
Soft Comput (2018) 22:8353–8378
https://doi.org/10.1007/s00500-017-2783-4

METHODOLOGIES AND APPLICATION

CSA-WSC: cuckoo search algorithm for web service composition
in cloud environments

Mostafa Ghobaei-Arani1 · Ali Asghar Rahmanian2 · Mohammad Sadegh Aslanpour3 ·
Seyed Ebrahim Dashti3

Published online: 21 August 2017
© Springer-Verlag GmbH Germany 2017

Abstract In recent years, service-based applications are
deemed to be one of the new solutions to build an enterprise
application system. In order to answer the most demand-
ing needs or adaptations to the needs of changed services
quickly, service composition is currently used to exploit
the multi-service capabilities in the Information Technol-
ogy organizations. While web services, which have been
independently developed, may not always be compatible
with each other, the selection of optimal services and com-
position of these services are seen as a challenging issue.
In this paper, we present cuckoo search algorithm for web
service composition problem which is called ‘CSA-WSC’
that provides web service composition to improve the qual-
ity of service (QoS) in the distributed cloud environment.
The experimental results indicate that the CSA-WSC com-
pared to genetic search skyline network (GS-S-Net) and
genetic particle swarm optimization algorithm (GAPSO-

Communicated by V. Loia.

B Mostafa Ghobaei-Arani
mostafaghobaye@yahoo.com; m.ghobaei@qom-iau.ac.ir

B Ali Asghar Rahmanian
ali.a.rahmanian@ieee.org

Mohammad Sadegh Aslanpour
aslanpour.sadegh@gmail.com

Seyed Ebrahim Dashti
sayed.dashty@gmail.com

1 Department of Computer Engineering, Qom Branch, Islamic
Azad University, Qom, Iran

2 Department of Computer Science and Engineering and IT,
College of Electrical and Computer Engineering, Shiraz
University, Shiraz, Iran

3 Department of Computer Engineering, Jahrom Branch,
Islamic Azad University, Jahrom, Iran

WSC) reduces the costs by 7% and responding time by
6%, as two major reasons for the reduction of improve-
ment of the quality of service. It also increases provider
availability up to 7.25% and the reliability to 5.5%, as the
two important QoS criteria for improving the quality of
service.

Keywords Cloud computing · Web service composition ·
Quality of service · Cuckoo search algorithm

1 Introduction

In the cloud computing environment, computation is not per-
formed on the local computers, but it is done by the cloud
servers located in data centers, which provide infrastructure,
software and platform as Internet-based service. In fact, the
goal of cloud computing is to integrate hardware and software
as a service accessible to users through the Internet (Aslan-
pour et al. 2017; Buyya et al. 2010; Ghobaei-Arani et al.
2016, 2017a). The rapid development of cloud computing
leads to publishing many different web services throughout
theworld (Ghobaei-Arani and Shamsi 2015). Nowadays, one
of the new solutions to build an enterprise application sys-
tem is the service-based applications. Also, service-oriented
architecture is seen as a leading method in the architecture of
enterprise solutions. It provides a rapid response to changes,
requirement and service adaptation, and demands several
services available in the organization. For this reason, it is
necessary to identify the key elements of service-oriented
architecture (SOA) and restrictions of service composition
support, composition verification and automated composi-
tion (Simon et al. 2013; Piprani et al. 2013). The quality
of service (QoS) of web services refers to different non-
functional properties such as response time, availability and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2783-4&domain=pdf
http://orcid.org/0000-0003-2639-0900
http://orcid.org/0000-0001-9249-1633

8354 M. Ghobaei-Arani et al.

reliability. For a combination request, several candidate ser-
vices can be achieved so that they provide similar functions
with different QoS. Regarding the non-functional proper-
ties of QoS-based service, web services composition engine
establishes the best candidate services from the collection
services (Portchelvi et al. 2012). By increasing demands of
cloud service customers, cloud services have been expanded
and therefore they have been being grown rapidly (Rah-
manian et al. 2017). Since the capacity of a data center is
limited, to achieve more stable services, it seems that the
load distribution over global data centers can be a suitable
approach (Ghobaei-Arani et al. 2017b). Most web services
are established on cloud data centers distributed geographi-
cally around the world. The cloud data centers interdepend
on the network to communicate with each other and cloud
users. The network communication may have some effects
on the performance of service provided by the involved data
centers. The network QoS is a significant metric for web
service composition problem, and also it is important to
avoid violating the service-level agreement (SLA) during
the service composition process (Gholami and Ghobaei-
Arani 2015; Jula et al. 2014). In this paper, we propose a
new algorithm for web service composition problem in the
geographically distributed cloud environment. In proposed
algorithm, we used the cuckoo search technique for web ser-
vice composition problem; we then evaluated the response
time, cost, availability and reliability of the composition pro-
cess as four major QoS criteria. The service composition
problem is known as an NP-hard optimization problem in
that a larger service is provided by services integrating pro-
cesses. In many cases, the web services are deployed by
multiple service providers, and no single service can satisfy
a user’s needs. Therefore, we need a service composition
algorithm to combine several web services from different
service providers and fulfill the user’s requirements. In this
paper, we apply a new evolutionary optimization algorithm
called cuckoo search algorithm (CSA) (Rajabioun 2011) for
web service composition problem in the geographically dis-
tributed cloud environment called CSA-WSC. The CSA is
a novel nature inspired by lifestyle of a bird family called
cuckoo that is appropriate forwhere there is incomplete infor-
mation regarding the environment and in dynamic, complex,
or random environments with a large number of uncertainties
such as cloud environments, and it outperforms compared
to other well-known algorithms like particle swarm opti-
mization (PSO), ant colony optimization (ACO), genetic
algorithm (GA).

Themain contributions of this research canbe summarized
as follows:

• We present a meta-heuristic algorithm called CSA-WSC
to reduce the complexity of the approach compared with
other algorithms.

• Our algorithm considers the distributed network environ-
ment. Also, our algorithm considers not only the QoS of
the web services but also the network QoS.

• The cuckoo algorithm applied has more advantages such
as faster higher convergence speed, higher precision, abil-
ity to search for local as well as global search, much less
likely trapped in local optimum points.

The rest of this paper is organized as follows: In Sect. 2,
we focus on a survey of related works. Section 3 provides
the necessary backgrounds for the proposal of this paper. In
Sect. 4, we describe the proposed method. Section 5 presents
an experimental evaluation of the proposal, and we finally
present the conclusions and future works in Sect. 6.

2 Related works

This section will refer to some research about service com-
position in the cloud environment.

Zhou and Yao (2016) proposed a hybrid artificial bee
colony (HABC) algorithm for optimal selection of QoS-
based cloud manufacturing service composition. The HABC
algorithm employs both the probabilistic model of
Archimedean copula estimation of distribution algorithm
(ACEDA) and the chaos operators of a global best-guided
artificial bee colony to generate the offspring individualswith
consideration of quality of service and cloud manufactur-
ing environment. Experimental results have shown that the
HABC algorithm could find better solutions compared with
such algorithms as a genetic algorithm, particle swarm opti-
mization and basic artificial bee colony algorithm.

Yu et al. (2015) presented an ant colony optimization-
based algorithm for web service composition called ACO-
WSC, which attempts to select cloud combinations that are
feasible and use theminimumnumber of clouds. In theACO-
WSC algorithm, artificial ants travel on a logical digraph
to construct cloud combinations. The ACO-WSC algorithm
achieves a superior tradeoff between time and quality, and
it is a practical solution for deploying in multi-cloud web
service provision environments.

Wang et al. (2015) developed a genetic-based approach to
web service composition problem in a geo-distributed cloud
environment so that simultaneously minimizing SLA viola-
tions. To deal with cases where cloud datacenters are located
geographically, a QoS-based composition model for cloud
network environment is considered.

Seghir and Khababa (2016) a hybrid genetic algorithm
(HGA) to solve the QoS-aware cloud service composition
is proposed. The HGA combines two phases to perform
the evolutionary process search, including genetic algorithm
phase and fruit fly optimization phase. In genetic algorithm
phase, the global search process is performed, while the local

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8355

search process was carried out by the fruit fly optimization
phase.

Chen et al. (2016) designed a flexible QoS-aware web ser-
vice composition (QWSC) method by multi-objective opti-
mization in cloud manufacturing. The QWSC method con-
siders both theQoS performance and theQoS risk constraints
as the optimization objectives. Moreover, a ε-dominance
multi-objective evolutionary algorithm (EDMOEA) is devel-
oped to solve the large-scale QWSC.

