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Abstract Most of the existing electronic warfare systems
use a threat library to identify radar signals. In this paper, new
feature parameters for classifying various types of radar sig-
nals are introduced. The conventional method uses frequency,
pulse repetition interval and pulse width sampled from the
pulse description word column as characteristics of a sig-
nal. Such sampling technique cannot effectively model each
radar signal when dealing with a complex signal array. This
paper proposes probability moment and ApEn as an effective
feature for the development of high-performance radar sig-
nal classifier. As shown in results, the proposed method can
effectively classify ambiguous radar signals in the existing
system because the signal values are similar but the order
is different. In order to verify the performance of the pro-
posed system, 100 types of radar signals in various bands
were simulated, and the performance yielded 99% positive
classification rate of the 100 radar signals.
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1 Introduction

Most of the existing electronic warfare systems use a threat
library to identify radar signals. The threat library is written
in feature table format with feature information such as radio
frequency (RF), pulse width (PW), pulse repetition interval
(PRI) and scan (SCAN). This feature information is extracted
from previously collected radar signals. Electronic warfare
systems use this rule-based threat library to identify received
radar signals during tactical operation. However, this method
requires a trained expert on the feature table creation and
ongoing updates, and it has been proved to be deficient in
accurately identifying radar signals in the increasingly com-
plicated electronic warfare environment (Lee-Urban et al.
2015). In addition, when noise is mixed with the collected
radar signals, recognition accuracy could be low (Granger
et al. 2001; Arik and Akan 2015).

This paper proposes a novel feature extraction method
based on probability moment and entropy for radar sig-
nal classification. The proposed method not only effectively
reduces the dimension of the input signal but also has the
advantage of effectively expressing the radar signal sequence
with varying lengths, and shows higher performance in radar
classification than any other feature. In order to verify the per-
formance of the proposed system, 100 types of radar signals
in various bands were simulated.

This paper is organized as follows. In Sect. 2, the related
work is analyzed. In Sect. 3, threat signal feature extraction
algorithm using the probability moment and ApEn is shown.
In Sect. 4, we explain our data set and the results of our
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experiment. Finally, in Sect. 5, the conclusion of the study is
drawn.

2 Related work

In order to effectively solve these deficiencies of existing
rule-based systems, a research effort is underway to con-
struct a radar signal classification system using statistical
models, such as neural networks (Wu et al. 2012; Zhu and Jin
2012). These statistical models have been applied in various
fields as well as radar signal classification systems (Keegan
et al. 2016; Sato et al. 2015; Cho and Moon 2015). Studies
based on statistical classification techniques for identifying
radar signals have been in progress since the early 1990s.
There are two main categories of the studies using statistical
classification techniques. One is the study of feature vector
extraction for the statistical classification by analyzing vari-
ous signal characteristics of radar, and the other category is
the statistical classification algorithms, such as backpropaga-
tion (BP), adaptive resonance theory MAP (ARTMAP) and
self-organizing map (SOM) (Lin and Chen 2014; Petrov et al.
2013). Feature extraction studies are based on RF, PW, PRI
and direction of arrival (DOA) of the radar signals (Yuan et al.
2006). The values from O to 1 are generally used in the fea-
ture normalization method for neural network experiments.
In previous studies, the number of emitters to identify was
three or seven, and the number of data used was limited (Yuan
et al. 2006; Anjaneyulu et al. 2008; Lin and Chen 2014).

Anjaneyulu et al. (2008) proposed a method of classifying
three emitter types using fuzzy ARTMAP network. In this
study, RF, PW, PRI and DOA are used as feature vectors.
After min/max of each features is set, if the feature point of
the input signal is within feature point of an emitter type, the
learning is performed using the ART neural network so that
the input feature point is recognized as the corresponding
emitter type. This system classifies three emitter types.

