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Abstract The segmentation of digital images is one of the
most important steps in an image processing or computer
vision system. It helps to classify the pixels in different
regions according to their intensity level. Several segmen-
tation techniques have been proposed, and some of them
use complex operators. The techniques based on thresh-
olding are the easiest to implement; the problem is to
select correctly the best threshold that divides the pixels.
An interesting method to choose the best thresholds is the
minimum cross entropy (MCET), which provides excellent
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results for bi-level thresholding. Nevertheless, the exten-
sion of the segmentation problem into multiple thresholds
increases significantly the computational effort required to
find optimal threshold values. Each new threshold adds com-
plexity to the formulation of the problem.Classicmethods for
image thresholding perform extensive searches, while new
approaches take advantage of heuristics to reduce the search.
Evolutionary algorithms use heuristics to optimize criteria
over a finite number of iterations. The correct selection of
an evolutionary algorithm to minimize the MCET directly
impacts the performance of the method. Current approaches
take a large number of iterations to converge and a high rate
of MCET function evaluations. The electromagnetism-like
optimization (EMO) algorithm is an evolutionary technique
which emulates the attraction–repulsion mechanism among
charges for evolving the individuals of a population. Such
technique requires only a small number of evaluations to find
the optimum. This paper proposes the use of EMO to search
for optimal threshold values byminimizing the cross entropy
functionwhile reducing the amount of iterations and function
evaluations. The approach is tested on a set of benchmark
images to demonstrate that is able to improve the conver-
gence and velocity; additionally, it is compared with similar
state-of-the-art optimization approaches.

Keywords Image processing · Segmentation · Evolutionary
algorithms · Cross entropy · Electromagnetism optimization

1 Introduction

Many computer vision systems highly rely on the quality of
the input image to provide useful outputs. As a result, many
researches have been made on enhancing the input images
to avoid undesired features such as noise, visual artifacts
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and reducing redundancy on the information. Segmentation
is one of the most commonly used techniques to address
such issues; it separates the pixels of the image into different
classes based on the intensity level of each pixel. Segmenta-
tion has been used to extract features of digital images (Kong
et al. 2015), for object identification (Cao et al. 2014) and
surveillance (Bhandari et al. 2014). Thresholding is the eas-
iest and simplest method for image segmentation; it takes
the information of the histogram from the analyzed image
and determinates a threshold (th) value to separate the pix-
els in different regions. Two approaches are used to segment
an image using thresholding: bi-level thresholding (BT) and
multilevel thresholding (MT). BT requires a single value th
to generate two classes (e.g., foreground and background).
Likewise, MT uses a finite number of threshold values to
divide the image into more than two homogeneous classes
(Gonzalez and Woods 1992; Akay 2013).

Thresholding-based techniques are divided in parametric
and nonparametric (Otsu 1979; Kapur et al. 1985; Horng
2010; Olugbara et al. 2015). A parametric approach con-
siders that each class, or group of pixels in an image, can
be modeled using probability density functions and that the
mixture of those classes will represent all the pixels in the
image. In other words, the parametric methods approximate
the histogram of an image using different mechanisms and
assuming that it has a Gaussian distribution (Horng 2010).
On the other hand, nonparametric techniques use discrimina-
tive criteria to separate the pixels into homogenous regions
(Horng 2010). Such criteria aremetrics that verify the quality
of a th value and are also used as objective function since they
result as an attractive option due to their robustness and accu-
racy. Thresholding segmentation has also become popular
due to its simple concept. Contrary to clustering approaches,
thresholding only requires the number of thresholds to be set
a priori, whilemost classical cluster-based techniques forMT
also require the centroid of each class and extra information
to be correctly initialized (Olugbara et al. 2015).

On the literature, there are two classical nonparametric
methods for bi-level thresholding: the first one was proposed
by Otsu (1979) and maximizes the variance between classes.
The second one was proposed by Kapur et al. (1985), and
it proposes the maximization of entropy as a measure of the
homogeneity among classes. The two methods are exten-
sively used in image processing, and both of them have
proved to be efficient and accurate alternatives to segment
pixels into two classes (Sathya and Kayalvizhi 2011). Both
methods can be extended for multilevel thresholding; how-
ever, their computational complexity increases, while their
accuracy decreases with each new threshold added into the
searching process (Sathya and Kayalvizhi 2011; Agrawal
et al. 2013). The importance of thresholding techniques is
evidenced by the large amount of research made in recent

years (Bhandari et al. 2014; Liu et al. 2015; Khairuzzaman
and Chaudhury 2017).

The minimum cross entropy (MCET) was originally pro-
posed by Kullback (1968) and is also known as direct
divergence. The MCET is a distance metric between two
probabilistic distributions, proposed as an extension of the
maximum entropy principle. It has been used to select
correctly the best threshold, minimizing the cross entropy
between the original image and the segmented results (Li and
Lee 1993). An improved version of theMCETwas presented
by Yin (2007) which uses a recursive programming to reduce
the computational effort of computing the MCET for multi-
level thresholding. Different to the Otsu and Kapur methods,
the MCET produces a functional formulation whose accu-
racy does not depend on the number of threshold points
(Horng and Liou 2011). Although the MCET is an efficient
method and it gives excellent results for bi-level threshold-
ing, its performance is affected for multilevel thresholding.
The complexity increases with each threshold that is added,
generating both restrictions as well as multimodality in the
solutions, even for the recursive programming approach. The
problem in MCET is to find the appropriate threshold val-
ues without affecting the computational cost. In order to
overcome this problem, different evolutionary techniques are
applied as a searchmechanismusing as objective function the
MCET, generating interesting segmentation approaches that
have been reported in the related literature. For example, the
use of the popular particle swarm optimization (Kennedy and
Eberhart 1995) to minimize the MCET is proposed by Yin
(2007). Sarkar presented an algorithm based on differential
evolution (Sarkar et al. 2011). Horng presented two inter-
esting segmentation mechanisms, one of them based on the
Honey Bee Mating algorithm (Horng 2010) and the second
one uses the Firefly algorithm (FF) (Horng and Liou 2011).
All these approaches optimize the MCET objective function
despite of its highmultimodality characteristics. However, to
obtain the optimal values, they usually require a large number
of iterations and evaluations of the objective function, even
if they use the recursive programming techniques. Moreover,
their results are suboptimal because they have a lack of accu-
racy in the optimization process; for instance, the accuracy
of the FF depends directly on the control parameters (Yang
2014). Recently, MCET has proven to be an interesting tool
in important fields such as medical image processing by per-
forming brain image and tumor segmentation (Kaur et al.
2016; Oliva et al. 2017). However, the use of a high number
of iterations and evaluations to produce satisfying results is
still present.