Karimi et al. (2016) proposed a QoS-aware service
composition approach in cloud computing using data min-
ing techniques and genetic algorithm. In their proposed
approach, a genetic algorithm was used to achieve global
optimization about service-level agreement. Moreover, ser-
vice clustering was used for reducing the search space of the
problem, and association rules were used for a composite ser-
vice based on their histories to enhance service composition
efficiency.

Kurdi et al. (2015) proposed a novel combinatorial opti-
mization algorithm for cloud service composition (COM2)
that can efficiently utilize multiple clouds. The COM2 algo-
rithm ensures that the cloud with the maximum number of
services will always be selected before other clouds, which
increases the possibility of fulfilling service requests with
minimal overhead.

Liu and Zhang (2016) an approach of synergistic elemen-
tary service group-based service composition (SESG-SC) for
QoS-aware service composition problem in cloud manufac-
turing is presented. Their approach releases the assumptionof
a one-to-one mapping between elementary services and sub-
tasks, allowing a free combination of multiple functionally
equivalent elementary services into a synergistic elementary
service group (SESG) to perform each subtask collectively,
thereby bettering the overall QoS and achievingmore accept-
able success rate.

Qi et al. (2017) applied a knowledge-based differential
evolution (KDE) algorithm to solve web service composition
optimizing problem in cloud environments. Their algorithm
improves the accelerate convergence velocity by import-
ing structure knowledge. The simulation results indicate the
effectiveness of KDE in solving a complex optimization
problem with large-scale solution space compared with the
original differential evolution, particle swarm optimization
algorithms.

Wang et al. (2013) presented a particle swarm optimiza-
tion approach with skyline operator for fast cloud-based
web service (CWS) composition in cloud environments.
Their approach adopts skyline operator to prune redundant
CWS candidates and then employs particle swarm optimiza-
tion (PSO) to select CWS from amount of candidates for
composing single service into a more powerful composite
service.

Lartigau et al. (2015) described a method based on QoS
evaluation along with the geo-perspective using an improved
artificial bee colony (ABC) optimization algorithm in cloud
manufacturing. The modification of the original ABC ini-
tialization gives certain advantages at the start, targeting
the neighborhood directly around the shortest transportation
path. Also from a computational efficiency perspective, their
proposed algorithm is surely faster than PSO and GA opti-
mization.

Huo et al. (2015) proposed the discrete Gbest-guided
artificial bee colony (DGABC) algorithm for cloud service
composition which simulates the search for the optimal ser-
vice composition solution through the exploration of bees
for food. The DGABC algorithm has advantages in terms of
the quality of solution and efficiency compared with other
algorithms, especially for large-scale data.

Klein et al. (2014) developed the self-adaptive network-
aware approach to service composition in cloud environ-
ments. Their approach employs a self-adaptive genetic algo-
rithm which balances the optimization of latency and other
QoS as needed, and it handles the QoS of services and the
QoSof the network independently, improves the convergence
speed and finds compositions with low latency for a given
execution policy.

Zhao et al. (2015) presented a systematic approach based
on a fuzzy preference model and evolutionary algorithms
for SLA-constrained service composition problem. Authors
model this multi-objective optimization problem using the
weighted Tchebycheff distance rather than a linear utility
function and present a fuzzy preference model for preference
representation andweight assignment.Also, they present two
evolutionary algorithms (EA), single_EA and hybrid_EA,
that attempt to determine different types of optimization solu-
tions for service composition. Faruk et al. (2016) presented
a unique heuristic method to resolve the QoS-aware cloud
service selection using an enhanced genetic particle swarm
optimization (GPSO) algorithm which is broadly utilized to
crack hefty scale optimization issues. Also, the adaptive non-
uniformmutation (ANUM)approach is proposed to attain the
best particle globally to boost the population assortment on
the motivation of conquering the prematurity level of GPSO
algorithm.

Table 1 sums up some of themost relevantworks related to
web service composition techniques in cloud environments
based on four characteristics: (1) optimization techniques
used, (2) QoS criteria, (3) advantages and (4) disadvantages.

3 Preliminary

In this section,wefirst introduce theQoS-basedweb services,
location-based web services and composition services. We
then provide a brief overview of the cuckoo search algorithm.

123

8356 M. Ghobaei-Arani et al.

Ta
bl
e
1

Su
rv
ey

of
w
or
ks

re
la
te
d
to

w
eb

se
rv
ic
e
co
m
po
si
tio

n
te
ch
ni
qu
es

in
cl
ou
d
en
vi
ro
nm

en
t

R
ef
s

O
pt
im

iz
at
io
n
te
ch
ni
qu

e
Q
oS

cr
ite

ri
a

A
dv
an
ta
ge
s

D
is
ad
va
nt
ag
es

Z
ho
u
an
d
Y
ao

(2
01
6)

B
ee

co
lo
ny

T
im

e,
co
st
,a
va
ila

bi
lit
y,
re
lia

bi
lit
y

H
ig
h
ef
fic

ie
nc
y,
hi
gh

st
ab
ili
ty

H
ig
h
tim

e
co
m
pl
ex
ity

Y
u
et
al
.(
20
15
)

B
ee

co
lo
ny

E
xe
cu
tio

n
tim

e,
co
st

H
ig
h
ef
fic

ie
nc
y

L
ow

sc
al
ab
ili
ty

W
an
g
et
al
.(
20
15
)

Sk
yl
in
e-
ba
se
d
ge
ne
tic

al
go

ri
th
m

R
es
po

ns
e
tim

e,
pr
ic
e,
av
ai
la
bi
lit
y,

re
lia

bi
lit
y

L
ow

co
m
pu

ta
tio

n
tim

e,
hi
gh

sc
al
ab
ili
ty

In
co
m
pa
tib

ili
ty

Se
gh
ir
an
d
K
ha
ba
ba

(2
01
6)

G
en
et
ic
al
go

ri
th
m
+
fr
ui
tfl

y
T
im

e,
pr
ic
e,
av
ai
la
bi
lit
y,
re
lia

bi
lit
y

H
ig
h-
sp
ee
d
co
nv
er
ge
nc
e,
lo
w

co
m
pu

ta
tio

n
tim

e
H
ig
h
co
st

C
he
n
et
al
.(
20
16
)

G
en
et
ic
al
go

ri
th
m
+
ev
ol
ut
io
na
ry

al
go

ri
th
m

C
os
t,
ex
ec
ut
io
n
tim

e,
la
te
nc
y,

av
ai
la
bi
lit
y,
re
lia

bi
lit
y

H
ig
h-
sp
ee
d
co
nv
er
ge
nc
e

L
ow

sc
al
ab
ili
ty

K
ar
im

ie
ta
l.
(2
01
6)

G
en
et
ic
al
go

ri
th
m
+
da
ta
m
in
in
g

te
ch
ni
qu
es

R
es
po

ns
e
tim

e,
pr
ic
e,
av
ai
la
bi
lit
y,

su
cc
es
sa
bi
lit
y

H
ig
h
sc
al
ab
ili
ty
,h
ig
h
ef
fic
ie
nc
y,

lo
w
tim

e
H
ig
h
ov
er
he
ad

K
ur
di

et
al
.(
20
15
)

C
om

bi
na
tio

na
lo

pt
im

iz
at
io
n

E
xe
cu
tio

n
tim

e,
co
st

L
ow

ex
ec
ut
io
n
tim

e,
L
ow

ov
er
he
ad

H
ig
h
co
st

L
iu

an
d
Z
ha
ng

(2
01
6)

G
en
et
ic
al
go

ri
th
m

T
im

e,
co
st
,r
el
ia
bi
lit
y

H
ig
h
su
cc
es
s
ra
te
,l
ow

tim
e

co
nv
er
ge
nc
e

H
ig
h
tim

e
co
m
pl
ex
ity

Q
ie
ta
l.
(2
01
7)

D
if
fe
re
nt
ia
le
vo
lu
tio

n
R
es
po

ns
e
tim

e,
av
ai
la
bi
lit
y,

re
lia

bi
lit
y

H
ig
h-
sp
ee
d
co
nv
er
ge
nc
e,
lo
w

co
m
pu

ta
tio

n
tim

e
L
ow

sc
al
ab
ili
ty

W
an
g
et
al
.(
20
13
)

Pa
rt
ic
le
sw

ar
m

op
tim

iz
at
io
n+

sk
yl
in
e
op

er
at
or

R
es
po

ns
e
tim

e,
pr
ic
e,
re
pu

ta
tio

n
L
ow

co
st
,h

ig
h
ef
fic
ie
nc
y

L
ow

st
ab
ili
ty

L
ar
tig

au
et
al
.(
20
15
)