Lin and Chen (2014) proposed an interval type 2 fuzzy
neural network to consider the uncertainty of the pulse infor-
mation collected in a noisy environment. The system used
RF, PW and PRI as feature points, classified all five radar
types and displayed good performance in noisy data.

Shieh and Lin (2002) proposed a BP method called vector
neural network which was based on the characteristics of
RF, PW and PRI In this study, radar signal classification
was split into two stages: deinterleaving and vector neural
network (VNN) recognition. Deinterleaving is a method to
distinguish the type of radar primarily by setting an interval
range for each radar. This is intended to solve the problem
that the interval range is limited by radar types. In the learning
method using VNN, entropy algorithm is used to calculate
the learning error to solve the problem of reaching the local
area in BP.
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Petrov et al. (2013) have researched on dividing 29,094
signals into 125 radar types and generating characteristic
parameters. In this paper, 12 feature points were extracted
to be used as input parameters of a neural network. They
showed an average of 80% accuracy in classifying 11 radar
types (7 military radars and 4 civilian radars) using the neural
network.

3 Threat signal feature extraction algorithm using
probability moment and ApEn

This paper proposes a novel feature extraction method based
on probability moment and entropy for radar signal classi-
fication. The proposed method not only effectively reduces
the dimension of the input signal but also has the advan-
tage of effectively expressing the radar signal sequence with
varying lengths, and shows higher performance in radar clas-
sification than any other feature. In the next section, feature
extraction algorithm using probability moment and entropy
is described.

3.1 Feature extraction using probability moment

Probability moment (Spanos 1999) is a statistic that general-
izes the effect of weighting at arbitrary points by probability
distribution and can be used as a new parameter by represent-
ing the one-dimensional pattern as statistic. Generally, there
are various kinds of probability moments such as moment
about origin, central moment, factorial moment and joint
moment.

In this paper, a feature extraction algorithm is proposed for
radar signal identification using a fourth moment and a dif-
ferent fourth moment. The first to fourth moments are mean,
variance, skewness and kurtosis, respectively. This algorithm
extracts the first to fourth probability moments and the differ-
ent fourth moments for radar signals with frequency, PRI and
PW. Using a different fourth moment, radar signals can be
effectively classified with the same value but different order
in PRI. The following is a method for extracting a feature
vector from an input signal using each probability moment.

(1) Mean
Mean is an indicator of the average of the variables and
is defined as follows.

X
Mean = ——.
n
(2) Variance
Variance is an index that calculates the degree of disper-
sion of a variable.
X
Variance = o1 Z (x; — 2)2 .

i=1
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Fig. 1 Threats whose RF and PW are the same, but the orders of staggered PRI are different
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Fig. 2 Feature extraction flowchart

(3) Skewness (4) Kurtosis
Skewness is a value that measures whether the distribu- The kurtosis is a measure of how sharp the distribution
tion of data is symmetric or not and is defined as follows. of data is, and is defined as follows.
)3
Skewness = 2 (i = %)/n =5 . > (x —%)*/n
[Z xi —5)2/(n— 1)] / Kurtosis = - 5 — 3.
[X i =)/ (= 1)
If the data are symmetric from the center, the value of
the skewness is zero, the value is negative when skewed If the distribution of the data is more acute than the nor-
to the right, and skewed to the left has a positive value. mal distribution, the value of the kurtosis is represented as
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Fig. 3 Example of the frequency feature extraction using moment
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Fig. 4 Example of the PRI feature extraction using the probability moment
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a positive value; otherwise, it is represented as a negative
value.

