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Abstract In this paper, we propose a multi-objective impe-
rialistic competitive algorithm (MOICA) for solving global
multi-objective optimization problems. The MOICA is a
modified and improved multi-objective version of the single-
objective imperialistic competitive algorithm previously
proposed by Atashpaz-Gargari and Lucas (IEEE Congr Evo-
lut Comput 7:4661–4666. doi:10.1109/CEC.2007.4425083,
2007). The presented algorithm utilizes the metaphor of
imperialism to solve optimization problems. Accordingly,
the individuals in a population are referred to as countries,
of which there are two types—colonies and imperialists. The
MOICA incorporates competition between empires and their
colonies for the solution of multi-objective problems. To this
end, it employs several non-dominated solution sets,whereby
each set is referred to as a local non-dominated solution
(LNDS) set. All imperialists in an empire are considered
non-dominated solutions, whereas all colonies are consid-
ered dominated solutions. In addition to LNDS sets, there
is one global non-dominated solution (GNDS) set, which is
created from the LNDS sets of all empires. There are two
primary operators in the proposed algorithm, i.e., assimila-
tion and revolution, which use the GNDS and LNDS sets,
respectively. The significance of this study lies in a notable
feature of the proposed algorithm, which is that no special
parameter is used for diversity preservation. This enables
the algorithm to prevent extra computation to maintain the
spread of solutions. Simulations and experimental results on
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multi-objective benchmark problems show that the MOICA
is more efficient compared to a few existing major multi-
objective optimization algorithms because it produces better
results for several test problems.

Keywords Multi-objective metaheuristics · Imperialistic
competitive algorithm · Multiple non-dominated sets ·
Global optimization

1 Introduction

Several real-world problems must be solved by optimiz-
ing more than one objective. In a few cases, one objective
must be minimized, while the other must be maximized
(Sherinov et al. 2011). In this paper, we propose a multi-
objective version of the imperialistic competitive algorithm
(ICA) (Atashpaz-Gargari and Lucas 2007) for solving global
multi-objective optimization problems based on imperialis-
tic competition. The ICA is a global optimization strategy,
in which the initial algorithm population consists of two
types of countries, i.e., imperialists and colonies. Imperialis-
tic competition is themost important part of the algorithmand
causes the colonies to converge to the global minimum of the
objective function.Moving the colonies toward their relevant
imperialist—assimilating—and generating new countries in
each empire using revolution are other important parts of the
algorithm.

A large number of multi-objective optimization algo-
rithms have been proposed. Among these are multi-objective
evolutionary algorithms (MOEAs) (Deb 2001; Fonseca and
Fleming 1993; Horn et al. 1994; Srinivas and Deb 1995;
Zitzler and Thiele 1998). A priority of multi-objective opti-
mization algorithms is to simultaneously find several Pareto-
optimal solutions. Another priority is to optimize conflicting
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objectives when one must be minimized and the other must
be maximized. Consequently, multi-objective optimization
algorithms have gained popularity in the last two decades.
Therefore, the aimof this study is to develop amulti-objective
optimization algorithm based on imperialistic competition—
specifically, the multi-objective imperialistic competitive
algorithm (MOICA)—which uses a population of countries
of the following two types: imperialists and colonies. In
every empire, there is an imperialist, which is considered
the local best for that empire. Accordingly, the MOICA gen-
erates a local non-dominated solution (LNDS) set for each
empire. Then, it calculates the global non-dominated solu-
tion (GNDS) set of the LNDSs of each empire, which is the
final set of non-dominated solutions.

In terms of search and competition, the ICA is similar
to particle swarm optimization (PSO), which simulates the
social behaviors of animals, such as bird flocking (Kennedy
and Eberhart 1995). Additionally, the ICA has a local best
in each empire (i.e., the imperialist country) and a global
best, which is the strongest of the imperialists. By beginning
with several empires, each with several colonies, competi-
tion can occur between empires. This competition leads to
the development of powerful empires and the collapse of
weaker empires (Atashpaz-Gargari and Lucas 2007). The
ICA is one of the numerous algorithms used for solving
optimization problems. Among these are search heuristics,
such as genetic algorithms (GAs), which belong to the class
of evolutionary algorithms. These algorithms generate solu-
tions to optimization problems by imitating the process of
natural evolution (Mitchell 1999). Another example is ant
colony optimization (ACO), which is inspired by the behav-
ior of ants foraging for food (Dorigo and Blum 2005). In
contrast, simulated annealing is an example of a global opti-
mization algorithm. It is a generic probabilistic metaheuristic
that locates a good approximation to the global optimum of
a given function in a large search space (Kirkpatrick et al.
1983).

Multiple applications of the ICA exist, particularly in
engineering. In computer engineering, the ICA is applied
to data clustering and image processing for solving prob-
lems such as skin color detection and template matching
(Seyedmohsen andAbdullah 2014). For example, Duan et al.
(2010) presented a template matching method based on a
chaotic ICA that used a correlation function. They prevented
the problem of falling into a local best solution by intro-
ducing chaotic behavior into the ICA, which improved its
global convergence. Another example of the application of
the ICA is the integrated product mix-outsourcing optimiza-
tion problem (Nazari-Shirkouhi et al. 2010). Vedadi et al.
(2015) applied the ICA in electrical engineering by present-
ing an ICA-based maximum power point-tracking algorithm
to rapidly and precisely find the global maximum power
point of a power-voltage string under partial shading con-

ditions. Goudarzi et al. (2013) used the ICA as a heuristic
technique for optimizing the location of capacitors in radial
distribution systems. Another example of the application of
the ICA is in geoscience, where it is used to locate the crit-
ical failure surface and compute the safety factor in slope
stability analysis based on the limit equilibrium approach
(Kashani et al. 2014). Jordehi (2016) proposed a solution to
flexible AC transmission systems (FACTS) allocation prob-
lems so that low overload and voltage deviation values result
from line outage contingencies and demand growth. In this
study, thyristor-controlled phase shifting transformers and
thyristor-controlled series compensators have been used as
FACTS devices.

