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Abstract An accurate mathematical model has a vital role
in controlling and synchronization of chaotic systems. But
generally in real-world problems, parameters are mixed with
mismatches and distortions. This paper proposes two sim-
ple but effective estimation methods to detect the unknown
parameters of chaotic models. These methods focus on
improving the performance of a recently proposed evolu-
tionary algorithm called backtracking search optimization
algorithm (BSA). In this research firstly, a new operator to
generate initial trial population is proposed. Then a group
search ability is provided for the BSA by proposing a shuf-
fled BSA (SBSA). Grouping population into several sets can
provide a better exploration of search space, and an inde-
pendent local search of each group increases exploitation
ability of the BSA. Also new proposed operator to generate
initial trial population, by providing a deep search, increases
considerably the quality of solutions. The superiority of the
proposed algorithms is investigated on parameter identifica-
tion of 10 typical chaotic systems. Practical experiences and
nonparametric analysis of obtained results show that both
of the proposed ideas to improve performance of original
BSA are very effective and robust so that the BSA by afore-
mentioned ideas produces similar and promising results over
repeated runs. A considerably better performance of pro-
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posed algorithms based on average of objective functions
demonstrates that the proposed ideas can evolve robustness
and consistence of BSA. A comparison of the proposed algo-
rithms in this study with respect to other algorithms reported
in the literature confirms a considerably better performance
of proposed algorithms.
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1 Introduction

Chaos is a common feature in nonlinear dynamical systems.
Nonlinear systems which have chaos feature are highly sen-
sitive to initial conditions so that a small change in initial
conditions of dynamic system yields widely diverging out-
comes. It causes an infinite number of unstable periodic
motions, so behavior of nonlinear systems becomes unpre-
dictable and complex to be analyzed. Chaotic behavior exists
in many real-world systems and phenomena such as biolog-
ical systems, for example chaotic behavior in the population
growth or in epileptic brain seizures, ecological systems,
for example chaotic model for hydrology, economic and
financial systems, for example improving economic mod-
els, transportation and traffic systems, for example traffic
forecasting, chemical reactions, for example peroxidase–
oxidase reaction and electrical engineering, for example
chaotic oscillators. However, all the aforementioned systems
and phenomena are stochastic and even unpredictable, but
they are actually deterministic in nature and they can be
predicted and controllable by natural laws if mathematical
models of them are successfully constructed.

The traditional trend of analyzing and understanding
chaos has already evolved a new phase in investigation:
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controlling and utilizing chaos where detecting the unstable
periodic orbits and estimating the unknown parameters of the
chaos are of vital importance (Gao et al. 2013). So for control-
ling and synchronization of chaotic systems, a mathematical
model is vital. Since such models have been applied in defi-
nite chaotic systems with predetermined system parameters,
however, there generally exist parameter mismatches and
distortions in real-world problems. Therefore, this topic has
become popular among the researchers, and numerous scien-
tific studies have been proposed to overcome this drawback
by suggesting novel solution (Wang and Xu 2011).

Parameter estimation of chaotic systems can be modeled
as amultidimensional optimization problem after defining an
appropriate fitness function. Since in this problem, the struc-
ture of system model is known in advance, the optimization
methods should optimize a fitness function which is a dif-
ference between output of the true system and the estimated
model under the same inputs. By this modeling, a variety
of optimization methods can be applied on it to extract its
unknown parameters. This issue has been becoming topic of
many researches during the past two decades (Konnur 2003;
Park and Kwon 2005; Zaher 2008; Yu et al. 2009; Sun et al.
2009;Li et al. 2011). The original parameters of a chaotic sys-
tem are not easy to estimate because of the unstable dynamic
of the chaotic system. Meanwhile, it is very difficult for tra-
ditional mathematical methods to identify the true values of
those parameters to achieve global optimization, since there
are lots of local optima in the landscape of the goal func-
tion. Nowadays, the development of effective approaches for
solving parameter estimation is still a hot topic with signif-
icance in both academic and engineering fields (Wang and
Xu 2011).

Tendency of recent researches for parameter estimation
of chaotic systems has been propelled to heuristic algo-
rithms especially with stochastic search techniques such as
evolutionary algorithms (EAs). The EAs have a prominent
advantage over other types of numerical methods. They only
require information about the objective function itself, which
can be either explicit or implicit. Other accessory properties
such as differentiability or continuity are not necessary. As
such, they are more flexible in dealing with a wide spectrum
of problems (Brest et al. 2006).

A wide variety of EAs are progressively being applied
on parameter estimation of chaotic systems in recent years
such as differential evolution (DE) (Tang et al. 2012; Gao
et al. 2014), particle swarm optimization (PSO) (Yuan and
Yang 2012; Chen et al. 2014), biogeography-based optimiza-
tion (BBO) (Wang and Xu 2011; Lin 2014) and artificial bee
colony (Gao et al. 2012; Hu et al. 2015).

One of the very recently proposed population-based EAs
is the backtracking search optimization algorithm (BSA)
(Civicioglu 2013). Civicioglu (2013) in an attempt to develop
a simpler and more effective search algorithm and to miti-

gate the effects of problems that are frequently encountered
in EAs, such as excessive sensitivity to control parameters,
premature convergence, and slow computation, proposed the
BSA. It has only a single control parameter which the BSA
is not oversensitive to the initial value of this parameter. By
employing amemory, this algorithm allows to take advantage
of experiences gained fromprevious generationswhen it gen-
erates a trial preparation. After Civicioglu (2013), only one
another improved version of this algorithm was proposed in
different literature. Lin (2015) proposed an opposition-based
version of BSA for parameter identification of hyperchaotic
systems. This new version of BSA is trying to increase the
diversity of initial population and to accelerate the conver-
gence speed. The current research is an attempt to provide a
grouping and parallel search ability for the BSA algorithm.
This idea was borrowed from shuffled frog leaping algorithm
(SFLA) (Eusuff and Lansey 2003). Based on this idea, a
population is divided into several groups and then each of
these groups tries to evolve itself using a BSA evolutionary
process. After a predefined repetition of this evolutionary
process, all groups are shuffled together and new groups are
made and this process is repeated again. Grouping popula-
tion into several sets canprovide abetter explorationof search
space, and an independent local search increases exploitation
ability of BSA. Also a possibility of rebuilding groups with
new members causes participating each of members in pre-
vious experience of all other members. Another concept to
evolve exploitation ability of BSA in this research is to pro-
pose a new operator to generate initial trial population. This
new operator provides a deep search around found promising
areas.

The rest of the paper is organized as follows. In the next
section, chaotic systems and dynamic equations of employed
typical systems are described. In Sect. 3, the BSA is briefly
presented. In Sect. 4, the utilized strategy to improve the
BSA is discussed. The simulation results are presented and
analyzed in Sect. 5. Section 6 concludes the paper.

2 Chaotic systems

In this sectionfirstly, the chaotic systems are brieflydescribed.
Then problem of parameter identification of chaotic systems
is formulated as an optimization problem. In the last part of
this section, dynamic equations of 10 typical chaotic systems
are described.

2.1 Chaotic system description and problem
formulation

Generally, chaotic systems are nonlinear deterministic sys-
tems. Those display complex, noisy-like and unpredictable
behaviors. The sensitive dependency on both initial condi-
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tions and parameter variations is a prominent characteristic
of chaotic behavior. A general form for chaotic systems is
given as follows (Jiang et al. 2015):

ẋ(t) = f (x(t), x(t − τ), x0, θ) (1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn denotes the
state vectors of chaotic system, ẋ(t) denotes the derivative
of the state vector x(t), x(t − τ) denotes delay vector (τ
is the delay), x0 = [x01, x02, . . . , x0n]T is the initial vector,
and θ = [θ1, θ2, . . . , θm]T ∈ Rm are unknown parameters,
and suppose the form of nonlinear vector function f : Rn ×
Rm → Rn is known and f is continuously differentiable.

Since the structure of system model is known in advance,
the estimated system can be depicted as follows:

˙̂x(t) = f (x̂(t), x̂(t − τ̂ ), x0, θ̂ ) (2)

where x̂(t) = [x̂1(t), x̂2(t), . . . , x̂n(t)]T ∈ Rn denotes the

state vectors, τ̂ and θ̂ =
[
θ̂1, θ̂2, . . . , θ̂m

]T ∈ Rm are the

identification of unknown parameter τ and θ , respectively.
The basic principle of parameter estimation is to com-

pare the output of the true system and the estimated model
under the same inputs and to adjust the parameters θ =
[θ1, θ2, . . . , θm]T ∈ Rm for minimizing a predefined error
function for a number of given samples, e.g., the following
sum square error (SSE) function.

