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Abstract This paper investigates the fixed charge multi-
item solid transportation problem, inwhich the fixed charges,
direct costs, transportation capacities, supply and demand
are uncertain variables. Based on the uncertainty theory,
expected value programming model and chance-constrained
programming model for fixed charge multi-item solid trans-
portation problem are constructed, respectively. We can
obtain the optimal solution of twomodels via solving the rel-
evant deterministic models. Finally, a numerical experiment
is implemented to illustrate the application of the models.

Keywords Transportation problem · Uncertainty program-
ming · Uncertain variable

1 Introduction

The transportation problem (TP) is a well-known opti-
mization problem in operational research, which goal is to
minimize the total transportation cost and improve the trans-
portation quality. In the traditional transportation problem,
source constraint and destination constraint are taken into
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consideration. But, in real life, there are other constraints be
considered. Firstly, solid transportation problem which was
defined as transportation of goods by a sequence of two dif-
ferent conveyances was introduced by Haley (1962). After
that, Bhatia et al. (1976) gave amethod andobtained themini-
mum time for the solid transportation problem (STP). Li et al.
(1997) proposed neural network approach for multi-criteria
solid transportation problems. Ojha et al. (2010) provided
a solid transportation problem with discounted costs, fixed
charges and vehicle costs, which was formulated as a linear
programming problem. Secondly, multi-item solid trans-
portation problem (MISTP) is discussed by Kennington and
Unger (1976) and Sun et al. (1998). Fixed charge is another
research aspect for TP. Since Hirsch and Dantzig (1968)
proposed fixed charge transportation problem (FCTP), there
are many researchers who investigated this problem: Lotif
and Moghaddam (2013) proposed a genetic algorithm using
priority-based encoding for linear and nonlinear fixed charge
transportation problem.

In classical models of transportation problem, the param-
eters of the models are supposed to be crisp numbers.
However, some nondeterminacy factors might occur in many
situations, such asmarket supply anddemand,weather condi-
tions, road conditions. Some researchers believed that these
nondeterministic phenomena conform to randomness, and
they introduced probability theory into the transportation
network problem. Williams (1963) proposed a stochastic
transportation model, in which the demands were supposed
to be random variables. Following Williams, Yang and Feng
(2007) studied a bicriteria solid transportation problem with
stochastic parameters. Romeijna and Sargutb (2011) pre-
sented a branch-and-price algorithm for solving a class of
stochastic transportation problems with single-source con-
straints.
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However, it is not suitable to regard every nondetermi-
nacy phenomenon as random phenomenon, because of the
lack of available samples. For instance, when the extreme
events occur, it is impossible to get probability distribu-
tion. But experts can estimate, based on their experience,
the belief degree can be got. In order to deal with this kind
of human uncertainty, (2007) founded uncertainty theory,
which was refined by Liu (2010b). Since then, uncertainty
theory and its application have experienced explosive growth,
such as uncertain process (Liu 2008), uncertain differential
equation (Chen and Liu 2010; Yao 2013; Gao 2016; Yao
and Chen 2013; Yang and Ralescu 2015; Wang et al. 2015,
Yang and Shen 2015), uncertain set theory (Liu 2010a; Yao
2015), uncertain programming (Liu 2009a; Li and Qin 2014;
Sheng and Gao 2016), uncertain inference (Gao et al. 2010),
uncertain economics (Yang and Gao 2017), uncertain man-
agement (Gao et al. 2017; Gao and Yao 2015), uncertain
finance (Chen and Gao 2013; Guo and Gao 2017), uncer-
tain statistics (Liu 2010b; Gao et al. 2016) and uncertain
differential game (Yang and Gao 2013; Yang and Gao 2016).
Up to now, the uncertainty theory has become a branch of
mathematics.