B
ee

co
lo
ny

Pr
ic
e,
tim

e,
av
ai
la
bi
lit
y,
re
lia

bi
lit
y,

m
ai
nt
ai
na
bi
lit
y

H
ig
h
sc
al
ab
ili
ty
,h
ig
h
ef
fic
ie
nc
y

H
ig
h
tim

e

H
uo

et
al
.(
20
15
)

B
ee

co
lo
ny

R
es
po

ns
e
tim

e,
pr
ic
e,
re
pu

ta
tio

n,
av
ai
la
bi
lit
y,
th
ro
ug
hp
ut

H
ig
h
sc
al
ab
ili
ty

H
ig
h
co
st

K
le
in

et
al
.(
20
14
)

G
en
et
ic
al
go

ri
th
m

L
at
en
cy
,p
ri
ce

L
ow

tim
e

L
ow

sc
al
ab
ili
ty

Z
ha
o
et
al
.(
20
15
)

Fu
zz
y
pr
ef
er
en
ce
+
ev
ol
ut
io
na
ry

al
go

ri
th
m

R
es
po

ns
e
tim

e,
pr
ic
e,
av
ai
la
bi
lit
y,

th
ro
ug
hp
ut

L
ow

tim
e

L
ow

sc
al
ab
ili
ty

Fa
ru
k
et
al
.(
20
16
)

Pa
rt
ic
le
sw

ar
m

op
tim

iz
at
io
n+

ge
ne
tic

al
go

ri
th
m

R
es
po

ns
e
tim

e,
pr
ic
e,
av
ai
la
bi
lit
y,

re
pu

ta
tio

n
H
ig
h-
sp
ee
d
co
nv
er
ge
nc
e

H
ig
h
tim

e
co
m
pl
ex
ity

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8357

3.1 The QoS-based web services

The QoS of web services describes the non-functional prop-
erties such as availability, reliability, response time. The QoS
of individual services is supplied by service providers, and
features of every QoS criterion are collected by user’s feed-
back. In this paper, we focused on four QoS criteria that
include: response time, cost, availability and reliability as
shown in Table 2. Also, SLA is defined by these four QoS
criteria.

3.2 Location-oriented web services

Since there are several individual services in different data
centers, the degree of distribution of these services effects
on the composited services QoS. For example, the indi-
vidual services located in the same data center compared
with two individual services on data centers that have been
deployed inAsia and Europe are different, and network delay
between them in communicating with each other is a signif-
icant parameter. The performance of the network is critical
to the composited services. Therefore, there are two types of
network latency: the network latency between services and
the network latency between services and the users. The net-
work latency between services, which is defined by variable
dt1 in Table 3, ismainly determined by the geographical loca-
tion of data centers in which those services are deployed. The
latency between data centers is measurable and predictable
since the number of data centers for cloud providers is limited
and stable. The cloud providers can save the network latency

between data centers to use easily in their cache. The network
latency between the service provider and the user, which is
defined by variable dt2 in Table 3, is mainly determined by
the network environment among the services, and it can also
be obtained from the network feedback (Wang et al. 2015).

3.3 Composited services

SLA refers to a contract between users and providers for the
guaranty of QoS criteria. In order to find whether a service
composition can meet the SLA, it is necessary to check the
quality of service by collecting of individual services QoS
criteria and network QoS. The composition service QoS is
related to composition path structure. As shown in Fig. 1,
there are three composition structures: sequential, parallel
and conditional (Wang et al. 2015). Computing of sequen-
tial structure QoS provides a basis for computing of other
structuresQoS.Granulation functions for computing theQoS
criteria of composition services in Table 3 are shown where
ti represents the response time, pi represents the price, ai
represents availability, and ri represents collected reliability
of the ith consecutive branches.

3.4 Cuckoo search algorithm

Cuckoo search algorithms (Rajabioun 2011; Wang et al.
2016a, b; Zhou et al. 2016; Fouladgar and Lotfi 2016) find
the proper answer at a certain distance from the optimal
solution which is called suboptimal solutions. The cuckoo
search algorithm is one of the strongest evolutionary algo-
rithms, which has a greater ability to find the global optimum
compared with other evolutionary algorithms. Algorithm 1
provides the pseudo-code of the cuckoo search algorithm.
This algorithm starts by an initial population. The popula-
tion of cuckoo has some eggs, which will be put in the nests
of some host eggs.

Those eggs that are similar to the eggs of host bird have
more chance to grow and become mature cuckoo. The other
eggs are recognized by the host bird, and they vanish. The
more eggs indicate the nests suitability of that area. If more
eggs can live and can also be rescued from that region, we
should pay more attention to that area. Therefore, the situ-

123

8358 M. Ghobaei-Arani et al.

Table 2 Examples of QoS criteria of single and independent services

QoS criteria Unit Description

Response time Millisecond The time between the moment a request comes in and the moment the result is obtained

Availability Percent The probability that a service is accessible

Cost Dollar The monetary cost that the user should pay to the service provider to use the service

Reliability Percent The probability that a service is trustworthy

Table 3 Aggregation functions for quality of service computation (Wang et al. 2015)

Availability Reliability Cost Response time

Sequential t = ∑N
i=1 st

i + ∑N−1
i=1 dti1 + ∑2

i=1 dt
i
2 a = ∏N

i=1 sa
i p = ∑N

i=1 sp
i r = Avgi=1,2,...,N sr

i

Parallel t = maxi=1,2,...,N T i a = ∏N
i=1 sa

i p = ∑N
i=1 sp

i r = Avgi=1,2,...,N sr
i

Conditional t = Avgi=1,2,...,N T
i a = Avgi=1,2,...,N sa

i p = Avgi=1,2,...,N sp
i r = Avgi=1,2,...,N sr

i

Fig. 1 The structure of the composition services. a Sequential. b Parallel. c Conditional

ation in which more eggs are rescued will be a parameter
for the cuckoo search algorithm (CSA) to optimize it. The
cuckoos search the best place for rescuing more eggs. After
hatching and becoming an adult cuckoo, they come together
to make homogenous groups. Each group selects a place to
live. The best place of all groups is the destination for the
next group. Everyone of the groups emigrates to that opti-
mal place, and each group settles near the best place. By
considering the number of eggs for each cuckoo and also
the distance of cuckoo from the optimal place, they take
into accent the radius of laying. After that, cuckoo starts
to lay into the next of radius of laying randomly. This pro-
cess continues to reach the optimal play for laying. That
optimal place is the place in which many cuckoos are gath-
ered.

4 The proposed algorithm

In this section, we firstmodel the cloudweb service composi-
tion problem.After offering a cloudweb service composition
model, a workflow example in cloud computing is provided
to show the way in which web service composition is applied
to serve tasks of a cloud application. The objective function

of the given problem is also stated. Finally, the proposed
algorithm is described as the CSA-WSC.

4.1 Web service composition model

The abstract model of the web service composer is depicted
in Fig. 2. A workflow of user’s requests is specified by the
service requester. Service composition request section in the
figure is used to serve the given tasks. Cloud combiner deter-
mines the candidate cloud web services for the requested
tasks. Composition planner selects a subset of candidate
cloud web services to execute the tasks. Finally, a service
composition sequence for the given workflow is the output
of the cloud web service composition model.

Let sc = {s1, s2, . . ., sn} denote a collection of web ser-
vices where si (1 ≤ i ≤ n) denotes the i th web service.
Each service provider published a set of web services as
shown in Fig. 2. A cloud set (CS) is a set of m clouds
CS = {C1,C2, . . .,Cm} where Ci (1 ≤ i ≤ m) denotes the
i th cloud.

Generally, a cloud web service composition problem can
be defined by a triple < I,G,W > where I shows the
start point that is provided by the customer’s request (ini-
tial interface); G indicates the goal interface that is provided

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8359

Fig. 2 Service composer model for cloud computing environments

Fig. 3 An example of web service composition

by customer’s requests (goal interface); and W denotes a set
of available web services in clouds that can be used (web
services). A sequence of web services ordered by their usage
is the solution to the given problem such that the solution
sequence π ⊆ w.

Hence, a composite service is the process of selecting a
subset of provided web services for tasks. As an example,
Fig. 3 shows that several similar services are available for
each task.