We can confirm that the parameter generation method
based on the probability moment is more stable than the
sampling method as a result of application to 100 threats.
However, there are many threats whose data are the same
but whose sequence changes only in the threat signal. When
using only the proposed probability moment, there is a defi-
ciency that the threats cannot be effectively classified. The
following are cases of four step staggered PRI in which fre-
quency and PW are the same, but the orders of staggered
PRI are different. As a result, 46th threat and 48th threat
were recognized as 47th threat (Fig. 1).
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Threats 46: 4 step staggered PRI 825, 840, 857, 890
Threats 47: 4 step staggered PRI 825, 857, 890, 840
Threats 48: 4 step staggered PRI 840, 825, 890, 857

In order to solve this problem, we introduce a new dif-
ferent probability moment. It is a method of generating the
signal sequence using the difference of input signal sequence
and extracting the first to fourth moments of the generated
signal sequence. As a result of applying difference of mean,
difference of variance, difference of skewness and difference
of kurtosis to RF and PRI, most of the errors that occurred
when simply applying the probability moment were resolved
effectively. Figure 2 describes the algorithm applied to the
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Fig. 6 Different fourth-order probabilistic moment distribution over frequency

neural network recognition using the aforementioned prob-
ability moment and different probability moment.

After loading the pulse description word (PDW) (Wiley
1982) of the threat, the mean, variance, skewness and kurtosis
for the frequency are extracted, and the difference frequency
for the frequency is calculated. D-mean, D-variance, D-
skewness and D-kurtosis are then extracted. Mean, variance,
skewness, kurtosis, D-mean, D-variance, D-skewness and D-
kurtosis are extracted by using the same process for PRI.
Finally, mean, variance, skewness and kurtosis are extracted
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for PW. Figures 3 and 4 show specific examples of probability
moment characteristics extracted by applying the algorithm
of Fig. 2 to the frequency and PRI. The primary PDW is the
input signal sequence, and the secondary PDW is the PDW
signal sequence using the difference of the input signal.

In the next step, an analysis is performed on the proba-
bility moment and the different probability moment on 100
types of radar signals through the graph. Figures 5, 6 show
the distribution of the probability moment and the different
moment for frequency, PRI and PW for 100 threats. Figure 5
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Fig. 7 Distribution of the parameters on the fourth moment of PRI

shows the distribution of the parameters of the first to fourth
moments relative to the frequency signal. The horizontal axis
is the type of threat, and the vertical axis is the average of
1000 data per threat.

In the figure 5, good parameters are evenly distributed
over the entire screen with variety of colors. In the mean of
the frequencies, it is not a good feature to classify threats
from 1 to 45, but it is considered to be a good parameter
for classifying threats after the 45th threat. In the case of
frequency variance, it is seemingly almost indistinguishable
from the total threat, and the skewness of the frequency is
analyzed as a good feature for classifying threats from 1 to
45. In the case of frequency of kurtosis, it is considered to be
effective to classify threats 1 to 40.

Figure 6 shows the distribution of the parameters of dif-
ferent fourth-order moment for frequency. The frequency
D-mean is relatively small compared to the frequency mean,

and the discrimination power is not adequate for the threats
after 45th. The frequency D-variance has almost no discrim-
inating power as the characteristic of the frequency variance.
In the D-kurtosis, the distribution which does not appear in
the existing moment is well represented.

Figure 7 shows the analysis result of the PRI parameter
feature. In the case of PRI mean, there is a distinctive distri-
bution of total threats. In the case of the variance of the PRI,
it seems to be almost indistinguishable from total threats, and
the skewness of the PRI shows partial discrimination against
threats from 1 to 45. In case of kurtosis of PRI, there is little
discriminating power.

In the PRI D-mean case, there is almost no discrimination
against whole threats, unlike the PRI mean. In the case of
the PRI D-variance, there is little discriminating power over
the whole threats as the PRI variance. The D-skewness of the
PRI shows partial discrimination against threats after 45th.
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Fig. 8 Distribution of the parameters on the fourth different moments of PRI

The D-kurtosis of PRI is different from the kurtosis of PRI
in that it has high discrimination against threats after 45th
(Fig. 8).