Variants of the ICA have been presented in the literature.
Niknam et al. (2011) proposed an efficient hybrid algorithm
based on the modified ICA (MICA) and k-means, referred to
as the K-MICA, to optimally cluster n objects into k clusters.
This approach was used to overcome local optima obsta-
cles. The K-MICA was tested for robustness and compared
favorably to several algorithms, including ACO, PSO, GA,
TS, honey bee mating optimization, and k-means. Razmjooy
et al. (2013) proposed a hybrid algorithm by combining the
ICA and an artificial neural network to solve skin classi-
fication problems. The authors used a multilayer perceptron
network tomanage problemconstraints and the ICA to search
for high-quality andminimum-cost solutions. Ebrahimzadeh
et al. (2012) proposed a novel hybrid intelligent method for
recognizing the common types of control chart patterns. The
proposed method included the following two primary mod-
ules: a clusteringmodule and a classifiermodule. The authors
used a combination of the MICA and the k-means algorithm
in the formermodule to cluster input data. In addition, amuta-
tion operator was introduced into the proposed algorithm by
changing the assimilation process.

In this paper, a new multi-objective ICA (MOICA) is
proposed. TheMOICAuses the idea of imperialism by incor-
porating competition between empires. Every empire has a
set of imperialists and a set of colonies. The primary idea
in this algorithm is to have an LNDS for every empire.
Therefore, all imperialists in an empire are considered to
be non-dominated solutions, whereas all colonies are con-
sidered to be dominated solutions. Moreover, in addition to
LNDS sets, there is one GNDS set, which is created from
the LNDS sets of all empires. Two main operators of the
proposed algorithm, i.e., assimilation and revolution, use the
GNDS and LNDS sets during the assimilation and revolu-
tion of colonies, respectively. Another significant feature of
the proposed algorithm is that no special parameter is used
for diversity preservation, which enables algorithm to pre-
vent extra computations to maintain the spread of solutions.
The proposed algorithm with the assimilation and revolution
operators produces good results that are comparable with the
state-of-the-art algorithms used in this study.
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The remainder of this paper is organized as follows: Sec-
tion 2 presents a brief description of a single-objective ICA.
In Sect. 3, the proposedMOICA is discussed in detail. There-
after, in Sect. 4, experimental results and simulations are
presented by comparing the proposed algorithm with other
multi-objective optimization algorithms. Lastly, in Sect. 5,
the conclusions of this study are presented.

2 ICA review

The primary idea of the ICA is the competition that occurs
between empires because the aim of each empire is to possess
more colonies. This competition—along with assimilation,
or moving colonies toward their relevant imperialist, and rev-
olution, or abrupt changes in sociopolitical characteristics—
enables the algorithm to reach the global optimum of a cost
function. During competition among empires, it is possi-
ble for a colony to become better than the imperialist of its
empire. In this case, the ICA switches the positions of the
imperialist and colony; thus, the colony becomes the imperi-
alist and the former imperialist becomes a colony. The power
of each empire is inversely proportional to its cost function.
Therefore, the lower the cost of the empire, the more power-
ful it is (Atashpaz-Gargari and Lucas 2007).When an empire
has exhausted its colonies, it becomes powerless and as a
result, it collapses and terminates. Consequently, the number
of empires gradually decreases until only one of the most
powerful imperialist states remains. However, the ICA’s ter-
mination criterion is reaching the user-specified number of
iterations, regardless of state. Similarly, the algorithm will
continue to the number of iterations specified by the user
even if only one empire remains, because it is not ensured
that the optimum solution has been found when only one
empire remains.
Algorithm – ICA (Atashpaz-Gargari and Lucas 2007)

1. Select a few randompoints on a function and initialize
empires.

2. Move colonies toward their relevant imperialist (i.e.,
assimilation).

3. Randomly replace a few colonies with newly gener-
ated colonies (i.e., revolution).

4. Compute the costs of an imperialist and all colonies.
5. If there is a colony in an empire that has a lower

cost than that of the imperialist, then exchange their
positions.

6. Compute the total cost of all empires relative to the
power of the imperialist and its colonies.

7. Select theweakest colony, i.e., a colonywith the high-
est cost, from theweakest empire, i.e., the empirewith
the highest cost, and give it to the empire that is the

most likely to possess it, thereby engendering impe-
rialistic competition.

8. Eliminate powerless empires.
9. If the termination condition is not satisfied, return to

Step 2.

After random initialization of the population, the objective
function is evaluated and the individuals in the population
are assigned their cost values. The individuals of size N
with the minimum costs are selected to be imperialists. The
remaining individuals become colonies that are proportion-
ally distributed among imperialists based on their costs.

2.1 Assimilation

Assimilation is the process ofmoving the colonies toward the
imperialist within the same empire. This process is one of the
most important parts of the ICA because it is related to the
improvement in the colonies of a particular empire. Figure 1
describes the movement of a colony toward its imperialist in
a randomly deviated direction to search for different points
around the imperialist. As shown in the figure, the new posi-
tion of the colony is x , which is a random variable with a
uniform distribution. Thus, we have, x ∼ U (0, β × d),
where β is a number between 1 and 2 and d is the distance
between the colony and imperialist (Atashpaz-Gargari and
Lucas 2007). In addition, θ is a random variable with a uni-
form distribution, which is θ ∼ U (−γ, γ ), where γ is a
parameter that adjusts the deviation from the original direc-
tion (Atashpaz-Gargari and Lucas 2007).

The mathematical formulation of ICA assimilation may
be demonstrated as follows: Let

Col_Pos = [p1, p2, . . ., pn] (1)

be the vector containing the colony’s position and let

Imp_Pos = [p′
1, p

′
2, . . ., p

′
n] (2)

be the vector containing the imperialist’s position, where n
is the dimension of the optimization problem. Now, let d be
the vector containing the elementwise difference of (1) and
(2) as follows:

Fig. 1 Moving colonies toward their relevant imperialist in a randomly
deviated direction
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d = [p1− p′
1, p2− p′

2, . . ., pn− p′
n]. (3)

Therefore, the calculation of the new colony’s position is

Col_Pos_New = Col_Pos + θ ∗ β ∗ r ∗ d, (4)

where r is a random variable with a uniform distribution
between 0 and 1. The value of θ is selected to be in a range
of (-π / 4,π / 4) radians, andβ is selected to be approximately
2 (Atashpaz-Gargari and Lucas 2007).

2.2 Revolution

Revolution is the process of generating new countries in
the empire (Atashpaz-Gargari and Lucas 2007). This occurs
owing to an abrupt change in sociopolitical characteristics.
While generating new countries, a few of the current coun-
tries (colonies) are randomly replaced by the newly created
countries.

2.3 Imperialistic competition

Imperialistic competition occurs after the assimilation and
revolution operations are applied to the colonies during each
iteration of the algorithm, as shown in Fig. 1. Imperialistic
competition starts with the computation of the total cost of
all empires. The total cost of an empire can be expressed as
follows (Atashpaz-Gargari and Lucas 2007):

TCk = ICk + ε ∗ mean(CEk), (5)

where TCk is the total cost of empire k, ICk is the imperialist
cost of empire k, CEk is the cost of the colonies of empire k,
and ε is a small value of approximately 0.1 to make the total
cost of an empire depend mostly on the imperialist (a larger
value for ε will make the total cost depend on the imperialist
and the colonies of the empire).