SSE =
L∑

k=1

∥∥x(k) − x̂(k)
∥∥2 (3)

where x̂(k) is the output of the model with estimated param-
eters, L denotes the total number of sampling points, and ‖.‖
represents the Euclidean norm of vectors. So in an overall
view, the problem of parameters identification for a chaotic
system to be solved using an optimization method can be
formulated as follows:

min J =
L∑

k=1

∥∥x(k) − x̂(k)
∥∥2

subject to

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f (x(t), x(t − τ), x0, θ)
˙̂x(t) = f (x̂(t), x̂(t − τ̂ ), x0, θ̂ )

Li ≤ θ̂i ≤ Ui i = 1, . . . ,m
τ̂min ≤ τ̂ ≤ τ̂max

(4)

(θ̂ , τ̂ ) is decision vector, and the optimization goal is to
minimize J . Li and Ui correspond to the upper and lower
boundary of θ̂i , respectively. Also τ̂min and τ̂max are the upper
and lower boundary of τ̂ , respectively (Jiang et al. 2015).

The parameter estimation of chaotic systems is not easy
because of the unstable dynamic of the chaotic systems.

Moreover, due to multiple variables in the problem and mul-
tiple local search optima in the landscape of the objective
functions, traditional optimization can easily trap in local
optima. Nowadays, the development of effective approaches
for solving parameter identification is still an active research
subject with significance in both academic and engineering
fields (Wang and Xu 2011). So this research proposes two
new versions of BSA for efficiently solving this problem.

2.2 Dynamic equations of typical chaotic systems

This section describes dynamic equations of 10 typical
chaotic systems. To the best our knowledge, most of the
papers applied on parameter identification of chaotic systems
employed at most three systems to investigate their proposed
methods. This research to provide a better investigation about
performance of proposed algorithms uses 10 typical chaotic
systems. Also since characteristics of all systems such as
number of unknown parameters, dynamic range of parame-
ters, initial conditions and number of samples are definite, so
theses sets of typical chaotic systems can be used as a cri-
terion to investigate and compare performance of different
algorithms in the future researches.

Example 1 Lorenz chaotic system.

ẋ1(t) = θ1(x2(t) − x1(t))

ẋ2(t) = θ2x1(t) − x2(t) − x1(t)x3(t)

ẋ3(t) = x1(t)x2(t) + θ3x3(t)

x1(0) = 0.1, x2(0) = 0.1x3(0) = 0.1

t = 1, 2, . . . , 100 (5)

where the parameters to be estimated are [θ1, θ2, θ3]. In
this example, the real system parameters are assumed to be
[θ1, θ2, θ3] = [10, 28, 2.6667]. In addition, the searching
ranges are set as follows: 5 ≤ θ1 ≤ 15, 20 ≤ θ2 ≤ 30 and
0.1 ≤ θ3 ≤ 10.

Example 2 Chen chaotic system.

ẋ1(t) = θ1(x2(t) − x1(t))

ẋ2(t) = θ4x1(t) − x1(t)x3(t) + θ3x2(t)

ẋ3(t) = x1(t)x2(t) − θ2x3(t)

x1(0) = −9, x2(0) = −5, x3(0) = 14

t = 1, 2, . . . , 100 (6)

where the parameters to be estimated are [θ1, θ2, θ3, θ4]. In
this example, the real system parameters are assumed to be
[θ1, θ2, θ3, θ4] = [35, 3, 28,−7]. In addition, the searching
ranges are set as follows: 30 ≤ θ1 ≤ 40, 0.1 ≤ θ2 ≤ 10,
20 ≤ θ3 ≤ 30 and −10 ≤ θ4 ≤ −0.1.
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Example 3 Rossler chaotic system.

ẋ1(t) = −x2(t) − x3(t)

ẋ2(t) = x1(t) + θ1x2(t)

ẋ3(t) = θ2 + x1(t)x3(t) − θ3x3(t)

x1(0) = 0.5, x2(0) = 1.5, x3(0) = 0.1

t = 1, 2, . . . , 100 (7)

where the parameters to be estimated are [θ1, θ2, θ3]. In
this example, the real system parameters are assumed to
be [θ1, θ2, θ3] = [0.5, 0.2, 10]. In addition, the searching
ranges are set as follows: 0.1 ≤ θ1 ≤ 1, 0.1 ≤ θ2 ≤ 1 and
5 ≤ θ3 ≤ 15.

Example 4 Arneodo chaotic system.

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −θ1x1(t) − θ2x2(t) − θ3x3(t) + θ4x
3
1(t)

x1(0) = −0.2, x2(0) = 0.5, x3(0) = 0.2

t = 1, 2, . . . , 100 (8)

where the parameters to be estimated are [θ1, θ2, θ3, θ4].
In this example, the real system parameters are assumed
to be [θ1, θ2, θ3, θ4] = [−5.5, 3.5, 0.8,−1.0]. In addition,
the searching ranges are set as follows: −6 ≤ θ1 ≤ −5,
2 ≤ θ2 ≤ 5, 0.1 ≤ θ3 ≤ 1 and −1.5 ≤ θ4 ≤ −0.5.

Example 5 Duffing chaotic system.

ẋ1(t) = x2(t)

ẋ2(t) = x1(t) − x31(t) − θ1x2(t) + θ2 cos(θ3t)

x1(0) = 0.21, x2(0) = 0.31

t = 1, 2, . . . , 100 (9)

where the parameters to be estimated are [θ1, θ2, θ3]. In
this example, the real system parameters are assumed to
be [θ1, θ2, θ3] = [0.15, 0.31, 1]. In addition, the searching
ranges are set as follows: 0.1 ≤ θ1 ≤ 1, 0.1 ≤ θ2 ≤ 1 and
0.1 ≤ θ3 ≤ 2.

Example 6 Genesio-Tesi chaotic system.

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −θ1x1(t) − θ2x2(t) − θ3x3(t) + θ4x
2
1 (t)

x1(0) = −0.1, x2(0) = 0.5, x3(0) = 0.2

t = 1, 2, . . . , 100 (10)

where the parameters to be estimated are [θ1, θ2, θ3, θ4]. In
this example, the real system parameters are assumed to

be [θ1, θ2, θ3, θ4] = [1.1, 1.1, 0.45, 1.0]. In addition, the
searching ranges are set as follows: 1 ≤ θ1 ≤ 2, 1 ≤ θ2 ≤ 2,
0.1 ≤ θ3 ≤ 1 and 0.1 ≤ θ4 ≤ 1.5.

Example 7 Financial chaotic system.

ẋ1(t) = x3(t) + x1(t)(x2(t) − θ1)

ẋ2(t) = 1 − θ2x2(t) − x21 (t)

ẋ3(t) = −x1(t) − θ3x3(t)

x1(0) = 2, x2(0) = −1, x3(0) = 1

t = 1, 2, . . . , 100 (11)

where the parameters to be estimated are [θ1, θ2, θ3]. In
this example, the real system parameters are assumed to be
[θ1, θ2, θ3] = [1, 0.1, 1]. In addition, the searching ranges
are set as follows: 0.5 ≤ θ1 ≤ 1.5, 0.01 ≤ θ2 ≤ 1 and
0.5 ≤ θ3 ≤ 1.5.

Example 8 Lu chaotic system.

ẋ1(t) = θ1(x2(t) − x1(t))

ẋ2(t) = x2(t) − x21 (t)

ẋ3(t) = x1(t)x2(t) − θ2x3(t)

x1(0) = 0.2, x2(0) = 0.5, x3(0) = 0.3

t = 1, 2, . . . , 100 (12)

where the parameters to be estimated are [θ1, θ2, θ3]. In
this example, the real system parameters are assumed to be
[θ1, θ2, θ3] = [36, 3, 20]. In addition, the searching ranges
are set as follows: 30 ≤ θ1 ≤ 40, 0.1 ≤ θ2 ≤ 10 and
15 ≤ θ3 ≤ 25.

Example 9 Chuas oscillator chaotic system.

