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Abstract Considering that extending the concept of bees
partitioning into subgroups of foragers to the onlooker phase
of the cooperative learning artificial bee colony (CLABC)
strategy is not only feasible from algorithmic viewpoint
but might reflect real behavioral foraging characteristics of
bee swarms, this paper studies whether the performance
of CLABC can be enhanced by developing a new model
for the proposed cooperative foraging scheme. Relying on
this idea, we design a modified cooperative learning arti-
ficial bee colony algorithm, referred to as mCLABC. The
design procedure is built upon the definition of a partitioning
scheme of onlookers allowing the generation of subgroups
of foragers that might evolve differently by using specific
solution search rules. In order to improve the involving of
local and global search at both employed and onlooker levels,
the multiple search mechanism is further tuned and sched-
uled according to a random selection strategy defined on the
evolving parameters. Moreover, a detailed performance and
robustness study of the proposed algorithm dealing with the
analysis of the impact of different structural and parametric
settings is conducted on benchmark optimization problems.
Superior convergence performance, better solution quality,
and strong robustness are the main features of the pro-
posed strategy in comparison with recent ABC variants and
advanced methods.
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1 Introduction

During past decades, population-based search algorithms
have shown great success in solving different kinds of opti-
mization problems. Evolutionary and swarm intelligence
methods are common population-based algorithms which
have received particular interest in recent years. Extensive
efforts are still being made on basic population-based algo-
rithms such as differential evolution (DE) (Storn and Price
1997), evolutionary programming (EP) (Fogel 1995), parti-
cle swarmoptimization (PSO) (Kennedy andEberhart 1995),
ant colony optimization (ACO) (Dorigo and Stutzle 2004),
artificial bee colony optimization (ABC) (Karaboga 2005),
in an attempt to improve their essential computational fea-
tures such as convergence performance and robustness with
regard to exploration and exploitation abilities.

The ABC optimization concept relies on a stochastic
search mechanism that mimics the natural behavioral for-
aging process of honeybees as being initially introduced by
Karaboga (2005). The ABC model has shown considerable
improvements over existing classical and advanced optimiza-
tion strategies (Karaboga and Akay 2009). It requires only
three control parameters to be tuned, i.e., the population size
(number of food sources), the exploration parameter called
“limit,” and the maximum number of generations. In general,
it has been proven that ABC achieves efficient global search
and, hence, can be seen as a global optimizer. So far, ABC
has gained substantial interest with an increasing number of
applications to various scientific and engineering problems,
such as clustering problems (Karaboga and Ozturk 2011),
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economic dispatch problem (Secui 2015), training neural net-
works (Karaboga and Ozturk 2009), vehicle routing problem
(Szeto et al. 2015), image processing (Banharnsakun et al.
2011), scheduling problems (Taheri et al. 2013),wireless sen-
sor network (Okdem et al. 2011), optimal filter design (Bose
et al. 2014), optimal power flow problem (Yuan et al. 2015;
Jadhav andBamane 2016), fuzzy systems design (Habbi et al.
2015), truss structure design (Sonmez 2011), stock price
prediction (Hsieh et al. 2011) and other problems (Saffari
et al. 2016; Habbi et al. 2015; Habbi and Boudouaoui 2014;
Aydoğdu et al. 2016; Habbi 2012; Liang and Lee 2015; Sun
et al. 2013). However, like any other population-based tech-
niques, ABC has its own shortcomings: the ABC model has
good exploration ability, but its exploitation level needs fur-
ther improvement, which represents a challenging issue for
ABC convergence and performance.