Competition among the empires is realized by excluding
the weakest empire from the competition and allowing other
empires to compete for the weakest colony in the excluded
weakest empire. The following mathematical formulation
describes the possession probabilities of the competing
empires for theweakest colony (Atashpaz-Gargari and Lucas
2007):

pk =
∣
∣
∣
∣
∣

NTCk
∑N

i=1 NTCi

∣
∣
∣
∣
∣
, (6)

where pk is the possession probability of empire k, N is the
number of imperialists, and NTCk is normalized total cost,
which is computed as

NTCk = TCk + max(TCi ). (7)

The final step in the competition between imperialists is to
obtain a vector containing the differences betweenpossession
probabilities and the uniformly distributed random values
between (0, 1) as follows:

D = [p1 − r1, p2 − r2, . . . , pN − rN ] (8)

where N is the number of imperialists. The possessor of the
weakest colony in the weakest empire is the one whose cor-
responding index in vector D contains the maximum value.

3 Proposed MOICA

3.1 Algorithm overview

TheproposedMOICA implements the idea of imperialismby
incorporating competition among empires. The primary con-
cept of the MOICA is that there are several non-dominated
solution sets, i.e., imperialists, per empire and one GNDS
set, which contains the best imperialists among all empires.
All empires attempt to possess other empires’ colonies based
on their power. Therefore, all empires have the opportunity
to assume control of one or more colonies of the weak-
est empire. In an iteration of the algorithm, the colonies of
each empire make changes with respect to their positions
by changing their cost values. As previously mentioned, a
colony, C, in an empire may become better than a few of the
current set of imperialists. In such a case, the new colony, C,
with better cost becomes a member of the empire’s imperial-
ists, that is, a member of the set of non-dominated solutions.
Thus, the previous imperialist, I, which is dominated by C,
becomes a colony.

The MOICA has an important yet simple feature in its
implementation. Specifically, it has several non-dominated
solution sets, which makes it different from numerous other
multi-objective optimization algorithms. Initially, there areN
empires. Therefore, every empire possesses Pareto-optimal
solutions, or LNDSs. Therefore, the total number of LNDSs
will initially be N. Moreover, there is a set of GNDSs, which
is obtained from the N LNDSs. Because the set of LNDSs
for each empire is updated during iterations, the GNDS is
updated accordingly. This implies that the algorithm has one
GNDS throughout its implementation, whereas the number
of LNDSs gradually decreases as empires collapse during
competition. Figure 2 illustrates an example of three empires
(E1, E2, and E3) with their colonies and LNDS sets, i.e.,
imperialists, which are set in bold.

Imperialists that are taken into an area in Fig. 2 are the best
imperialists among all empires that form the GNDS. There
is a possibility that none of the imperialists will be included
in the GNDS of an empire. An example of this scenario is
E1 in Fig. 2. Therefore, the use of the GNDS in this algo-
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Fig. 2 GNDS and LNDS sets of three empires

rithm is considerably important because the colonies of all
empires are assimilated toward randomly selected imperial-
ists from the GNDS, which enables the algorithm to prevent
local optima. If we consider only one empire in Fig. 2, for
example, E2, it is apparent that the circles in bold form the
non-dominated solution set, E2. The assimilation and revo-
lution operations are detailed in the following sections.

Non-dominance in the proposed algorithm is calculated
basedon fronts; solutions that are assigned a value of 1 belong
to the first front, while solutions with a front value of 2 are
assigned to the second front, and so on. As a result, the LNDS
and GNDS sets contain only solutions that belong to the first
front. Another significant feature of the proposed algorithm
is that no special parameter is used for diversity preservation,
which enables the algorithm to prevent extra computation to
maintain the spread of solutions. Even though a share param-
eter is not used in the MOICA, the solution spread in the
results obtained from our simulations and experiments was
excellent owing to the assimilation technique used in the
algorithm. As described in the previous section, all colonies
of an empire move toward one imperialist available in the
empire. However, in the proposed algorithm, the colonies
of an empire move toward one of the imperialists, I, in the
GNDS set. The imperialist, I, toward which the colonies
move is randomly selected in each iteration from the GNDS
set. Therefore, the prevention of a share parameter is derived
from the multi-objective nature of the algorithm, in which
every solution in a non-dominated solution set is valid, so
that there is no single solution. For clarity, we first describe
the proposed algorithm. Then, each part of the algorithm is
detailed.
Algorithm – Primary procedure of the MOICA

1. Begin
2. Initialization

a. Initialize problem parameters, such as the objec-
tive function name, number of variables, and the
lower and upper bounds of decision variables.

b. Initialize algorithm parameters, such as popu-
lation size, number of initial empires, number
of iterations, and other coefficients used in the
assimilation and revolution operations.

3. Evaluate objective functions and assign cost values to
each country.

4. Apply non-domination sorting [15].
5. Create initial empires.
6. For each iteration i do:

a. For each empire j do:
i. Obtain the GNDS.
ii. Apply assimilation: Move colonies toward

one randomly selected imperialist in the
GNDS set and apply economic changeswith
probability pe.

iii. Apply revolution: Generate new countries
from the LNDS set according to probability
pr and revolution rate α.

iv. Evaluate objective functions and assign cost
values to all colonies.

v. Update the LNDS for empire j .
vi. Calculate the total power of empire j .

b. End for

7. Unite similar empires.
8. Apply imperialistic competition and terminate pow-

erless empires.
9. End for
10. Display results.

3.2 Non-domination sorting

Various methods have been proposed in the literature for
determining non-dominance. In thesemethods, each solution
in a search space is assigned a rank value, which indicates
whether the solution is dominated by other solutions. In
most cases, the lower the rank value, the less the solution
is dominated by other solutions. For example, a rank value
of one indicates that the solution is non-dominated. Another
approach of ascertaining non-dominance is to not assign a
rank value to solutions and divide them into fronts instead
(Deb et al. 2002), which is the approach that we use in
this study. Figure 3 illustrates non-dominated solutions with
fronts for the minimization problem.

A front with a value of one contains non-dominated solu-
tions, whereas the front value of two is the set of solutions
dominated by the solutions from the first front only. Solutions
with a front valueof three are dominatedby the solutions from
the previous fronts. Therefore, in the proposed algorithm,
every empire has its own LNDS. This LNDS is intended to
include the imperialists of the empire; there is no single impe-
rialist in the empire. This implies that all other solutions have
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Fig. 3 Non-dominance using fronts

front values larger than one, such that dominated solutions
are considered the colonies of the empire.