ẋ1(t) = θ1(x2(t) − x1(t) + θ4x1(t) − W (x4(t))x1(t))

ẋ2(t) = x1(t) − x2(t) + x3(t)

ẋ3(t) = −θ2x2(t) − θ3x3(t)

ẋ4(t) = x1(t)

W (x1(t)) =
{

θ5 : |x1(t)| < 1
θ6 : |x1(t)| > 1

x1(0) = 0.8, x2(0) = 0.05, x3(0) = 0.007, x4(0) = 0.6

t = 1, 2, . . . , 100 (13)

where the parameters to be estimated are [θ1, θ2, θ3, θ4, θ5].
In this example, the real system parameters are assumed to be
[θ1, θ2, θ3, θ4, θ5, θ6] = [10.725, 10.593, 0.268,−0.7872,
−1.1726]. In addition, the searching ranges are set as fol-
lows: 5 ≤ θ1 ≤ 10, 10 ≤ θ2 ≤ 20, 0.1 ≤ θ3 ≤ 1,
0.1 ≤ θ4 ≤ 2, 0.3 ≤ θ5 ≤ 3 and 0.1 ≤ θ6 ≤ 1.
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Example 10 Henon chaotic system.

ẋ1(t) = x2(t) + 1 − θ1x
2
1 (t)

ẋ2(t) = θ2x1(t)

x1(0) = 0.8, x2(0) = 0.5

t = 1, 2, . . . , 100 (14)

where the parameters to be estimated are [θ1, θ2]. In this
example, the real system parameters are assumed to be
[θ1, θ2] = [1.4, 0.3]. In addition, the searching ranges are
set as follows: 1 ≤ θ1 ≤ 3 and 0 ≤ θ2 ≤ 2.

Figure 1 shows the phase portraits of aforementioned sys-
tems to show their chaotic behavior.

3 Backtracking search optimization algorithm

Backtracking search optimization algorithm (BSA) is a new
population-based EA which uses well-known operators of
genetic algorithms (GAs) in a new structure. In addition
to these operators, i.e., selection, mutation and crossover,
several unique mechanisms are inserted in BSA such as a
memory in which it stores a population from a randomly
chosen previous generation. Based on Civicioglu (2013), the
BSA has five main steps including: initialization, selection-
I, mutation, crossover and selection-II. These five steps are
formulated as follows:

(1) Initialization
The BSA starts with a random initial sampling of individuals
within the search space using a uniform distribution:

POPi, j = U (low j , up j )

for i = 1, . . . , Npop, j = 1, . . . , N (15)

where Npop and N are population size and function dimen-
sion, respectively, andU is the uniform distribution operator.
Also [low j , up j ] is variables’ predefined interval boundaries.
(2) Selection-I
The BSA calculates the search direction by defining the his-
torical population oldPOP. The initial historical population
is generated as follows:

oldPOPi, j = U (low j , up j )

for i = 1, . . . , Npop, j = 1, . . . , N (16)

InBSAan option is provided to redefine oldPOP at the begin-
ning of each iteration through the ‘if-then’ rule in Eq. (17):

if a < b then oldPOP = POP\a, b = U (0, 1) (17)

Equation (17) provides a memory for BSA. It ensures
that BSA designates a population belonging to a randomly
selected previous generation as the historical population and
remembers this historical population until it is changed.After
oldPOP is determined, a randomly change in the order of the
individuals in oldPOP is performed using Eq. (18)

oldPOP = permuting(oldPOP) (18)

The permuting function used inEq. (18) is a random shuffling
function.

(3) Mutation
In this stage of algorithm, an initial form of trial population
mutPOP is generated using Eq. (19)

mutPOP = POP + F · (oldPOP − POP) (19)

where F is a control parameter, and (oldPOP − POP) can
be considered as amplitude of the search direction matrix.
This amplitude is controlled using control parameter of F .
Because of using the historical population to calculate the
search direction matrix, BSA generates a trial population,
taking partial advantage of its experiences fromprevious gen-
erations.

In Eq. (19), a trial point is generated by a differential oper-
ator. This operator propels the position of current population
toward the corresponding members in the historical popula-
tion. To provide a faster convergence, this research proposes
a new operator by inspiring from mutation operators of DE
algorithm, to generate initial trial population:

for i = 1 to Npop

mutPOPi = POPi + F · (POPbest − POPi )

+ F · (oldPOPi − POPi )

end for (20)

where POPi and oldPOPi are ith member of population
and historical population, respectively. POPbest is the best
member of population found so far.

(4) Crossover
After generation of an initial form of trial population
mutPOP, the final form of the trial population trialPOP is
generated in the BSA’s crossover procedure. Trial individ-
uals with better fitness values for the optimization problem
are used to evolve the target population individuals. BSA’s
crossover process has two steps. The first step calculates a
random binary integer-valued matrix (map) of size Npop×N
that indicates the individuals of trialPOP to be manipulated
by using the relevant individuals of POP. Based on this
strategy, if mapi, j = 1, where i = 1, . . . , Npop and j =
1, . . . , N , trialPOP is updated with trialPOPi, j = POPi, j .
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Fig. 1 Phase portraits of
chaotic systems: a Lorenz, b
Chen, c Rossler, d Arneodo, e
Duffing, f Genesio-Tesi, g
Financial, h Lu, i Chuas, j
Henon
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Fig. 2 Steps of SBSA
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Some individuals of the trial population trialPOPi, j

obtained may exceed the lower and upper bounds of search
space. Hence, the second step is designed to update these
infeasible solutions with randomly generated individuals as
in Eq. (15).

(5) Section-II
After generation of final form of candidate members, in the
selection-II stage and according to a one-to-one spawning
strategy and greedy selection, the individuals in trialPOP
that have better fitness values are used to update the corre-
sponding individuals in POP. So value of cost function in
the point trialPOPi , where i = 1, . . . , Npop, is evaluated,
and while f (trialPOPi ) < f (POPi ) POPi is replaced with
trialPOPi ; otherwise, no replacement occurs. Moreover, if
the best individual of POP (POPbest) has a better fitness
value than the globalminimumvalue obtained so far byBSA,
the global minimizer is replaced by POPbest, and the global
minimum value is replaced by the fitness value of POPbest.

4 Shuffled backtracking search optimization

The concept of group search has been used in some EAs
such as shuffled complex evolution (SCE) (Duan et al. 1993),
SFLA and shuffled DE (SDE) (Ahandani et al. 2010). These
algorithms have a same structure. The main trait of them is a
grouping search ability to provide some parallel attempts to
obtain promising areas based on participating each member
in previous experience of all other members. These algo-
rithms have three main stages: partitioning, local search and
shuffling. They begin with a population of points distributed
randomly throughout the feasible search space. Then in par-
titioning stage, population is partitioned into several parallel
groups. The different groups, which can be perceived as a
set of parallel cultures, perform a local search independently
using an evolutionary process to continuously evolve their
quality for a defined maximum number of iteration. Then in
shuffling stage, all evolved complexes are combined together
into a single population and the stopping criteria are checked
that if are not met the partitioning, local search and shuffling
process are continued. The main difference of these algo-
rithms is related their employed evolutionary strategy in local
search stage. For example, the SCE, the SFL and the SDE
use Nelder–Mead simplex search, PSO and DE, respectively.