The basic ABC model was subjected to many enhance-
ments aiming to increase its computational performance and
robustness. To this end, different modified and hybridized
ABC-based algorithms have been developed in order to
achieve good balance between exploration and exploita-
tion. Let us mention for instance the work by Zhu and
Kwong (2010) where a global-best-guided ABC variant is
proposed. Akay and Karaboga (2012) designed a modified
ABC algorithm by controlling the frequency of perturbation
and introducing the ratio of the variance operator. Gao et al.
(2014) developed new search equations to adjust exploration
and exploitation capability of theABCalgorithm.Xiang et al.
(2014) hybridized DE and ABC with a new search strategy
inspired from gbest-guided ABC to enhance the convergence
rate of traditional ABC. Kiran and Findik (2014) developed a
simple version of the basic ABC algorithm by using direction
information regarding the solutions to improve the conver-
gence characteristics of the basic algorithm. Li and Yang
(2016), inspired by the biological study of natural honey-
bees, presented a newABC variant which imitates a memory
mechanism to the artificial bees to memorize their previ-
ous successful experiences of foraging behavior. Babaoglu
(2015) proposed a distribution-based solution update rule
for the basic ABC algorithm, which uses the mean and
standard deviation of selected two food sources to obtain
a new candidate solution. Alatas (2010) proposed a chaotic
ABC algorithm, in which many chaotic maps for parameters
adapted from the standard ABC algorithm were introduced
to improve its convergence performance. Biswas et al. (2014)
presented migratory multi-swarm ABC where subpopula-
tions of swarms employ different search strategies.Harfouchi
and Habbi (2016) developed a novel multiple search ABC
variant with cooperative learning paradigm. Wang et al.
(2014) proposed an integration of update rules for ABC algo-
rithm and analyzed the performance of the proposed method
on solving numerical functions. Li et al. (2012) proposed an
improved ABC algorithm with the abilities of prediction and

selection by introducing an inertia weight and two accelera-
tion coefficients.

Following up ABC improvement efforts, we presented
in Harfouchi and Habbi (2016) a novel variant of ABC
model relying on the concept of cooperative foraging learn-
ing among bee swarms as highlighted above. In the proposed
ABC variant, referred to as CLABC (Cooperative learning
artificial bee colony) algorithm, a structural modification of
the employed phase is introduced. Employed bees are par-
titioned into subgroups of foragers which evolve differently
with multiple search mechanism. The onlookers are not sub-
jected to this modified behavioral structure and thus are
supposed to operate into a uniquegroup as defined in the basic
ABC model. From behavioral analysis viewpoint, extend-
ing the general concept of foragers partitioning to cover
onlookers is not only feasible but might reflect natural fea-
tures of bee swarms. Relying on this idea, the present paper
addresses the problem of designing a modified framework
of the CLABC algorithm by introducing structural modifi-
cations to better characterize the involving of subgroups of
employed and onlooker bees in the foraging process. The
proposed optimization strategy also performs with multi-
ple search mechanism that allows mutual and simultaneous
exchange of information among the foraging subgroups.
Moreover, a detailed performance and robustness study of
the proposed ABC variant dealing with the analysis of the
impact of different parameter and structural settings is con-
ducted on benchmark and complex optimization problems.

The remaining of this paper is organized as follows. Sec-
tion 2 introduces the basics of ABC optimization method.
The modified cooperative learning artificial bee colony
(mCLABC) strategy is described in Sect. 3. To assess
its performance, experiments on benchmark numerical and
composition test functions are presented in Sect. 4. In Sect. 5,
a detailed robustness study is conducted with respect to a
number of structural and parameter settings of the proposed
method. Finally, conclusions and remarks are given inSect. 6.

2 Basics of artificial bee colony optimization

As to simulate the foraging behavior of honeybees, the ABC
model employs three types of foragers that are categorized
into employed bees, onlooker bees and scouts (Karaboga
2005). With regard to natural foraging process of bees, three
operational phases are distinguished through which multi-
tasks are rigorously performed for profitable search. From
behavioral viewpoint, an employed bee searches around the
current food source to find a new source position with bet-
ter nectar amount. If the nectar amount of the discovered
position is higher than that of the previous one, the bee
saves the new position in her memory and forgets the old
one. Each employed bee is associated with a food source
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Step 1. Initialization: 
        Step 1.1. Generate randomly population of SN solutions by using Eq.(1) 

Step 1.2. Evaluate the initial population 
Step 1.3. Set Cycle=1.  

Repeat 
Step 2. Employed bee phase:
        Step 2.1. Generate new solution Vi for the employed bee by using Eq.(2)  

Step 2.2. Evaluate the fitness function fiti for the solution Vi 
Step 2.3. Apply greedy selection process between Vi and Xi. 

Step 3. Calculate the probability values pi by Eq. (3). 
Step 4. Onlooker phase:
        If random< pi then 

Step 4.1. Generate new solution Vi for the onlooker bee using Eq. (2)  
Step 4.2. Evaluate the fitness function fiti for the solution Vi 
Step 4.3. Apply greedy selection process between Vi and Xi.

