
Soft Comput (2019) 23:827–836
https://doi.org/10.1007/s00500-017-2786-1

METHODOLOGIES AND APPLICATION

A statistic approach for power analysis of integrated GPU

Qiong Wang1 · Ning Li1 · Li Shen1 · Zhiying Wang1

Published online: 17 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract As datasets grow, high performance computing
has gradually become an important tool for artificial intelli-
gence, particularly due to the powerful and efficient parallel
computing provided by GPUs. However, it has been a gen-
eral concern that the rising performance of GPUs usually
consumes high power. In this work, we investigate the study
of evaluating the power consumption of AMD’s integrated
GPU (iGPU). Particularly, by adopting the linear regres-
sion method on the collecting data of performance counters,
we model the power of iGPU using real hardware mea-
surements. Unfortunately, the profiling tool CodeXL cannot
be straightforwardly used for sampling power data and as
a countermeasure we propose a mechanism called kernel
extension to enable the system data sampling for model eval-
uation.Experimental results indicate that themedian absolute
error of our model is less than 3%. Furthermore, we simplify
our statistical model for lower latency without significantly
reducing the accuracy and stability.

Keywords Integrated GPU · Power analysis · Statistical
model · Kernel extension

Communicated by V. Loia.

B Qiong Wang
wangqiong@nudt.edu.cn

Ning Li
ln11@nudt.edu.cn

Li Shen
lishen@nudt.edu.cn

Zhiying Wang
zywang@nudt.edu.cn

1 College of Computer, National University of Defense
Technology, Changsha, China

1 Introduction

Due to the capability of powerful and efficient parallel com-
puting, GPUs have been widely used in various computing
systems, especially in high performance computing systems.
Particularly, due to the parallel programming languages, e.g.,
CUDA (Corparation 2016c) and OpenCL (Stone et al. 2010),
GPUs could significantly accelerate the solving of large-scale
computation problems (Chitty 2016), such as video analytics,
speech recognition and image classification (Li et al. 2016).
It is reported that GPUs could be applied in running machine
learning models for classification tasks in the cloud, and thus
is able to handle far more data volume and throughput while
consuming less power (Corparation 2017; Zhang and Xiao
2016).

However, the rising performance of GPUs is usually at
the cost of increasingly high power consumption, espe-
cially when GPUs are integrated with massive transistors
(e.g., NVidia GeForce GTX 280 contains 1.4 billion tran-
sistors). For example, an Nvidia GTX 280 could consume
as high as 236 W power (Corparation 2016b), while it is
usually less than 150 W (Corparation 2016a) for a typical
multi-core CPU. As a result, more complex cooling solu-
tions are needed to reduce the system temperature. This
could compensate the benefits of improving the system
performance. Therefore, reducing the GPU power con-
sumption is highly necessary, among which analyzing and
modeling the power consumption of GPUs is clearly a prior-
ity.

In this work, we aim at the accelerated processing unit
(APU) (Branover et al. 2012), which is a revolutionary archi-
tecture released by AMD in 2011. In a APU, the CPU and
integrated GPU (iGPU) are combined into one single chip so
that they could share resources on the same chip. Therefore,
to improve the APU efficiency, it is of significant importance

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2786-1&domain=pdf
http://orcid.org/0000-0003-3755-6267

828 Q. Wang et al.

to figure out the kernel bottlenecks and determine the power
consumption of iGPU .

Unfortunately, despite that there have been several power
models built for GPU, they mainly focused on either the
whole APU or the discrete GPU (Zhang and Owens 2011;
Luo and Suda 2011; Baghsorkhi et al. 2010; Hong and Kim
2009; Wu et al. 2015; Diop et al. 2014; Zhang et al. 2011;
Karami et al. 2015). The iGPU in the APU has received rela-
tively little attentions. Since it is usually the case that iGPUs
and discrete GPUs differ from each other, it is necessary for
researchers to investigate the study of power consumption
for iGPUs.
Our contributions To precisely analyse the power consump-
tion of iGPU, we use a statistical model for power analyse.
Our goal is to conduct a comprehensive investigation on the
iGPU performance and its power consumption, providing an
accurate predication for reducing the power consumption of
iGPUs.Overall, ourmain contributions could be summarized
as follows:

– We found that the widely adopted profiling tool, i.e.,
AMD CodeXL (AMD 2016) cannot be directly used to
collect the energy consumption of OpenCL kernels. Pre-
cisely, the power sampling period of CodeXL is at least
100 ms while the execution time of most OpenCL ker-
nels is less than 10 ms. By lengthening kernel extension
time, we introduce a novel solution to sample data in one
kernel execution. We insist that this mechanism is gen-
erally applicable for collecting data from OpenCL-based
benchmarks.