This research employs a same approach to improve the
original BSA by proposing a shuffled BSA (SBSA). The
SBSA has a same structure in comparison with SCE, SFL
and SDE algorithms; only the SBSA uses a BSA algorithm
to evolve independently member of groups. So the SBSA
merges the strengths of original BSAwith group search abil-
ity. In the SBSA, to make groups on the assumption that
partitioningm groups, each containing nmembers, after sort-

Table 1 Statistical results of different versions of BSA on Lorenz
chaotic system (Note Zero value on this example means a number
smaller than 1.0e−27)

Parameters θ1 θ2 θ3

True values 10 28 2.6667

Algorithms

SBSA1 Best 10 28 2.6667

Mean 10 28 2.6667

Variance 0 0 4.6811e−16

Success Rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

SBSA2 Best 10 28 2.6667

Mean 10 28 2.6667

Variance 0 0 4.6811e−16

Success Rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

BSA1 Best 10 28 2.6667

Mean 10 28 2.6667

Variance 0 0 4.6811e−16

Success Rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

BSA2 Best 10 28 2.6667

Mean 10 28 2.6667

Variance 0 0 4.6811e−16

Success Rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

ing of population in a decreasing order in terms of function
evaluation, member ranking 1 goes to group 1, member rank-
ing 2 goes to group 2,…,member rankingm goes to groupm,
then second member of each subset is assigned as: member
ranking (m+1)goes to group1,member ranking (m+2)goes
to group 2,…,member ranking (m+m) goes to groupm. This
process continues to assign all members into groups. Steps of
the SBSAwithm groups, n members of each group and kmax

defined iteration number of evolutionary process are shown
in Fig. 2. In this algorithm,Groupi and oldGroupi denote ith
group and historical group, respectively. mutGroupi is trial
members of ith group, mapGroupi is binary integer-valued
matrix of ith group, and POPbest is the best member found
so far. Also a, b, c and d are random numbers with uniform
distribution selected randomly in [0,1].
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Table 2 Statistical results of
different versions of BSA on the
literature on Chen chaotic
system

Parameters θ1 θ2 θ3 θ4

True values 35 3 28 −7

Algorithms

SBSA1 Best 35 3 28 −7

Mean 35.002 3 27.992 −7.0076

Variance 0.0054283 4.6114e−05 0.024826 0.024135

Success rate 100

Best-SSE 8.0745e−25

Mean-SSE 0.0006894

Variance-SSE 0.0021802

SBSA2 Best 35 3 28 −7

Mean 35 3 28 −7

Variance 2.0202e−13 5.9617e−14 1.0681e−12 7.2049e−13

Success rate 100

Best-SSE 3.0124e−26

Mean-SSE 1.1889e−22

Variance-SSE 3.7375e−22

BSA1 Best 35 3 28 −7

Mean 35.017 2.9999 27.926 −7.0723

Variance 0.05223 0.00041512 0.23559 0.22863

Success rate 84

Best-SSE 3.2083e−19

Mean-SSE 0.064089

Variance-SSE 0.20267

BSA2 Best 35 3 28 −7

Mean 35 3 28 −7

Variance 6.7258e−12 1.4295e−12 3.093e−10 3.7019e−10

Success rate 100

Best-SSE 3.0322e−26

Mean-SSE 1.8722e−18

Variance-SSE 5.915e−18

5 Computational results

In this section, different experiments are carried out to assess
the performance of proposed algorithm. These experiments
are designed to identify or estimate parameters of a wide
variety of chaotic systems. A plenty of experiments were
performed to give sufficiently good results for different prob-
lems, and the obtained values to set parameters of the BSA
and the SBSA are as follows: Npop = 24, m = 4, n = 6
and kmax = 10. Also control parameters of BSA, i.e., F is
considered a random number in the range of [0,2] and ratemix
is considered equal to 1 as proposed in Civicioglu (2013).

Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17 and 18 show how good our proposed algorithms are.
Three different versions of BSA are proposed here and are
compared against original BSA. In all comparisons, the orig-
inal BSA which uses Eq. (13) to generate initial trial point

is called here BSA1, and the original BSA which uses Eq.
(14) to generate initial trial point is called here BSA2. Also
the proposed SBSA with Eq. (13) to generate initial trial
point is called here SBSA1 and the proposed SBSA with
Eq. (14) to generate initial trial point is called here SBSA2.
In addition, typical simulation results (including the con-
vergent processes of objective value) are presented for the
different chaotic systems with Figs. 3, 4, 5, 6, 7, 8, 9, 10,
11 and 12. For all problems, the statistical simulation results
of 50 independent runs are reported, where “Best”, “Mean”
and “Variance” denote values of unknown parameters in the
best run, mean values of unknown parameters in all runs and
the variance of values of unknown parameters, respectively.
Also “Best-SSE”, “Mean-SSE” and “Variance-SSE” denote
the best found SSE value, mean of the best SSE values and
variance of found SSE values in all independent runs, respec-
tively. Also “Success Rate” denotes percent of successful
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Table 3 Statistical results of
different versions of BSA on
Rossler chaotic system (Note
Zero value on this example
means a number smaller than
1.0E−33)

Parameters θ1 θ2 θ3

True values 0.5 0.2 10

Algorithms

SBSA1 Best 0.5 0.2 10

Mean 0.5 0.2 10

Variance 3.5532e−13 1.8272e−11 5.5414e−10

Success rate 100

Best-SSE 1.5869e−26

Mean-SSE 5.0957e−21

Variance-SSE 1.4356e−20

SBSA2 Best 0.5 0.2 10

Mean 0.5 0.2 10

Variance 2.8184e−16 4.7225e−14 8.1344e−13

Success rate 100

Best-SSE 6.7878e−31

Mean-SSE 1.419e−27

Variance-SSE 4.2138e−27

BSA1 Best 0.5 0.2 10

Mean 0.5 0.20004 10.002

Variance 2.678e−06 0.00013607 0.0062735

Success rate 100

Best-SSE 7.4702e−32

Mean-SSE 5.2424e−08

Variance-SSE 1.6578e−07

BSA2 Best 0.5 0.2 10

Mean 0.5 0.2 10

Variance 2.2524e−15 1.5029e−13 5.0567e−12

Success rate 100

Best-SSE 0

Mean-SSE 6.4163e−26

Variance-SSE 1.3754e−25

runs. In this research, a run is called successful if its cor-
responding SSE reaches less than 0.01. Also a fixed value
of function evaluations equal to 5000 × N is considered as
termination criterion. The best results in tables are presented
in a bold face.

5.1 Simulation about Lorenz system

Table 1 shows the statistical results of different methods for
the Lorenz chaotic system. The obtained results of these
tables show that all algorithms are consistent and they con-
verge to the true values as accurately as possible. Figure 3
shows the convergence of J corresponding to a typical run
for the Lorenz chaotic system. An interesting observation
from these curves is that all algorithms reach to vicinity of
true values of parameters in early number of function evalu-
ations.

5.2 Simulation about Chen system

Table 2 shows the statistical results of different methods for
the Chen chaotic system. It can be seen that the SBSA2 out-
performs other algorithms in terms of all considered aspects.
The SBSA2 obtains the best minimum and mean of SSE
values. The second-best results are related to the BSA2. The
SBSA1 beside two aforementioned algorithms obtains a suc-
cess rate of 100. These results demonstrate that both of the
proposed ideas to improve BSA, i.e., grouping search and
new operator, to generate initial trial point are effective to
evolve the original BSA. Comparatively, the performances
of original BAS, i.e., BSA1, are the worst among the four
algorithms. Figure 4 shows the convergence of J correspond-
ing to a typical run for the Chen chaotic system. From these
curves, it is clear that the BSA2 and SBSA2 can achieve
the best results with a high solution accuracy. So results
of Table 2 and Fig. 4 demonstrate better effectiveness and
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Table 4 Statistical results of
different versions of BSA on
Arneodo chaotic system

Parameters θ1 θ2 θ3 θ4

True values −5.5 3.5 0.8 −1

Algorithms

SBSA1 Best −5.5 3.5 0.8 −1

Mean −5.5007 3.5005 0.79957 −1.0009

Variance 0.0021175 0.0011326 0.0005653 0.0013613

Success rate 100

Best-SSE 9.7794e−12

Mean-SSE 0.00068345

Variance-SSE 0.0012983

SBSA2 Best −5.5 3.5 0.8 −1

Mean −5.5 3.5 0.8 −1

Variance 2.1781e−06 7.4556e−07 4.1555e−07 4.367e−07

Success rate 100

Best-SSE 1.7089e−19

Mean-SSE 2.8141e−10

Variance-SSE 8.0836e−10

BSA1 Best −5.5 3.5 0.8 −1

Mean −5.4998 3.4999 0.80001 −0.99999

Variance 0.0010401 0.0003158 0.00029165 0.00042342

Success rate 100

Best-SSE 9.258e−11

Mean-SSE 0.0002979

Variance-SSE 0.00083936

BSA2 Best −5.5 3.5 0.8 −1

Mean −5.5 3.5 0.8 −1

Variance 5.9728e−09 2.8232e−09 2.1612e−10 7.7548e−10

Success rate 100

Best-SSE 3.7001e−24

Mean-SSE 2.3124e−15

Variance-SSE 6.8932e−15

robustness of the BSA2 and SBSA2 than the other two
algorithms for parameter identification of the Chen chaotic
system.