        End if 
Step 5. Scout phase 

If there exist an abandoned solution for the scout, replace it with a randomly produced solution by Eq.(1). 
Step 6. Memorize the best solution achieved so far and set Cycle=Cycle+1. 
Until a termination condition is met. 

Fig. 1 Pseudo-code of the basic ABC algorithm

which means the number of employed bees is same as the
number of food sources. After all employed bees complete
their search, they share the gathered information about for-
aging with onlooker bees which are waiting in the hive. An
onlooker bee chooses a food source according to a probabilis-
tic greedy selectionmechanism.Therefore, food sourceswith
better profitability will get higher probability to be selected
by the onlookers. Similarly, each onlooker bee produces a
modification on the position in her memory and checks the
nectar amount of the generated candidate source. If a position
cannot be improved further through apredetermined limit tol-
erance called “limit”, then that food source is assumed to be
abandoned. The corresponding employed bee becomes then
a scout. The abandoned position will be replaced with a new
food source found by the scout.

From algorithmic viewpoint, the first step of the ABC
optimization process consists in generating randomly a
population of SN solutions (food source positions) in the
admissible search domain by using the following equation:

x j
i = x j

min + rand(0, 1)(x j
max − x j

min) (1)

where i = 1, 2, ...,SN, j = 1, 2, ..., D and D is the number
of optimization parameters; x j

min and x j
max are the lower and

upper bounds of the dimension j , respectively.
After the initialization step, the population of food sources

is subjected to repeated cycles of three-phase search process
of employed bees, onlooker bees, and scout bees. Employed
bees use the following search equation to generate new candi-
date solutions vi from the old ones xi (Karaboga and Basturk
2008):

v
j
i = x j

i + φ
j
i (x j

i − x j
k ) (2)

where i = 1, 2, ...,SN, j ∈ {1, 2, ..., D} and k ∈
{1, 2, ...,SN} are indexes selected randomly, and k different
from i . φ j

i is a uniform random number in [−1, 1]. Greedy
selection between the old and the updated food source posi-
tion is performed by the employed bee based on fitness value
evaluation. This valuable information about the position and
the quality of the food sources is shared with the onlooker
bees.

Unlike the employed bee, an onlooker bee chooses a food
source with a probability that depends on its nectar amount
and is calculated as follows:

pi = fiti
∑SN

n=1 fitn
(3)

where fiti indicates the fitness value of the solution i . After
having chosen a food source, an onlooker bee determines a
new candidate solution by using Eq. (2), and then greedy
selection is applied between the new solution and the old
one. If a solution cannot be further improved by means of a
predefined limit value, it is considered as exhausted and is
abandoned. In this case, a new position is randomly deter-
mined by a scout bee by using Eq. (1). The three-phase
procedure of the basic ABC optimization model is summa-
rized in Fig. 1.

3 The modified cooperative learning strategy for
improved ABC optimization

Search equations in population-based algorithms are key
operators based on which solution updating is performed.
Obviously, the search mechanism guides the optimization
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process to optimal or near-optimal solutions in a predefined
or randomly chosen direction by updating rules. Evaluat-
ing the computational performance of a population-based
algorithm might be done in accordance with two impor-
tant features which are the exploration and the exploitation
abilities. The exploration process is related to the ability of
carrying out independent search for optimal solution finding,
whereas the exploitation process is related to the ability of
integrating existing knowledge to improve solutions (Akay
and Karaboga 2012). For the sake of efficiency, search equa-
tions have to be designed so that exploration and exploitation
are adequately balanced.Asmentioned above, the basicABC
model uses the search rule defined byEq. (2)which is suitable
for global search. However, ABC might be slow to converge
and easily get trapped in local solutions, which is a chal-
lenging issue for many population-based search algorithms.
To deal with this common drawback, one actual and active
research trend in ABC optimization consists in the design
of well-established search strategies. The literature reports
a number of tentative works on this particular subject (Gao
et al. 2012, 2013a; Zhu and Kwong 2010; Gao and Liu 2011;
Gao et al. 2014).