123

8360 M. Ghobaei-Arani et al.

4.2 Objective function of the WSC problem

According to the described problem and the mentioned
aggregation functions for the quality of service, the objec-
tive function of web service composition problem can be
formulized as follows:

Max
x∑

i=1

k∑

j=1

Quality j (πi) .w j (1)

Subject to :
Quality j (πi) ≤ SLAi, j (2)

0 ≤ w j ≤ 1 (3)
k∑

j=1

w j = 1 (4)

whereπi is a subset of candidate web services that are chosen
in a sequence to execute tasks; Quality j (πi) function calcu-
lates the j th qualitative parameter that is specified for the i th
workflow by the user. SLAi, j (1 ≤ i ≤ x and 1 ≤ j ≤ k)
denotes the j th qualitative constraint for the i th workflow
that is specified by the user. The weight of the j th qualitative
parameter is denoted by w j (1 ≤ j ≤ k).

4.3 The CSA-WSC

In this section, the proposed algorithm, i.e. the cuckoo search
algorithm for web service composition (CSA-WSC), is pro-
vided step by step based on the structure of cuckoo search
algorithm. The steps of the proposed algorithm for selecting
web services are shown in Fig. 4.

4.3.1 The first step: the production of the initial habitat of
cuckoo based on the needed services

In order to solve the given problem, the values of variables of
the problem should be in the form of an array. In genetic algo-
rithm (GA) and particle swarm optimization (PSO), these
arrays are distinguished as chromosome and particle posi-
tion, while at the cuckoo search algorithm this array is called
habitat. In proposed algorithm, for each cuckoo two criteria
to be considered, and the sample services table with their
index are stored. The initial population of cuckoos is shaped,
due to the needed services for each request. For better under-
standing about how to the production of initial population
and proposed algorithm, an example is explained. If the num-
ber of sample service is considered to 30, each request may
need between 1 and 30 services and the sum of the atomic
services number for each sample is 200. For example, if a
request needs six types of services, it is clear that the algo-
rithm parameter of cuckoowill determine like Table 4. Based
on the parameters for the given an example in Table 4, the

length of each cuckoo from the population is 6, as shown in
Table 5.

If the solution of the problem needs finding Nvar responses
at the next optimal problem, next Nvar that will be a habitat
and array which has the current position of the life of cuckoo.
It is defined in the format ofHabitat = [X1, X2, X3,, XNvar].
Here each X is corresponding to the position of a cuckoo.
Each cuckoo has twoparts; the habitat and itsQoS. InTable 6,
the position of sample cuckoo is provided. Each X index of
a service is the sum of atomic services in request sample.

In order to improve the quality of solution and the speed
of convergence, one part of initial population is produced
based on the concept of horizon line according to Eq. (5)
and the rest are produced randomly, so that, P is the initial
population, N is the length of habitat array, and SL is the
number of selected services obtained in the skyline series.

P = SL/N + (N − SL)/N (5)

For example, if the number of cuckoo habitats (variable X)
is six, therefore, the half of the services (three services) are
specified by the skyline series and the other three services are
selected randomly. In fact, three-sixth of the initial population
is generated based on the concept of the skyline, and the other
three-sixth population is randomly generated.

Definition 1 (Dominance) for two individual services S1
and S2 in service set, called S1, dominates on S2 when the
following conditions are met:
{
∀

(
q−
i.1.q

−
i,2

)
|q−

i.1 ≤ q−
i.2

}
∧ {∀ (

q+
i.1.q

+
i.2

) |q+
i.1 ≥ q+

i.2

}
(6)

{∃ (
q−
i.1.q

−
i.2

) |q−
i.1 < q−

i.2

} ∨ {∃ (
q+
i.1.q

+
i.2

) ∣
∣q+

i.1

〉
q+
i.2

}
(7)

where q−
i, j is the ith negative QoS criteria of S j atomic ser-

vice and q+
i. j also is the ith positive QoS criteria of S j atomic

service. In the following, we can see an example of the def-
inition of dominance in Figs. 5, 6 and 7 and corresponding
Tables 7, 8 and 9. Four criteria are used to cover the quality
of service, which contain two positive QoS criteria: reliabil-
ity and availability, and two negative QoS criteria: cost and
response time.

According to Fig. 5, individual service S5 dominates an
individual service S3, or individual service S2 is not deter-
mined by other individual services. That is, the individual
service S2 has no dominance.

According to Fig. 6, the individual service S1 is dominated
by individual service S3, or the individual service S5 is not
determined by other individual services. In other words, the
individual service S5 has no dominance. Right now, we can
get all four QoS criteria and obtain the average of positive
and negative QoS criteria in Fig. 7.

Definition 2 (horizon line set) It is a subset of services, and
it has produced alone available service in service set, which

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8361

Fig. 4 The flowchart of the
CSA-WSC

Table 4 The parameters
initialization of cuckoo search
algorithm

Parameter Amount in example Description

Nvar 6 The number of sample services in request

LB 1 The lower bound of atomic service set

UB 200 The upper bound of atomic service set

Npop 50 The number of the first cuckoos

Max iteration 200 Maximum number of iterations for the algorithm

123

8362 M. Ghobaei-Arani et al.

Table 5 The sample of request
structure

Request 1 # Request 2 # Request 3 # Request 4 #Request 5 # Request 6

7 15 4 9 20 29

Table 6 The sample of the
cuckoo structure to sample of
request structure Table 5

X1 X2 X3 X4 X5 X6

80 190 50 3 120 40

Fig. 5 Weight of the positive QoS criteria

Fig. 6 Reverse weight of negative QoS criteria

Fig. 7 The average of positive and negative QoS criteria

Table 7 The services weight
for each criterion

A R C T

S1 0.6 0.1 0.5 0.4

S2 0.9 0.3 0.1 0.7

S3 0.3 0.2 0.7 0.6

S4 0.8 0.6 0.3 0.6

S5 0.5 0.5 0.5 0.1

S6 0.2 0.8 0.8 0.2

Table 8 Reverse the negative
weight

C T

S1 0.5 0.6

S2 0.9 0.3

S3 0.3 0.4

S4 0.7 0.4

S5 0.5 0.9

S6 0.2 0.8

has no domination. For example, according to Fig. 7, horizon
line set of positive values is (S2, S4, S6) and the horizon line
of negative values is (S2, S4, S5) and the horizon line of each
four values is (S5, S2, S4).

Therefore, the computation cost for horizon line set
become more expensive while the number of individual ser-
vices increases.

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8363

Table 9 Average of positive and negative QoS criteria

Inverse of (T+C)/2 (T+C)/2 (A+R)/2

S1 0.55 0.45 0.35

S2 0.6 0.4 0.6

S3 0.35 0.65 0.25

S4 0.55 0.45 0.7

S5 0.7 0.3 0.5

S6 0.5 0.5 0.5

4.3.2 The second step: the evaluation of initial population
using fitness function

The fitness function is used to evaluate the suitability of the
current habitat. Since we give each position of a cuckoo one
adaptable value based on SLA, we consider twoQoS criteria:
the positive and negative QoS criteria. The increase in posi-
tive QoS criteria like availability and reliability is useful. The
decrease in negative QoS criteria like time and cost is also
important for users. The fitness function should reinforce the
increase in positiveQoS criteria and decrease in negativeQoS
criteria. Also, fitness function also needs to show the priority
of users. The users prefer different QoS criteria. For exam-
ple, some users prefer services with a higher availability and
lower response time in SLA. For calculating fitness value,
the value of QoS criteria needs to be normalized according
to Eqs. (8) and (9) for positive and negative QoS criteria,
respectively.

ζ−
i (CS) = Sq−

i − q−
i (CS)

Sq+
i

(8)

ζ+
i (CS) = q+

i (CS) − Sq+
i

Sq+
i

(9)

where ζ−
i and ζ+

i are normalized values of the ith QoS crite-
rion of composited services, qi is the ith of QoS criterion, and
Sq−

i is the ith of QoS constrain specified in SLA. To avoid
SLA violations, positive QoS criteria should be increased
at the same time negative QoS criteria is decreased. We also
need to consider the user’s preference in fitness value calcula-
tion.We use∝i as a parameter to reflect the user’s preference.
The higher value of ∝i indicates the high level of QoS cri-
terion. As mentioned above, fitness function is expressed by
Eq. (10):

f (cs) =
o∑

i=1

∝i ×ζi (cs) (10)

o∑

i=1

∝i = 1 (11)

Fig. 8 Levy flight to move toward to the optimal cuckoo

where o refers to the number of QoS criteria. The aim of
proposed algorithm is to find composited services with high
fitness value.