The mean of PW generally has a differentiating power
against whole threats, but the discriminating power itself is
low. This is because the distance between threats is so close
that the adjacent threats may be misunderstood. PW vari-
ance also shows the discrimination power against the whole
threat, but it is considered to have high false identification
rate due to the small feature range between each threat. The
distance between threats before the 45th threat is small but
big after the 45th threat, so the skewness of PW is deemed to
be a good characteristic to judge each threat by showing dif-
ference. Finally, PW kurtosis has the same phenomenon as
skewness, and it is seemingly guaranteed to yield high perfor-
mance when used as an input to the neural network classifier
(Fig. 9).
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3.2 Feature extraction using ApEn

In this section, a parameter extraction method based on
approximate entropy (ApEn) (Pincus et al. 1991) is shown
to more effectively analyze signal sequences that cannot be
processed by the previously presented probability moments.
ApEn is an algorithm used to quantify the unpredictabil-
ity of variability and the amount of regular patterns. This is
because the data with regularity can be analyzed with most of
the probability moments, but it cannot be analyzed with the
existing probability moments in the case of the data having
the similar value or the irregularity. A similar occurrence is
observed in the case of radar signals. Fixed signals and jitter
signals are the prime examples of the similarity and irregu-
larity. In the case of those signals, there are frequent cases
of false classification by using only the moment analysis.
The following example shows the difficulty of the existing



Neural network-based radar signal classification system using probability moment and ApEn 4213
{B S Yew Jwet Jock Qi Wedw e S| b @ Yew Juet Jock Qedtop Yedow ey .
JUde &k \N09¢L-Q 08 =0 Qe & \\N09¥L-Q 08 o0

PV men PW  vanance

1 045

Ll 0

“ 0%

!

- 03

0

o L}

s

02
0
N 1

L3 wicd

o, Yy (1) . . > &

."n'n":" A " " " " " " 4 ..{‘."‘7\’1 1 a " " " re. : -

0 %N N N 4 N 0 M 0 N W ¢ W N N W N 6 N %N N W
|!~wwmtmn~mmm St e Yew jeet Jock Qeattp  fiWow  tep "
Qe kR NLN09QRL-QA 08 D DIHS R NNO0PEL- Q08 =D

P traness I PN Kunosys

05 ‘ (T ‘
0 00
0

- -» .“
o _\:u‘ ®
cmp on
04 L1

o .

om
0458
om | S "o e
°a 4 e A 4
0 %N D N &H 0 O M 0 W W 0 0 N N 8N BN 0 N N W W

Fig. 9 Distribution of the parameters on the fourth moment of PW

moment methods in distinguishing random signals from the
same range of signals with regularity:

series1 : (10, 20, 10, 20, 10, 20, 10, 20, 10, 20, 10, 20...),
series2 : (10, 10, 20, 10, 20, 20, 20, 10, 10, 20, 10, 20, 20...).

With these signal sequences, it is difficult to distinguish
between two signal sequences using the moment based on
mean or variance. The reason for this is that, in series2, the
mean and variance of this signal are almost the same as those
of seriesl. When analyzing such similar signals as these, it

is possible to effectively distinguish between the two signals
by measuring the randomness of the signals, which can be
processed by an algorithm called ApEn. The following is the
procedure of the ApEn algorithm.

Figures 10, 11, 12 show ApEn distribution analysis of 100
types of threats on frequency, PRI and PW. The discrimina-
tion power of all kinds of threat signals is very high in the
figures. It is obvious that there are threats with small scale
differences, but it can be concluded that high-performance
recognizers can be developed by combining ApEn with exist-
ing probability moment feature vectors.
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Stepl:  Enter data in the same time interval in chronological order
Sn= {u(l), u2),.... uN)}
Set m and r value
m: The number of data constituting the set
r: filtering level
Make sequence of vector x(1),x(2),...x(N-m+1)
x(1) = [u(i), u(i+1), ..., u@i+m-1)]
Calculate the following equation using the vector created
in Step 3
Clm (r) — (nunzbernfx(j()}v\/uilzf}izzlt)d[x(t),x(j)]<r i
d[x, x*] = max |u (a) — u* (a) |
N—m+1
Calculate " ()= (N —m +1)~' Y