With the aim to further improve the performance of ABC
optimization, a modified cooperative learning strategy is
investigated in the present study. To implement the proposed
cooperative concept, structural modifications are introduced
into the original CLABC described in Harfouchi and Habbi
(2016). The design procedure is built upon the definition of
a partitioning scheme of onlookers allowing the generation
of subgroups of foragers that might evolve differently by
using specific search equations. The updating rules describ-
ing the multi-search mechanism have also been adjusted
together with some parameter settings. Unlike the original
CLABC, the transformed cooperative learning framework
which is referred to as mCLABC (modified cooperative
learning ABC) involves local and global search rules at both
employed and onlooker levels. This might of course impact
positively the exploration and the exploitation capabilities
of the designed model. Based on this scheme, a random
cooperative foraging learning strategy is built upon the com-
bination of a set of local and global search equations through
which separate subgroups of foragers evolve simultaneously
at both employed or onlooker stages.More precisely, the idea
relies on modeling the foraging behavior of swarm honey-
bees according to the following behavioral concept: “In a
bee swarm, employed and onlooker bees could be divided
into subgroups of foragers. The subgroups of employed for-
agers or onlooker might perform food search independently,
engage at each level specific search tools differently and
also might exchange information about the foraging process
mutually”.

Modeling such a behavioral concept needs first a search
mechanism to be defined for each foraging subgroup. Amul-

tiple search mechanism is then adopted which consists in a
set of global and local search equations that allowmutual and
simultaneous exchange of foraging information between the
subgroups of a given bees category. The solution updating
equations are defined as follows:

v
j
i = x j

i + φ
j
i (x j

i − x j
k )

i = 1, 2, ...,SN, i �= k, j ∈ {1, 2, ..., D} (4)

v
j
i = x j

k + φ
j
i (x j

k − x j
k1)

i = 1, 2, ...,SN, i �= k �= k1, j ∈ {1, 2, ..., D} (5)

v
j
i = x j

k + φ
j
i (x j

k1 − x j
k2)

i = 1, 2, ...,SN, i �= k �= k1 �= k2,

j ∈ {1, 2, ..., D} (6)

v
j
i = x j

best + ϕ
j
i (x j

i − x j
mean) + φ

j
i (x j

k − x j
k1)

i = 1, 2, ...,SN, i �= k �= k1, j ∈ {1, 2, ..., D} (7)

v
j
i = x j

best + φ
j
i (x j

k − x j
k1)

i = 1, 2, ...,SN, i �= k �= k1, j ∈ {1, 2, ..., D} (8)

v
j
i = x j

i + ϕ
j
i (x j

i − x j
mean) + φ

j
i (x j

k − x j
k1)

i = 1, 2, ...,SN, i �= k �= k1, j ∈ {1, 2, ..., D} (9)

where φ
j
i ∈ [−1, 1], ϕ j

i ∈ [0, 1] are random numbers gener-

ated for each dimension at each processing time. x j
k , x j

k1 and

x j
k2 are the j th dimensions of solutions selected randomly
from the populations of bee subgroups (subpopulations),
k, k1 and k2 are not equal to each other and to i, x j

best
denotes the j th dimension of the best solution obtained by
the subpopulations so far, and x j

mean is the average solution
corresponding to the j th dimension for all solutions in the
subpopulations.

Here, Eqs. (4)–(6) are suitable for global search and
Eqs. (7)–(9) for local search. To incorporate the multiple
search mechanism described by Eqs. (4)–(9) into the frame-
work of ABC model, the employed and onlooker foragers
are first categorized into a predefined number of subgroups.
Subpopulations of potential solutions are then generated iter-
atively at both employed and onlooker phases. The formed
subgroups of employed and onlooker beeswill have to evolve
differently during the foraging process by engaging specific
search strategies which are not similar to those defined for
the other subgroups. According to design, the search Eqs. (4)
and (5) will be called by the first group of employed and
onlooker bees to generate new candidate solutions. Only one
of those two search equations is used to update the solu-
tion with regard to a specified probability which depends
on the current iteration and the maximum number of cycles
as defined in Mohamed (2015). The nonlinear decreasing
probability rule introduced in Mohamed (2015) has been
determined empirically to enhance the global exploration
capability of the evolutionary strategy. Following this reason-
ing and based on several experiments, we adopted a different
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Step 1. Initialization:
Step 1.1. Generate randomly population of SN solutions by using Eq.(1) 
Step 1.2. Evaluate the initial population 

      Step 1.3. Set Cycle=1. 
Repeat 
Step 2. Employed bee phase:

Step 2.1. Send subgroup 1 of employed foragers and perform the process described in Fig. 3 by using Eq. (4) and Eq. (5)
Step 2.2. Send subgroup 2 of employed foragers and perform the process described in Fig. 3 by using Eq. (6) and Eq. (7)     
Step 2.3. Send subgroup 3 of employed foragers and perform the process described in Fig. 3 by using Eq. (8) and Eq. (9)
Step 2.4. Apply greedy selection process between Vi and Xi. 