3.3 Assimilation

Assimilation, the movement of colonies toward imperialists,
is implemented similarly, as explained in Sect. 2. However,
there are several imperialists in the GNDS set. Thus, one
imperialist should be selected to serve as a target for the
movement of colonies. The use of the GNDS in assimila-
tion instead of LNDS sets enables the algorithm to escape
local minima faster. The selection of the target imperialist is
randomly performed for each empire in each iteration of the
algorithm.

Figure 4 illustrates the assimilation procedure imple-
mented in this algorithm. In the figure, the black circles and
red triangle indicate non-dominated solutions—the GNDS
set— that are imperialists of the whole population. The red
triangle is the randomly selected target imperialist toward
which the colonies aremoving. For simplicity, only onemov-
ing colony is shown in the figure and is indicated by a blue
circle. Parameters such as θ , d, and x are explained in Sect. 2;
however, the values used for a few parameters are different,
whichwill be discussed later. Owing to randomized selection
of the target imperialists and deviation θ , the diversity in the
algorithm is preserved. In Fig. 4, the angle is denoted by θ ,
because the deviation θ is used in the decision space, which
may not be the same as in the objective space. Therefore,
even if deviations in the decision and objective spaces differ,
deviation still exists in the objective space, which is denoted
by θ .

To improve the local search of the proposed algorithm,
another new operation is added immediately after assimila-
tion. This operation is the influence of economic changes
on the empire, which has a probability of being engaged, as
described in the pseudocode below. The higher the value of
pe, the lower the probability of performing the operation.
In most cases, a value of 0.9 is used, to incite a few eco-

Fig. 4 Assimilation of a colony toward a randomly selected imperialist
from the GNDS set

nomic changes. UpperBound and LowerBound are vectors
that indicate the decision space of the decision variables for
the given objective function. rand() is a uniformly generated
random value between (0, 1). The variables and parameters
Col_Pos_New,Col_Pos, θ , β and r are the same as in Sect. 2.
However,d is different in this operation because it contains an
elementwise difference of a colony and a randomly selected
imperialist from the GNDS.
Procedure: Assimilation with local search: economic
changes

1. Randomly select an imperialist IG from the GNDS.
2. for each colony in empire i do
3. set d to the elementwise difference of a colony and

IG
4. Col_Pos_New = Col_Pos + θ ∗ β ∗ r ∗ d
5. end for
6. if rand() > pe do
7. R = UpperBound – LowerBound;
8. for each decision variable i in R do
9. w(i) = (abs(UpperBound(i))*rand())rand()/R(i) –

(abs(LowerBound(i))*rand())rand()/R(i);
10. end for
11. ColoniesOfEmpire = ColoniesOfEmpire .* w;
12. end if

3.4 Revolution

The revolution operation in the proposed algorithm is com-
pletely different from the one in ICA because there is no
randomgeneration of newcolonies. The new revolution oper-
ation has two parts, which are performed based on probability
pr . The first part is the generation of a new colony by the
random selection of elements from two randomly selected
imperialists in the LNDS set of one empire. If there is only

123



Multi-objective imperialistic competitive algorithm with multiple non-dominated sets for the… 8279

one imperialist in the LNDS set, then one more individual
is randomly generated. For the second part of the revolu-
tion process, a few imperialists are modified and replaced by
randomly chosen colonies.
Procedure: Revolution

1. if rand() > pr
2. for each colony in empire i do

a. Select two imperialists I1 and I2 from LNDS (if
the set contains one imperialist only, then generate
one more randomly)

b. Generate two random points P1 and P2 between
1 and the length of individuals

c. Split every imperialist into three blocks using
points P1 and P2

d. Generate new colonyC by combining the first and
third blocks from I1 and the second block from
I2

e. Replace colony i in an empire with C

3. end for
4. else
5. for i = 1 to RevolutionRate * NumberOf-

ColoniesInEmpire

a. Select one imperialist Ii from LNDS randomly
b. Update Ii by adding to its every element a ran-

dom value between (0.001, 0.09) or (−0.09,
−0.001)

6. end for
7. Update randomly selected colonies by newly gener-

ated ones
8. end if

The GNDS is used to select imperialists for updating
colonies during assimilation. On the other hand, imperialists
from the LNDS of the same empire are used in the revolu-
tion process. Therefore, both assimilation and revolution of
colonies enable the algorithm to escape local minima and
reach global optimal solutions.

3.5 Possessing an empire

Every empire is possessed by the set of imperialists, which
is the non-dominated set of solutions within the empire itself
and is defined as the LNDS in this algorithm. However, in

terms of possession of the empire, it is possible that all indi-
viduals of an empire will be in the LNDS, and thus, there
are no dominated solutions within an empire. Consequently,
assimilation and revolution will not be applicable. There-
fore, one more parameter ∅ was added to this algorithm. It
indicates the maximum percentage of imperialists that an
empire can have. Consequently, when obtaining the LNDS
of an empire, the determination of whether the percentage
of imperialists exceeds ∅ is made. If so, then the best maxi-
mum imperialists allowed are retained; the others are moved
to the set of colonies. The total power of an empire is equal
to the number of non-dominated solutions in the empire’s
population. Although an empire with a lower number of non-
dominated solutions may contain better solutions than one
with more non-dominated solutions, the total power is still
equal to the cardinality measure, regardless of dominance.

3.6 Uniting similar empires

The MOICA uses different approaches to unite similar
empires in comparison with ICA; in ICA, empires are united
when an empire’s imperialist is very close to another’s impe-
rialist. This is achieved by calculating the distance between
the positions of two imperialists and comparing this calcu-
lated distancewith the distance threshold parameter, which is
originally set to 0.02. The distance threshold used here is not
for diversity preservation; it is only used for measuring how
close two empires are. If the distance is less than or equal to
the specified threshold, then the empires are united.

In the proposed algorithm, this approach cannot be applied
because there are several imperialists in an empire. Thus, all
imperialists must be considered when comparing empires’
similarity. Consequently, the empire similarity comparison
is implemented using the generational distance metric (Van
Veldhuizen and Lamont 1998), which enables the calculation
of the generational distance between two ormore sets of non-
dominated solutions.Thegenerational distanceGD is defined
as:

GD = 1

|S∗|
∑

r∈S∗ min
{

drx |x ∈ S j
}

, (9)

where S∗ is a reference solution set for the evaluation of the
solution set S j and dxr is the distance between the current
solution x and reference solution r , given as

drx =
√

( f1(r) − f1(x))2 + ( f2(r) − f2(x))2 + ( f3(r) − f3(x))2 + . . . + ( fk(r) − fk(x))2 (10)
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Fig. 5 Generational distance for uniting empires

where k is the number of objective functions to be optimized.
Figure 5 illustrates an example computation of generational
distance for two objective functions.