With respect to the uncertain factors of transportation
problem, some authors used the uncertainty theory to han-
del this problem. Sheng and Yao (2012) gave the uncertain
model for fixed charge TP. Cui and Sheng (2012) considered
the solid transportation problem in uncertain environment
and proposed an expected constrainedmodel. Dalman (2017)
consider multi-item STP. Zhang et al. (2016) investigated the
fixed charge solid transportation problem under uncertainty.
Gao et al. (2016) studied uncertain models on railway trans-
portation planning problem. Chen et al. (2017) investigated
the solid transportation problem based an entropy in uncer-
tain environment.

Based on their motivations, we extend this work to fixed
charge multi-item solid transportation problem (FCMISTP).
Uncertain transportation models, namely expected value
programming model and chance-constrained programming
model, are proposed, respectively. Based on the uncer-
tainty theory, it can be shown that the optimal solution to
transportation models can be obtained via solving a rele-
vant deterministic model. Finally, a numerical experiment is
implemented to illustrate the application of the models.

The remainder of this paper is organized as follows. In
Sect. 2, some basic concepts and properties in uncertainty
theory used in this paper are introduced. Sect. 3 is problem
description, where the fixed charge multi-item solid trans-
portation problem is briefly explicate, the expected value
programming model for FCMISTP is constructed. And a
relevant deterministic model can be obtained by uncer-
tainty theory. In Sect. 4, the chance-constrained model for
FCMISTP is constructed. And a relevant deterministicmodel
can be obtained by uncertainty theory. In Sect. 5, numerical

examples are given to illustrate the models. In Sect. 6, we
give a brief summary to this paper.

2 Preliminary

Uncertainty theory provides an axiomatic system to cope
with the imprecise information in experts’ experiment data.
In this section, we state some basic concepts and properties in
uncertainty theory (2007), which will be used to throughout
this paper.

Definition 1 (Liu 2007) Let Γ be a nonempty set, and L

be a σ -algebra over Γ . A set function M : L → [0, 1]
is called an uncertain measure if it satisfies the following
axioms:

Axiom 1. (Normality Axiom) M{Γ } = 1 for the universal
set Γ .

Axiom 2. (Duality Axiom) M{Λ} + M{Λc} = 1 for any
event Λ.

Axiom 3. (Subadditivity Axiom) For every countable
sequence of events Λ1,Λ2, . . ., we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

The triple (Γ,L,M) is called uncertainty spaces. Further-
more, Liu (2009b) defined a product uncertain measure by
the fourth axiom.

Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncer-
tainty spaces for k = 1, 2, . . .. The product
uncertain measure Mis an uncertain measure
satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events form Lk for k =
1, 2, . . . , respectively.

Definition 2 (Liu 2007) An uncertain variable is a measur-
able function ξ from an uncertainty space (Γ,L,M) to the
set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ Γ | ξ(γ ) ∈ B}

is an event.
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Definition 3 (Liu 2007) The uncertainty distribution Φ of
an uncertain variable ξ is defined by

Φ(x) = M{ξ ≤ x}

for any real number x .

Definition 4 (Liu 2009b) The uncertain variables ξ1,

ξ2, . . . , ξn are said to be independent if

M

{
n⋂

i=1

{ξi ∈ Bi }
}

= min
1≤i≤n

M{ξi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Definition 5 (Liu 2010b) Let ξ be an uncertain variable with
regular uncertainty distributionΦ(x). Then the inverse func-
tion Φ−1(α) is called the inverse uncertainty distribution of
ξ .

We usually assume that all uncertainty distributions in
practical applications are regular. Otherwise, a small pertur-
bation can be imposed to obtain a regular one. The following
Theorem 1 shows that the inverse uncertainty distribution has
good operational properties, which makes it easy to obtain
the solution for the uncertain programming problem.

Theorem 1 (Liu 2010b) Let ξ1, ξ2, . . . , ξn be independent
uncertain variables with regular uncertainty distributions
Φ1, Φ2, . . . , Φn, respectively. If f (ξ1, . . . , ξn) is strictly
increasingwith respect to ξ1, ξ2, . . . , ξm and strictly decreas-
ing with respect to ξm+1, ξm+2, . . . , ξn, then

ξ = f (ξ1, ξ2, · · · , ξn)

has an inverse uncertainty distribution

Ψ −1(α) = f (Φ−1
1 (α),Φ−1

2 (α), . . . ,

Φ−1
m (α),Φ−1

m+1(1 − α), . . . , Φ−1
n (1 − α)).