Step 3. Calculate the probability values pi and select the solutions which will be updated by the onlookers.
Step 4. Onlooker bee phase: 

Step 4.1. Send subgroup 1 of onlooker foragers and perform the process described in Fig. 4 by using Eq. (4) and Eq. (5) 
Step 4.2. Send subgroup 2 of onlooker foragers and perform the process described in Fig. 4 by using Eq. (6) and Eq. (7) 
Step 4.3. Send subgroup 3 of onlooker foragers and perform the process described in Fig. 4 by using Eq. (8) and Eq. (9) 

Step 5. Scout phase
If there exist an abandoned solution for the scout, replace it with a randomly produced solution by Eq. (1).

Step 6. Memorize the best solution achieved so far and set Cycle=Cycle+1.
Until a termination condition is met.

Fig. 2 The algorithmic framework of the proposed mCLABC algorithm

form of probability rule for our design which is given
by the increasing nonlinear form γ = (i ter/MCN )1/2.
Based on this definition, we can for instance define the
following selective updating rule for a given subgroup of
foragers:

if (random ≤ γ ) then

v
j
i = x j

i + φ
j
i (x j

i − x j
k )

else

v
j
i = x j

k + φ
j
i (x j

k − x j
k1)

end (10)

where i ter is the current generation number and MCN is
the maximum number of cycles. Obviously, it is clear that,
from Eq. (10), the probability of using one of the two search
rules is a function of the iteration number. The nonlinear
form of the probability is determined empirically with regard
to search process convergence rate which is guided by the
above probabilistic strategy. Based on the same definition
of probability given above, the random search Eq. (6) and
the gbest-guided Eq. (7) are used for the second subgroup
of employed and onlooker bees. Similarly, the third sub-
group employs Eqs. (8) and (9) to update candidate solutions.
Here, search Eq. (8) performs solution updating in a random
direction guided by the gbest solution found so far, while
search Eq. (9) is mean-oriented. On the other hand, a strat-
egy to select the number of evolving optimization parameters
is incorporated in the modified algorithmic framework of
mCLABC at both employed and onlooker levels. For this
purpose, employed bees are managed to start by changing
one random dimension. Then, when the number of iterations
reaches iter = 1

5MCN, the algorithm will have to opti-
mize randomly one or all parameters simultaneously. While
reaching the end of the optimization process, i.e., between

iter = 4
5MCN and iter = MCN, the employed bees will

update all parameters of the solution. Subsequently, after
completion of the employed bee phase and based on greedy
selection, the subgroups of onlookers start to update one ran-
dom parameter of the solution. Then, when iter = 1

5MCN,
the onlooker bees will have to change randomly one or all
parameters until iter = MCN. In this way, we attempt to
mimic the natural behavior of honeybees which might look
highly selective when concerned with the alteration of the
features of a given food source. In the absence of tight
characterization of such a behavioral foraging concept, we
adopted a random selection strategy. Figure 2 describes the
general framework of the modified CLABC algorithm. The
pseudo-codes describing the foraging process of the associ-
ated employed and onlooker subgroups are given in Figs. 3
and 4, respectively.