5.3 Simulation about Rossler system

Table 3 shows the statistical results of different methods for
the Rossler chaotic system. Based on results of this table,
all algorithms obtain a complete success rate. Also it can
be seen that the BSA2 has the best performance in terms of
Best-SSE and the SBSA2 obtains the best Mean-SSE. Also
the BSA1 obtains again the worst Mean-SSE value among
all algorithms. Figure 5 shows the convergence of J corre-
sponding to a typical run for the Rossler chaotic system. The
obtained curves of Fig. 5 show the fast convergence speed
of algorithms. So results of Table 3 and Fig. 5 demonstrate
better effectiveness and robustness of the BSA2 and SBSA2

than the other two algorithms for parameter identification of
the Rossler chaotic system.

5.4 Simulation about Arneodo system

Table 4 shows the statistical results of different methods for
the Arneodo chaotic system. As obtained in previous tables,
the BSA2 and SBSA2 are again two superior algorithms
on this system. The BSA1 obtains the best results, and the
SBSA2 has the second-best performance. The SBSA1 has a
better Best-SSE than the BSA1, but the BSA1 obtains a less
Mean-SSE than the SBSA1. Figure 6 shows the convergence
of J corresponding to a typical run for the Arneodo chaotic
system. These curves show that the BSA2 and SBSA2 have
faster convergence speed than the other two algorithms. So
results of Table 4 and Fig. 6 demonstrate better effective-
ness and robustness of the BSA2 and SBSA2 than the other
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Table 5 Statistical results of
different versions of BSA on
Duffing chaotic system

Parameters θ1 θ2 θ3

True values 0.15 0.31 1

Algorithms

SBSA1 Best 0.15 0.31 1

Mean 0.16349 0.31125 0.99455

Variance 0.027409 0.022562 0.010724

Success rate 90

Best-SSE 2.389e−18

Mean-SSE 0.010944

Variance-SSE 0.029847

SBSA2 Best 0.15 0.31 1

Mean 0.15 0.31 1

Variance 1.6775e−10 1.2979e−10 1.5822e−10

Success rate 100

Best-SSE 3.1228e−22

Mean-SSE 1.5444e−17

Variance-SSE 4.7204e−17

BSA1 Best 0.15 0.31 1

Mean 0.21784 0.3565 0.97842

Variance 0.09172 0.077196 0.023108

Success rate 50

Best-SSE 1.006e−13

Mean-SSE 0.13291

Variance-SSE 0.27939

BSA2 Best 0.15 0.31 1

Mean 0.15 0.31 1

Variance 5.2031e−07 4.0743e−07 3.2014e−07

Success rate 100

Best-SSE 2.8594e−21

Mean-SSE 1.999e−11

Variance-SSE 6.3215e−11

two algorithms for parameter identification of the Arneodo
chaotic system.

5.5 Simulation about Duffing system

Table 5 shows the statistical results of different methods for
the Duffing chaotic system. It can be seen that all the results
got by SBSA2 are consistent and it has the best performance.
The second-best performance is related to the BSA2. Among
all algorithms, only the SBSA2 andBSA2 have a success rate
of 100. Also the original BSA1 is the worst among the four
algorithms. Figure 7 shows the convergence of J correspond-
ing to a typical run for the Duffing chaotic system. These
curves confirm the obtained results of Table 5 about a bet-
ter performance of the proposed algorithms in this research.
The SBSA2 converges quickly and detects optimums in a
few iterations.

5.6 Simulation about Genesio-Tesi system

Table 6 shows the statistical results of different methods for
the Genesio-Tesi chaotic system. As obtained from afore-
mentioned experiments, it is seen from the results of this
table that the BSA2 and SBSA2 outperform two other algo-
rithms. The BSA2 and SBSA2 have a complete success rate.
The SBSA2 obtains the best Best-SSE, and the BSA2 has the
best Mean-SSE. Also the SBSA1 has a better performance
than the original BSA1. Figure 8 shows the convergence of
J corresponding to a typical run for the Genesio-Tesi chaotic
system. The trajectories of J during the evolutionary proce-
dure confirm a better performance of the BSA2 and SBSA2.
They converge quickly and detect optimums in a few itera-
tions.

123



Parameter identification of chaotic systems using a shuffled backtracking search optimization… 8329

Table 6 Statistical results of
different versions of BSA on
Genesio-Tesi chaotic system

Parameters θ1 θ2 θ3 θ4

True values 1.1 1.1 0.45 1

Algorithms

SBSA1 Best 1.1 1.1 0.45 1

Mean 1.1205 1.0966 0.46444 1.0115

Variance 0.034466 0.0056023 0.024154 0.019434

Success rate 90

Best-SSE 1.3706e−12

Mean-SSE 0.0026245

Variance-SSE 0.0054221

SBSA2 Best 1.1 1.1 0.45 1

Mean 1.1 1.1 0.45 1

Variance 5.1972e−10 8.4846e−11 3.4375e−10 2.1706e−10

Success rate 100

Best-SSE 1.7014e−22

Mean-SSE 3.8667e−18

Variance-SSE 7.6096e−18

BSA1 Best 1.1 1.1 0.45 1

Mean 1.1664 1.0898 0.49623 1.0382

Variance 0.10333 0.015727 0.071903 0.059669

Success rate 80

Best-SSE 1.1635e−11

Mean-SSE 0.020595

Variance-SSE 0.043191

BSA2 Best 1.1 1.1 0.45 1

Mean 1.1 1.1 0.45 1

Variance 8.9541e−11 1.7009e−11 6.2485e−11 4.1695e−11

Success rate 100

Best-SSE 2.4288e−22

Mean-SSE 4.437e−20

Variance-SSE 4.614e−20

5.7 Simulation about financial system

Table 7 shows the statistical results of different methods for
the Financial chaotic system. The obtained results on this
system make confidence about superior performance of the
SBSA2 and BSA2 methods. Among four algorithms, only
the two algorithms converge to optimum point as accurately
as possible in all runs. After them, the SBSA1 has the second-
best results and the BSA1 is has the worst performance;
however, it has a success rate of 100. Figure 9 shows the con-
vergence of J corresponding to a typical run for the Financial
chaotic system. From Fig. 9, it is clear that the all algorithms
have a quick convergence toward optimum value.

5.8 Simulation about Lu system

Table 8 shows the statistical results of different methods for
the Lu chaotic system. According to obtained results on this

chaotic system, only the BSA1 cannot achieve a success rate
of 100. However, the BSA1 beside BSA2 obtains the best
Best-SSE value. Also the SBSA2 has the best Mean-SSE,
and the BSA1 has the worst Mean-SSE. Figure 10 shows the
convergence of J corresponding to a typical run for the Lu
chaotic system. These curves depict the evolving processes
of fitness value for all the algorithms. It is clear that the all
algorithms have a quick convergence toward optimum value.

5.9 Simulation about Chuas system

Table 9 shows the statistical results of different methods for
the Chuas chaotic system. This system has five unknown
parameters to be estimated, and the obtained results show
that it is very difficult to be solved. Table 9 highlights the effi-
ciency and robustness of the proposed algorithms here. The
SBSA2 and BSA2 have a considerably better performance in
terms of all considered aspects than two another algorithms.
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Table 7 Statistical results of
different versions of BSA on
Financial chaotic system (Note
Zero value on this example
means a number smaller than
1.0e−30)

Parameters θ1 θ2 θ3

True values 1 0.1 1

Algorithms

SBSA1 Best 1 0.1 1

Mean 1 0.1 1

Variance 3.4716e−16 1.2903e−16 5.7807e−16

Success rate 100

Best-SSE 0

Mean-SSE 2.6649e−29

Variance-SSE 4.7988e−29

SBSA2 Best 1 0.1 1

Mean 1 0.1 1

Variance 0 1.4628e−17 0

Success rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

BSA1 Best 1 0.1 1

Mean 1 0.1 1

Variance 5.9257e−10 1.97e−10 7.2292e−10

Success rate 100

Best-SSE 0

Mean-SSE 6.7651e−17

Variance-SSE 2.1393e−16

BSA2 Best 1 0.1 1

Mean 1 0.1 1

Variance 0 1.4628e−17 0

Success rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

The SBSA1 and BSA1 cannot obtain any success rate on
this system. Results of this table demonstrate that the pro-
posed operator to generate initial trial point is very effective
to evolve performance of BSA and SBSA. Figure 11 shows
the convergence of J corresponding to a typical run for the
Chuas chaotic system. It is clear that the SBSA2 and BSA2
can achieve good results, whereas the SBSA1 and BSA1 get
stuck on local minimums.