3.7 Imperialistic competition

Imperialistic competition plays an important role in this algo-
rithm, gradually decreasing the number of weak empires and
increasing the number of strong empires. Theweakest empire
in the proposed algorithm is the onewith the smallest number
of non-dominated individuals, whereas the strongest empire
is the one with the largest number of non-dominated indi-
viduals. Imperialistic competition is constructed so that the
stronger an empire is, the more chances it has of obtaining
control of a weak colony in a weak empire. Consequently,
it obtains possession of it. Weak empires slowly lose their
colonies during this competition and are soon terminated
because of their powerlessness, which means that these
empires are left with no countries.
Procedure: Imperialistic Competition

1. Construct a vector of the total powers P for all
empires.

2. Select the weakest empire E with the lowest total
power.

3. Construct a vector of random values R ∼ U (0, 1)
of size P.

4. Calculate D = R - P for each empire.
5. The empirewith themaximumvalue inDwill possess

the randomly selected colony in empire E.
6. Terminate E if it has no colonies.

3.8 Computational complexity of MOICA

The time complexity for implementing non-domination sort-
ing in the MOICA is the same as the time complexity
for non-domination sorting in NSGA-II, i.e., O(M(2 N )2),
where M is the number of objectives and N is the num-

ber of solutions, i.e., the population size. Considering the
time complexities of assimilation and revolution operations,
in the worst case, it is possible for N − 1 colonies to be
assimilated/revolt if there is only one dominating imperial-
ist. Therefore, in every iteration, for both assimilation and
revolution, the time complexity is O(N ). Another consid-
eration is the time complexity for uniting similar empires,
which is O(K 2) in every iteration, where K is the number
of empires in the population. Consequently, the overall time
complexity of theMOICA is O(M(2 N )2+K 2). Comparing
the time complexities of the MOICA and NSGA-II, we con-
clude that they are almost the same, since K 2 is related to the
number of empires, which is usually very low in comparison
with population size N , and could even be omitted.

4 Experimental results

This section details the experiments and simulations con-
ducted in this study. To obtain the experimental results and
verify the effectiveness of the proposed algorithm, several
bi-objective and tri-objective optimization problems were
selected from the literature as test problems. ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6 were obtained from Zitzler et al.
(2000), in addition to test problems from Kursawe (1990),
Fonseca and Fleming (1998), and Schaffer (1987).Moreover,
ten unconstrained test functions were employed from the
Congress on Evolutionary Competition (CEC) 2009 Special
Session and Competition (Zhang et al. 2009)—UF1, UF2,
UF3, UF4, UF5, UF6, UF7, UF8, UF9, and UF10.

Table 1 details all the unconstrained test problems used
in this study, except the CEC 2009 test functions, which can
be found in (Zhang et al. 2009). The performance metrics
used to evaluate our results with the Pareto-optimal solutions
are hypervolume (HV) (Zitzler and Thiele 1998), epsilon
indicator (EI) (Zitzler et al. 2003), and inverted generational
distance (IGD). The IGD metric used in this study is the
jMetal version.

In addition, this section compares the results of the pro-
posed algorithmwith those of state-of-the-artmulti-objective
optimization algorithms.

4.1 Discussion

All experimental results were obtained by executing each
algorithm ten times. The maximum number of function eval-
uations was set to 25,000. For a few test functions, it was
set to 5000 to verify the performance of the algorithms with
higher and lower numbers of function evaluations. The pop-
ulation size was set to 100 for all algorithms. The dimension
of the individuals in the population was set to 30 for all test
functions. The tables below describe the average HV and EI,
which were obtained from several executions of the given
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Table 1 Unconstrained test
problems used in this study

Problem Objective functions Variable bounds n

Fonseca f1 (x) = 1 − e
− ∑n

i=1

(

xi− 1√
n

)2

−4 ≤ xi ≤ 4 3

f2 (x) = 1 − e
− ∑n

i=1

(

xi+ 1√
n

)2

Kursawe f1 (x) = ∑n−1
i=1

(

−10e

(

−0.2∗
√

x2i +x2i+1

))

−5 ≤ xi ≤ 5 3

f2 (x) = ∑n
i=1

(|xi |a + 5sinxbi
) ; a = 0.8; b = 3

Schaffer f1 (x) = x2 −10 ≤ x ≤ 105 1

f2 (x) = (x − 2)2

ZDT1 f1 (x) = x1 0 ≤ xi ≤ 1 30

f2 (x) = g (x)
[

1 − √
x1/g (x)

]

g (x) = 1 + 9
(∑n

i=2 xi
)

/ (n − 1)

ZDT2 f1(x) = x1 0 ≤ xi ≤ 1 30

f2 (x) = g (x)
[

1 − (x1/g (x))2
]

g (x) = 1 + 9
(∑n

i=2 xi
)

/ (n − 1)

ZDT3 f1 (x) = x1 0 ≤ xi ≤ 1 30

f2 (x) = g (x)
[

1 −
√

xi
g(x) − x1

g(x) sin (10πx1)
]

g (x) = 1 + 9
(∑n

i=2 xi
)

/ (n − 1)

ZDT4 f1 (x) = x1 0 ≤ x1 ≤ 1 30

f2 (x) = g (x)
[

1 − (x1/g (x))2
] −5 ≤ xi ≤ 5

g (x) = 1 + 10 (n − 1) + ∑n
i=2

[

x2i − 10cos (4πxi )
]

i = 2,…,n

ZDT6 f1 (x) = 1 − e−4x1sin6 (6πx1) 0 ≤ xi ≤ 1 30

f2 (x) = g (x)
[

1 − ( f1 (x) /g (x))2
]

g (x) = 1 + 9
[∑n

i=2 xi
n−1

]0.25

algorithm. The IGD was obtained from the average value
from several executions of the algorithms.