Step2:

Step3:

Step4:

Step5: log(C" (r))

i=1

Step6:  Calculate ApEn = @"(r) _¢m+1(r)
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Fig. 10 ApEn distribution of frequency for 100 types of radars

4 Experiment

In this paper, 100 types of radar signals (emitters) are tested to
verify the performance of the proposed radar classifier using
neural network model, which has an independent neural net-
work structure of the existing neural network topology.

4.1 Data set

Figure 13 shows the experimental data configuration for this
experiment. The total data set consists of 100 sets, and each
radar signal consists of ten types of beams. Each beam is
composed of a pulse description word (PDW) set. A PDW
describes information such as frequency, pulse width (PW),
pulse amplitude (PA), time of arrival (TOA) and modulation

type.
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In this paper, a threat environment is generated with a
threat signal simulator with self-generating PDWs. The sim-
ulator serves to generate the corresponding PDWs when
the user defines a radar signal. The number of PDWs
for representing one beam varies from 20 to 400. Fig-
ure 14 shows the types of beams composed of a set of
PDWs.
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Fig. 13 Experiment data configuration
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Fig. 14 Beam sample

The frequency range of this experiment is from 500
to 18,000 MHz, PRI from 5 to 4000 ms and PW from
500 to 6000 pws. In each datum, frequencies are formed
as fixed, agile, hopping and pattern. PRI is configured
to include various types of signals such as stable, stag-
ger, jitter, dwell and switch, and pattern. Table 1 shows
the type and number of threat signals used in this experi-
ment.

Figure 15 shows the frequency band distribution of 100
types of emitters. The 40 of the 100 were obtained by pro-
cessing the actual marine radar signals. The rest of the data
were generated within the distribution band between 0.5 and
18 GHz.

Figure 16 shows the PRI distribution for 100 types of sig-
nals.
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Table 1 Type and number of threat signals

Subtype (number)

Fixed (51), random agile (15), hopping (20) and pattern agile (14)
Stable (24), stagger (21), jitter (23), dwell and switch (18) and pattern (14)

Type Range
Frequency 500-18,000 MHz
PRI 50-4000 s
PW 500-6000 ns
18,000 -
‘.00 *
16,000 - - 1
14,000 - o J
—_— * -
T 12,000f . -
= @&
= 10,000 1
s e et @ b 40 DS 0 o e
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¢ e e e ¢
2000 "’"\ . 4
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Fig. 15 Frequency band distribution of 100 types of radars
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Fig. 16 PRI distribution for 100 types of radars

4.2 Neural network

Figure 17 shows the neural network model used for this
experiment. The neural network model uses an independent
neural network model designed to identify electronic warfare
threats. The neural network model used in the experiment has
an independent neural network structure of the existing neu-
ral network topology. That is because frequency, PRI and PW
do not depend on each other.
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4.3 Result

Our experimental data are as follows. Frequency, PRI and
PW are used as features of mean and variance, respectively.
Skewness, kurtosis and input signal are calculated, and a
fourth probability moment is calculated and used as an addi-
tional feature. The approximate entropy (ApEn) is applied in
experiment. The experimental results are presented by using
these features. The final experiment shows that ApEn yields
the highest performance.

Table 2 shows the recognition rate when only the mean
and variance are used in the frequency, PRI and PW signal
sequences in the radar signal properties. The neural network
inputs are as follows. The experimental results show that the
learning is not performed normally:

— Frequency: mean, variance
— PRI: mean, variance
— PW: mean, variance.

Table 3 shows the results of recognition rate when the
first to fourth moments are extracted from the frequency,
PRI and PW, respectively. The neural network inputs are as
follows:

— Frequency: mean, variance, skewness, kurtosis
— PRI: mean, variance, skewness, kurtosis
— PW: mean, variance, skewness, kurtosis.