The aim of this paper is to present the use of the
electromagnetism-like algorithm (EMO) formultilevel thresh-
olding to reduce the amount of iterations and function
evaluations. EMO is an evolutionary computation technique
that uses a population of charged particles to find the optimal
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solution. It was introduced byBirbil and Fang (2003) to solve
unconstrained optimization problems. The analogy of EMO
is the electromagnetism, in specific the attraction-repulsion
of charged particles within an electromagnetic field. Under
the EMO context, the particles are candidate solutions, and
they contain an amount of charge that depends on the objec-
tive function. Such particles have a position in the search
space and in each iteration they are moved to new position
considering the force exerted among them. Different to other
evolutionarymethods, EMOexhibits interesting search capa-
bilities such as fast convergence still keeping its ability to
avoid local minima in high modality environments (De Jong
1988; Dorigo et al. 1996; De Castro and Von Zuben 2002).
Recent works in this field (Birbil et al. 2004; Wu et al. 2004;
Rocha and Fernandes 2009a, b) demonstrate that the EMO
algorithm presents the best balance between optimization
results and demandof function evaluations.Considering such
features, EMO has been effectively employed to solve prob-
lems from different fields of engineering. Some examples of
the areas where EMO has been implemented are: flow-shop
scheduling (Naderi et al. 2010), communications (Hung and
Huang 2011), vehicle routing (Yurtkuran and Emel 2010),
array pattern optimization in circuits (Jhang and Lee 2009),
neural network training (Lee and Chang 2010), image pro-
cessing and control systems (Ghamisi et al. 2012). For that
reason, this technique is used to find the best threshold val-
ues, by minimizing the cross entropy. Such approach only
takes as input the histogram and the number of thresholds
to be found. In this sense, the size of the image does not
affect the quality and accuracy of the results and doesn’t
require any additional information or initialization about
the problem. As a result, the proposed algorithm substan-
tially reduces the number of function evaluations preserving
the excellent search capabilities of an evolutionary method.
The segmentation algorithm encodes as a particle the set of
candidate threshold points. The MCET objective function
evaluates the quality of the candidate particle. Guided by the
values of this objective function, the set of encoded candi-
date solutions are modified using the operators present on
EMO so that they can improve their segmentation quality as
the optimization process evolves. In comparison to similar
approaches, the proposed method deploys better segmenta-
tion results yet consuming less MCET function evaluations,
and it is reflected on the lesser computational effort.

The remainder sections of the paper is organized as fol-
lows. In Sect. 2, the standard EMO algorithm is presented.
Section 3 gives a simple description of the minimum cross
entropy method. Section 4 explains the implementation of
the proposed algorithm. Section 5 discusses experimental
results and comparisons after testing the proposal over a set
of benchmark images. Finally, in Sect. 6 the conclusions are
discussed.

2 Electromagnetism-Like Optimization Algorithm
(EMO)

Birbil and Fang proposed the EMO algorithm (Birbil and
Fang 2003), a population-based evolutionary method cre-
ated to solve unconstrained optimization problems. EMO is
able to converge fast to the optimal values avoiding the local
values that are commonly found in multimodal search spaces
(De Jong 1988; Dorigo et al. 1996; De Castro and Von Zuben
2002). Another important feature of EMO is a good balance
between optimization results and function evaluations (Birbil
et al. 2004; Wu et al. 2004; Rocha and Fernandes 2009a, b).
EMO has a population Spt = {

x1,t , x2,t , . . . , xN ,t
}
of N par-

ticles
(
xi,t

)
with an n−dimensional size (i = 1, 2, . . . , n).

The population is used to search for a feasible set X =
{x ∈ �n |li ≤ x ≤ ui } where t represents the iteration (or
generation) of the algorithm. Prior to the optimization pro-
cess, the population Spt is initialized being t = 1 taking
uniformly distributed samples from the search region X.
After the initialization of Spt , the EMO iterative process con-
tinues until a stopping condition (e.g., the maximum number
of iterations) is met. An iteration of EMO consists of two
main steps: in the first step, each particle in Spt moves to a
different location by using the attraction–repulsion mecha-
nism of the electromagnetism theory (Birbil et al. 2004). In
the second step, the particles moved by the electromagnetism
principle are further perturbed locally by a local search and
then become members of Spt+1 in the next iteration. Both,
the attraction–repulsion mechanism and the local search in
EMO are responsible for driving the particles of Spt near to
the global optimum.

Similar to the electromagnetism theory for charged par-
ticles, every particle xi,t ∈ Spt in the search space X is
considered as a charged particle where the charge is com-
puted based on its objective function value. Points with better
objective function value have higher charges than remaining
particles. The attraction–repulsion mechanism is a process
in EMO by which particles with more charge attract other
particles from Spt , and particles with less charge repel other
elements. Finally, a total force vector Ft

i , exerted on a point
(e.g., the i-th point xi,t ) is calculated by the sum of these
attraction–repulsion forces, and each xi,t ∈ Spt is moved
in the direction of its total force to the location yi,t . A local
search is used to explore the vicinity of the each particle
according to its fitness. The members of the new population,
xi,t+1 ∈ Spt+1 are determined by using the following update
equation:

xi,t+1 =
{
yi,t if f (yi,t ) ≤ f (zi,t )
zi,t otherwise

(1)

In Eq. (1), zi,t is the particle perturbed in the local search
procedure. Both yi,t and zi,t are evaluated using the objective
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function f (·).This equation updates of an element of the
population if the value of the objective function is lower.
Notice that the sign ≤ is used for minimization and it could
be changed for maximization problems.

Algorithm 1 shows the general scheme of EMO, where
each step is accordingly described.

Input parameters (Line 1)EMOalgorithm runs for Itermax

iterations. In the local search phase, n × Iterlocal is the maxi-
mum number of locations zi,t , within a δ distance of yi,t , for
each i dimension.

Initialize (Line 2) The points xi,t , t = 1, are selected
uniformly in X, i.e., xi,1 ≈ Unif(X), i = 1, 2, . . . , N , where
Unif represents the uniform distribution in X. The objective
function values f (xi,t ) are computed, and the best point is
identified for minimization in Eq. (2) and for maximization
in Eq. (3).

x Bt = arg min
xi,t∈Spt

{
f (xi,t )

}
(2)

x Bt = arg max
xi,t∈Spt

{
f (xi,t )

}
(3)

From Eqs. (2) and (3) the best value x Bt is selected from the
current population in the t iteration.

Calculate force (Line 4) In this step, a charged-like value
(qi,t ) is assigned to each point (xi,t ). The charge qi,t of xi,t
depends on f (xi,t ) and points with better objective function
have more charge than others. The charges are computed
according to Eq. (4).

qi,t = exp

(

−n
f (xi,t ) − f (x Bt )

∑N
j=1 f (x j,t ) − f (x Bt )

)

(4)

From Eq. (4), n is the number of dimensions of the search
space, exp is the exponential function, N is the number of
candidate solutions and x Bt is the best point of the population
at the iteration t.

The force that exists between two points xi,t and x j,t of
the population is obtained using Eq. (5).

Ft
i, j =

⎧
⎨

⎩

(
x j,t − xi,t

) qi,t ·q j,t

‖x j,t−xi,t‖2 if f (xi,t ) > f (x j,t )
(
xi,t − x j,t

) qi,t ·q j,t

‖x j,t−xi,t‖2 if f (xi,t ) ≤ f (x j,t )

(5)

The total force, Ft
i , corresponding to a specific particle

xi,t is now calculated as follow:

Ft
i =

N∑

j=1, j �=i

Ft
i, j (6)

Once the forces are computed, the next step (Line 5) is to
move the selected point xi,t along the direction of the vector
Ft
i using the next equation:

yi,t = xi,t + λ
Ft
i∥∥Ft
i

∥∥ (RNG), i = 1, 2, . . . , N ; i �= B (7)

where λ ≈ Unif(0, 1) is a uniformly distributed random
number in the interval [0,1] for each coordinate of xi,t ,
and RNG denotes the allowed range of movement toward
the lower or upper bound for the corresponding dimension.
B,refers to the index of the best element of the population.