4.3.3 The third step: movement toward optimal cuckoo with
applying Levy flight

According to the fitness function, the value of each cuckoo
or in other words the rate of quality function of the provided
service is measured. In this step, firstly, the most valuable
cuckoo is chosen. Afterward, cuckoos move toward it with
limited step using Levy flight. This means that the selected
services have the best value basedon the cost and the response
time as two negative QoS criteria and availability and relia-
bility as two positive QoS criteria. Figure 8 shows the sample
of Levy flight.

It is important to note that if less valuable cuckoos are
moved to the exact position of the optimal cuckoo, we will
have no new responses and thus the movement and exchange
will be useless. The flight function each Levy is according to
Eq. (12):

L (s.γ .μ) =
√

γ

2π

1

(s − μ)
3
2

exp

(

− γ

2 (s − μ)

)

0 < μ < s < ∞ (12)

where μ is minimum steps and γ is the size parameter. If
s → ∞:

L (s.γ .μ) =
√

γ

2π

1

(s − μ)
3
2

s → ∞ (13)

We use Eq. (14) to generate the random step s.

s = u

|v|1/β (14)

where v and u are usually random variables.

u ∼ N
(
0.σ 2

u

)
, v ∼ N

(
0.σ 2

u

)
(15)

123

8364 M. Ghobaei-Arani et al.

Subject to:

σ =
{

� (1 + β) sin (πβ/2)

� |(1 + β)/2| β2(β−1)/2

}1/β

(16)

whereΓ is the gamma function. A distribution obtained from
Eq. (14) for s will be a Levy distribution to |S| ≥ |S0| that S0
is the smallest step. After Levy flight, if the next position has
much superior fit, the next position should be replaced as a
better position. Otherwise, the previous position is preserved.

4.3.4 The fourth step: creation random movement pattern
for all cuckoo’s population

To make a better distribution between lower bound (LB) and
upper bound (UB) to achieve the more probable answers,
a random movement is used for the entire population with
the Levy flight. In this step, the value of S is calculated by
Eq. (17). Thus, those two cuckoo positions will be selected
randomly. The difference between those two positions is cal-
culated, and the result is multiplied by the random value.

S = rand. (nest (randperml (n) . :)
−nest (randperm2 (n) . :))
nestt+1 = nestt + S ∗ P (17)

where nest is the position matrix of all cuckoo’s, nestt is
the current position cuckoo’s and nestt+1 will be the next
position cuckoo’s. To calculate the next position, we should
calculate the value of P according to Eq. (18):

P =
{
1 if rand < P.a
0 if rand ≥ P.a

(18)

The value of P is determined by the initial parameter Pa.
Thus, a random number is generated (rand); if the random
number is larger than Pa, the previous position ismaintained,
whereas if the random number is smaller than Pa, the next
position based on the S is achieved.

4.3.5 The fifth step: selection of the best cuckoo

The best cuckoo will be selected as a generation response.
After a few iterations of all cuckoo’s population, they will
have the greatest overall benefit to a point which is an opti-
mum level of superior fit and in which the lowest number
of eggs will be disappear. Best position specifically is those
services that are selected to offer the request.

5 Performance evaluation

In this section, we evaluate the effectiveness of applying
the proposed CSA-WSC for combining web services in dis-
tributed cloud environments. Some web services are selected
and then composited and given to the applicant as a service
set. The selection of the best web services for a workflow
based on QoS criteria is the major role of the proposed algo-
rithm. First, we describe the performance criteria and the
simulation settings, and then we present and discuss experi-
mental results.

5.1 Performance criteria

We applied the following the performance QoS criteria for a
comparison of proposed algorithm with other algorithms:

Response time is the amount of time between the start of
the request and the receipt of the response by the user from
the cloud.

Cost is the amount of money the user pays for the request
for any virtual machine, based on the amount of memory,
processes, and bandwidth consumed. It is calculated by Eq.
(19):

Cost =
K∑

i=1

Ci×Ti (19)

where K is the number of virtual machines allocated to user
requests, Ci is the cost of a virtual machine, and Ti is the
time for which the user can use the virtual machine.

Reliability is an indicator of the successful running of a
task by the virtual machine in a datacenter and is expressed
by Eq. (20) as follows (Koren and Krishna 2010):

Reliability(RE)Vk = Ck

Ak
(20)

where Ak is the number of tasks accepted by avirtualmachine
Vk , and Ck is the number of tasks completed by the virtual
machine of Vk in a time limit T .

Availability is the possibility of accessing the virtual
machines requested by a user from a datacenter. Suppose
V1, V2, V3, ..., Vn are virtual machines in a datacenter; for
any k = 1, 2, 3, ..., n the percentage availability for a vir-
tual machine of a datacenter is calculated using Eq. (21) as
follows (Bauer and Adams 2012):

Availability(AV)Vk = MTTFk
MTBFk

= MTTFk
MTTFk + MTTRk

(21)

whereMTTF is the mean time for which the resource works
correctly without failure; MTTR is mean time to repair the

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8365

Table 10 The datacenters specification

Architecture x86

Operation system Cloud linux

Virtual machine manager XEN

Table 11 The host specification in a datacenter

Name Processor
type

Number
of core

Frequency
(MIPS)

Main
memory
(GB)

Bandwidth

Host1 Intel Xeon
2540

4 512 4 1 Gbit/s

resource after failure, and MTBF is the mean time between
two failures in a resource.

Note that for any datacenter, the average availability, the
average reliability, the average cost and the average response
time can be computed.

5.2 Experimental setup

The experiments presented in this section were developed
using cloudsim toolkit (Calheiros et al. 2011). The struc-
ture of all the datacenters used in the simulation is shown in
Table 10. In each data center, there is a host. In Table 11, each
host specification is detailed. When the hardware hosted is
more powerful and of a higher level, the cost of access to the
resources on the virtual machine on this host increases.

Since one of the effective criteria is response time, the
amount of latency or user interval from the datacenter is
set to a random value with a normal distribution based on
the distance between users and the datacenter, user and the
service set, and the datacenters shown in Table 12. Further-
more, parameter settings for the algorithms are provided in
Table 13. Also, the values of four QoS criteria of datacenters,
response time, cost, availability and reliabilitywere produced
at the start of the simulation process shown in Table 14.

5.3 Experimental analysis

To evaluate the proposed algorithm, the experimental eval-
uation is formed in three different scenarios according
to Table 15. We compared the proposed algorithm with
three most effective WSC algorithms as follows: A genetic-
based generic algorithm which considers the network delay
(GS-S-Net) (Wang et al. 2015); a genetic particle swarmopti-
mization algorithm (GAPSO-WSC) (Faruk et al. 2016) is
used for discovering optimum regions from complex search
spaces via the collaboration of individuals in a crowd of
particles; a greedy-based algorithm for web service compo-
sition (Greedy). In the Greedy algorithm, the user’s region

Table 12 Values of communication delay timebetweenuser, datacenter
and service set

Communication Produce the initial
values

Between user
and datacenter

The random normal
distributed
between 20 and
500

Between user
and service set

The random normal
distributed
between 50 and
400

Between
datacenters

The random normal
distributed
between 5 and 50

is first determined. Then, the largest datacenter in terms of
free resources is chosen from the available datacenters and
allocated to the user.Also, the simulation results ofQoS crite-
ria under CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy
algorithms in each scenario are reported.

5.3.1 The first scenario

In this scenario, the number of sample services is set 10, and
the number of services is set 200, 400 and 500, respectively.
First, the effect of the number of atomic services per set on
the function values ofGS-S-Net andCSA-WSCalgorithms is
evaluated (see Fig. 9). The fitness function values of theCSA-
WSC outperform GS-S-Net and GAPSO-WSC algorithms,
while it has higher integration in finding solutions. It is also
can be seen that the CSA-WSC has less deviation in fitness
function because it has faster convergence than the GS-S-
Net algorithm and thus there is less possibility not to give
the expected fitness value. The GAPSO-WSC algorithm has
better performance compared with GS-S-Net because it uses
PSO algorithm besides genetic algorithm, which provides
better exploitation and exploration in the search space.While
the increase in fitness results in the decrease in cost and Fig. 9
shows that the CSA-WSC provides better fitness compared
with other algorithms, the cost incurred by applying CSA-
WSC is reduced (see Fig. 10).

Based on the QoS criteria discussed in Sect. 5.1, Fig.10
shows the cost of three CSA-WSC, GS-S-Net and Greedy
algorithms with the number of requests from 1000 to 10,000.