5.10 Simulation about Henon system

Table 10 shows the statistical results of different methods
for the Henon chaotic system. This system has two unknown
parameters to be estimated, and it is not difficult to be solved.
All algorithms have a success rate of 100, and among all algo-
rithms, the SBSA2 converges to optimum point as accurately
as possible in all runs. Figure 12 shows the convergence of J

corresponding to a typical run for the Henon chaotic system.
From Fig. 12, it is clear that the all algorithms have a quick
convergence toward optimum value.

To provide an overall consequence from Tables 1, 2, 3, 4,
5, 6, 7, 8, 9 and 10 about performance of algorithms on afore-
mentioned 10 chaotic systems, Tables 11 and 12 show rank
of each algorithm based on Best-SSE and Mean-SSE for the
algorithms over the set of 10 chaotic systems, respectively.
According to results of Tables 11 and 12, the SBSA2 obtains
rank 1 on 7 and 8 problems based on Best-SSE and Mean-
SSE, respectively. Also the BSA2 obtains rank 1 on 6 and 4
problems based on Best-SSE andMean-SSE, respectively. It
also obtains rank 2 on 4 and 6 other problems based on Best-
SSE and Mean-SSE, respectively. The SBSA1 obtains rank
1 on 3 and 1 problems based on Best-SSE and Mean-SSE,
respectively. It also obtains rank 3 on 3 and 8 other prob-
lems based on Best-SSE and Mean-SSE, respectively. The
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Table 8 Statistical results of
different versions of BSA on Lu
chaotic system (Note Zero value
on this example means a number
smaller than 1.0e−30)

Parameters θ1 θ2 θ3

True values 36 3 20

Algorithms

SBSA1 Best 36 3 20

Mean 36 3 20

Variance 0.00090994 8.4618e−05 0.0006192

Success rate 100

Best-SSE 1.1402e−23

Mean-SSE 0.00022481

Variance-SSE 0.00071091

SBSA2 Best 36 3 20

Mean 36 3 20

Variance 2.2117e−13 4.0723e−14 2.1932e−14

Success rate 100

Best-SSE 6.2283e−27

Mean-SSE 3.2629e−24

Variance-SSE 8.7568e−24

BSA1 Best 36 3 20

Mean 36.006 2.9991 20

Variance 0.019967 0.0028872 7.5949e−05

Success rate 94

Best-SSE 0

Mean-SSE 0.0088809

Variance-SSE 0.027977

BSA2 Best 36 3 20

Mean 36 3 20

Variance 3.2522e−13 7.9114e−14 6.374e−14

Success rate 100

Best-SSE 0

Mean-SSE 1.1329e−23

Variance-SSE 3.2446e−23

BSA1 obtains rank 1 on 4 and 1 problems based on Best-
SSE and Mean-SSE, respectively. It also obtains rank 4 on
3 and 8 other problems based on Best-SSE and Mean-SSE,
respectively.

A nonparametric analysis over the obtained results from
Tables 1, 2, 3, 4, 5, 6, 7, 8, 9 and10using theWilcoxon signed-
rank test with α = 0.05 in terms of best run (Best-SSE) and
average of all runs (Mean-SSE) is provided in Table 13.

Pairwise comparisons of Table 13 show that the BSA2 has
a significant difference with respect to the BSA1 and SBSA1
in terms of Best-SSE. Also the SBSA2 considerably outper-
forms the BSA1 in terms of Best-SSE. Also difference of
BSA2 and SBSA2 based on this test is not significant; how-
ever, this test confirms a better performance of SBSA2. Also
based on Mean-SSE, BSA2 and SBSA2 have a significantly
better performance than two other algorithms. Also this test

confirms a better Mean-SSE performance of the SBSA2 than
the BSA2; however, this difference is not significant.

Table 4 compares algorithms over the set of 10 chaotic
systems based on average of running time.

Based on results of time comparison, since all algorithms
have a same stopping criterion, i.e., a fixed value of func-
tion evaluation, there is not a significantly difference among
running time of them. Also Table 14 clearly shows that the
proposed ideas in this study to evolve the performance of
original BSA are not more time-consuming than the original
structure or operators of BSA.

From Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and
14 and Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12, the following
results are observed: (i) both of the proposed ideas to improve
performance of original BSA, i.e., group search ability and
new operator, to generate initial trial population are effective.
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Table 9 Statistical results of
different versions of BSA on
Chuas chaotic system

Parameters θ1 θ2 θ3 θ4 θ5

True values 10.725 10.593 −0.268 −0.7872 1.1726

Algorithms

SBSA1 Best 10.451 10.489 −0.23641 −0.78419 1.192

Mean 10.144 9.7673 −0.24409 −0.74858 1.2098

Variance 0.61133 0.67134 0.07469 0.036182 0.050817

Success rate 0

Best-SSE 0.87688

Mean-SSE 30.965

Variance-SSE 34.998

SBSA2 Best 10.725 10.593 −0.268 −0.7872 1.1726

Mean 10.726 10.593 −0.26819 −0.7872 1.1726

Variance 0.0066277 0.0059195 0.0005676 0.0002169 8.7178e−05

Success rate 92

Best-SSE 6.3591e−11

Mean-SSE 0.0064617

Variance-SSE 0.019529

BSA1 Best 10.496 10.469 −0.24483 −0.783 1.1866

Mean 10.27 9.5329 −0.27958 −0.73533 1.2013

Variance 0.67125 0.76849 0.077709 0.039163 0.034607

Success rate 0

Best-SSE 0.59619

Mean-SSE 48.819

Variance-SSE 52.064

BSA2 Best 10.725 10.593 −0.268 −0.7872 1.1726

Mean 10.725 10.593 −0.268 −0.7872 1.1726

Variance 0.08002 0.023131 0.016243 0.0020604 0.00017805

Success rate 88

Best-SSE 6.774e−09

Mean-SSE 0.19118

Variance-SSE 0.60419

(ii) A considerably better performance of the SBSA2 and
BSA2 based on Mean-SSE demonstrates that the proposed
ideas can evolve robustness and consistence of algorithm.
(iii) Inserting a new operator to generate initial trial popula-
tion considerablymakes better exploitation ability of original
BSA algorithm so that the BSA2 could find solutions with
a high accuracy. (iv) By providing a group search ability for
the BSA algorithm and presenting the SBSA, the exploration
ability of original BSA was improved. Also by inserting a
new operator to generate initial trial population, exploitation
ability of SBSA was evolved. So by combining these two
concepts, we can see that the SBSA2 has the best perfor-
mance among four algorithms.

5.11 Comparison with results reported in the literature

In this section, a comparison between the proposed algo-
rithms in this research, i.e., BSA2 and SBSA2, and some

other algorithms reported in the different literature to solve
parameter identification of chaotic systems is performed. Ho
et al. (2010) proposed an improved DE algorithm, named the
Taguchi-sliding-basedDEalgorithm (TSBDEA), to solve the
problem of parameter identification for Chen, Lü andRossler
chaotic systems. The TSBDEA combines the DE with the
Taguchi-sliding-level method (TSLM). The TSLM is used
as the crossover operation of the DEA. Then, the system-
atic reasoning ability of the TSLM is provided to select the
better offspring to achieve the crossover and consequently
enhance the DE. Based on Ho et al. (2010), sampling time
is 0.0005s for Chen and Lü systems, the sampling time is
0.001s for Rossler system, and the total sampling number L
is 100 for all three systems. Also number of function evalua-
tions for Chen and Lü systems is considered equal to 10,000,
and for the Rossler system, it is considered equal to 12,000.
They used mean square error (MSE) as cost function as
follows:
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Table 10 Statistical results of different versions of BSA on Henon
chaotic system (Note Zero value on this example means a number
smaller than 1.0e−28)