The proposed multi-search strategy is designed with
the possibility to apply all updating rules at any level of
the search process. The mechanism is set to ensure more
global search in the beginning of the process to increase
exploration, and more local search through generations
to increase exploitation. Regarding probability definition,
search Eqs. (5), (6), and (9) will have higher possibility
to be called in the beginning of the optimization process
which might ensure diversity. Then, all global Eqs. (4),
(5), and (6) and local Eqs. (7), (8), and (9) will be used
randomly to intensify the search. Accordingly, both global
exploration and local exploitation are balanced at this level.
Afterward, and depending on γ values, all search strate-
gies might be employed, but again Eqs. (4), (7) and (8)
will have higher probability to be involved which might
increase exploitation ability and convergence performance
and preserve exploration capability. This strategy of being
involved of solutions updating rules in mCLABC algorithm
is described in Fig. 5.
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Employed Subgroup  
Step 1. =(Cycle/MaxCycle)^(1/2). 
Step 2. 
For all SNemployed food sources visited by the employed bees       
     Step 2.1. Apply the evolving parameters selecting strategy 
        If (All parameters are to be altered)
            If (random<= )  
                Step 2.2. Produce a new food source Vi for the employed bee by using the specified search rule (SRule1)
             Else
                Step 2.3. Produce a new food source Vi for the employed bee by using the specified search rule (SRule2)
             End if 
       Else
             If (random<= ) 
                Step 2.4. Produce a new food source Vi for the employed bee by changing one random parameter  

     using the specified search rule (SRule1) 
             Else
                Step 2.5. Produce a new food source Vi for the employed bee by changing one random parameter  

      using the specified search rule (SRule2)
             End if 
          Endif 
End for

Fig. 3 Pseudo-code of the employed subgroup foraging process

Onlooker Subgroup: 
Step 1. set t=0, i=1. 
While (t<=SNonlooker) do 
         Step 2. 

If (random< pi ) then  
                Step 2.1. Apply the evolving parameters selecting strategy 

If (All parameters are to be altered) 
                    If (random<= )  

Step 2.1.1. Produce a new food source Vi for the onlooker bee by using the specified search rule (SRule1) 
Else 

Step 2.1.2. Produce a new food source Vi for the onlooker bee by using the specified search rule (SRule2) 
End if 

               Else 
If (random<= )  

Step 2.1.3. Produce a new food source Vi for the onlooker bee by changing one random parameter  
          using the specified search rule (SRule1) 

Else 
Step 2.1.4. Produce a new food source Vi for the onlooker bee by changing one random parameter  

           using the specified search rule (SRule2) 
End if 

               End if
                Step 2.1.5. Apply greedy selection process between Vi and Xi  

Step 2.1.6. t = t+1          
           End if 
           Step 2.2. Set i=i+1, if i=(SNonlooker)+1, set i=1.
End While 

Fig. 4 Pseudo-code of the onlooker subgroup foraging process

4 Numerical experiments and results

4.1 Experiments on benchmark numerical functions

To demonstrate the computational performance of the pro-
posed mCLABC algorithm, a set of 22 benchmark functions
with dimensions D = 15, 30, 50, 60, 100 and 200 are used.
The test functions are listed in Table 1. They are categorized
into the low-, middle- and high-dimensional functions. For
instance, the high-dimensional functions are the functions

F1–F20 with D = 60 and the functions F21 and F22 with
D = 200. For all experiments, themaximumnumber of func-
tion evaluations (FEs) is used as termination condition. FEs is
taken as 50,000, 100,000, and 200,000 for the low-, middle-,
and high-dimensional functions, respectively. Colony size is
chosen as CS = 40. The limit value is set to limit = D ∗SN,
where D is the dimensionality of the problem and SN is the
number of food sources.

The compared results are taken directly from their corre-
sponding literature, and thus setting parameters of mCLABC
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Fig. 5 Rate of being selected of the search equations in mCLABC algorithm

are set same as the compared methods. The best results
obtained over running times are marked in bold.

4.1.1 Comparison of mCLABC with the basic ABC and
CLABC

The proposed mCLABC model is first compared with the
basic ABC algorithm and the original CLABC algorithm.
The results are shown in Tables 2, 3 and 4 in terms of means
and standard deviations of the solutions obtained over 30
independent runs. Figure 6 depicts the convergence curves
of ABC, CLABC, and mCLABC on some representative test
functions. The resulting plots show that mCLABC performs
differently and better in the most of cases and achieves faster
convergence than ABC and CLABC especially on middle-
and high-dimensional test functions. Significant conclusions
on the performance of different algorithms can be drawn from
the results summarized in Tables 2, 3 and 4.