– Relying on the multivariable linear regression model, we
successfully build a statistical powermodel for the iGPU.
We then adopt the proposed kernel extension for data
collecting to evaluate our built model. The results show
that our model is of higher accuracy than most existing
models. Moreover, unlike previous models that collect
data from GPU simulators, our experiment results are
for real iGPUs and hence more meaningful in practice.

– Low latency is a desirable property for a power model
especiallywhen it is used to estimate power consumption.
For this issue, we explore the possibility of simplifying
our builtmodel. Specifically, a sensitivity analysis is done
to evaluate the role of each performance counter in the
model, based onwhichwe simplify our statisticmodel via
removing some performance counters of less importance.

Related work Compared to the CPU, the internal interface
of the GPU architecture is far less open. Many brands of
GPUs only own a vendor internal debugging but cannot pro-
vide performance counter information. Therefore, the power
consumption analysis for GPU was mainly carried out on
simulators at the early stage. In 2012, Tor Aamodt Research
Group designed a general-purpose GPU simulator called

GPGPU-Sim (Wang et al. 2012), which could be adopted
to implement GPU operating states of clock level. The sim-
ulator integrates the GPUWattch (Leng et al. 2013) power
module and each hardware event is assumed to consume the
same energy. The total power consumption of the GPU is
then calculated by collecting the performance counter infor-
mation of all components. Diop et al. (2014) simulated the
total power dissipation of the APU and used the power mea-
surement unit connected externally to measure the processor
power consumption. TheMulti2Sim simulator is used to sim-
ulate AMD’s EverGreen APUs. Similar to our work, it also,
it also uses the regression model to estimate the processor
power consumption while the model error is more than 20%.
Although it was the first time to achieve power model in the
AMD platform, the model accuracy is not desirable. Subse-
quently, some approaches were proposed to study the GPU
power modeling on the real machine for more accurate anal-
ysis. Zhang et al. (2011) aimed at AMD’s HD5870 and also
adopted the regression method to study the models of both
power consumption and performance prediction. Similarly,
Karamiet et al. (2013) focused on the NVIDIA’s GPU mod-
eling. They used the GPGPU-Sim to predict and evaluate the
performance and power consumption of OpenCL kernels.
OrganizationThe rest of this paper is organized as follows. In
Sect. 2, we briefly introduce the APU architecture, OpenCL
execution model, AMD CodeXL and Rodinia. We then
describe our proposed statistic model in Sect. 3. Our exper-
imental results and analysis are then presented in Sect. 4. In
Sect. 5, we show how to simplify themodel for lower latency.
Finally, we draw the conclusion in Sect. 6.

2 Preliminaries

2.1 APU architecture

In this work, AMD A10-7850k is chosen as the target APU,
which consists of four Steamroller CPU cores , 8 computing
units of Graphics Core Next (GCN) and 512 shade proces-
sors. The GCN architecture is depicted in Fig. 1. Precisely,
in each GCN computing unit, one could find a CU scheduler,
a branch & message unit, 4 texture filter units, 4 SIMD vec-
tor units, 1 scalar unit, 4 64KB VGPR files, 16 texture fetch
load/store units, a 64 KB local data share, a 4 KB GPR file
and a 16 KB L1 Cache.

2.2 OpenCL execution model

OpenCL (Stone et al. 2010) is an open programming frame-
work which generally consists of a programming language
for running kernels on heterogeneous platforms, such as
CPU, GPU, FPGA and other accelerators. OpenCL can
provide two types of parallel computing capabilities, i.e.,

123

A statistic approach for power analysis of integrated GPU 829

Fig. 1 AMD GCN architecture

Fig. 2 Kernel execution on OpenCL

task-based and data-based, for different applications. An
OpenCL program may belong to either the host program or
kernels. We usually call a running kernel as a work item, sev-
eral of which on a computing unit are set as a work group. A
local ID is assigned for each work item and each work group
has a global ID, due to which we can exclusively figure out
each work item in the global space. As shown in Fig. 2, for
a running kernel, the host program would create a context to
define the operating environment of kernels, which includes
a device list, memory objects, kernels and program objects.