Parameters θ1 θ2

True values 36 3

Algorithms

SBSA1 Best 36 3

Mean 36 3

Variance 6.367e−16 9.6148e−17

Success rate 100

Best-SSE 0

Mean-SSE 6.1775e−29

Variance-SSE 1.0005e−28

SBSA2 Best 36 3

Mean 36 3

Variance 2.3406e−16 5.8514e−17

Success rate 100

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

BSA1 Best 36 3

Mean 36 3

Variance 6.6201e−16 1.1556e−16

Success rate 100

Best-SSE 0

Mean-SSE 8.2562e−29

Variance-SSE 1.1164e−28

BSA2 Best 36 3

Mean 36 3

Variance 6.3238e−16 7.4015e−17

Success rate 100

Best-SSE 0

Mean-SSE 4.2015e−29

Variance-SSE 8.959e−29

Table 11 Ranks based on Best-SSE for the algorithms over the set of
10 chaotic systems

Algorithms BSA1 BSA2 SBAS1 SBAS2

Lorenz 1 1 1 1

Chen 4 2 3 1

Rossler 2 1 4 3

Arneodo 4 1 3 2

Duffing 4 2 3 1

Genesio-Tesi 3 2 4 1

Financial 1 1 1 1

Lu 1 1 4 3

Chuas 3 2 4 1

Henon 1 1 1 1

Sum of ranks 24 14 28 15

Table 12 Ranks based on Mean-SSE for the algorithms over the set of
10 chaotic systems

Algorithms BSA1 BSA2 SBAS1 SBAS2

Lorenz 1 1 1 1

Chen 4 2 3 1

Rossler 4 2 3 1

Arneodo 3 1 4 2

Duffing 4 2 3 1

Genesio-Tesi 4 1 3 2

Financial 4 1 3 1

Lu 4 2 3 1

Chuas 4 2 3 1

Henon 4 2 3 1

Sum of ranks 28 16 26 12

Table 13 Wilcoxon test applied over the obtained results of Tables 1,
2, 3, 4, 5, 6, 7, 8, 9 and 10 in terms of the best run (Best-SSE) and
average of all runs (Mean-SSE)

Comparison Best-SSE Mean-SSE

R+ R− p value R+ R− p value

BSA1–SBSA2 43 12 0.063 54.5 0.5 0.008

BSA2–SBSA2 33 22 0.893 37.5 17.5 0.401

SBSA1–SBSA2 52 3 0.018 54.5 0.5 0.008

BSA1–BSA2 50 5 0.028 54.5 0.5 0.008

SBSA1–BSA2 52 3 0.018 54.5 0.5 0.008

BSA1–SBSA1 24 31 0.735 49.5 5.5 0.028

Table 14 A comparison for the algorithms over the set of 10 chaotic
systems based on average of running time (Note Time values in this
table are in terms of seconds)

Algorithms BSA1 BSA2 SBAS1 SBAS2

Lorenz 24.038 22.629 24.76 27.004

Chen 41.174 44.242 47.191 51.52

Rossler 23.29 24.342 24.811 22.147

Arneodo 35.079 31.689 31.444 31.479

Duffing 18.352 19.215 18.017 18.498

Genesio-Tesi 23.853 21.347 31.131 33.131

Financial 21.413 16.788 18.81 23.034

Lu 25.746 24.63 24.061 23.935

Chuas 35.691 30.522 38.814 38.595

Henon 33.792 33.606 32.132 35.465

Sum of ranks 26 22 24 28

min J = 1

L

L∑
k=1

∥∥x(k) − x̂(k)
∥∥2 (21)

Values of parameters for BSA2 and SBSA2 are same to
those of considered in aforementioned experiments; only
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Table 15 Comparison among results of BSA2 and SBSA2 and results
of Ho et al. (2010) on Chen chaotic system (Note Zero value on this
example means a number smaller than 1.0e−30)

Parameters θ1 θ2 θ3

True values 36 3 20

Algorithms

SBSA2 Best 36 3 28

Mean 36 3 28

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

BSA2 Best 36 3 28

Mean 36 3 28

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

TSBDEA Best 36 3 28

Mean 36 3 28

Variance 0 0 0

Best-SSE 0

Mean-SSE 0

Variance-SSE 0

DE Best 35.6099 3.0129 28.2927

Mean 36.1181 3.0584 28.5292

Variance 1.0533 0.0518 0.4974

Best-SSE 0.0441

Mean-SSE 0.3415

Variance-SSE 0.2765

to provide a better comparison, size of initial population is
considered equal to 16. Tables 15, 16 and 17 show this com-
parison. The obtained results demonstrate that the BSA2,
SBSA2 and TSBDEA obtain the best results. They converge
to optimal solution in all trial runs. Thus, it can be concluded
that the BSA2, SBSA2 and TSBDEA can give a more effec-
tive and robust way for estimating the true parameters than
the DE.

Tang et al. (2012) applied the DE to search the optimal
parameters of commensurate fractional-order chaotic sys-
tems when orders are known and unknown. They applied
the DE on Lu and Volta chaotic systems and compared
the obtained results with GA. Sampling time is 0.005 and
0.0005s for Lü and Volta systems, respectively, and the total
sampling number, L , is 100 for both of them. Also num-
ber of function evaluations for these systems is considered
equal to 10,000. Tables 18 and 19 compare results of BSA2
and SBSA2 in respect to results reported in Tang et al. (2012)
when orders of chaotic systems are known. From these tables,

Table 16 Comparison among results of BSA2 and SBSA2 and results
of Ho et al. (2010) on Lu chaotic system (Note Zero value on this
example means a number smaller than 1.0e−30)

Parameters θ1 θ2 θ3

True values 36 3 20

Algorithms

SBSA2 Best 36 3 20

Mean 36 3 20

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

BSA2 Best 36 3 20

Mean 36 3 20

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

TSBDEA Best 36 3 20

Mean 36 3 20

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

DE Best 36.0388 2.9927 20.0006

Mean 35.9577 3.0015 19.9986

Variance 0.3650 0.0256 0.0089

Best-MSE 0.0007

Mean-MSE 0.0179

Variance-MSE 0.0167

it can be seen that the BSA2 and SBSA2 obtained the best
results with respect to the DE and GA so that their estimated
parameters are accurately same as the true parameter values,
but there exist certain errors between the average results of
DE and the true parameter values. Also, none of the results
obtained by GA are the same as the true parameter values.

Hu et al. (2015) proposed a hybrid artificial bee colony
(HABC) algorithm for identification of uncertain fractional-
order chaotic systems. Fractional-orderEconomic andRössler
chaotic systems are selected to test the performance. Instead
of MSE in Eq. (21), the following objective function is
defined in Hu et al. (2015) which is a sum square error (SSE)
function:

min J =
N∑

k=1

∥∥∥X (k) − X̂(k)
∥∥∥
2

(22)

To calculate the objective function, the number of sam-
ples is set as 300 and the step size is 0.01. The parameters
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Table 17 Comparison among results of BSA2 and SBSA2 and results
of Ho et al. (2010) on Rossler chaotic system (Note Zero value on this
example means a number smaller than 1.0e−33)

Parameters θ1 θ2 θ3

True values 36 3 20

Algorithms

SBSA2 Best 36 3 20

Mean 36 3 20

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

BSA2 Best 36 3 20

Mean 36 3 20

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

TSBDEA Best 36 3 20

Mean 36 3 20

Variance 0 0 0

Best-MSE 0

Mean-MSE 0

Variance-MSE 0

DE Best 0.1942 0.4052 5.8180

Mean 0.1999 0.3728 5.7994

Variance 0.0096 0.2887 0.1651

Best-MSE 0.0001

Mean-MSE 0.0004

Variance-MSE 0.0003

of HABC algorithm are set as follows: Population size is
100, maximum cycle number of iterations are set as 50
for fractional-order economic chaotic system and 100 for
fractional-order Rössler chaotic systems, respectively, the
control parameter (limit) is 15, and the maximum number
of chaotic iteration N = 300. The algorithm is executed 15
times for each example, and all runs are terminated after the
predefined maximum cycle number of iterations is reached.

In the first part of comparison study in Hu et al. (2015),
the HABCwas compared against two other versions of ABC,
i.e., GABC and EABC on fractional-order Economic chaotic
system.Table 20 shows the obtained results of theSBSA2and
theBSA2against results of aforementioned algorithms. From
the simulations results of the fractional-order Economic sys-
tem, it can be concluded that the BSA2 outperforms all other
algorithms based on all considered aspects. Also SBSA2 has
a better performance than the GABC, the EABC and the
HABC in terms of all criteria, except in comparison with the
HABC in terms of Best-SSE.