According to Fig. 10, it is clear that the cost of the Greedy
algorithm is more than that of other algorithms, while it has
a very simple idea of finding a suboptimal solution with-
out any complexity. In contrast, the proposed CSA-WSC
decreased the WSC cost to an acceptable level. Actually,
cuckoos are able to make better solutions compared to the
other algorithms and thus the incurred cost of dedicated
and service composition is reduced. According to Fig. 10,

123

8366 M. Ghobaei-Arani et al.

Table 13 Parameter settings of the algorithms

Variant CSA-WSC GAPSO-WSC GS-S-Net

Termination condition Number of generation Number of generation Number of generation

Number of initial population 50 50 50

Number of generation 200 200 200

Cuckoo radius move 3.2 × ×
Step size 0.01 × ×
Selection operator × Rolette wheel Rolette wheel

Mutation (probability) × Boundary (0.1) Boundary (0.1)

Crossover (probability) × Single-point(0.9) Single-point(0.9)

Number of particles × 25 ×

Table 14 Values of four QoS
criteria of datacenters

Factor Produce the initial values

Response time The random normal distributed between 20 and 1500

Cost The random normal distributed between 2 and 15

Availability The random normal distributed between 0.95 and 1

Reliability The random normal distributed between 0.4 and 1

Table 15 Proposed scenarios for evaluating algorithms

Scenario Various services Number of services in each set Objective

First scenario 10 200, 400, 500 Studying the simulation results CSA-WSC,
GAPSO-WSC, GS-S-Net and Greedy algorithms in
terms of QoS criteria including response time, cost,
reliability, availability under scenario different

Second scenario 30 200, 400, 500

Third scenario 60 200, 400, 500

Fig. 9 The comparison of
fitness values in the CSA-WSC,
GAPSO-WSC and GS-S-Net
algorithms in the first scenario

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8367

Fig. 10 The cost of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the first scenario

when the number of requests increases, the value of reduc-
tion cost increases significantly. The second most important
criterion is the availability of the service. Figure 11 shows
the provider’s availability over a different number of requests
for the first scenario.

According to Fig. 11, provider’s availability in the CSA-
WSC is higher than other algorithms, which specifies that the
proposed CSA-WSC provides a more appropriate distribu-
tion of requests over web services. This means that requests
are better distributed among service sets that lead to increas-
ing in availability. The reliability or the trust of the service
provider is another important criterion. Figure 12 shows the
service providers reliability level of different CSA-WSC for
the first scenario.

Figure 12 indicates that the CSA-WSC has a higher relia-
bility.When a service is selected appropriately, the number of
failed or uncompleted tasks is reduced in a provider. When
a number of failed tasks is low in a service provider, this
means that the reliability of the provider is in high level.
Another important criterion is the response time of requests.
We executed each simulation five times, and the average of
results is provided in figures. The results of Fig. 13 show that
the Greedy algorithm has less response time and has high
speed in responding. However, when the request increases,
the execution time of the Greedy algorithm increases more.
Hence, GS-S-Net and CSA-WSC algorithms have higher
execution time in executionswith a lower number of requests.
In contrast, by increasing the number of requests, the incurred
cost of the Greedy algorithm compared to other algorithms
becomes more significant, while GS-S-Net and CSA-WSC
algorithms still able to choose the best composition of web
services regardless of increasing the number of possible

solutions. Thus, we can conclude that the better service com-
position compared to the execution time is more important
in case inaccurate service composition results in cost, less
reliability and/or less availability. Furthermore, Fig. 14 illus-
trates the box plot of different algorithms for different QoS
criteria. As can be seen, the median line of the positive QoS
criteria (availability and reliability) for the proposed CSA-
WSC is higher than the comparing algorithms, which shows
improvement in this terms. Also, the median line of negative
QoS criteria (cost and time) for the proposed algorithm is
lower than the comparing algorithms. Thus, the ranges of all
quartiles in all QoS criteria confirm that the proposed algo-
rithm outperforms other algorithms.

5.3.2 The second scenario

In this scenario, the number of services is 30, and the service
set is 200, 400 and 500. Figure 15 shows the fitness function
values for CSA-WSC, GS-S-Net and GAPSO-WSC algo-
rithms over a different number of atomic service per set. Due
to the great convergence of CSA-WSC, its fitness compared
to theGAPSO-WSCandGS-S-Net algorithm is better.While
the increase in fitness results in the decrease in cost, the pro-
posed CSA-WSC provides a better fitness compared to other
algorithms and thus the cost incurred by applying CSA-WSC
is reduced (see Fig. 15).

Figure 16 shows the amount of cost in CSA-WSC,
GAPSO-WSC, GS-S-Net and the Greedy algorithms with
a different number of requests categorized between 1000
to10000. As seen in Fig. 16, the incurred cost by the Greedy
algorithm is more than other algorithms. In comparison
with GAPSO-WSC and GS-S-Net algorithms, CSA-WSC

123

8368 M. Ghobaei-Arani et al.

Fig. 11 The service availability of the CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the first scenario

Fig. 12 The service reliability of the CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the first scenario

decreases the amount of dedicated cost and the composition
service. Accurate composition of web services by cuckoos
reduced the incurred costs. Figure 16 illustrates that the
increase in the number of requests brings more and more
considerable decrease in the incurred cost by the proposed
CSA-WSC compared to other algorithms. It is also done
because of the availability of service set. Figure 17 shows
the amount of availability of providers in the whole process
of the second scenario.

According to Fig. 17, provider’s availability in the CSA-
WSC is higher than that of the other algorithms, which
indicates that proposed algorithm provides more appropri-

ate distribution requests. This means that requests are better
distributed among service sets. Decreasing the busy time of
service sets and increasing their availability depend on the
more suitable distribution. The third important criterion is
service provider reliability. Figure 18 shows the provider’s
service reliability in the whole second scenario process.

Figure 18 indicates that reliability rate in the CSA-WSC
algorithm is higher. When a service is selected appropriately,
failed or uncompleted task occurs less in a provider. When
the number of failed-task is reduced in a service provider, this
means that the reliability of the provider is increased.Another
important criterion is request response time. Figure 19 shows

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8369

Fig. 13 Average of requests response time in the CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the first scenario

Fig. 14 Boxplot of different algorithms for different QoS criteria in the first scenario

123

8370 M. Ghobaei-Arani et al.

Fig. 15 The comparison of the
fitness values in the CSA-WSC,
GAPSO-WSC and GS-S-Net
algorithms in the second
scenario

Fig. 16 The cost of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the second scenario

the average requests response time for different algorithms
over a different number of requests.

Figure 19 shows that the Greedy algorithm has a lower
response time and has high speed in responding fore case
with a number of requests lower than three thousand. How-
ever, an increase in the number of requests results in higher
response time for the Greedy algorithm compared to the
other algorithms. The reason that the algorithms are low in
the light number of requests is low-selected action in the
cuckoo search algorithm and genetic algorithm. Therefore,
the increase in the number of requests leads to better selection
of web service composition sets. Thus, we can conclude that
service composition quality compared to the execution time
ismore important in case inaccurateweb service composition

for cloud applications results in cost, less reliability and/or
less availability. Figure 20 depicts the box plot of different
algorithms for different QoS criteria. As shown, the median
line of the positive QoS criteria for the proposed CSA-WSC
is higher, while the median line of the negative QoS crite-
ria of the CSA-WSC is lower compared to GAPSO-WSC,
GS-S-Net and Greedy algorithms. Therefore, the ranges of
the upper and lower quartiles in QoS criteria show that the
CSA-WSC outperforms other algorithms.

5.3.3 The third scenario

Similarly to other scenarios, the sample size is considered 60
and the number of services set 200, 400 and 500, respectively,

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8371

Fig. 17 The service availability of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the second scenario

Fig. 18 The service reliability of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the second scenario

in this scenario. To compare the performance of the GAPSO-
WSC, GS-S-Net and CSA-WSC algorithms, fitness function
values are evaluated over a different number of atomic ser-
vices per set in Fig. 21. As can be seen, due to higher
integration of CSA-WSC, the fitness function value gener-
ated by this algorithm is better than by GAPSO-WSC and
GS-S-Net algorithms. Given that the task of fitness function
is to minimize the cost, Fig. 22 indicates that the CSA-WSC
reduces the incurred cost more than GAPSO-WSC and GS-
S-Net algorithms.