Definition 6 (Liu 2007) Let ξ be an uncertain variable. Then
the expected value of ξ is defined by

E[ξ ] =
∫ +∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Theorem 2 (Liu 2007) Let ξ be an uncertain variable with
regular uncertainty distribution Φ. Then

E[ξ ] =
∫ 1

0
Φ−1(α)dα.

Theorem 3 (Liu 2010b) Let ξ and η be independent uncer-
tain variables with finite expected values. Then for any real
numbers a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η].

3 Expected value programming model
for FCMISTP

3.1 Notations

In this section, we will state fixed charge multi-item STP in
detail. The fixed chargemulti-itemSTP is tomake a transport
plan so that the total transportation cost is minimized. We
will consider two types of costs, which are the direct cost
and the fixed charge. When the conveyance moves on a link,
the direct costs will arise along with the cost of per unit. The
direct cost, naturally, is a function related to the conveyance
type and the characteristic of links.

Different conveyances and different links have different
fixed charge. Furthermore, the capacity of each link during
the planning period is limited, which is mainly presented in
two aspects. First, during one period, the frequency of using
each link is limited. Second, on each link, the capacity of
every conveyance is limited. To construct the mathematical
models for FCMISTP, we need to determine the parameters
as follows (Table 1).

3.2 Objective function and constraints

The total fixed charge of opening link is

f1 =
q∑

p=1

n∑
j=1

m∑
i=1

ηi j p yi jp,

If yi jp = 0, link (i, j) will not be open in this transportation
network, so there is no fixed charge in this link. If yi jp �=
0, the transportation activity is assigned on link (i, j), then
the corresponding fixed charge will occur. The total direct
transportation cost is

f2 =
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp.

So the total relevant cost can be formulated as

f =
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp +

q∑
p=1

n∑
j=1

m∑
i=1

ηi j p yi jp. (1)
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Table 1 List of notations
i ∈ {1, 2, . . . ,m} The index for sources

j ∈ {1, 2, . . . , n} The index for destinations

k ∈ {1, 2, . . . , l} The index for items to be transported

p = {1, 2, . . . , q} The index for conveyances

z+ The set of nonnegative integers

aki The amount of item k at source i

bkj The demand of item k at destination j

ci jp The capacity of conveyance p from i to j

ξ ki jp The cost of per unit of k from i to j by p

ηi j p The fixed cost from i to j by p

xki jp Amount of item k from i to j by p

yi jp Frequency from i to j by p, yi jp ∈ z+

di jp The maximum frequency from i to j by p

The total quantity carried from source i is no more than
aki , we can give the following constraint

q∑
p=1

n∑
j=1

xki jp ≤ aki . (2)

The total quantity in destination j is less than bkj , so we have

q∑
p=1

m∑
i=1

xki jp ≥ bkj . (3)

Also, the total amount transportation by conveyance p is
no more than its transportation capacity. Then we have the
following constraint

l∑
k=1

xki jp ≤ yi jpci jp. (4)

3.3 Expected value programming model

Let f̄ be a predetermined maximal cost, the most transporta-
tion plan of FCMISTP is that the maximal uncertain measure
of the cost less than or equal to f̄ .

Definition 7 A solution (x∗, y∗) is called most transporta-
tion plan of FCMISTP if

M{ f (x∗, y∗; ξ, η) ≤ f̄ } ≥ M{ f (x, y; ξ, η) ≤ f̄ }

holds for any feasible solution (x, y), and f̄ is a predeter-
mined maximal cost.