Local search (Line 6) For each yi,t a maximum of iterlocal
points are generated in each coordinate direction in the δ

neighborhood of yi,t . This means that the process of generat-
ing local point is continued for each yi,t until either a better
zi,t is found or the n × Iterlocal trial is reached.

Selection for the next iteration (Line 7) In this step,
xi,t+1 ∈ Spt+1are selected between yi,t and zi,t using Eq.
(1), and the best point is identified using Eq. (2) for mini-
mization or Eq. (3) for maximization.

The optimization process performed by EMO involves
different operations that are able to manage local and global
information of the search space. This process is more com-
plex than other evolutionary approaches which only employ
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one (or two) mathematical operations to modify the popula-
tion.

3 Minimum cross entropy (MCET)

The cross entropy also known as divergence is an information
theoretic metric used to verify the amount of information in a
random process (Tang et al. 2011). In other words, it helps to
measure the distance between two probabilistic distributions
(Pal 1996). The cross entropy introduced by Kullback (1968)
is in general defined as:

D (B, C) =
N∑

k=1

bk log

(
bk
ck

)
(8)

where B = {b1, b2, . . . , bN } and C = {c1, c2, . . . , cN } are
two probabilistic distributions of the same set. D is the min-
imum cross entropy that is an extension of the maximum
cross entropy. The MCET could be interpreted as the expec-
tation of change in the information content in when is used
B instead of C (Li and Lee 1993). It is important to mention
that a higher value of MCET represents more uncertainty in
the random process.

In image processing, and especially for image segmenta-
tion, a set of different thresholds (th = [th1, th2, . . . thnt ])
is selected from the image histogram (h). The values con-
tained in th must minimize the MCET that exists between
the original image Ior and the thresholded image Ith . The sim-
plest example of image segmentation is using one threshold
(th = [th1]), once it was selected the Ith is generated accord-
ing to the following rule:

Ith (i, j) =
{

μ (1, th1) if Ior (i, j) < th1,
μ (th1, L + 1) if Ior (i, j) ≥ th1

(9)

where L is the higher intensity value of the histogram (L =
255 for an 8 bits gray scale image). The rule presented in Eq.
(9) could be easily expanded for more than one th. Consider-
ing the histogram (h) of the original image, the normalized
value μ for a specific range restricted by a and b is then
computed as:

μ (a, b) =
∑b−1

i=a ih (i)
∑b−1

i=a h (i)
, i = 1, 2, . . . , L (10)

In order to verify if the original image was correctly seg-
mented is necessary to apply the minimum cross entropy
for digital images. The MCET is then computed using the
method proposed by Li and Lee (1993) that is defined for
one threshold (th = [th1]) as follows:

D (th) =
th1−1∑

i=1

ih (i) log

(
i

μ (1, th1)

)

+
L∑

i=th1

ih (i) log

(
i

μ (th1, L + 1)

)
(11)

The aim is to find the best set of thresholds that minimizes
the cross entropy. To achieve this, Eq. (12) is defined as the
objective function.

thopt = argmin
th

(D (th)) (12)

The computational complexity to obtain an optimal threshold
(th = [th1]) is O

(
nt · L2

)
but it becomes computation-

ally expensive for multilevel thresholding approaches, for
nt thresholds values the complexity is O

(
nt · Lnt+1

)
(Tang

et al. 2011).

3.1 Recursive MCET

As is mentioned above, theMCET is computationally expen-
sive for multilevel thresholding. In order to reduce the
computational effort, there is a faster recursive programming
technique proposed to obtain the optimal thresholds for a dig-
ital image (Yin 2007).

In the recursive programming MCET Eq. (11) could be
rewritten as (Yin 2007; Hammouche et al. 2008):

D (th) =
L∑

i=1

ih (i) log (i)

︸ ︷︷ ︸
Image Entropy

−
th1−1∑

i=1

ih (i) log (μ (1, th1))

︸ ︷︷ ︸
Entropy from 1 to th1−1

−
L∑

i=th1

ih (i) log (μ (th1, L + 1))

︸ ︷︷ ︸
Entropy from th1 to L+1

(13)

Eq. (13) is defined for only one th and two classes. The first
term is constant for a given digital image, and the remainder
elements depend directly on the selected thresholds. Consid-
ering such facts, the objective function could be rewritten
as:

ϕ (th) = −
th1−1∑

i=1

ih (i) log (μ (1, th1))

−
L∑

i=th1

ih (i) log (μ (th1, L + 1))

= −
(
th1−1∑

i=1

ih (i)

)

log

(∑th1−1
i=1 ih (i)

∑th1−1
i=1 h (i)

)
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−
⎛

⎝
L∑

i=th1

ih (i)

⎞

⎠ log

(∑L
i=th1 ih (i)

∑L
i=th1 h (i)

)

= −m1 (1, th1) log

(
m1 (1, th1)

m0 (1, th1)

)

−m1 (th1, L + 1) log

(
m1 (th1, L + 1)

m0 (th1, L + 1)

)
(14)

here for a partial range of the image histogram, the values
of the zero-moment point m0 (a, b) = ∑b−1

i=a h(i) and the
first-moment point m1 (a, b) = ∑b−1

i=a ih(i) are computed.
Eq. (14) can be extended for multilevel thresholding, consid-
ering a set of thresholds denoted by th = [th1, th2, . . . thnt ],
where nt is the number of thresholds to be found. For con-
venience two additional dummy thresholds th0 ≡ 0 and
thnt+1 ≡ L + 1 are added, it is important the order of such
values: th0 < th1 < · · · thnt < thnt+1. The recursive pro-
gramming is applied to formulate the objective function for
multilevel thresholdingusing theminimumcross entropy that
is defined as:

ϕ (th) = m1 (thi−1, thi ) log

(
m1 (thi−1, thi )

m0 (thi−1, thi )

)
,

th = [th1, th2, . . . , thnt ] , i = 1, 2, . . . , nt (15)

With the use of Eq. (15) the complexity is reduced from
O

(
nt · Lnt+1

)
to O

(
nt · Lnt

)
(Tang et al. 2011). However,

it is still computationally expensive (Sarkar et al. 2015).

4 Multilevel thresholding using EMO and
minimum cross entropy (MCET)

The computation of MCET for image thresholding is a
complex task even if it is redefined using recursive pro-
gramming. The main problem is to obtain the best thresholds
that reduce the MCET; an exhaustive search requires a high
computational effort. This paper proposes the use of the
electromagnetism-like optimization (EMO) for multilevel
segmentation based on the MCET. The approach uses the
EMO algorithm to find the optimal th vectors by minimiz-
ing the complex objective function defined by the MCET.
Compared with other evolutionary methods, EMO exhibits
interesting search capabilities such as fast convergence while
still keeping its ability to avoid localminima in highmodality
environments (De Jong 1988; Dorigo et al. 1996; De Castro
and Von Zuben 2002). In the related literature, there are stud-
ies (Birbil et al. 2004; Wu et al. 2004; Rocha and Fernandes
2009a, b) that demonstrate that EMO provides one of the
best trade-offs between the optimization performance and
the demand for function of evaluations. The results showed
that this algorithm substantially reduce the number of func-

tion evaluationswhile preserving its good search capabilities.
Although EMO is a good alternative for global optimization,
it includes a process to compute the elements of the new
population that involve several operations described in Eqs.
(1–7). This section describes the implementation of the pro-
posed approach based on EMO and MCET.