2.3 CodeXL

In our work, we use the CodeXL (AMD 2016) for profil-
ing power and performance counter information of the target
iGPU during the benchmark execution. CodeXL is an open
software development tool suite for AMD processor. Partic-
ularly, it can help discover the bottleneck of the program
running on CPU, GPU and APU.

A CodeXL consists of several components, i.e., GPU
debugger, GPU profiler, CPU profiler, static shader/kernel
analyzer, power profiler and graphic frame analyzer. Here
wemainly introduce the GPU profiler and the power profiler.
The GPU profiler offers hotspot analysis for AMDGPUs and
APUs via collecting and visualizing hardware performance
counters data, kernel occupancy and application trace. Par-
ticularly, the profiler can be used to discover performance
bottlenecks for kernel execution optimization by gathering
data from the OpenCL runtime, and from the GPU/APU

itself during the kernel execution. The power profiler could
gather the real-time power consumption of both the single
GPU component and the whole APU. Furthermore, it can
also profile the CPU and GPU frequency and provide two
modes, i.e., command mode and visible interface mode, for
power analysis.

2.4 Rodinia benchmark

Rodinia is well known as the first benchmark suite targeted
on heterogeneous computing. It was built byChe et al. (2008)
for studying emerging platforms. Rodinia consists of appli-
cations and kernels which are mainly for multi-core CPU
and GPU platforms. Rodinia benchmarks consist of three
versions, OpenMP, CUDA and OpenCL, covering various
parallel communication patterns, power consumption and
synchronization techniques.

3 Modeling methodology

3.1 Experimental setup

In this work, A10-7850K is chosen as the experimental plat-
form. Details are given in Table 1. Particularly, we rely on
an Ubuntu 12.04 LTS machine to perform all the experi-
ments. We choose the AMD APP SDK v2.9 for the OpenCL
implementation. We run the Rodinia 3.2 Benchmark Suite to
evaluate our proposed model.

123

830 Q. Wang et al.

Table 1 System configuration

Operating system Ubuntu 12.04 LTS

Memory 8GB DDR3

OpenCL AMD APP SDK v2.9

Profiling tool AMD CodeXL v1.9

Benchmark Suite Rodinia v3.2

APU version AMD A10-7850K

APU core number 4CPU + 8 GPU

APU L1 Cache 192KB instruction, 64KB data

APU L2 Cache 4MB

APU TDP 95W

3.2 Regression factors determining

In this work we rely on the linear regression to build the
power prediction model for iGPU. Noting that the selection
of regression factors (i.e., explanatory variables in the regres-
sion model) would significantly affect the accuracy of the
built prediction model, we carefully analyze the architecture
of iGPU to figure out those on-chip resources that are closely
related to its power consumption.

Particularly, these on-chip resources mainly consist of
Arithmetic Logic Unit (ALU), Local Memory and Global
Memory. The main reason is that arithmetic operations in
iGPU incur frequent data access with the memory and hence
usually consume much power. That is, hardware events
occurring in these operations account for the majority of
power consumption. In our work, we utilize performance
counters to record these events. Performance counters are
used to calculate the hardware events number and for the
application profiling. Toprofile the performance counters,we
choose the profiler of AMD CodeXL v1.9. Table 2 describes
the details of the performance counters collected by the pro-
filer.

Note that the power consumption of an iGPU consists of
two parts. The first part (also the main one) is the dynamic
power consumption while the other part is the static one.
More precisely, the dynamic part occurs due to the computa-
tion task, whose volume is accurately reflected by the number
of hardware events captured by the performance counters
listed in Table 2. That is, the number of activated hardware
events would be significant when many computation tasks
occur, which of course results in high power consumption.
Regrading the static one, it is also known as basic power con-
sumption as it is mainly caused by the bare operating system
without any workload running. It is normally related to the
processor architecture and also the outside environment such
as the temperature.