The main idea of expected value programming model is to
optimize the expected value of the objective function, under

the expected value constraints. We may construct the model
for FCMISTP as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max E [ f1 + f2]

s.t. f1 =
q∑

p=1

n∑
j=1

m∑
i=1

ηi j p yi jp

f2 =
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp

E

[
q∑

p=1

n∑
j=1

xki jp − aki

]
≤ 0

E

[
q∑

p=1

m∑
i=1

xki jp − bkj

]
≥ 0

E

[
l∑

k=1
xki jp − yi jpci jp

]
≤ 0

0 ≤ yi jp ≤ di jp, yi jp, di jp ∈ z+
xki jp ≥ 0,

(5)

where i ∈ [1,m], j ∈ [1, n], p ∈ [1, q], k ∈ [1, l], i, j,
p, k ∈ z+.

3.4 Deterministic transformation

In order to solve the constructed model, we can transfer them
into deterministic form.

Theorem 4 We assume that ξ ki j p, ηi j p, a
k
i , b

k
j , ci jp are inde-

pendent uncertain variables with regular uncertainty distri-
butionsΦk

i j p,Ψi j p,Υ k
i ,Λ

k
j ,Θi j p, respectively, then themodel

(5) is equivalent to the following deterministic transportation
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model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

xki jp
∫ 1
0 (Φk

i j p)
−1(α)dα

+
q∑

p=1

n∑
j=1

m∑
i=1

yi jp
∫ 1
0 (Ψi j p)

−1(α)dα

)

s.t.
q∑

p=1

n∑
j=1

xki jp − ∫ 10 (Υ k
i )−1(α)dα ≤ 0

q∑
p=1

m∑
i=1

xki jp − ∫ 10 (Λk
j )

−1(α)dα ≥ 0

l∑
k=1

xki jp − yi jp
∫ 1
0 (Θi j p)

−1(α)dα ≤ 0

0 ≤ yi jp ≤ di jp, yi jp, di jp ∈ z+
xki jp ≥ 0,

(6)

where i ∈ [1,m], j ∈ [1, n], p ∈ [1, q], k ∈ [1, l], i, j, p,
k ∈ z+, and (Φk

i j p)
−1, (Ψi j p)

−1, (Υ k
i )−1, (Λk

j )
−1, (Θi j p)

−1

are the inverse distribution of the distributionΦk
i j p,Ψi j p,Υ k

i ,

Λk
j , Θi j p, respectively.

Proof By Theorem 2 and 3, we can get

E

⎡
⎣ l∑
k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp +

q∑
p=1

n∑
j=1

m∑
i=1

ηi j p yi jp

⎤
⎦

=
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

xki jp

∫ 1

0
(Φk

i j p)
−1(α)dα

+
q∑

p=1

n∑
j=1

m∑
i=1

yi jp

∫ 1

0
(Ψi j p)

−1(α)dα.

Similarly, we can prove that E

[
q∑

p=1

n∑
j=1

xki jp − aki

]
≤ 0 is

equivalent to

q∑
p=1

n∑
j=1

xki jp −
∫ 1

0
(Υ k

i )−1(α)dα ≤ 0

E

[
q∑

p=1

m∑
i=1

xki jp − bkj

]
≥ 0 is equivalent to

q∑
p=1

m∑
i=1

xki jp −
∫ 1

0
(Λk

j )
−1(α)dα ≥ 0,

and E

[
l∑

k=1
xki jp − yi jpci jp

]
≤ 0 is equivalent to

l∑
k=1

xki jp − yi jp

∫ 1

0
(Θi j p)

−1(α)dα ≤ 0.

We complete the proof. 	


4 Chance-constrained programming model for
FCMISTP

4.1 Chance-constrained programming model

Let α be a predetermined confidence level, with α ∈ (0, 1).
The decision maker hopes to get a smallest value f̄ such that
uncertain variable f (x∗, y∗; ξ, η) is less than or equal to f̄
with predetermined confidence level α.

Definition 8 A solution (x∗, y∗) is called α− transportation
plan of FCMISTP if

min{ f̄ |M{ f (x∗, y∗; ξ, η) ≤ f̄ } ≥ α}
≤ min{ f̄ |M{ f (x, y; ξ, η) ≤ f̄ } ≥ α}

holds for any feasible solution (x, y) and α ∈ (0, 1) is a
predetermined confidence level.