4.1 Particle representation

Each particle uses nt decision variables in the optimiza-
tion algorithm. Such elements represent a different threshold
value used for the segmentation. Therefore, the entire popu-
lation is represented as:

Spt = [th1, th2, . . . , thN ], thi = [th1, th2, . . . , thnt ]
T

(16)

where t represents the iteration number, T refers to the trans-
pose operator, N is the size of the population and nt is the
number of thresholds for each member of the population
(i = 1, 2, . . ., nt).

4.2 EMO implementation

The proposed segmentation algorithm has been implemented
considered the minimum cross entropy as objective function
(Eq. 15). The implementation of the EMO algorithm can be
summarized into the following steps:

Step 1 Read the image I and store it as the gray scale image
IGr.

Step 2 Obtain histogram hGr of IGr.
Step 3 Initialize the EMO parameters: Itermax, Iterlocal, δ, k

and N .
Step 4 Initialize a population Spt of N random particles

with nt dimensions.
Step 5 EvaluateSpt in the recursive programming objective

function ϕ(Spt ), Eq. (15).
Step 6 Compute the charge of each particle using Eq. (4),

and with Eqs. (5) and (6) compute the total force
vector.

Step 7 Move the entire population Spt along the total force
vector using Eq. (7).

Step 8 Apply the local search to the moved population and
select the best elements of this search based on their
objective function values.

Step 9 The t index is increased in 1, If t ≥ Itermax or if the
stop criteria is satisfied the algorithm finishes the
iteration process and jump to step 10. Otherwise,
jump to step 5.

Step 10 Select the particle that has the best x B
c

t objective
function value (Eqs. (2) and (15)).
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Step 11 Apply the thresholds values contained in x B
c

t to the
image IGr.

4.3 Multilevel thresholding

Once the EMO algorithm finds the best threshold values
which maximize the objective function, the pixels of the
image are segmented using such values. In this paper, we
use the following rule for two levels and three classes:

Is (r, c) =
⎧
⎨

⎩

IGr (r, c) if IGr (r, c) ≤ th1
th1 if th1 < IGr (r, c) ≤ th2
IGr (r, c) if IGr (r, c) > th2

(17)

where Is (r, c) is the gray value of the segmented image,
IGr (r, c) is the gray value of the original image both in
the pixel position r, c. th1 and th2 are the threshold values
obtained by the EMO approach. Equation (17) can be easily
extended to more than two levels using Eq. (18).

Is (r, c) =
⎧
⎨

⎩

IGr (r, c) if IGr (r, c) ≤ th1
thi−1 if thi−1 < IGr (r, c) ≤ thi
IGr (r, c) if IGr (r, c) > thnt

, i = 2, 3, . . . nt −1

(18)

5 Experimental results

In this paper, a set of benchmark images is used to test the
proposed approach. This set contains 11 images with dif-
ferent complexity level; all the images have the same size
(512 × 512 pixels), and they are in JPGE format. Some of
these images are widely used in the image processing liter-
ature to test different methods (Lena, Cameraman, Hunter,
Baboon, etc.) (Agrawal et al. 2013).

The proposed multilevel thresholding algorithm based on
EMO is compared with standard versions of the differential
evolution (DE) (Storn and Price 1997), the particle swarm
optimization (PSO) (Kennedy and Eberhart 1995), the har-
mony search (HS) [HS], social spider algorithm (SSA) [SSA]
and the artificial bee colony (ABC) [ABC]. All those meth-
ods were programmed and tested on MATLAB 8.3 using a
XeonE5-2620CPU@2.4Ghzwith 16GBofRAM.Since the
six algorithms are stochastic, statisticalmetrics are employed
to verify the efficiency of the algorithms. For experimental
purposes, all the algorithms are executed 35 times for each
image. In accordance with the related literature, the number
of thresholds is set to nt = 2, 3, 4, 5 (Horng 2010;Horng and
Liou 2011). The stop criteria for each experiment are set to
50 iterations, once each test is performed the standard devia-
tion (STD) is computed using Eq. (19). The STD represents
the stability of the tested method, and if the STD increases,
the algorithm becomes more instable (Ghamisi et al. 2012).

STD =
√√√√

Itermax∑

i=1

(σi − μ)

Ru
(19)

Once the best thresholds are obtained, the segmented images
are generated using Eq. (18). However, it is necessary to ver-
ify the quality of the results. The peak-to-signal ratio (PSNR)
is used to compare the similarity of an image (image seg-
mented) against a reference (original image) based on the
mean square error (MSE) of each pixel (Il-Seok Oh et al.
2004; Horng 2011; Akay 2013; Agrawal et al. 2013). Both
PSNR and MSE are defined as:

PSNR = 20 log10
(

255
RMSE

)
, (dB)

RMSE =
√∑ro

i=1
∑co

j=1 (IGr(i, j)−Ith(i, j))
ro×co

(20)

where IGr is the original image, Ith is the segmented image
obtained after applying the best th and ro, co are the total
number of rows and columns of the image, respectively.
Another interesting metric is the structure similarity index
(SSIM) that is used to compare the structures of the original
against the thresholded image (Wang et al. 2004). The SSIM
method is defined in Eq. (21), and a higher value indicates a
better segmentation performance.

SSIM (IGr, Ith) =
(
2μIGrμIth + C1

) (
2σIGr Ith + C2

)

(
μ2
IGr

+ μ2
Ith

+ C1
) (

σ 2
IGr

+ σ 2
Ith

+ C2
)

σIo IGr = 1

N − 1

N∑

i=1

(
IGri + μIGr

) (
Ithi + μIth

)

(21)

FromEq. (21),μIGr andμIth are themeanvalueof the original
and the segmented image, respectively, and for each image
the values of σIGr and σIth correspond to the standard devi-
ation. C1 and C2 are constants used to avoid the instability
when μ2

IGr
+ μ2

Ith
≈ 0, experimentally in (Agrawal et al.