Given the important criteria discussed at the beginning
of the evaluation, Fig. 22 shows the cost of the three CSA-
WSC, GAPSO-WSC, GS-S-Net andGreedy algorithmswith

the number of requests between 1000 and 10,000. According
to Fig. 22, it is clear that the cost of Greedy algorithms is
more than other algorithms. It specifically becomes more
significant as the number of requests increases while in this
case the algorithm faces with a wider pool of solutions for
the problem. In comparison with GAPSO-WSC and GS-S-
Net algorithms, the proposed CSA-WSC reduced the total
incurred costs. The reason of reducing the total costs has
faster convergence that causes better fitness function values,
and thus it brings more optimal solutions.

According to Fig. 22 when the requests number increases,
the cost also significantly increases. However, the proposed
algorithm is more stable in finding near-optimal solutions

123

8372 M. Ghobaei-Arani et al.

Fig. 19 Average requests response time on three CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the second scenario

Fig. 20 Boxplot of different algorithms for different QoS criteria in the second scenario

while the number of requests increases. Consequently, the
incurred costs of the proposed CSA-WSC are much less
than other algorithms in case the number of requests is high.
Service availability, as another important criterion, for the

proposed CSA-WSC has a better situation compared to other
algorithms (see Fig. 23). It shows that requests are better
distributed among service sets. Decreasing the busy time of

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8373

Fig. 21 The comparison of
fitness values in the CSA-WSC,
GAPSO-WSC and GS-S-Net
algorithms in the third scenario

Fig. 22 The cost of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the third scenario

services sets and increasing their availability depend on the
more suitable distribution.

Figure 24 shows providers service reliability in the third
scenario. As can be seen, it indicates that the reliability of the
CSA-WSC is higher. When a service set is selected appro-
priately, the number of failed or incomplete tasks occurs
less. When the number of failed tasks is reduced in a ser-
vice provider, this means that the reliability of the provider
is increased. Figure 25 shows request response time for dif-
ferent algorithms over a different number of requests.

Results Fig. 25 specifies that the increase in the number
of services results in the higher incurred costs for GAPSO-
WSC, GS-S-Net and Greedy algorithms, while the proposed

CSA-WSC algorithm was not much affected by the number
of requests. Thus, it works better because of finding better
solutions. TheCSA-WSC in a pool of very large solutions can
be suitable as well as in the smaller solutions, while its fitness
convergence is quite faster than other algorithms. Figure 26
illustrates the box plot of different algorithms for different
QoS criteria. As can be seen, the median line of the positive
QoS criteria for the proposed CSA-WSC is higher, while the
median line of the negative QoS criteria of the CSA-WSC
is lower compared to GAPSO-WSC, GS-S-Net and Greedy
algorithms. Thus, the ranges of the upper and lower quartiles
in the QoS criteria show that the CSA-WSC outperforms
other algorithms.

123

8374 M. Ghobaei-Arani et al.

Fig. 23 The service availability of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the third scenario

Fig. 24 The service reliability of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the third scenario

5.3.4 Total comparison

In this section, we sum up all the evaluations of the three
prior scenarios. To do so, the superiority of the algorithms
regarding the quality of service is evaluated.

As mentioned in the previous subsections, the conver-
gence speed of the cuckoos is very effective on finding the
near-optimal solutions. Here, we first evaluate the conver-
gence speed of the proposed CSA-WSC in three scenarios.
Figure 27 illustrates the fitness function values of the three
scenarios over time generation. As is seen, the fitness values
for the first scenario grow faster than other scenarios, while

it seems that the problems in this scenario have been easier
to be solved. Furthermore, the fitness function values in the
second scenario are also increased faster than the third sce-
nario. It shows that the most challenging scenario is the last
one as the fitness function over time generation indicates this
fact.

According to Fig. 27, proposed CSA-WSC converges at a
faster rate compared with other baseline algorithms. Besides
from converge speed, the proposed algorithm provides better
fitness in all scenarios. Thus, Fig. 27 proves the fact that
cuckoos provide a fast increase in the fitness value over time

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8375

Fig. 25 Average requests of response time of CSA-WSC, GAPSO-WSC, GS-S-Net and Greedy algorithms in the third scenario

Fig. 26 Boxplot of different algorithms for different QoS criteria in the third scenario

generation and thus convergence of the algorithm to the target
solution is quite fast.

According to Fig. 28, it is clear that the average requests of
response time on the Greedy algorithm are higher than those

on other algorithms. By comparing the values of GAPSO-
WSC, GS-S-Net and CSA-WSC algorithms in Fig. 28, it
becomes clear that the low diversity of service and pro-
portion of the number of low service set, there is a slight

123

8376 M. Ghobaei-Arani et al.

Fig. 27 Performance of CSA-WSC, GAPSO-WSC, GS-S-Net algorithm over generation

Fig. 28 Average requests
response time in three positions
10, 30 and 60 samples of service

time difference between algorithms. By increasing any ser-
vice diversity, CSA-WSC response time reduces compared
toGAPSO-WSCandGS-S-Net algorithms,which represents
the optimal performance of this algorithm in the high services
diversity.

Figure 29 shows the resource allocation costs on three
algorithms. According to Fig. 29, it is clear that when the
numbers of providers and thus the number of sample ser-
vices increase, the CSA-WSC decreases the availability of
the composition cost and dedicates services. Regarding two

main criteria such as response time and resource costs, it
is concluded that the proposed CSA-WSC. Finally, the pro-
posedCSA-WSC is amore suitable algorithm forweb service
composition problem in the geographically distributed cloud
environment. While experimental results in some cases and
criteria seem tobehard for evaluation,wehere conduct paired
t test in order to show whether there are significance differ-
ences between the performances of the algorithms. To do
so, we executed the algorithms under three different num-
ber of instance services and ten different number of requests.

123

CSA-WSC: cuckoo search algorithm for web service composition in cloud environments 8377

Fig. 29 Average cost of service
composition in three positions
10, 30 and 60 samples of service

Table 16 Statistical comparison
of proposed CSA-WSC with
other baseline algorithms

Criteria Algorithm N Mean SD df t value p value

Fitness GAPSO-WSC 30 0.013678 0.014263 29 2.876899 0.010305

GS-S-Net 30 0.012222 0.011234 29 3.264009 0.005729

Cost GAPSO-WSC 30 23.05756 38.46142 29 3.283588 0.001339

GS-S-Net 30 38.14815 53.1205 29 3.933435 0.00024

Greedy 30 98.77608 86.63239 29 6.244995 0.040 × 10−09

Availability GAPSO-WSC 30 23.05756 38.46142 29 3.283588 0.001339

GS-S-Net 30 38.14815 53.1205 29 3.933435 0.00024

Greedy 30 98.77608 86.63239 29 6.244995 0.048 × 10−09

Reliability GAPSO-WSC 30 0.003033 0.006815 29 2.437818 0.01057

GS-S-Net 30 0.003355 0.007316 29 2.511508 0.008922

Greedy 30 0.013639 0.005954 29 12.54715 0.015 × 10−15

Hence, we had 30 different experiments. Each experiment
with a specific number of instance service and the number of
requests is executed ten times, and the median results for the
experiment are considered as the experiment result.

Table 16 shows the statistical results of paired t-test that
determine the significance level of proposed algorithm com-
pared to other algorithms regarding fitness, cost, availability
and reliability. The table provides criteria, an algorithm to be
compared with the proposed algorithm, the number of tests,
mean and standard deviation differences between the pro-
posed and baseline algorithms, degrees of freedom, t value
and p value. To do a statistical evaluation, a paired t test with
a significance level of p < 0.05 is done to evaluate if the dif-
ferences were statistically significant. As is seen in Table 16,
there is a meaningful difference between proposed algorithm
and other algorithms, while p value in all cases is lower than
0.05. Given certainty, more than 0.95 proves that proposed
algorithm has significant improvement in terms of all crite-
ria. Thus, the null hypothesis is rejected, and it is shown that

the differences, compared with the baseline algorithms, are
significant.

6 Conclusion and future work

Today, users are increasingly accustomed to using the Inter-
net to gain software resources in the form of web services.
Through service composition technologies, loosely coupled
services that are independent of each other can be integrated
into value-added composited services. Most web services
are deployed on cloud data centers distributed geographi-
cally around the world. In this paper, we have addressed the
problem of web service composition in geo-distributed cloud
environments. We have proposed a cuckoo search algorithm
to solve theweb service composition problem.Our algorithm
considers not only the QoS of the web services but also the
network QoS. The results of the simulation indicate that our
algorithm can achieve a close to optimal result in terms of
QoS criteria. In our future work, we aim at developing a

123

8378 M. Ghobaei-Arani et al.

linear programming strategy. This will make our algorithm
more practical and effective.