Based on the aforementioned analysis, we formally set the
model equation as follows:

Table 2 Performance counters description

Counters Descriptions

VALUInsts Vector ALU instructions number

SALUInsts Scalar ALU instructions number

VFetchInsts Vector fetch instructions number

SFetchInsts Scalar fetch instructions number

FlatVMemInsts Flat instructions number

VALUUtilization Percentage of active vector ALU threads
in a wave

VALUBusy Percentage of time vector ALU
instruction is processed

SALUBusy Percentage of time scalar ALU instruction
is processed

LDSInsts LDS read or LDS write instructions
number

LDSBankConflict Percentage of time LDS is stalled by bank
conflicts

CacheHit L2 cache hit rate

MemUnitBusy Percentage of time memory unit is active

MemUnitStalled Percentage of time memory unit is stalled

WriteUnitStalled Percentage of time write unit is stalled

FetchSize Total kilobytes fetched from the memory

WriteSize Total kilobytes written to the memory

Fig. 3 Kernel extension mechanism

PiGPU =
i=15∑

i=1

Ai · Ei + C (1)

In Eq. (1), PiGPU denotes the total power consumption of the
targeted iGPU. Ei represents the i-th performance counter
listed in Table 2 and Ai is its corresponding coefficient. C is
a constant value that denotes the static power consumption.

3.3 Kernel extension

As mentioned above, we choose the AMD CodeXL v1.9
to sample the performance counter information and also
the power during the program execution. Unfortunately, we
found that for CodeXL, the sampling period could be over
100ms but formost kernels inRodinia 3.2, the execution time
is less than 10 ms. That means that the power information
cannot be profiled within one kernel execution. Intuitively,
we illustrate the conflict between the power sampling period
and the kernel execution time in Fig. 3.

123

A statistic approach for power analysis of integrated GPU 831

Fig. 4 Procedure of kernel extension

In order to overcome the above problem, we propose an
approach called kernel extension to lengthen their execution
time so that the power could be sampled within one ker-
nel execution. The kernel extension procedure is depicted
in Fig. 4. Particularly, kernels are rewritten and the original
functions repeat for thousands of times. In this way, each
kernel produces lots of hardware events within one kernel
execution time so that the CodeXL could profile enough data
information for the power model. Precisely, for high model
accuracy, we modify the benchmark to make the kernel exe-
cution time longer than 1 s so that the CodeXL could collect
at least 10 samples within one kernel execution.

To give a clearer picture, we take an application called
BackPropagation as an example. The details of the kernel
extension is as below.

1. Pick a kernel called bpnn_layerforward_ocl_k1_
Spectre1, which is used to calculate the power array.
Its original running time is only 0.4 ms.

2. The target running time is 1.7 s. Therefore, it needs to be
extended for 4000 times.

3. The main function of the kernel is the Addition, Subtrac-
tion, Multiplication, Division. Therefore, we make this
loop for 4000 times, and then re-compile and execute the
kernel.

4. The real running time of the kernel increases to 0.8 s.
However, it is still short compared to 1.7 s, and hence we
increase the loop times.

Table 3 Extended kernel execution in Rodinia

App. Kernel iT (ms) eT (ms)

Backprop bpnn_layerforward_ocl_k1 2.01 1699.45

bpnn_adjust_weights_ocl_k2 3.10 1988.48

BFS BFS_1_k1 0.10 2188.54

BFS_2_k2 0.09 1674.26

B+tree findRangeK_k1 2.15 1819.42

findK_k2 8.19 2114.41

Gaussian Fan1_k1 0.01 2049.41

Fan2_k2 0.20 1429.43

Heartwall kernel_gpu_opencl_k1 131.71 1530.07

Hotspot hotspot_k1 0.38 3526.27

Kmeans kmeans_swap_k1 88.92 2213.84

kmeans_kernel_c_k2 31.12 2182.16

Leukocyte GICOV_kernel_k1 14.29 1440.90

dilate_kernel_k2 7.55 1641.12

IMGVF_kernel_k3 42.17 2432.67

LavaMD kernel_gpu_opencl_k1 155.93 1556.52

NN NearestNeighbor_k1 0.10 1553.09

PF-naive particle_kernel_k1 5.53 1007.59

5. When the loop is repeated for 9000 times, the running
time of the kernel becomes 1699 ms which almost equals
to the target running time. We hence finish the extension
of bpnn_layerforward_ocl_k1_Spectre1.