2013) both values are C1 = C2 = 0.065. Another method
used to measure the quality of the segmented image is the
feature similarity index (FSIM) (Zhang et al. 2011). FSIM
calculates the similarity between two images: in this case,
the original gray scale image and the segmented image. As
PSNR and SSIM, the higher value is interpreted as better
performance of the thresholding method. The FSIM is then
defined as:

FSIM =
∑

w∈� SL (w) PCm (w)
∑

w∈� PCm (w)
(22)

where� represents the entire domain of the image, the values
of SL are then computed as:

SL (w) = SPC (w) SG (w)
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Table 1 EMO parameters for
the MCET

Itermax Iterlocal δ N

200 5 0.25 25

SPC (w) = 2PC1 (w)PC2 (w) + T1
PC2

1 (w) + PC2
2 (w) + T1

SG (w) = 2G1 (w)G2 (w) + T2
G2

1 (w) + G2
2 (w) + T2

(23)

From Eq. (23),G is the gradient magnitude (GM) of a digital
image and is defined as:

G =
√
G2

x + G2
y (24)

On Eq. (22), the value of PC is the phase congruence defined
as follows:

PC (w) = E (w)
(

ε + ∑

n
An (w)

) (25)

here An (w) is the local amplitude on scale n and E (w) is
the magnitude of the response vector in w on n. εis a small
positive number and PCm (w) = max (PC1 (w) ,PC2 (w)).

The parameters of EMO algorithm are set according to
the criteria presented in Birbil and Fang (2003) and reported
in Table 1; also, they are used for all the tests, and only the
Itermax is modified for the statistical analysis. The values in
Table 1 are specially selected for the optimization problem
considering the MCET; they could be tuned depending on
the problem to solve.

5.1 Minimum cross entropy results

This section analyzes the thresholding results obtained by the
EMO algorithm using as objective function the MCET (Eq.
15) (Li and Lee 1993). The proposed approach is applied to
the complete set of benchmark images, and the segmentation
results are presented in Table 2. Such values correspond to
the best thresholds found by the EMO algorithm considering
four different segmentation levels nt = 2, 3, 4, 5. Table 2
also shows the values of the statistical metrics (PSNR, STD,
SSIM, and FSIM) obtained for each image in each level.
FromTable 2, it is possible to analyze that the values obtained
by EMO are stable (STD column) even if the number of
thresholds is increased. On the other hand, the quality of the
output segmented image obtained by EMO is measured with
the PSNR, SSIM, and FSIM. The corresponding columns in
Table 2 provide evidence of the segmentation capacities of
the proposed approach according to the definition of each
metric.

From the set of eleven benchmark images, five of them
are selected due to the complexity of their histograms. The
pictures have been chosen to show the segmentation results
graphically. Figure 1 presents the images selected from the
benchmark set and their respective histogramswhich possess
irregular distributions (particularly Fig. 1j). Under such cir-
cumstances, classical methods face great difficulties to find
the best threshold values.

The five selected images are processed using the proposed
algorithmbased onEMOandMCET.The results presented in
Fig. 2 consider four different threshold levels th = 2, 3, 4, 5.
Figure 2 also shows the evolution of the objective function
during one execution. From the results, it is possible to appre-
ciate that the EMO–MCET converges (stabilizes) around the
first 100 iterations. The segmented images provide evidence
that the outcome is better with th = 4 and th = 5; however,
if the segmentation task does not require to be extremely
accurate, then it is possible to select th = 3.

5.2 Comparisons

In order to demonstrate that the use of EMO and MCET
is an interesting alternative for MT, the proposed algorithm
is compared with two state-of-the-art implementations. The
methods employed for comparison are: the differential evo-
lution (DE) (Storn and Price 1997; Sarkar et al. 2015), the
particle swarm optimization (PSO) (Kennedy and Eberhart
1995; Yin 2007), the harmony search (HS) (Loganathan et al.
2001), the social spider algorithm (SSA) (Yu and Li 2015),
and the artificial bee colony (ABC) (Karaboga and Basturk
2007) all those methods use the minimum cross entropy as
objective function. The six algorithmswere run 35 times over
each selected image. The images used for this test are the
same of the selected in Sect. 5.1 (Cameraman, Lena, Baboon,
Hunter and Butterfly). For each image (I) the PSNR, STD,
SSIM, FSIM values and the mean of the objective function
are computed.

The comparison results between the six methods are
divided into two groups: in the first group, Table 3 shows
the STD and mean values of the MCET as the fitness func-
tion. On the other hand, in the second group Tables 4 and
5 present the values of the quality metrics obtained after
applying the thresholds over the test images. Such values
provide evidence that the segmented images obtained using
the thresholds computed by the MCET have better quality,
in specific the computed by EMO.

The fitness (also called objective function) values of five
methods are statistically compared with EMO using a non-
parametric significance proof known as the Wilcoxon’s rank
test (García et al. 2009) that is conducted with 35 indepen-
dent samples. Such proof allows assessing result differences
among two related methods. The analysis is performed con-
sidering a 5% significance level over the best fitness (MCET)