The proposed algorithm used the following parameters.
The initial number of empireswas set to 8. From several tests,
it was evident that its performance was poor with far fewer or
farmore than 8 initial empires. The parameter θ had a random
value between (0, 1) and β had a random value between (0,
5). The parameter for the percentage of imperialists ∅ was
set to 0.3, so that at most 30% of the empire’s population was
considered imperialist. Thus, 70% of the space was left for
colonies in an empire, so more assimilations and revolutions
were performed. The revolution rate α was set to 0.3, and the
parameter used in the revolution process pr was set to 0.5.
The optimal value for the parameter for applying economic
changes pe may differ across test functions. For example,
for UF9, the result was best when pe was set to around 0.2;
nonetheless, in most cases, it was found to be between 0.8
and 1 based on a trial-and-error approach. The values for the
above parameters were chosen as the best suitable values for
the proposed algorithm after the conduction of a number of
experiments. Therefore, the parameters for theMOICAwere
tuned using a non-iterative algorithmic approach (Eiben and
Smit 2011), such that the parameters were generated during
initialization and were then tested.

Table 2 Hypervolume results for unconstrained test problems with
25,000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

Fonseca 0.99441 0.99441 0.99447 0.99453

Kursawe 1.00000 1.00000 1.00000 1.00000

Schaffer 0.97764 0.81099 0.90619 0.97748

ZDT1 0.99242 0.99713 0.99699 0.99725

ZDT2 0.98534 0.99431 0.99392 0.99444

ZDT3 0.99824 0.99833 0.99835 0.99831

ZDT4 0.98440 0.72624 0.57710 0.02393

ZDT6 0.97120 0.93140 0.90948 0.97105

The bold values show the best results of the given methods in the indi-
cated problems

The first three test problems addressed in this section are
Fonseca, Kursawe, and Schaffer. Then, the ZDT set of prob-
lems is discussed and the results of the set of unconstrained
problems from CEC 2009 are described. Values in bold are
the best results obtained. All algorithms performed well in
terms of convergence and divergence for each of the prob-
lems below. The cardinality measure, i.e., the number of
non-dominated solutions, is important, as having more can-
didate solutions means more chances for good convergence.
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Table 3 Epsilon indicator results for unconstrained test problems with
25,000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

Fonseca 1.00470 1.00560 1.00520 1.00310

Kursawe 1.04330 1.04890 1.04890 1.04620

Schaffer 1.01020 1.01030 1.07750 1.01010

ZDT1 1.03240 1.03330 1.03580 1.01360

ZDT2 1.00350 1.00348 1.00329 1.00250

ZDT3 1.00000 0.99970 0.99950 0.99910

ZDT4 1.03260 3.43550 5.38910 22.01040

ZDT6 1.01610 1.31910 1.47070 1.01590

The bold values show the best results of the given methods in the indi-
cated problems

One of the main features that distinguish the MOICA is the
cardinality measure, which is very good for most problems.

Supplementary materials related to the proposed method are
available in Online Resource 1.

The five real-valued ZDT problems are presented in
Table 1 (ZDT5, the omitted problem, is binary-encoded).
Incidentally, since it is binary-encoded, ZDT5 has often been
omitted from analysis elsewhere in the EA literature.

Tables 2, 3, and 4 contain the HV, EI, and IGD results of
theMOICA,NSGA-II, SPEA2, andOMOPSOfor the uncon-
strained test problems in Table 1. Table 4 also includes the
MOEA/D-AWA algorithm (Qi et al. 2014). On average, the
results for HV and EI are similar for all algorithms. However,
the MOICA performs considerably better in terms of IGD.

As stated above, one of the features of the MOICA is
its ability to produce many candidate solutions. The Schaf-
fer test problem is an example that illustrates the cardinality
measure of the MOICA. Figure 6 illustrates the Pareto found
by all algorithms for the Schaffer test problem. Although the
HV and EI results are good for all algorithms, as shown in

Table 4 IGD results for unconstrained test problems with 25,000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO MOEA/D-AWA Harmony NSGA-II Harmony MOEAD

Fonseca 1.1805E−4 3.2267E−4 2.3427E−4 2.1033E−4 – – –

Kursawe 4.4896E−4 1.7598E−4 1.3464E−4 1.6165E−4 – – –

Schaffer 2.3575E−5 0.0373 0.0215 3.3629E−4 – – –

ZDT1 2.5732E−5 1.8641E−4 1.5222E−4 1.3782E−4 4.470E−3 8.03E−04 1.86E−03

ZDT2 3.5707E−5 1.9656E−4 1.7261E−4 1.4183E−4 4.482E−3 1.12E−03 3.01E−03

ZDT3 7.4842E−5 2.6488E−4 2.3718E−4 2.1859E−4 6.703E−3 5.01E−04 1.19E−03

ZDT4 3.8724E−5 0.0849 0.1365 1.1501 4.238E−3 8.33E−02 1.64E−04

ZDT6 1.6200E−5 0.0137 0.0219 1.2514E−4 4.323E−3 2.11E−04 1.91E−04

The bold values show the best results of the given methods in the indicated problems

Fig. 6 Cardinality measure of MOICA, OMOPSO, NSGA-II, and SPEA2 on Schaffer
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Fig. 7 Non-dominated MOICA, OMOPSO, NSGA-II, and SPEA2
solutions on ZDT4

Tables 2 and 3, respectively, Fig. 6 shows that the MOICA
andOMOPSO have considerably better cardinalitymeasures
than NSGA-II and SPEA2.

For ZDT1, ZDT2, and ZDT3, all algorithms performed
equally well. However, with respect to the ZDT4 test prob-
lem, the MOICA performed considerably better than all
other algorithms in this study. In the ZDT4 test problem,
the MOICA demonstrated its power in terms of convergence
and divergence. It was successful in this test problem and
others because of the method by which it searches the avail-
able space. It does so by setting many different empires in
the beginning of the algorithm for which LNDS sets are posi-
tioned in different parts of the search space. This enables the
algorithm to search the whole search space and to conse-

Fig. 8 Non-dominated MOICA, OMOPSO, NSGA-II, and SPEA2
solutions on ZDT6

quently obtain good convergence and divergence. Figure 7
illustrates the Pareto found by four algorithms for the ZDT4
test problem.

Figure 7 demonstrates how the spread of solutions,
convergence, and divergence are effectively preserved in
the MOICA compared to the other algorithms. Figure 8
illustrates the ZDT6 test problem, which is another good
example for illustrating the performance of theMOICAcom-
pared to the other algorithms. In ZDT6, both the MOICA
and OMOPSO performed well compared to NSGA-II and
SPEA2; however, NSGA-II performed better than SPEA2.

Figures illustrating the Paretos of algorithms for other test
problems are not provided here because they have nearly the
same Paretos as those determined herein.