The extended kernel execution time for each application
in Rodinia is depicted in Table 3. It is worth mentioning
that for some applications, simply adding the loop for the
computation task may meet some problems. This is due to
the complication of the OpenCL program framework. Par-
ticularly, adding too many loops could incur memory error.
Therefore, some special treatments are required for the kernel
extension.

3.4 Power profiling

We run the Rodinia 3.2 Benchmark Suite and use CodeXL
to collect the profiling data , as depicted in Fig. 5. It is worth
noting that the power sampled by the CodeXL is the global
consumption and not necessarily always related to the kernel
execution. For example, each time before a program starts
to execute, there always exists a setup phase which usually
does not involve the kernel. If we straightforwardly use the
sample power from the CodeXL for model evaluation, it may
occur errors and thus reduce the model accuracy. Therefore,
we need to pick the kernel-related power from the recorded
data to achieve high model accuracy.

To provide a clear picture, we choose the B+tree to illus-
trate this point. As depicted by Table 3, there are two kernels

123

832 Q. Wang et al.

Fig. 5 CodeXL for APU power profiling

Fig. 6 Power for kernels in B+Tree

for B+tree: findRangeK_k1 and findK_k2. We show the
details in Fig. 6. One can note that the first 19 sample cycles is
mainly for execution environment setup, and hence the power
consumption is quite small, e.g., 5–15 W. After that, the ker-
nel of findRangeK_k1 begins to execute and meanwhile the
power rapidly increases to around 35 W correspondingly.
When it comes to the 38 cycle, the power recorded decreases
sharply, which means the end of findRangeK_k1 execution.
Therefore, the power sampled from 19 cycle to 38 cycle is
particularly the total power consumption for findRangeK_k1.
As shown in Table 3, the running time of findRangeK_k1
is about 1800 ms, and hence is consistent with the sample
period. One can also note that the follow-up power recorded
appears similarly and is mainly for the findK_k2 execution.

Table 4 Statistical result

Multiple 0.997615

R square 0.995235

Adjusted R square 0.959498

Standard error 4.898391

4 Results and analysis

4.1 Model evaluation

We choose the Statistical Product and Service Solutions
(SPSS) to evaluate our regression model.

The statistical result of our model is shown in Table 4
and the regression coefficient of each performance counter
is listed in Table 5. Precisely, the model achieves an adjusted
R-square of 95.9%. This indicates that the linear relationship
between variables (both the independent and dependent ones)
is reliable.Moreover, one themedian absolute error is 2.12%,
showing a good predicting precision.

We also test the predication error of each kernel in the
Rodinia benchmark. The result is given in Table 6. Overall
speaking, our model is of high accuracy as each kernel error
is small. e.g., only 0.25% for kermel_gpu_opencl_k1.

4.2 Error analysis

One may notice that some kernels are of higher predication
error compared to others. For example, the error of find-
RangeK_k1 is 4.88%while that of particle_kernel_k1 is 6.02
%. The main reasons resulting in this are as follows.

123

A statistic approach for power analysis of integrated GPU 833

Table 5 Regression coefficients of the model

PC Coefficient PC Coefficient

VALUInsts −1.5E−05 WriteSize 1.54E−05

SALUInsts 3.03E−05 CacheHit −0.76

VFetchInsts 0.000187 MemUnitBusy 0.75

SFetchInsts −1.9E−06 MemUnitStalled −1.30

VALUUtilization −1.03153 WriteUnitStalled 226.03

VALUBusy 1.500774 LDSInsts 0.00022

SALUBusy −1.43736 LDSBankConflict 37.90

FetchSize 2.55E−06

Table 6 Predication errors for all kernels

Kernel Error (%) Kernel Error (%)