In order to deal with the optimal problem with uncertain
variables, we choose the chance-constrained programming
model. When the decision maker gets a transportation plan
under the chance-constrained, the model for FCMISTP can
be constructed as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f̄
s.t. M{ f̃ ≤ f̄ } ≥ α

f̃ =
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp

+
q∑

p=1

n∑
j=1

m∑
i=1

ηi j p yi jp

M

{
q∑

p=1

n∑
j=1

xki jp ≤ aki

}
≥ αk

i

M

{
q∑

p=1

m∑
i=1

xki jp ≥ bkj

}
≥ βk

j

M

{
l∑

k=1
xki jp ≤ yi jpci jp

}
≥ γi j p

0 ≤ yi jp ≤ di jp, yi jp, di jp ∈ z+
xki jp ≥ 0,

(7)

where i ∈ [1,m], j ∈ [1, n], p ∈ [1, q], k ∈ [1, l], i, j, p,
k ∈ z+, and α, αk

i , β
k
j , γi j p, i = 1, 2, . . . ,m, j =

1, 2, . . . , n, p = 1, 2, . . . , q, k = 1, 2, . . . , l are prede-
termined confidence levels.

4.2 Deterministic transformation

Theorem 5 We assume that ξ ki j p, ηi j p, a
k
i , b

k
j , ci jp are inde-

pendent uncertain variables with regular uncertainty distri-
butionsΦk

i j p,Ψi j p,Υ k
i ,Λ

k
j ,Θi j p, respectively, then themodel
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(7) is equivalent to the following deterministic transportation
model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

xki jp(Φ
k
i j p)

−1(α)

+
q∑

p=1

n∑
j=1

m∑
i=1

yi jp(Ψi j p)
−1(α)

)

s.t.
q∑

p=1

n∑
j=1

xki jp − (Υ k
i )−1(1 − αk

i ) ≤ 0

Λk
j )

−1(βk
j ) −

q∑
p=1

n∑
i=1

xki jp ≤ 0

l∑
k=1

xki jp − yi jp(Θi j p)
−1(1 − γi j p) ≤ 0

0 ≤ yi jp ≤ di jp, yi jp, di jp ∈ z+
xki jp ≥ 0,

(8)

where i ∈ [1,m], j ∈ [1, n], p ∈ [1, q], k ∈ [1, l], i, j, p,
k ∈ z+, and (Φk

i j p)
−1, (Ψi j p)

−1, (Υ k
i )−1, (Λk

j )
−1, (Θi j p)

−1

are the inverse distribution of the distributionΦk
i j p,Ψi j p,Υ k

i ,

Λk
j , Θi j p, respectively.

Proof Let

ξ̃ =
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp +

q∑
p=1

n∑
j=1

m∑
i=1

ηi j p yi jp,

which is a continuous strictly increasing function. Since
ξ ki j p, ηi j p are independent uncertain variables with regular

uncertainty distributions, we can suppose ξ̃ have a regular
uncertainty distributions Γ , which has inverse uncertainty
distributions Γ −1. And by Theorem 1, we can prove that

M
{
ξ̃ ≤ f̄

}
≥ α

is equivalent to

Γ −1(α) ≤ f̄ .

So we proved that

M

{
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

ξ ki j px
k
i jp +

q∑
p=1

n∑
j=1

m∑
i=1

ηi j p yi jp ≤ f̄

}

≥ α

is equivalent to

l∑
k=1

q∑
p=1

n∑
j=1

m∑
i=1

xki jp(Φ
k
i j p)

−1(α)

+
q∑

p=1

n∑
j=1

m∑
i=1

yi jp(Ψi j p)
−1(α) ≤ f̄ .

Since aki is a strictly increasing continuous function, and aki
is uncertain variables with inverse uncertainty distributions
(Υ k

i )−1, by Theorem 1, we have

M{aki ≥
q∑

p=1

n∑
j=1

xki jp} ≥ γ k
i

is equivalent to

(Υ k
i )−1(1 − αk

i ) ≥
q∑

p=1

n∑
j=1

xki jp.