Tables 5, 6, and 7 contain hypervolume, epsilon indica-
tor, and IGD results for the UF1-UF10 unconstrained test

Table 5 Hypervolume results for the CEC 2009 unconstrained test
problems with 25,000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.98701 0.97802 0.98667 0.98955

UF2 0.99671 0.98934 0.98897 0.99279

UF3 0.92884 0.94478 0.98728 0.99454

UF4 0.98849 0.98838 0.98811 0.98728

UF5 0.93230 0.91786 0.90060 0.81056

UF6 0.93785 0.94459 0.94282 0.91297

UF7 0.97662 0.96890 0.95315 0.98730

UF8 0.99348 0.99280 0.99220 0.98945

UF9 0.98309 0.97468 0.95914 0.97845

UF10 0.99334 0.92076 0.92967 0.72864

The bold values show the best results of the given methods in the indi-
cated problems

Table 6 Epsilon indicator results for the CEC 2009 unconstrained test
problems with 25,000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

UF1 1.07890 1.11220 1.06800 2.03310

UF2 1.14590 1.12880 1.13060 1.22760

UF3 1.70320 1.83810 1.07410 1.50760

UF4 1.06600 1.08930 1.07390 1.07410

UF5 1.55180 1.81000 1.86610 6.19530

UF6 1.62380 1.56080 1.42700 2.22700

UF7 1.07390 1.03760 1.05000 1.57840

UF8 2.04970 4.01980 2.91510 7.51780

UF9 4.19050 6.75860 3.61460 23.76640

UF10 1.23930 3.25450 2.96740 7.65290

The bold values show the best results of the given methods in the indi-
cated problems
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Table 7 IGD results for the CEC 2009 unconstrained test problems with 25,000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO DMCMOABC Harmony NSGA-II Harmony MOEAD

UF1 0.0035 0.0047 0.0042 0.0041 0.0053 0.0037 0.0026

UF2 0.0018 0.0020 0.0024 0.0021 0.0050 0.0345 0.0018

UF3 0.0103 0.0084 0.0072 0.0072 0.0544 0.0085 0.0067

UF4 0.0018 0.0018 0.0019 0.0022 0.0254 0.0033 0.0021

UF5 0.1268 0.1117 0.1155 0.3579 0.0527 0.0457 0.0488

UF6 0.0127 0.0102 0.0119 0.0178 0.0393 0.0089 0.0092

UF7 0.0075 0.0068 0.0098 0.0036 0.0065 0.0113 0.0118

UF8 0.0026 0.0029 0.0027 0.0037 0.0665 0.0028 0.0054

UF9 0.0035 0.0035 0.0030 0.0056 0.0368 0.0044 0.0060

UF10 0.0037 0.0063 0.0046 0.0266 0.1119 0.0036 0.0059

The bold values show the best results of the given methods in the indicated problems

Fig. 9 Non-dominated MOICA, OMOPSO, NSGA-II, and SPEA2 solutions on UF10
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Table 8 Hypervolume results for the CEC 2009 unconstrained test
problems with 5000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.97192 0.97651 0.98519 0.97075

UF2 0.98314 0.98818 0.98617 0.98854

UF3 0.91334 0.90554 0.89972 0.97219

UF4 0.98567 0.98377 0.98167 0.98521

UF5 0.86472 0.83347 0.80558 0.74621

UF6 0.88661 0.88456 0.88426 0.86270

UF7 0.97156 0.94940 0.93761 0.97825

The bold values show the best results of the given methods in the indi-
cated problems

Table 9 Epsilon indicator results for the CEC 2009 unconstrained test
problems with 5000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

UF1 1.22630 1.57160 1.60980 1.45710

UF2 1.51470 1.31100 1.27830 1.35280

UF3 2.82790 2.37100 2.50600 1.61580

UF4 1.12490 1.14260 1.13340 1.11650

UF5 2.87590 4.36320 2.98440 5.24710

UF6 2.45680 2.32760 3.01710 5.07890

UF7 1.12350 1.23610 1.44560 1.43810

The bold values show the best results of the given methods in the indi-
cated problems

Table 10 IGD results for the CEC 2009 unconstrained test problems
with 5000 function evaluations

Function Algorithm

MOICA NSGA-II SPEA2 OMOPSO

UF1 0.0054 0.0045 0.0051 0.0064

UF2 0.0033 0.0032 0.0033 0.0030

UF3 0.0152 0.0156 0.0153 0.0101

UF4 0.0027 0.0031 0.0033 0.0027

UF5 0.2167 0.3346 0.3409 0.5060

UF6 0.0229 0.0264 0.0243 0.0357

UF7 0.0061 0.0089 0.0117 0.0066

The bold values show the best results of the given methods in the indi-
cated problems

problems from CEC 2009 with 25 function evaluations, for
which the MOICA, on average, again produces reasonably
good results.

The MOICA produced competitive results on the test
functions from CEC 2009 compared to the other algo-
rithms. Harmony NSGA-II and Harmony MOEAD (Doush

and Bataineh 2015) also performed well, whereas DMC-
MOABC (Xiang and Zhou 2015) performed the worst.
Figure 9 presents the MOICA’s results alongside those of the
other algorithms, as well as the Pareto-optimal for the UF10
unconstrained test function. Tables 5, 6, and 7 illustrate that
the MOICA performs better than the other algorithms with
respect to UF10. In addition, it is clear from Fig. 4 that the
MOICA is within the objective space of the Pareto-optimal,
unlike the other algorithms.

Tables 8, 9, and 10 show the results for the UF1-UF7
test functions with a maximum of 5000 function evaluations.
TheMOICA’s average performance is either similar or better
than the performance of the other algorithms, even for such
few function evaluations. This result likewise proves that the
MOICA quickly converges to global optimal solutions.

Table 11 presents the MOICA’s ranking compared with
the algorithms used in the CEC 2009 competition for uncon-
strained functions. The ranking is based on the average IGD
metric.

4.2 Friedman aligned ranks test

To check the statistical similarity of our results to those of
other algorithms and determine the MOICA’s rank among
its competitors, we implemented the Friedman aligned ranks
test for all average IGD scores achieved by the 13 algorithms
in the CEC 2009 MOO contest along with the proposed
MOICA. Table 12 shows the average rank values for all algo-
rithms and the p value of the test. The subscripted numbers
for the best scores indicate the order of the correspond-
ing algorithms. The average rank value of the MOICA is
the smallest, which indicates that the MOICA is the best-
performing algorithm among the 13 analyzed. Meanwhile,
the p value is very close to zero, indicating that there is
significant statistical difference among the results of all algo-
rithms, such that the MOICA is statistically different from
its competitors. The Friedman aligned ranks test is also
implemented over IGD scores obtained with 25,000 func-
tion evaluations by the most popular MO algorithms given in
Table 7. Results in Table 13 indicate that the MOICA again
performs best and is comparable to the six competing algo-
rithms.