bpnn_layerforward_ocl_k1 2.63 hotspot_k1 0.48

bpnn_adjust_weights_ocl_k2 0.64 kmeans_swap_k1 0.31

BFS_1_k1 2.36 kmeans_kernel_c_k2 0.62

BFS_2_k2 3.60 GICOV_kernel_k1 0.80

findRangeK_k1 4.88 dilate_kernel_k2 3.91

findK_k2 1.06 IMGVF_kernel_k3 4.27

Fan1_k1 1.52 kernel_gpu_opencl_k1 0.25

Fan2_k2 3.86 NearestNeighbor_k1 2.21

kernel_gpu_opencl_k1 0.36 particle_kernel_k1 6.02

– Kernel extension On the one hand, we found that the
length of kernel execution time affects the prediction
error significantly. Particularly, our built model produces
high error for those kernels with short execution time.
This is because that the shorter time the kernel executes
for, the less power data the CodeXL could record, and
hence the higher sample error occurs. For example, the
execution time of particle_kernel_k1 is the shortest (i.e.,
1007.59 ms) among all the kernels while its correspond-
ing predication error is the highest (i.e., 6.02%). On the
other hand, as shown in Table 3, for each kernel, the
extended execution time is usually not integral multiple
of 100 ms while the CodeXL samples the power per 100
ms strictly. This would result in mismatching between
the power sample and the kernel execution.

– Implementation environment Beside the aforementioned
data measurement issue, the environment also plays an
important role in affecting the model accuracy. Essen-
tially, it would affect the static power consumption. The
following equations represent the relationship between
the static power consumption and the temperature and
the voltage.

Pidle = W1 × T + W0, (2)

where W1 = a3 × V 3 + a2 × V 2 + a1 × V + a0,W0 =
b3 ×V 3 +b2 ×V 2 +b1 ×V +b0. Here Pidle denotes the
static power and T denotes the temperature, V represents
the voltage and ai , bi (i ∈ [0, 3]) are constant multivari-
able coefficients. One can note from the above equation
that the static power of preprocessor is linear with the
temperature when other variables remain unchanged. In
ourmodel equation,weuse the constant valueC to denote
the static power. Ideally, this item should be stable dur-
ing model evaluation for achieving high model accuracy.
However, we are normally unable to guarantee that the
temperature remains stable during the experiment. The
heat caused by the executing programwould always raise
the environment temperature. Moreover, the temperature
raise would also reduce the voltage, which will reduce
both the W0 and W1.

5 Simplifying model for lower latency

The power of the processor is tightly related to the frequency
and voltage of the underlying processor. Normally, the power
consumption will be smaller when the processor frequency
and voltage are lower. Relying on this observation, dynamic
voltage frequency scaling (DVFS) was proposed to reduce
the processor frequency and voltage to lower the power con-
sumption of the processor. The processor power in both the
current and other states are considered for dynamic scaling.
While applying DVFS to APU, the processor is quite sen-
sitive to the instantaneity, which demands the power model
must have low latency. Furthermore, due to the combina-
tion of CPU and GPU, the space for other online resources
is quite limited on APU. If the power model is complicated
and includes many performance counters, it will be diffi-
cult for the design and usage of APU hardware. Therefore,
our goal here is to reduce the latency of the power model.
Particularly, we ask whether it is possible to cut down the
performance counters number involved in the power model
while the model accuracy remain high.

In this work, we first evaluate the importance of each per-
formance counter by exploring the relationship between the
type of performance counters and the standard error of power
models. We then further simplify the power model to tackle
with the aforementioned dilemmas. We mainly explore the
connection among the number of performance counters and
the stability and prediction accuracy of power model.

5.1 Performance counter evaluation

We first evaluate the sensitivity of the model and analyze
the importance of each performance counter so that we can
figure out the possibilities to simplify our built power model.

123

834 Q. Wang et al.

Fig. 7 Performance counter evaluation procedure

Fig. 8 Global error for performance counter

As depicted by Fig. 7, for each testing, one performance
counter is removed from the full model which is of 15 perfor-
mance counters. We then run the benchmark and sample the
power and performance counter to reconstruct the regression
model. Formally, for j-th (j ∈ [1, 15]) simplification, the
model equation is as follows:

PiGPU =
j−1∑

i=1

Ai · Ei +
15∑

i= j+1

Ai · Ei + C (3)

The goal of each simplifiedmodel is to evaluate the impor-
tance of the removed performance counter, based on which
we can simplify the model by removing those performance
counters that are of less importance and hence the simplified
one can still achieve high accuracy.

The accuracies, shown in Figs. 8 and 9, are compared to
the full model which has 15 performance counters. The accu-
racy variation directly reflects the importance of performance
counters. If the removed performance counter results in a sig-

Fig. 9 Maximum error for performance counter

nificant loss in the model accuracy, we say that it plays an
important role in the power consumption. Precisely, we have
the following conclusions.