By the same way, we can prove that

M

⎧⎨
⎩bkj ≤

q∑
p=1

m∑
i=1

xki jp

⎫⎬
⎭ ≥ βk

j

is equivalent to

(Λk
j )

−1(βk
j ) ≤

q∑
p=1

n∑
i=1

xki jp

and

M

{
yi jpci jp ≥

l∑
k=1

xki jp

}
≥ γi j p

is equivalent to

yi jp(Θi j p)
−1(1 − γi j p) ≥

l∑
k=1

xki jp.

So themodel (7) is equivalent to the deterministic transporta-
tion model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min f̄

s.t.

(
l∑

k=1

q∑
p=1

n∑
j=1

m∑
i=1

xki jp(Φ
k
i j p)

−1(α)

+
q∑

p=1

n∑
j=1

m∑
i=1

yi jp(Ψi j p)
−1(α)

)
≤ f̄

q∑
p=1

n∑
j=1

xki jp − (Υ k
i )−1(1 − αk

i ) ≤ 0

(Λk
j )

−1(βk
j ) −

q∑
p=1

n∑
i=1

xki jp ≤ 0

l∑
k=1

xki jp − yi jp(Θi j p)
−1(1 − γi j p) ≤ 0

0 ≤ yi jp ≤ di jp, yi jp, di jp ∈ z+
xki jp ≥ 0,

(9)
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Table 2 The supply of item k in source i (aki )

i\k 1 2

1 (36, 45, 52) (50, 55, 52)

2 (52, 58, 66) (33, 35, 36)

Table 3 The demand of item k in destination j (bkj )

j\k 1 2

1 (16, 20, 22) (14, 18, 20)

2 (25, 28, 31) (20, 23, 25)

3 (33, 35, 38) (18, 20, 24)

Table 4 The capacity of conveyance 1 from i to j (ci j1)

i\ j 1 2 2

1 (20, 22, 23) (23, 25, 27) (20, 22, 25)

2 (18, 20, 26) (17, 23, 25) (21, 25, 28)

Table 5 The capacity of conveyance 2 from i to j (ci j2)

i\ j 1 2 3

1 (22, 26, 28) (23, 25, 28) (20, 24, 26)

2 (23, 27, 30) (22, 26, 34) (18, 22, 24)

where i ∈ [1,m], j ∈ [1, n], p ∈ [1, q], k ∈ [1, l], i, j, p, k ∈
z+. Model (9) is equivalent to (8). We complete the proof.

	


5 Numerical experiments

In this section, a numerical example of uncertain transporta-
tion problem is presented to show the application of the
models. We consider two items to be transported by two dis-
tinct conveyances from two sources to three destinations. The
decision maker should make a transportation plan such that
the transportation cost minimized. Assume that all uncertain
variables are independent zigzag uncertain variables, which
are listed in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11, respec-
tively.

Table 6 The direct cost of item 1 by conveyance 1 (ξ1i j1)

i\ j 1 2 2

1 (10, 12, 15) (8, 10, 13) (6, 8, 12)

2 (7, 9, 10) (6, 7, 10) (8, 10, 14)

Table 7 The direct cost of item 2 by conveyance 1 (ξ2i j1)

i\ j 1 2 2

1 (4, 6, 10) (5, 8, 12) (6, 8, 12)

2 (6, 7, 10) (8, 10, 13) (8, 10, 13)

Table 8 The fixed charge by conveyance 1 (ηi j1)

i\ j 1 2 2

1 (6, 8, 12) (8, 10, 13) (6, 8, 9)

2 (7, 9, 10) (7, 9, 12) (7, 9, 12)

Table 9 The direct cost of item 1 by conveyance 2 (ξ1i j2)

i\ j 1 2 2

1 (8, 10, 12) (10, 13, 17) (6, 10, 12)