Table 18 Comparison among results of BSA2 and SBSA2 and results
of Tang et al. (2012) on Lu chaotic system (Note Zero value on this
example means a number smaller than 1.0e−30)

Parameters θ1 θ2 θ3

True values 36 3 20

Algorithms

SBSA2 Best 25 3 28

Mean 25 3 28

Best-MSE 0

Mean-MSE 5.6938e−29

BSA2 Best 25 3 28

Mean 25 3 28

Best-MSE 0

Mean-MSE 2.1822e−28

DE Best 25 3 28

Mean 25 3 28

Best-MSE 1.38e−26

Mean-MSE 2.18e−7

GA Best 25 3 28

Mean 25.0012 2.7769 27.9071

Best-MSE 6.51e−5

Mean-MSE 12.183
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Fig. 3 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Lorenz chaotic system

In the second part of comparison study in Hu et al. (2015),
the HABC was compared against three other EAs, i.e., GA,
DE and PSO on fractional-order Rössler chaotic system.
Table 21 shows the obtained results of the SBSA2 and the
BSA2 against results of aforementioned algorithms. Table 21
clearly confirms a considerable better performance of the
SBSA2 and the BSA2 in comparison with HABC, GA, DE
and PSO. In this table, the BSA2 has the best performance
in terms of all considered aspects and the SBSA2 obtains the
second-best performance.
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Fig. 4 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Chen chaotic system
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Fig. 5 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Rossler chaotic sys-
tem
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Fig. 6 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Arneodo chaotic system
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Fig. 7 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Duffing chaotic sys-
tem
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Fig. 8 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Genesio-Tesi chaotic
system

0 10 20 30 40 50

10-20

10-15

10-10

10-5

100

Generations *300

E
va

lu
at

io
n 

Fu
nc

tio
n

BSA1
BSA2
SBSA1
SBSA2

Fig. 9 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Financial chaotic system

123



Parameter identification of chaotic systems using a shuffled backtracking search optimization… 8337

0 10 20 30 40 50

10-20

10-10

100

Generations *300

E
va

lu
at

io
n 

Fu
nc

tio
n

BSA1
BSA2
SBSA1
SBSA2

Fig. 10 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Lu chaotic system
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Fig. 11 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Chuas chaotic system
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Fig. 12 A comparison among convergence speed of BSA1, BSA2,
SBSA1 and SBSA2 for a typical simulation by Henon chaotic system

Table 19 Comparison among results of BSA2 and SBSA2 and results
of Tang et al. (2012) on Volta chaotic system (Note Zero value on this
example means a number smaller than 1.0e−34)

Parameters θ1 θ2 θ3

True values 36 3 20

Algorithms

SBSA2 Best 19 11 0.73

Mean 19 11 0.73

Best-MSE 0

Mean-MSE 0

BSA2 Best 19 11 0.73

Mean 19 11 0.73

Best-MSE 0

Mean-MSE 0

DE Best 19 11 0.73

Mean 19 11 0.73

Best-MSE 0.0000

Mean-MSE 3.57e−30

GA Best 19 11 0.73

Mean 19.0074 11.0020 0.7278

Best-MSE 1.45e−11

Mean-MSE 0.0011

In an overall view, the obtained results of comparison
study against results reported in Ho et al. (2010), Tang et al.
(2012) andHu et al. (2015) inTables 15, 16, 17, 18, 19, 20 and
21 show a considerably better performance of our proposed
algorithms. These results confirm efficiency and robustness
of two improved versions of BSA than the pure BSA. Also
we can conclude that the proposed algorithms in this research
can obtain more accurate solutions than the results of other
algorithm reported in compared literature.

6 Conclusions

Amathematical model has a vital role in controlling and syn-
chronization of chaotic systems. But generally in real-world
problems, parameters are mixed with mismatches and distor-
tions. So presentation of scientific approaches to overcome
this drawback is a popular topic. This research proposed two
effective ideas to improve performance of BSA. Firstly to
provide a faster convergence and a deep search, a new oper-
ator to generate initial trial population was proposed. Then a
group search ability was provided for the BSA by proposing
a SBSA. In the SBSA, a population is divided into several
groups and each of groups tries to evolve itself using a BSA
evolutionary process. Groping population into several sets
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Table 20 Comparison among results of BSA2 and SBSA2 and results
of Hu et al. (2015) on Economic chaotic system when orders are
unknown (Note Zero value on this example means a number smaller
than 1.0e−32)

Parameters α1 α2 c

True values 0.9 0.85 1

Algorithms

SBSA2 Best 0.9 0.85 1

Mean 0.9 0.85 1

Worst 0.9 0.85 1

Best-SSE 2.3419e−19

Mean-SSE 5.8331e−16

Worst-SSE 5.5262e−15

BSA2 Best 0.9 0.85 1

Mean 0.9 0.85 1

Worst 0.9 0.85 1

Best-SSE 1.1147e−26

Mean-SSE 1.8442e−19

Worst-SSE 1.4733e−18

GABC Best 0.9 0.85 1

Mean 0.9 0.85 1

Worst 0.9 0.85 1

Best-SSE 1.34E−05

Mean-SSE 4.93E−05

Worst-SSE 1.06E−04

EABC Best 0.9 0.85 1

Mean 0.9 0.85 1

Worst 0.9 0.85 1

Best-SSE 1.58E−06

Mean-SSE 1.06E−05

Worst-SSE 2.60E−05

HABC Best 0.9 0.85 1

Mean 0.9 0.85 1

Worst 0.9 0.85 1

Best-SSE 1.19e−20

Mean-SSE 3.22e−09

Worst-SSE 4.83e−08

provided a better exploration of search space and an inde-
pendent local search of each groups increased exploitation
ability of BSA. Also new proposed operator to generate ini-
tial trial population by providing a deep search increased
satisfactorily solution quality. To measure efficiency of pro-
posed algorithm with respect to their original versions, they
were applied for parameter estimation of 10 typical chaotic
systems. The obtained results and nonparametric analysis of
them demonstrated that both of the proposed ideas were very
effective and robust so that the BSA by aforementioned ideas
produced similar and promising results over repeated runs.
The BSA with group search ability and new proposed oper-

Table 21 Comparison among results of BSA2 and SBSA2 and results
of Hu et al. (2015) on Rossler chaotic system when orders are unknown
(Note Zero value on this example means a number smaller than
1.0e−32)

Parameters α1 α2 c

True values 0.9 0.85 0.95

Algorithms

SBSA2 Best 0.9 0.85 0.95

Mean 0.9 0.85 0.95

Worst 0.9 0.85 0.95

Best-SSE 0

Mean-SSE 5.3311e−28

Worst-SSE 2.5454e−27

BSA2 Best 0.9 0.85 0.95

Mean 0.9 0.85 0.95

Worst 0.9 0.85 0.95

Best-SSE 0

Mean-SSE 2.177e−30

Worst-SSE 2.177e−29

GA Best 0.9 0.85 0.95

Mean 0.9 0.85 0.95

Worst 0.9 0.85 0.95

Best-SSE 1.44E−02

Mean-SSE 2.12E−02

Worst-SSE 4.28E−02

DE Best 0.9 0.85 0.95

Mean 0.9 0.85 0.95

Worst 0.9 0.85 0.95

Best-SSE 1.20E−08

Mean-SSE 2.34E−08

Worst-SSE 3.83E−08

PSO Best 0.9 0.85 0.95

Mean 0.9 0.85 0.95

Worst 0.9 0.85 0.95

Best-SSE 8.28E−05

Mean-SSE 5.57E−04

Worst-SSE 2.79E−03

HABC Best 0.9 0.85 0.95

Mean 0.9 0.85 0.95

Worst 0.9 0.85 0.95

Best-SSE 3.00e−13

Mean-SSE 6.53e−13

Worst-SSE 1.11e−12

ator called SBSA2 due to a better exploration and a deep
exploitation had the best performance among all algorithms.
Also the second-best results were related to a BSA with only
new proposed operator called BSA2 due to providing a deep
search of found promising areas. In the final part of com-
parison study, a comparison of the proposed algorithms in
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this study with respect to other algorithms reported in the lit-
erature confirmed a considerably better performance of our
proposed algorithms.
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