– Most ALU performance counters play important roles in
the power consumption. In general, when anALUperfor-
mance counter is removed from the model, the resulting
errors and accuracy variations would be higher than that
of the full model. Particularly, the VALUBusy is the
most crucial one to the proposed model among all ALU
performance counters. It is worth mentioning that the
SFetchInsts is an exception, without which, the median
absolute error is 2.21%.

– The local memory performance counters are of various
importance.TheLDSInsts is quite a decisive component,
as it reflects the state of executing LDS instructions on
iGPU.Therefore,when the iGPU is processingmoreLDS
instructions, the resulting power consumption would
increase. The LDSBankConflict is very small, this is
because that the related hardware event rarely happens
and thus consumes little power.

– Simplified models without WriteSize and MemUnit-
Busy are still of high accuracy due to the small dataset
in the benchmark. One could notice similar cases on
MemUnitStalled, WriteUnitStalled. Essentially, in our
chosen benchmark, the cache hit rate is high and thus the
global memory access is small, leading to a low power
consumption (Fig. 10).

5.2 Model simplifying

Based on the above performance counter importance anal-
ysis, we have the fact that some performance counters do
not consume much power and thus affect the model accu-
racy slightly. Particularly, when theSFetchInsts is removed

123

A statistic approach for power analysis of integrated GPU 835

Fig. 10 Average error of performance counter

Fig. 11 Multi-simplification model building

from themodel, the accuracy is almost the same as that of the
full model. This shows the possibility for us to simplify the
model by removing SFetchInsts. To simplify the model, as
shown in Fig. 11, we start with the full model and gradually
remove the performance counters that are of less importance.
The simplification procedure stops when only 6 performance
counters remain in the list, resulting in 9 simplified models
for further analysis. These simplified models are equipped
with 14, 12,. . ., 6 performance counters, respectively.

Since nowwe removemore than one performance counter
from the power model, its stability would be possibly weak-
ened significantly. Normally, a power model with weak
stability is not suitable for DVFS even if it is still of high
accuracy.

Therefore, in addition to the median absolute error, we
choose the root mean square deviation (RMSE) to eval-
uate the accuracy and stability of the simplified models.
The RMSE can well indicate the sample standard deviation
between the predicted and observed values.

As depicted by Figs. 12 and 13, when the number of per-
formance counters are 11 or fewer, themedian absolute errors
of model would be above 10%, which means that the simpli-
fied model would provide inaccurate predictions. Generally

Fig. 12 Median absolute error of model with varied number of perfor-
mance counters

Fig. 13 Root mean square error of model with varied number of per-
formance counters

speaking, the higher RMSE indicates that the underlying
simplified model is of poor stability. Precisely, where there
are 12 (i.e., SFetchInsts, WriteUnitStalled andWriteSize
are removed) or more performance counters involved in the
model, the median absolute errors are 4.75, 3.86 and 2.21%,
respectively, and RMSEs keep below 0.02. This shows that
the three simplified models are still of high precision and
robustness.

6 Conclusion

In this work, we built a power model for iGPU in APU.
A mechanism, namely kernel extension, was proposed to
enable data profiling. Themedian absolute error of ourmodel
is 2.12%. To reduce the latency of our power model, we
also evaluated the role of each performance counter and
further simplified the full model by removing some perfor-
mance counters that consume less power. Our optimization
result showed that the model accuracy is still desirable
when only 12 performance counters are involved in the
model.

123

836 Q. Wang et al.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (61472431, 61272143 and 61272144).

Compliance with ethical standards

Conflicts of interest All authors declare that they have no conflicts of
interest regarding the publication of this manuscript.