Compliance with ethical standards

Conflict of interest We have no conflict of interest to declare.

Ethical approval All procedures performed in studies involving
human participants were in accordance with the ethical standards of
the institutional and/or national research committee and with the 1964
Declaration of Helsinki and its later amendments or comparable ethical
standards.

Human and animal participants This article does not contain any
studies with human participants or animals performed by any of the
authors.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

Aslanpour MS, Ghobaei-Arani M, Toosi AN (2017) Auto-scaling web
applications in clouds: a cost-aware approach. J Netw Comput
Appl 95:26–41. doi:10.1016/j.jnca.2017.07.012

Bauer E, Adams R (2012) Reliability and availability of cloud comput-
ing. Wiley, Hoboken

BuyyaR, Broberg J, GoscinskiAM (2010)Cloud computing: principles
and paradigms, vol 87. Wiley, Hoboken

Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R
(2011) CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms. Softw Pract Exp 41(1):23–50

Chen F, Dou R, Li M, Wu H (2016) A flexible QoS-aware Web ser-
vice composition method by multi-objective optimization in cloud
manufacturing. Comput Ind Eng 99:423–431

Faruk MN, Prasad GLV, Divya G (2016) A genetic PSO algorithm
with QoS-aware cluster cloud service composition. In: Thampi
MS, Bandyopadhyay S, Krishnan S, Li K-C, Mosin S, MaM (eds)
Advances in signal processing and intelligent recognition systems.
Springer, Cham, pp 395–405

Fouladgar N, Lotfi S (2016) A novel approach for optimization in
dynamic environments based on modified cuckoo search algo-
rithm. Soft Comput 20(7):2889–2903

Ghobaei-AraniM, ShamsiM (2015) An extended approach for efficient
data storage in cloud computing environment. Int J Comput Netw
Inf Secur 7(8):30

Ghobaei-Arani M, Jabbehdari S, Pourmina MA (2016) An autonomic
approach for resource provisioningof cloud services.ClusterCom-
put 19(3):1017–1036

Ghobaei-Arani M, Jabbehdari S, Pourmina MA (2017a) An autonomic
resource provisioning approach for service-based cloud applica-
tions: a hybrid approach. Future Gener Comput Syst. doi:10.1016/
j.future.2017.02.022

Ghobaei-Arani M, Shamsi M, Rahmanian AA (2017b) An efficient
approach for improving virtual machine placement in cloud
computing environment. J Exp Theor Artif Intell. doi:10.1080/
0952813X.2017.1310308

Gholami A, Ghobaei-Arani M (2015) A trust model based on quality
of service in cloud computing environment. Int J Database Theor
Appl 8(5):161–170

Huo Y, Zhuang Y, Gu J, Ni S, Xue Y (2015) Discrete gbest-guided
artificial bee colony algorithm for cloud service composition. Appl
Intell 42(4):661–678

Jula A, Sundararajan E, Othman Z (2014) Cloud computing service
composition: a systematic literature review. Expert Syst Appl
41(8):3809–3824

KarimiMB, Isazadeh A, Rahmani AM (2016) QoS-aware service com-
position in cloud computing using data mining techniques and
genetic algorithm. J Supercomput 73(4):1387–1415

KleinA, IshikawaF,Honiden S (2014) SanGA: a self-adaptive network-
aware approach to service composition. IEEE Trans Serv Comput
7(3):452–464

Koren I,KrishnaCM(2010) Fault-tolerant systems.MorganKaufmann,
Burlington

Kurdi H, Al-Anazi A, Campbell C, Al Faries A (2015) A combinatorial
optimization algorithm for multiple cloud service composition.
Comput Electric Eng 42:107–113

Lartigau J, Xu X, Nie L, Zhan D (2015) Cloud manufacturing service
composition based on QoS with geo-perspective transportation
using an improved Artificial Bee Colony optimization algorithm.
Int J Prod Res 53(14):4380–4404

Liu B, Zhang Z (2016) QoS-aware service composition for cloud
manufacturing based on the optimal construction of synergistic
elementary service groups. Int J Adv Manuf Technol 88(9–
12):2757–2771

Piprani B, Sheppard D, Barbir A (2013) Comparative analysis of SOA
and cloud computing architectures using fact based modeling. In:
Demey YT, Panetto H (eds) On the move to meaningful internet
systems: OTM 2013 Workshops. Springer, Berlin, Heidelberg, pp
524–533

Portchelvi V, Venkatesan VP, Shanmugasundaram G (2012) Achieving
web services composition-a survey. Softw Eng 2(5):195–202

Qi J, Xu B, XueY,WangK, SunY (2017) Knowledge based differential
evolution for cloud computing service composition. J Ambient
Intell Humaniz Comput. doi:10.1007/s12652-016-0445-5

Rahmanian AA, Dastghaibyfard GH, Tahayori H (2017) Penalty-aware
and cost-efficient resource management in cloud data centers. Int
J Commun Syst. doi:10.1002/dac.3179

RajabiounR (2011)Cuckoo optimization algorithm.Appl. Soft Comput
11(8):5508–5518

Seghir F, Khababa A (2016) A hybrid approach using genetic and fruit
fly optimization algorithms for QoS-aware cloud service compo-
sition. J Intell Manuf. doi:10.1007/s10845-016-1215-0

Simon B, Goldschmidt B, Kondorosi K (2013) A metamodel for the
web services standards. J Grid Comput 11(4):735–752

Wang S, SunQ, ZouH,Yang F (2013) Particle swarm optimizationwith
skyline operator for fast cloud-based web service composition.
Mobile Netw Appl 18(1):116–121

Wang D, Yang Y, Mi Z (2015) A genetic-based approach to web ser-
vice composition in geo-distributed cloud environment. Comput
Electric Eng 43:129–141

Wang GG, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016a) Chaotic
cuckoo search. Soft Comput 20(9):3349–3362

Wang H, Wang W, Sun H, Cui Z, Rahnamayan S, Zeng S (2016b) A
new cuckoo search algorithm with hybrid strategies for flow shop
scheduling problems. Soft Comput 18(1):116–121

Yu Q, Chen L, Li B (2015) Ant colony optimization applied to web
service compositions in cloud computing. Comput Electric Eng
41:18–27

Zhao X, Shen L, Peng X, Zhao W (2015) Toward SLA-constrained
service composition: an approach based on a fuzzy linguistic pref-
erence model and an evolutionary algorithm. Inf Sci 316:370–396

Zhou X, Liu Y, Li B, Li H (2016) A multiobjective discrete cuckoo
search algorithm for community detection in dynamic networks.
Soft Comput. doi:10.1007/s00500-016-2213-z

Zhou J, Yao X (2016) A hybrid artificial bee colony algorithm for
optimal selection of QoS-based cloud manufacturing service com-
position. Int J Adv Manuf Technol 88(9–12):3371–3387

123

http://dx.doi.org/10.1016/j.jnca.2017.07.012
http://dx.doi.org/10.1016/j.future.2017.02.022
http://dx.doi.org/10.1016/j.future.2017.02.022
http://dx.doi.org/10.1080/0952813X.2017.1310308
http://dx.doi.org/10.1080/0952813X.2017.1310308
http://dx.doi.org/10.1007/s12652-016-0445-5
http://dx.doi.org/10.1002/dac.3179
http://dx.doi.org/10.1007/s10845-016-1215-0
http://dx.doi.org/10.1007/s00500-016-2213-z

	CSA-WSC: cuckoo search algorithm for web service composition in cloud environments
	Abstract
	1 Introduction
	2 Related works
	3 Preliminary
	3.1 The QoS-based web services
	3.2 Location-oriented web services
	3.3 Composited services
	3.4 Cuckoo search algorithm

	4 The proposed algorithm
	4.1 Web service composition model
	4.2 Objective function of the WSC problem
	4.3 The CSA-WSC
	4.3.1 The first step: the production of the initial habitat of cuckoo based on the needed services
	4.3.2 The second step: the evaluation of initial population using fitness function
	4.3.3 The third step: movement toward optimal cuckoo with applying Levy flight
	4.3.4 The fourth step: creation random movement pattern for all cuckoo's population
	4.3.5 The fifth step: selection of the best cuckoo

	5 Performance evaluation
	5.1 Performance criteria
	5.2 Experimental setup
	5.3 Experimental analysis
	5.3.1 The first scenario
	5.3.2 The second scenario
	5.3.3 The third scenario
	5.3.4 Total comparison

	6 Conclusion and future work
	References