5 Conclusion

In this paper, we propose a MOICA for solving global
multi-objective optimization problems. The search mech-
anism used in this algorithm starts several empires with
LNDSs in positions around the search space. In addition,
revolution operations, which enable the MOICA to compet-
itively converge and diverge, were proposed and compared
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Table 11 MOICA’s ranking
compared to algorithms in CEC
2009

UF1 IGD UF2 IGD UF3 IGD

MOICA 0.0035 MOICA 0.0018 MOEAD 0.00742

MOEAD 0.00435 MTS 0.00615 MOICA 0.0103

GDE3 0.00534 MOEADGM 0.0064 LiuLiAlgorithm 0.01497

MOEADGM 0.0062 DMOEADD 0.00679 DMOEADD 0.03337

MTS 0.00646 MOEAD 0.00679 MOEADGM 0.049

LiuLiAlgorithm 0.00785 OWMOSaDE 0.0081 MTS 0.0531

DMOEADD 0.01038 GDE3 0.01195 ClusteringMOEA 0.0549

NSGAIILS 0.01153 LiuLiAlgorithm 0.0123 AMGA 0.06998

OWMOSaDE 0.0122 NSGAIILS 0.01237 DECMOSA-SQP 0.0935

ClusteringMOEA 0.0299 AMGA 0.01623 MOEP 0.099

MOEP 0.0596 ClusteringMOEA 0.0228 NSGAIILS 0.10603

DECMOSA-SQP 0.07702 DECMOSA-SQP 0.02834 GDE3 0.10639

OMOEAII 0.08564 OMOEAII 0.03057 OMOEAII 0.27141

UF4 IGD UF5 IGD UF6 IGD

AMGA 0.03588 MOEP 0.0189 OWMOSaDE 0.103

MOICA 0.0018 MTS 0.01489 MOEAD 0.00587

MTS 0.02356 GDE3 0.03928 MOICA 0.0127

GDE3 0.0265 AMGA 0.09405 MTS 0.05917

DECMOSA-SQP 0.03392 MOICA 0.1268 DMOEADD 0.06673

AMGA 0.04062 LiuLiAlgorithm 0.16186 OMOEAII 0.07338

DMOEADD 0.04268 DECMOSA-SQP 0.16713 ClusteringMOEA 0.0871

MOEP 0.0427 OMOEAII 0.1692 MOEP 0.1031

LiuLiAlgorithm 0.0435 MOEAD 0.18071 DECMOSA-SQP 0.12604

OMOEAII 0.04624 MOEP 0.2245 AMGA 0.12942

MOEADGM 0.0476 ClusteringMOEA 0.2473 LiuLiAlgorithm 0.17555

OWMOSaDE 0.0513 DMOEADD 0.31454 OWMOSaDE 0.1918

NSGAIILS 0.0584 OWMOSaDE 0.4303 GDE3 0.25091

ClusteringMOEA 0.0585 NSGAIILS 0.5657 NSGAIILS 0.31032

MOEAD 0.06385 MOEADGM 1.7919 MOEADGM 0.5563

UF7 IGD UF8 IGD UF9 IGD

MOEAD 0.00444 MOICA 0.0026 MOICA 0.0035

LiuLiAlgorithm 0.0073 MOEAD 0.0584 DMOEADD 0.04896

MOICA 0.0075 DMOEADD 0.06841 NSGAIILS 0.0719

MOEADGM 0.0076 LiuLiAlgorithm 0.08235 MOEAD 0.07896

DMOEADD 0.01032 NSGAIILS 0.0863 GDE3 0.08248

MOEP 0.0197 OWMOSaDE 0.0945 LiuLiAlgorithm 0.09391

NSGAIILS 0.02132 MTS 0.11251 OWMOSaDE 0.0983

ClusteringMOEA 0.0223 AMGA 0.17125 MTS 0.11442

DECMOSA-SQP 0.02416 OMOEAII 0.192 DECMOSA-SQP 0.14111

GDE3 0.02522 DECMOSA-SQP 0.21583 MOEADGM 0.1878

OMOEAII 0.03354 ClusteringMOEA 0.2383 AMGA 0.18861

MTS 0.04079 MOEADGM 0.2446 OMOEAII 0.23179

AMGA 0.05707 GDE3 0.24855 ClusteringMOEA 0.2934

OWMOSaDE 0.0585 MOEP 0.423 MOEP 0.342
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Table 11 continued
UF10 IGD

MOICA 0.0037

MTS 0.15306

DMOEADD 0.32211

AMGA 0.32418

MOEP 0.3621

DECMOSA-SQP 0.36985

ClusteringMOEA 0.4111

GDE3 0.43326

LiuLiAlgorithm 0.44691

MOEAD 0.47415

MOEADGM 0.5646

OMOEAII 0.62754

OWMOSaDE 0.743

NSGAIILS 0.84468

Table 12 Friedman aligned ranks statistics and the corresponding p
value over all algorithms in Table 11

Algorithm Average value of Friedman
aligned ranks over all CEC2009
UF problem instances

p value

MOEAD 4.45(4) 1.6544e−06

GDE3 7.50(6)

MOEADGM 8.50(8)

MTS 4.4(3)

LiuLiAlgorithm 5.90(5)

DMOEADD 4.35(2)

NSGAIILS 9.50(10)

OWMOSaDE 9.90(12)

ClusteringMOEA 9.60(11)

AMGA 8.30(7)

MOEP 9.50(10)

DECMOSA-SQP 8.70(9)

OMOEAII 10.60(13)

MOICA 1.70(1)

Table 13 Friedman aligned ranks statistics and the corresponding p
value over all algorithms in Table 7

Algorithm Average value of Friedman
aligned ranks over all CEC2009
UF problem instances

p value

MOICA 3.15(1) 0.0521

NSGA-II 3.6(4)

SPEA2 3.55(3)

OMOPSO 4.55(6)

DMCMOABC 6(7)

Harmony NSGA-II 3.7(5)

Harmony MOEAD 3.45(2)

to three existing algorithms. Experimental results with three
metrics showed that for most test functions, the MOICAwas
competitive with the baseline algorithms. TheMOICA’s suc-
cess can be traced to its global non-dominated solutions set
and approach to assimilating colonies toward these solutions,
because assimilation, in which small deviations are utilized
for better convergence and divergence, enables the MOICA
to cover the entire search space.
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