123



Image segmentation by minimum cross entropy using evolutionary methods 439

Table 2 Results after applying
the EMO with MCET to the set
of benchmark images

Image k Thresholds x Bt PSNR STD SSIM FSIM

Camera man 2 51, 137 18.3128 0.0000 0.8564 0.8100

3 31, 84, 144 21.6180 3.5466 E−05 0.9003 0.8536

4 30, 77, 126, 158 23.2970 1.7459 E−04 0.9103 0.8848

5 28, 70, 114, 145, 171 23.9009 4.1780 E−03 0.9237 0.8968

Lena 2 81, 140 20.9383 3.2483 E−05 0.8612 0.8462

3 73, 119, 165 21.5202 0.0000 0.8794 0.8426

4 70, 108, 140, 176 23.4480 7.2898 E−05 0.9006 0.8702

5 59, 86, 115, 143, 177 24.9227 2.0784 E−04 0.9206 0.8930

Baboon 2 90, 145 21.4273 0.0000 0.9130 0.9155

3 71, 110, 152 23.1514 1.5435 E−05 0.9431 0.9443

4 64, 99, 131, 163 23.9436 8.9906 E−05 0.9591 0.9601

5 56, 84, 111, 138, 168 25.0505 4.4126 E−04 0.9679 0.9676

Hunter 2 26, 90 22.8504 0.0000 0.9008 0.8920

3 18, 60, 116 22.1675 5.2461 E−04 0.8942 0.8961

4 14, 43, 84, 131 23.1216 7.4499 E−05 0.9189 0.9216

5 11, 31, 60, 96, 137 24.3002 1.2439 E−03 0.9392 0.9425

Airplane 2 97, 161 25.4876 2.3546 E−05 0.9624 0.9142

3 76, 126, 178 24.2310 1.7566 E−04 0.9543 0.9058

4 63, 105, 147, 190 24.0633 1.5277 E−04 0.9407 0.9029

5 61, 100, 135, 174, 203 23.6548 1.0091 E−04 0.9395 0.9072

Peppers 2 57, 130 19.4660 0.0000 0.8795 0.8642

3 45, 88, 138 23.2943 5.5620 E−03 0.9164 0.8858

4 43, 83, 124, 168 21.9553 0.0000 0.9015 0.8674

5 42, 80, 111, 142, 175 23.4937 1.4000 E−02 0.9238 0.8929

Living room 2 73, 134 19.4210 0.0000 0.8490 0.8427

3 44, 95, 145 20.2041 1.0570 E−05 0.8780 0.8760

4 38, 82, 123, 160 21.4640 1.5015 E−05 0.9101 0.9052

5 33, 68, 102, 133, 167 23.1660 2.5034 E−03 0.9370 0.9303

Blonde 2 38, 122 18.4613 0.0000 0.8557 0.8598

3 33, 107, 155 18.0949 0.0000 0.8336 0.8422

4 31, 96, 132, 164 19.5506 2.5181 E−06 0.8801 0.8881

5 19, 63, 104, 139, 168 22.9896 9.1403 E−03 0.9339 0.9150

Bridge 2 76, 142 20.4912 2.0776 E−03 0.8705 0.8768

3 57, 104, 161 20.9807 1.7097 E−03 0.9014 0.9114

4 49, 88, 129, 181 21.5630 1.1741 E−03 0.9208 0.9229

5 43, 76, 108, 146, 192 22.5800 3.7022 E−03 0.9414 0.9398

Butterfly 2 88, 138 22.9957 3.5474E−04 0.9064 0.8580

3 77, 113, 156 23.3959 8.0843E−05 0.9290 0.8802

4 70, 97, 125, 161 25.3474 9.2064E−05 0.9548 0.9230

5 66, 88, 111, 135, 165 26.6674 6.6659E−03 0.9681 0.9489

Lake 2 73, 141 24.6248 0.0000 0.9467 0.9305

3 62, 104, 162 24.2344 1.3607 E−04 0.9523 0.9398

4 57, 91, 144, 195 20.9612 2.5874 E−04 0.9370 0.9170

5 50, 75, 113, 158, 198 22.9608 3.1096 E−04 0.9540 0.9391
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 a Camera man, c Lena, e Baboon, g Hunter and i Butterfly, the selected benchmark images. b, d, f, h, j histograms of the images
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(g) (h)

(j)(i)

Fig. 1 continued

value data corresponding to the five threshold points. Table 6
reports the p-values produced by Wilcoxon’s test for a pair-
wise comparison of the fitness function between two groups
formed as EMO versus DE, EMO versus PSO, EMO ver-
sus HS, EMO versus SSA and EMO versus ABC. As a
null hypothesis, it is assumed that there is no difference
between the values of the two algorithms tested. The alterna-
tive hypothesis considers an existent difference between the
values of both approaches. All p values reported in Table 6
are less than 0.05 (5% significance level) which is strong evi-
dence against the null hypothesis, indicating that the EMO
fitness values for the performance are statistically better, and
it has not occurred by chance.

On the other hand, Table 7 presents a comparison between
the EMO and the five selected algorithms regarding the
computational time. This measurement is used to evaluate

the computational effort required for each algorithm. For
this comparison, 35 independent experiments are performed
using each algorithm. For this test, the number of iterations is
set to 1000, and each algorithm runs over all the images. The
time is stored after each experiment for a single image. At the
end, the mean is computed. This test is performed to provide
evidence of the speed of EMO. Since the six algorithms are
complex stochastic processes, it is difficult to analyze their
complexity and the computational time is the best tool to
support the results.

From Table 7, it is possible to see that the EMO-based
approach in most of the cases needs less time to find the best
optimal solution. When the number of thresholds increases
(for example with k = 5), EMO requires more time than DE,
PSO or SSA. However, the time is consistent for each experi-
ment. On the other hand, the HS approach requiresmore time
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Fig. 2 Results after applying the EMO using minimum cross entropy over the selected benchmark images
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Fig. 2 continued
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Table 4 Comparison of the PSNR, SSIM and FSIM values of the EMO, DE and PSO applied over the selected test images using theMCETmethod

I k EMO DE PSO

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Camera man 2 18.4825 0.8564 0.8139 18.2128 0.8411 0.7986 18.1977 0.8450 0.8002

3 21.7818 0.8994 0.8525 21.4468 0.8640 0.8113 21.0884 0.8089 0.8106

4 23.2188 0.9091 0.8833 22.1301 0.8617 0.8277 22.0455 0.8290 0.8288

5 23.6259 0.9204 0.8932 23.4241 0.8782 0.8383 22.5410 0.8141 0.8291

Lena 2 21.2340 0.8625 0.8619 20.8154 0.8313 0.8157 20.7911 0.8268 0.8063

3 21.5202 0.8794 0.8712 21.4249 0.8395 0.7940 21.0090 0.8467 0.7804

4 23.5538 0.9001 0.8847 22.4228 0.8628 0.8287 22.9989 0.8589 0.8165

5 24.8234 0.9203 0.8995 23.5816 0.8820 0.8426 23.3937 0.8925 0.8228

Baboon 2 21.9085 0.9149 0.9183 21.4273 0.8879 0.8919 21.3669 0.8724 0.8843

3 23.0794 0.9425 0.9438 22.6824 0.9130 0.9145 22.7909 0.8810 0.9043

4 23.8567 0.9583 0.9590 23.4748 0.9201 0.9175 22.9763 0.9160 0.9117

5 24.8360 0.9669 0.9669 24.0320 0.9211 0.9151 23.7103 0.9131 0.9145

Hunter 2 22.8504 0.9008 0.8976 22.8220 0.8757 0.8722 22.7911 0.8521 0.8680

3 22.7167 0.9007 0.8958 22.1533 0.8615 0.8586 21.0875 0.8649 0.8681

4 23.0168 0.9172 0.9205 22.3770 0.8840 0.8796 22.6372 0.8591 0.8576

5 24.1474 0.9376 0.9408 23.3941 0.9070 0.9027 22.5532 0.9047 0.8990

Butterfly 2 24.0269 0.9055 0.9039 22.9003 0.8885 0.8330 22.8248 0.8726 0.8301

3 23.3668 0.9281 0.9216 22.9889 0.8917 0.8259 23.2509 0.8852 0.8417

4 25.2881 0.9543 0.9380 24.2203 0.9103 0.8490 24.1546 0.9005 0.8227

5 26.2271 0.9655 0.9425 24.5201 0.9217 0.8740 24.1146 0.8405 0.7619

Table 5 Comparison of the PSNR, SSIM and FSIM values of the HS, SSA and ABC applied over the selected test images using the MCETmethod