The results of this experiment show that the learning is
not performed normally, either.

In Table 3, the error data are mostly generated in classes
46 to 48 and 56 to 58, and the main reason of the error is
that almost similar signal sequences are changed in order. In
classes 46 to 48 and 56 to 58, their frequencies, PWs and
the values of staggered or D&S (Dwell and Switch) PRIs are
the same, but the order of steps of staggered or D&S PRIs is
different.

In order to solve the above problems, different proba-
bility moments and ApEn are applied. Table 4 shows the
performance measurement result when the two feature vec-
tors are added. In this feature, five parameters are added
for frequency and PRI, respectively, and one parameter is
added for PW. The neural network input characteristics are as
follows:
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Table 2 Recognition rate of
class of threat signal recognizer
based on mean, variance of
frequency, PRI and PW

Fidden Layer 2

—

I/
Ll J \

Outpet Layer
\\
Outpen
-l
¢ )

/
L 4
J
Class number 1 2 3 4 5 6 7 8 9 10
Recognition rate 100 100 100 100 100 100 100 100 100 100
Class number 11 12 13 14 15 16 17 18 19 20
Recognition rate 100 96.2 100 100 100 100 97.2 100 100 99.6
Class number 21 22 23 24 25 26 27 28 29 30
Recognition rate 100 98.2 99.2 100 100 100 100 100 99.8 100
Class number 31 32 33 34 35 36 37 38 39 40
Recognition rate 100 100 100 100 100 100 100 96 100 100
Class number 41 42 43 44 45 46 47 48 49 50
Recognition rate 98.4 100 100 100 100 25.8 0.6 72.2 100 100
Class number 51 52 53 54 55 56 57 58 59 60
Recognition rate 100 100 100 100 100 67.4 30 4.4 100 100
Class number 61 62 63 64 65 66 67 68 69 70
Recognition rate 100 100 100 100 82.4 98.4 100 100 100 100
Class number 71 72 73 74 75 76 77 78 79 80
Recognition rate 100 100 100 100 100 100 100 100 46.6 100
Class number 81 82 83 84 85 86 87 88 89 90
Recognition rate 64 100 100 100 100 100 100 100 100 100
Class number 91 92 93 94 95 96 97 98 99 100
Recognition rate 100 100 100 99.4 84.4 84.2 38 76 68.6 55.2

— Frequency: mean, variance, skewness, kurtosis, D-mean,
D-variance, D-skewness, D-kurtosis, ApEn
— PRI: mean, variance, skewness, kurtosis, D-mean, D-
variance, D-skewness, D-kurtosis, ApEn
— PW: mean, variance, skewness, kurtosis, ApEn.

Table 4 shows that the recognition rate has increased.
When applying the different probability moment, signals
with similar value but different orders can be effectively
classified among the various classes. ApEn can effectively
discriminate the randomly changing signal in the same range.
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Table 3 Recognition rate of
class of threat signal recognizer
based on a fourth probability
moment of frequency, PRI and
PW

Table 4 Recognition rate of
class of threat signal recognizer
based on a fourth probability
moment and ApEn of frequency,
PRI and PW

