO/DE and the other alternatives for
EX1, EX2 and EX3 again with a statistical significance of
5% and a two-sided alternative hypothesis. The results of the
Wilcoxon test are shown in Tables 11, 12 and 13. Table 14
summarizes the overall wins of each controller includingAC-
PSO/DE. The results indicate that proposing AC-PSO/DE
can improve the performance provided by the two best adap-
tive control alternatives presented in Sect. 5.2 (AC-PSO and
AC-DE) and also it is feasible to be experimentally imple-
mented due to the convergence time of the algorithm is less
than the sampling time.

5.2.3 Case C

Additionally to the behavioral study of the adaptive control
strategy based on different meta-heuristic techniques, it is
interesting to observe the differences of this approach when
compared with others such as the robust control.

For this, a generalized proportional integral observer
based robust controller (RC-GPI) that works for a widely
class of nonlinear systems (Sira-Ramirez et al. 2011) is
implemented to perform comparisons.

Table 15 shows the results of using the RC-GPI for the
experiments EX1, EX2 and EX3. The values of ‖e‖ and ‖u‖
are obtained in the time interval t ∈ [�w, 3]s for a fair com-
parison. As it can be noticed, the proposed adaptive control
strategy based on different meta-heuristic techniques over-
comes the performance of the GPI-RC when comparing the
‖e‖worst values in Tables 3, 4, 5 and 10 with the ‖e‖ values
of the GPI-RC in Table 15.

Figure 9 shows the behavior of the RC-GPI and Fig. 10
shows at close range of the speed regulation error. In Figs. 9
and 10, the convergence of the motor speed to the reference
signal is slower than the proposed adaptive control strategy.
It also can be noticed in Figs. 9 and 10 that the RC-GPI
present some difficulties when there are some noise in the
motor states (EX3) and then the error has some oscillations
proportional to the magnitude of the noise unlike the pro-
posal.
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Table 14 Wins of each
controller according to
Wilcoxon test including the
AC-PSO/DE alternative

Experiment AC-DE AC-PSO AC-BAT AC-FFA AC-WSA AC-GA AC-PSO/DE

EX1 6 1 0 4 1 3 3

EX2 1 5 0 4 1 3 5

EX3 2 4 0 4 1 3 6

Total 9 10 0 12 3 9 14

Table 15 Results of the regulation problem by using the RC-GPI
approach

Experiment ‖e‖ ‖u‖
EX1 87.3531 551.2878

EX2 89.4196 552.7130

EX3 89.4904 553.5853

6 Conclusion and future work

The studyof different optimizationmeta-heuristic techniques
in the adaptive control shows the qualities of each technique
in solving the problem of online parameter estimation of a
DC motor subject to parametric uncertainties. Among the
analyzed qualities are the accuracy in speed regulation, the
energy consumption, the invariability with respect to error
and the computational time required for each technique. The
simulation results show that AC-PSO and AC-DE are the
most promising adaptive strategies.

Based on the obtained statistical results, a hybridization
of the most promising meta-heuristic techniques is proposed
and used in the adaptive control strategy. This alterna-
tive named as AC-PSO/DE has a significant performance
improvement with respect to the most promising adaptive
strategies (AC-PSO and AC-DE) in the speed regulation of
the DC motor.

Theparameter setting of eachmeta-heuristic technique is a
crucial taskwhether it is intended to get appropriate solutions
of an online optimization problem. When tuning algorithms
for control tasks, it must attempted to maintain a balance
between their search ability and their convergence time, so
that they can obtain good solutions that fits the time con-

Fig. 10 Error behavior of the RC-GPI in the speed regulation of DC
motor, when t ≥ �w for experiments EX1, EX2 and EX3

straint of the control system. If these parameters are not set
correctly, the result could be an unpredictable behavior of the
algorithm, with slow or premature convergence, which ulti-
mately results in an untrustworthy behavior of the adaptive
control strategy. For the above reason, the parameter tuning
of each algorithm was carried out using iterative methods
provided by the irace package of R software.

With the information obtained in the present work, it was
observed a good estimation of the current state vectors, even
with differences between the current motor parameters and
the estimated ones. While it is true that the current motor
parameter values in the control system minimize the error,
there are also different control parameter settings that pro-
vide minimum values of the objective function. This way
of conceiving the optimization problem has the advantage
of not only compensate the uncertainties in the DC motor
parameters, but also uncertainties caused by external agents
such as noise signals.

Fig. 9 Performance of the RC-GPI in the speed regulation for the DC motor in experiments EX1, EX2 and EX3 with a zoom (right figure)
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Additionally, some comparisons with a robust control
approach are performed and reveal that the proposed adaptive
control strategy based in different meta-heuristic techniques
presents some advantages in the velocity regulation problem
under dynamic and discontinuous uncertainties.

As a future work, the adaptive control strategy based on
a multi-objective problem will be considered in order to
manage the trade-off between the error and the energy con-
sumption.
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