I k HS SSA ABC

PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

Camera man 2 18.2443 0.8445 0.8085 18.2825 0.8459 0.7999 18.2044 0.8542 0.8102

3 21.5535 0.8870 0.8550 20.7268 0.8725 0.8378 21.5797 0.8848 0.8422

4 21.9599 0.8721 0.8578 22.7573 0.8959 0.8627 22.2802 0.8913 0.8675

5 22.9764 0.9020 0.8798 23.0061 0.9001 0.8701 22.1411 0.9106 0.8814

Lena 2 20.9209 0.8450 0.8475 20.9073 0.8506 0.8254 20.8491 0.8511 0.8458

3 21.0785 0.8533 0.8371 21.2115 0.8617 0.8257 21.2352 0.8532 0.8368

4 21.3584 0.8572 0.8315 22.5265 0.8892 0.8469 22.3370 0.8627 0.8524

5 23.1562 0.8925 0.8622 23.1375 0.8986 0.8641 23.2626 0.8795 0.8671

Baboon 2 21.3029 0.8754 0.8940 21.0843 0.8983 0.9201 21.7885 0.9067 0.9089

3 22.6206 0.9245 0.9358 22.5477 0.9238 0.9350 22.1142 0.9289 0.9308

4 23.0713 0.9319 0.9444 22.6867 0.9310 0.9327 23.0584 0.9435 0.9464

5 22.8485 0.9301 0.9366 23.7274 0.9340 0.9446 23.2269 0.9516 0.9516

Hunter 2 22.4354 0.8829 0.8838 21.8970 0.8767 0.8754 21.8218 0.8867 0.8800

3 22.3198 0.8801 0.9015 21.9116 0.8744 0.8860 21.3750 0.8830 0.8845

4 22.5711 0.8912 0.9019 22.0705 0.8926 0.9040 22.7938 0.9090 0.9103

5 22.5337 0.8906 0.9093 22.6585 0.9179 0.9046 22.7033 0.9165 0.9148

Butterfly 2 22.9358 0.8567 0.8722 22.8141 0.8845 0.8544 22.9281 0.9066 0.8567

3 22.7386 0.8792 0.8595 23.1200 0.8916 0.8741 22.9124 0.9205 0.8709

4 22.8761 0.9091 0.8722 23.2632 0.8990 0.9017 23.5058 0.9319 0.8904

5 23.4250 0.9284 0.8875 24.2389 0.9012 0.9077 24.3144 0.9429 0.9095
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Table 6 Wilcoxon p values of the compared algorithms EMO versus DE, EMO versus PSO, EMO versus HS, EMO versus SSA and EMO versus
ABC

I k p values

EMO versus DE EMO versus PSO EMO versus HS EMO versus SSA EMO versus ABC

Camera man 2 1.5291E−14 1.5337E−14 1.5337E−14 1.5328E−14 5.8049E−14

3 2.3579E−13 2.3579E−13 2.3579E−13 2.3579E−13 2.3579E−13

4 2.1460E−13 2.1460E−13 2.1460E−13 2.1460E−13 2.1460E−13

5 5.6572E−13 5.6572E−13 6.1678E−13 5.6572E-13 5.6572E−13

Lena 2 1.3652E−11 2.5260E−13 2.5248E−13 2.3305E−11 2.5198E−13

3 1.5346E−14 1.5346E−14 1.5346E−14 1.5346E−14 1.5346E−14

4 2.3579E−13 2.3579E−13 2.3579E−13 2.3579E−13 2.3579E−13

5 5.3642E−13 5.3642E−13 5.3642E−13 5.3642E−13 5.3642E−13

Baboon 2 1.5300E−14 1.5346E−14 1.5337E−14 1.5328E−14 5.8049E−14

3 2.6616E−13 2.6616E−13 2.6616E−13 2.6616E−13 2.6616E−13

4 2.2955E−13 2.2955E−13 2.2955E−13 2.2955E−13 2.2955E−13

5 5.9456E−13 5.9456E−13 5.9456E−13 5.9456E−13 5.9456E−13

Hunter 2 5.7948E−14 5.8015E−14 1.5346E−14 1.5337E−14 5.7914E−14

3 1.7183E−13 1.7E−183E−13 1.7183E−13 1.7183E−13 1.7183E−13

4 4.6150E−13 4.6150E−13 4.6150E−13 4.6150E−13 4.6150E−13

5 5.1937E−13 5.1937E−13 5.1937E−13 5.1937E−13 5.1937E−13

Airplane 2 2.5210E−14 2.1814E−14 2.6427E−14 2.1840E−14 8.7304E−14

3 2.4220E−13 2.4220E−13 2.4220E−13 2.4220E−13 2.4220E−13

4 5.0448E−13 5.0448E−13 5.0448E−13 5.0448E−13 5.0448E−13

5 3.6185E−13 3.6185E−13 3.6185E−13 3.6185E−13 3.6185E−13

Peppers 2 1.5328E−14 1.5337E−14 5.7847E−14 1.5328E−14 1.5310E−14

3 1.6535E−12 1.6535E−12 1.6535E−12 3.5421E−12 4.1516E−13

4 1.5346E−14 1.5346E−14 1.5346E−14 1.5346E−14 1.5346E−14

5 2.1478E−12 5.0024E−13 2.1478E−12 2.1478E−12 5.0024E−13

Living room 2 1.5346E−14 5.7981E−14 1.5310E−14 1.5328E−14 5.7948E−14

3 2.1840E−14 2.1840E−14 2.1840E−14 2.1840E−14 2.1840E−14

4 1.7580E−13 1.7580E−13 1.7580E−13 1.7580E−13 1.7580E−13

5 3.0306E−13 3.0306E−13 3.0306E−13 3.0306E−13 3.0306E−13

Blonde 2 1.5291E−14 1.5310E−14 1.5310E−14 1.5319E−14 1.5328E−14

3 1.5346E−14 1.5346E−14 1.5346E−14 1.5346E−14 1.5346E−14

4 2.1840E−14 2.1840E−14 2.1840E−14 2.1840E−14 2.1840E−14

5 1.1710E−12 6.4191E−13 7.6272E−13 7.6272E−13 1.2753E−12

Bridge 2 9.1839E−14 7.7840E−13 5.6912E−14 4.7117E−14 2.9739E−13

3 3.6102E−13 2.5310E−13 3.6102E−13 3.0237E−13 3.6102E−13

4 3.7405E−13 3.7405E−13 3.7405E−13 3.7405E−13 3.7405E−13

5 5.6968E−13 5.6968E−13 5.6968E−13 5.6968E−13 5.6968E−13

Butterfly 2 2.1394E−12 4.4802E−13 1.2753E−12 3.1793E−12 7.5207E−13

3 2.5273E−13 2.5273E−13 2.5273E−13 2.5273E−13 2.5273E−13

4 3.0752E−13 3.0752E−13 3.0752E−13 3.0752E−13 3.0752E−13

5 5.2969E−13 5.2969E−13 5.2969E−13 5.2969E−13 5.2969E−13

Lake 2 2.1198E−13 1.5337E−14 1.5337E−14 1.5337E−14 1.5319E−14

3 4.7746E−13 4.7746E−13 4.7746E−13 4.7746E−13 4.7746E−13

4 4.2073E−13 4.2073E−13 4.2073E−13 4.2073E−13 4.2073E−13

5 5.9016E−13 5.9016E−13 5.9016E−13 5.9016E−13 5.9016E−13
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Table 7 Mean of the
computational time of EMO,
DE, PSO, HS, SSA and ABC
for the problem of MTH using
the minimum cross entropy