Class number 1 2 3 4 5 6 7 8 9 10
Recognition rate 100 100 99.8 100 99.2 100 98.4 100 100 100
Class number 11 12 13 14 15 16 17 18 19 20
Recognition rate 99.6 97.4 99.8 100 100 100 96 100 97 99.8
Class number 21 22 23 24 25 26 27 28 29 30
Recognition rate 100 98.6 99.2 100 100 99.4 100 100 100 100
Class number 31 32 33 34 35 36 37 38 39 40
Recognition rate 99.8 100 100 100 100 100 100 98.2 100 100
Class number 41 42 43 44 45 46 47 48 49 50
Recognition rate 98.4 100 100 100 100 50.8 342 19.6 100 100
Class number 51 52 53 54 55 56 57 58 59 60
Recognition rate 100 100 100 100 100 64.8 29.6 1.2 100 100
Class number 61 62 63 64 65 66 67 68 69 70
Recognition rate 100 100 100 100 84.2 97.6 100 100 100 100
Class number 71 72 73 74 75 76 77 78 79 80
Recognition rate 100 100 100 100 100 100 100 100 84.4 100
Class number 81 82 83 84 85 86 87 88 89 90
Recognition rate 86 99.4 100 100 100 100 100 100 100 100
Class number 91 92 93 94 95 96 97 98 99 100
Recognition rate 100 100 100 99.6 62.2 86.4 61.8 80.2 59.4 84
Class number 1 2 3 4 5 6 7 8 9 10
Recognition rate 100 99.6 99.2 100 99.8 100 99.6 99.8 100 100
Class number 11 12 13 14 15 16 17 18 19 20
Recognition rate 99.4 98 99.8 100 100 100 97.6 100 98.6 98.8
Class number 21 22 23 24 25 26 27 28 29 30
Recognition rate 100 99.8 99.8 99.8 100 99.4 100 100 100 100
Class number 31 32 33 34 35 36 37 38 39 40
Recognition rate 100 99.4 100 100 100 99.6 100 98 100 100
Class number 41 42 43 44 45 46 47 48 49 50
Recognition rate 99 100 100 100 100 99.6 99.8 100 100 100
Class number 51 52 53 54 55 56 57 58 59 60
Recognition rate 100 100 100 100 99.6 100 100 100 100 100
Class number 61 62 63 64 65 66 67 68 69 70
Recognition rate 100 100 100 100 100 100 100 100 100 100
Class number 71 72 73 74 75 76 77 78 79 80
Recognition rate 100 100 100 100 100 100 100 100 100 100
Class number 81 82 83 84 85 86 87 88 89 90
Recognition rate 100 99.8 100 100 100 100 100 100 100 100
Class number 91 92 93 94 95 96 97 98 99 100
Recognition rate 100 100 99.2 99 100 100 100 99.8 100 100

In the case of fixed and jitter signals, it can be seen that it
is classified ambiguously using the probability moment but
effectively classified when ApEn is applied.
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Table 5 summarizes the threat signal recognizer perfor-

mance measurement results based on the types and number
of feature. The results show that the probability moment and
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Table S Threat signal

. Number of features
recognizer performance

Types of features

Recognition rate Learning rate

measurement results based on
the types and number of feature

Frequency: mean, variance

92.78 92.66

PRI: mean, variance

PW: mean, variance

12 Frequency: mean, variance,

93.66 93.65

skewness, kurtosis

PRI: mean, variance, skewness,

kurtosis

PW: mean, variance, skewness,

kurtosis

23 Frequency: mean, variance, 99.8

99.87

skewness, kurtosis, D-mean,
D-variance, D-skewness,
D-kurtosis, ApEn

PRI: mean, variance, skewness,
kurtosis, D-mean, D-variance,
D-skewness, D-kurtosis, ApEn

PW: mean, variance, skewness,
kurtosis, ApEn

ApEn are good parameters for identifying the electronic war-
fare threat.

5 Conclusion

In this paper, new feature parameters for classifying various
types of radar signals are introduced. Frequency, PRI and
PW signals are sampled in the PDW column, which are used
for the existing radar signal classification. Such sampling
technique cannot effectively model each radar signal when
dealing with complex radar signals.

This paper proposes probability moment and ApEn as an
effective feature for the development of high-performance
radar signal classifier. The proposed method can effectively
classify ambiguous radar signals in the existing system
because the signal values are similar but the order is different.
In order to verify the performance of the proposed system,
100 types of radar signals in various bands were simulated,
and the performance yielded 99% positive classification rate
of the 100 types of radar signals.
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