2 (6, 8, 12) (6, 9, 10) (10, 12, 13)

The expected value model (6) for FCMISTP can be con-
verted as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
2∑

k=1

2∑
p=1

3∑
j=1

2∑
i=1

xki jp
∫ 1
0 (Φk

i j p)
−1(α)dα

+
2∑

p=1

3∑
j=1

2∑
i=1

yi jp
∫ 1
0 (Ψi j p)

−1(α)dα

)

s.t.
2∑

p=1

3∑
j=1

xki jp − ∫ 10 (Υ k
i )−1(α)dα ≤ 0

2∑
p=1

2∑
i=1

xki jp − ∫ 10 (Λk
j )

−1(α)dα ≥ 0

2∑
k=1

xki jp − yi jp
∫ 1
0 (Θi j p)

−1(α)dα ≤ 0

0 ≤ yi jp ≤ di jp, yi jp ∈ z+, di jp ∈ z+
xki jp ≥ 0
i = 1, 2, j = 1, 2, 3, p = 1, 2, k = 1, 2.

(10)

Table 10 The direct cost of item 2 by conveyance 2 (ξ2i j2)

i\ j 1 2 2

1 (6, 8, 9) (8, 9, 11) (8, 9, 12)

2 (5, 8, 10) (6, 8, 9) (10, 12, 13)
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Table 11 The fixed charge by conveyance 2 (ηi j2)

i\ j 1 2 2

1 (7, 9, 12) (6, 8, 9) (7, 10, 12)

2 (5, 8, 10) (7, 9, 10) (8, 9, 12)

Table 12 The conveyance and it’s frequency(p(d)) to transport item k
from i to j of model (10)

k\(i, j) (1, 1) (1, 3) (2, 1) (2, 2)

1 - 1(1) 2(1) 1(2)

2 1(1) 1(1), 2(1) – 2(1)

Table 13 The conveyance and it’s frequency(p(d)) to transport item k
from i to j of model (11)

k\(i, j) (1, 1) (1, 3) (2, 1) (2, 2)

1 – 1(1) 1(2) 1(1), 2(1)

2 2(1) 1(1), 2(1) – 2(1)

In the following model, suppose that the total cost at con-
fidence levels α is not less than 0.9 , and assume that αk

i =
βk
j = ri jp = 0.9, i = 1, 2, j = 1, 2, 3, p = 1, 2, k = 1, 2.

Thus, the corresponding equivalent model to model (8) is
constructed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
2∑

k=1

2∑
p=1

3∑
j=1

2∑
i=1

xki jp(Φ
k
i j p)

−1(α)

+
2∑

p=1

3∑
j=1

2∑
i=1

yi jp(Ψi j p)
−1(α)

)

s.t.
2∑

p=1

3∑
j=1

xki jp − (Υ k
i )−1(1 − αk

i ) ≤ 0

(Λk
j )

−1(βk
j ) −

2∑
p=1

2∑
i=1

xki jp ≤ 0

2∑
k=1

xki jp − yi jp(Θi j p)
−1(1 − γi j p) ≤ 0

0 ≤ yi jp ≤ di jp, yi jp ∈ z+, di jp ∈ z+
xki jp ≥ 0
i = 1, 2, j = 1, 2, 3, p = 1, 2, k = 1, 2.

(11)

For expected value model (10) and chance-constrained
model (11), we can use LINGO to obtain the optimal plan in
Tables 12 and 13, respectively.

We can also get the optimal transportation cost of model
(10) and (11), as follows

f ∗
1 = 1219.69, f ∗

2 = 1665.16.

6 Conclusion

This paper mainly investigated the multi-item solid trans-
portation problem with uncertainty theory. Based on the
uncertainty theory, uncertain transportation models, namely
expected value programming model and chance-constrained
programming model, are proposed, respectively. In order
to solve the model conveniently, we transformed them into
its equivalent deterministic form. Finally, as an applica-
tion of the model, we presented a actual transportation
problem as example, the excepted value model and the
chance-constrained model were employed as the experimen-
tal models.
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