References

AMD (2016) Amd codexl. http://developer.amd.com/tools-and-sdks/
opencl-zone/codexl/

Baghsorkhi SS, Delahaye M, Patel SJ, Gropp WD, HwuWMW (2010)
An adaptive performance modeling tool for gpu architectures. In:
ACM sigplan notices, vol 45, pp 105–114

Branover A, FoleyD, SteinmanM (2012) Amd fusion apu: Llano. IEEE
Micro 32(2):28–37

Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K (2008)
A performance study of general-purpose applications on graphics
processors using cuda. J Parallel Distrib Comput 68(10):1370–
1380

ChittyDM(2016) Improving the performance of gpu-based genetic pro-
gramming through exploitation of on-chip memory. Soft Comput
20(2):661–680

Corparation I (2016a) Intel core i7-920 processor. http://ark.intel.com/
product.aspx?id=37147

CorparationN (2016b)Geforce gtx 280. http://www.nvidia.com/object/
product_geforce_gtx280_us.html

Corparation N (2016c) What is cuda. http://www.nvidia.com/object/
what_is_cuda_new.html

Corparation N (2017) Machine learning. http://www.nvidia.com/
object/machine-learning.html

Diop T, Jerger NE, Anderson J (2014) Power modeling for heteroge-
neous processors. In: Proceedings of workshop on general purpose
processing using GPUs, p 90

Hong S, Kim H (2009) An analytical model for a gpu architecture with
memory-level and thread-level parallelism awareness. In: ACM
SIGARCH computer architecture news, vol 37, pp 152–163

Karami A, Khunjush F, Mirsoleimani SA (2015) A statistical perfor-
mance analyzer framework for opencl kernels on nvidia gpus. J
Supercomput 71(8):2900–2921

Karami A, Mirsoleimani SA, Khunjush F (2013) A statistical perfor-
mance prediction model for opencl kernels on nvidia gpus. In:
2013 17th CSI international symposium on computer architecture
and digital systems (CADS), pp 15–22

Leng J, Hetherington T, ElTantawy A, Gilani S, Kim NS, Aamodt TM,
Reddi VJ (2013) Gpuwattch: enabling energy optimizations in
gpgpus. In: ACM SIGARCH computer architecture news, vol 41,
pp 487–498

Li J, Du Q, Li Y (2016) An efficient radial basis function neural net-
work for hyperspectral remote sensing image classification. Soft
Comput 20(12):4753–4759

Luo C, Suda R (2011) A performance and energy consumption analyti-
cal model for gpu. In: 2011 IEEE ninth international conference on
dependable, autonomic and secure computing (DASC), pp 658–
665

Stone JE, Gohara D, Shi G (2010) Opencl: a parallel programming
standard for heterogeneous computing systems. Comput Sci Eng
12(3):66–73

Wang Y, Roy S, Ranganathan N (2012) Run-time power-gating in
caches of gpus for leakage energy savings. In: Design, automa-
tion & test in Europe conference & exhibition (DATE), 2012, pp
300–303

Wu G, Greathouse JL, Lyashevsky A, Jayasena N, Chiou D (2015)
Gpgpu performance and power estimation usingmachine learning.
In: 2015 IEEE 21st international symposium on high performance
computer architecture (HPCA), pp 564–576

Zhang Y, Owens JD (2011) A quantitative performance analysis model
for gpu architectures. In: 2011 IEEE 17th international symposium
on high performance computer architecture (HPCA), pp 382–393

ZhangH, XiaoN (2016) Parallel implementation ofmultilayered neural
networks based on map-reduce on cloud computing clusters. Soft
Comput 20(4):1471–1483

Zhang Y, Hu Y, Li B, Peng L (2011) Performance and power analysis
of ati gpu: a statistical approach. In: 2011 6th IEEE international
conference on networking, architecture and storage (NAS), pp
149–158

123

http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/
http://ark.intel.com/product.aspx?id=37147
http://ark.intel.com/product.aspx?id=37147
http://www.nvidia.com/object/product_geforce_gtx280_us.html
http://www.nvidia.com/object/product_geforce_gtx280_us.html
http://www.nvidia.com/object/what_is_cuda_new.html
http://www.nvidia.com/object/what_is_cuda_new.html
http://www.nvidia.com/object/machine-learning.html
http://www.nvidia.com/object/machine-learning.html

	A statistic approach for power analysis of integrated GPU
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 APU architecture
	2.2 OpenCL execution model
	2.3 CodeXL
	2.4 Rodinia benchmark

	3 Modeling methodology
	3.1 Experimental setup
	3.2 Regression factors determining
	3.3 Kernel extension
	3.4 Power profiling

	4 Results and analysis
	4.1 Model evaluation
	4.2 Error analysis

	5 Simplifying model for lower latency
	5.1 Performance counter evaluation
	5.2 Model simplifying

	6 Conclusion
	Acknowledgements
	References