I k Computational time in seconds

EMO DE PSO HS SSA ABC

Camera man 2 0.9436 2.8702 2.9128 5.1731 6.6812 4.9803

3 1.4140 3.3423 3.0573 5.6769 7.1879 4.9481

4 2.5064 3.1482 3.0093 5.3187 7.1748 5.0035

5 3.7611 3.1084 3.9338 5.8430 7.2849 5.0408

Lena 2 1.4837 2.9474 3.0571 4.1210 4.7815 5.4233

3 2.3095 3.1527 3.1800 4.6949 4.8725 5.9854

4 2.8467 3.0956 3.0698 5.1584 4.9822 5.6837

5 3.6665 3.4252 3.9929 5.6943 5.0831 5.6679

Baboon 2 1.4262 3.1317 3.0253 4.4503 4.7491 5.5001

3 2.1936 3.1358 3.0467 4.9133 3.8139 5.5502

4 2.8608 3.1488 3.0035 5.3466 3.5713 5.5536

5 3.5343 3.5108 3.1198 5.6283 3.6267 5.7071

Hunter 2 1.4975 2.8719 3.0142 4.5676 3.4160 5.5245

3 2.2200 2.9633 2.9040 4.8718 3.4855 5.6224

4 3.1627 3.0585 3.0083 5.2737 3.5588 5.8129

5 3.7280 3.2096 3.0446 5.7714 3.9146 5.3861

Airplane 2 1.5541 3.0118 3.0582 4.5824 3.4150 5.0549

3 2.2903 2.9289 2.9800 4.8948 3.4920 5.3252

4 2.9445 3.0994 3.1955 5.1260 3.5504 5.1442

5 3.7565 3.2444 3.9576 5.2884 3.9235 5.2147

Peppers 2 1.4794 2.8190 2.8964 4.1583 3.4155 5.0975

3 2.2575 2.7814 3.0897 4.9220 3.4946 5.1322

4 3.0144 2.8531 3.0865 5.3589 3.5559 5.2255

5 3.7579 3.2648 3.0161 5.7062 3.6226 5.2086

Living room 2 1.6184 2.8374 2.9206 4.4757 3.4112 5.0795

3 2.2417 2.9434 2.8998 4.9375 3.4766 5.0830

4 3.0410 3.0548 3.0273 5.3077 3.5398 5.1982

5 3.7145 3.1756 3.8089 5.3819 3.9101 5.3334

Blonde 2 1.5284 2.8266 2.7120 4.4955 3.4527 5.0428

3 2.2144 2.9556 2.7727 4.9646 3.4924 5.1213

4 2.9952 3.0334 2.6926 5.3587 3.5500 5.2055

5 3.7327 3.3047 3.7712 5.6642 3.9076 5.2187

Bridge 2 1.4589 2.8325 2.7830 4.5453 3.4253 5.1206

3 2.2875 2.8466 2.9345 4.9387 3.4903 5.2781

4 2.9910 3.8041 3.0259 5.4024 3.5770 5.3119

5 3.6740 3.8382 2.9650 5.6041 3.6278 5.4317

Butterfly 2 1.5039 3.0215 2.9142 4.7109 5.2115 5.0502

3 2.2411 2.9894 2.9877 5.0698 5.3860 4.9276

4 3.0091 3.2101 3.8212 5.3102 5.6150 5.0205

5 3.7002 3.3017 3.3976 5.7413 5.8124 5.0661

Lake 2 1.4726 2.8825 3.4073 4.5335 5.1208 4.8969

3 2.1217 2.9470 3.5072 4.8877 5.2051 4.9079

4 2.9959 3.2373 3.4629 5.1438 5.5869 5.0462

5 3.5776 3.2751 3.7326 5.4053 5.8710 5.5951
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Fig. 3 Fitness comparison of DE (red line), PSO (cyan line), HS (green line), SSA (magenta line), ABC (black line) and EMO (blue line) applied
for multilevel thresholding using MCET (color figure online)

since it uses a single candidate solution along the iterative
process. Meanwhile, the operators of ABC are completely
iterative, and it also uses two populations to find the best
solutions. The SSA algorithm has some initial configurations
that affect their efficacy, the values of such configurations
are difficult to set, and they also affect the computational
effort. Based on these facts, the computational time of ABC
is higher in comparison with EMO, DE or PSO, but is close
to the values of HS and SSA.

In Fig. 3, the fitness values obtained for the five selected
images are presented. For this experiment, each algorithm
runs 1000 times, and the best values are stored at the end
of each iteration. For a better understanding and appreci-

ation of the convergence, Fig. 3 includes the zoom of the
graph of the objective function values. The zoom consid-
ers only 25 iterations for the six algorithms. This number is
selected because experimentally we notice that the six algo-
rithms decrease the MCET value in the first 25 iterations.
From Fig. 3, it is possible to deduce that the proposed MTH
algorithms based on EMO require fewer iterations than other
similar approaches to obtain the best thresholds. In this con-
text, the stop criteria could also be modified. Moreover, the
results presented in Fig. 3 for HS support their low speed
of convergence that occurs because it works only with one
candidate solution at the time. Finally, it is possible to estab-
lish that the approach based on EMO and MCET reaches the
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minimum cross entropy values in fewer iterations and obtain
more accurately solutions than DE, PSO, HS, SSA andABC.

6 Conclusions

This paper presents a new algorithm for multilevel segmen-
tation based on the electromagnetism-like algorithm (EMO)
to reduce iterations and function evaluations. The proposed
approach considers the segmentation process as an optimiza-
tion problem, where EMO is employed to find the optimal
threshold points that minimize the cross entropy (MCET).
MCET combined with EMO focuses directly on the search
for the best set of threshold values. This method considers
only the histogram and the number of thresholds as input.
In contrast, similar approaches such as clustering techniques
need to explore initialization conditions leading tomore com-
plex schemes.

The EMO-based algorithm can substantially reduce the
number of function evaluations preserving the good search
capabilities of an evolutionary method. The presented tech-
nique is able to find the best values even with large and
complex images. In our approach, the algorithm uses parti-
cles to encode a set of candidate threshold points. TheMCET
is the objective function, where the quality of all the candi-
date solutions is evaluated. The particles are evolved using
the force, charge, movement and local search operators of
EMO. Once the optimal thresholds are obtained, they are
used to segment the image. In order to evaluate the quality of
the segmented images, the use of the PSNR, STD, SSIM and
FSIM is proposed. Such metrics consider the coincidences
between the original and the segmented image.

The experimental study compares the proposed approach
with other five related approaches, differential evolution
(DE), particle swarm optimization algorithm (PSO), har-
mony search (HS), social spider algorithm (SSA) and the
widely used artificial bee colony (ABC). The efficiency of
the algorithms is evaluated in terms of PSNR, STD, SSIM,
FSIM and fitness values. Such comparisons provide evidence
of the accuracy, convergence and robustness of the proposed
approach. The high rate of convergence of EMO is evident
on the comparisons reported. Likewise, EMOoutperforms on
most of the experiments providing high scores on the evalu-
atedmetrics. It is possible to establish that the approach based
on EMO andMCET reaches the minimum cross entropy val-
ues in fewer iterations and obtains more accurately solutions
than DE, PSO, HS, SSA and ABC. Although the results offer
evidence to demonstrate that theEMOmethod can yield good
results on complicated images, the aim of our paper is not
to devise a multilevel thresholding algorithm that could beat
all currently available methods, but to show that electromag-
netism systems can be considered as an attractive alternative
for this purpose.

In the spirit of contributing to future works, the devel-
opment of thresholding techniques might take three equally
important paths. The first is the current trend where thresh-
olding approaches are beneficiated from new optimization
strategies, especially if such methods improve the overall
state of the art. A second path can be taken if the thresh-
olding problem is solved with a multi-objective methodol-
ogy. The incorporation of multi-objective optimizers can
lead to simultaneous improvements on thresholding cri-
teria. Such topic should be addressed to further improve
the quality of segmented images. Third, the effectiveness
of thresholding can be directly applied to critical image
processing areas such as medical or satellite image pro-
cessing. Any of the aforementioned paths will significantly
contribute to the growth of the image processing commu-
nity.
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