Indeed, as given in Table 2, the mCLABC and CLABC
operate clearly better than ABC. However, CLABC outper-
formsmCLABCon the low-dimensional unimodal functions
F1, F2, F3, F5, F9, and F10, while the mCLABC algorithms
shows superiority over CLABC on most of low-dimensional
multimodal functions F14, F15, F18, F19, F20, and F22
which are rather complex numerical functions.

From Table 3, it can be seen that mCLABC has signif-
icantly improve the optimization results in the majority of
middle-dimensional unimodal andmultimodal test functions.

The CLABC results outperform the mCLABC on only three
test functions F4, F5, and F14 with a slight improved differ-
ence for F15.

Moreover, Table 4 shows that the proposed mCLABC
exhibits a remarkable high performance in solving different
kinds of high-dimensional separable, non-separable, uni-
modal, and multimodal numerical functions. It is worth
noting that both ABC and CLABC fail to overpass the pro-
posedmCLABC in any of those test functions except the F15
test case where the CLABC improved slightly the function
mean values.

According to the above analysis and results, it can be con-
cluded that the structural modifications introduced into the
CLABC framework contributed to the improvement of the
cooperative learning ABC optimization strategy and, at the
same time, showed visible superiority in solving middle- and
high-dimensional problems.

4.1.2 Comparison of mCLABC with ABC variants

In this numerical experiment, mCLABC is compared to
five variants of the ABC algorithm, namely ABC based on
modified search strategy (CABC) (Gao et al. 2013a), global-
best ABC (ABCbest) (Gao et al. 2012), global-best-guided
ABC based on orthogonal learning strategy (OGABC) (Gao
et al. 2013a), ABCwith multiple search strategies (MuABC)
(Gao et al. 2015), and ABC with variable search strategy
(ABCVSS) (Kiran et al. 2015). The compared results are
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Table 1 Benchmark numerical functions: U unimodal, M multimodal, S separable, N non-separable

Name No. of Func. Search range Type Function Accept

Sphere F1 [−100, 100]D US f1(x) = ∑D
i=1 (xi )2 1 × 10−8

Elliptic F2 [−100, 100]D UN f2(x) = ∑D
i=1 (106)(i−1)/(n−1)x2i 1 × 10−8

SumSquares F3 [−10, 10]D US f3(x) = ∑D
i=1 i x

2
i 1 × 10−8

SumPower F4 [−10, 10]D MS f4(x) = ∑D
i=1 |xi |(i+1) 1 × 10−8

Schwefel2.22 F5 [−10, 10]D UN f5(x) = ∑D
i=1 |xi | + ∏D

i=1 |xi | 1 × 10−8

Schwefel2.21 F6 [−100, 100]D UN f6(x) = maxi {|xi |, 1 ≤ i ≤ n} 4 × 10−1

Step F7 [−100, 100]D US f7(x) = ∑D
i=1 (�xi + 0.5�)2 1 × 10−8

Quartic F8 [−1.28, 1.28]D US f8(x) = ∑D
i=1 i x

4
i 1 × 10−8

QuarticWN F9 [−1.28, 1.28]D US f9(x) = ∑D
i=1 i x

4
i + random[0, 1) 1 × 10−1

Rosenbrock F10 [−30, 30]D UN f10(x) = ∑D−1
i=1 [100(xi+1 − x2i )

2 + (xi − 1)2] 5 × 100

Rastrigin F11 [−5.12, 5.12]D MS f11(x) = ∑D
i=1 [x2i − 10 cos(2πxi ) + 10] 1 × 10−8

Non-
continuous
rastrigin

F12 [−5.12, 5.12]D MS
f12(x) = ∑D

i=1 [y2i − 10 cos(2πyi ) + 10]{
xi |xi | < 1

2
round(2xi )

2 |xi | ≥ 1
2

1 × 10−8

Griewank F13 [−600, 600]D MN f13(x) = 1
4000

∑D
i=1 x

2
i − ∏D

i=1 cos(
xi√
i
) + 1 1 × 10−8

Schaffer F14 [−100, 100]D MN f14(x) = 0.5 + sin2(
√
x21+x22 )−0.5

(1+0.001(x21+x22 ))2
1 × 10−1

Ackley F15 [−32, 32]D MN f15(x) = −20 exp{−0.2
√

1
D

∑D
i−1 x

2
i } −

exp{ 1
D

∑D
i−1 cos(2πxi )} + 20 + e

1 × 10−8

Penalized1 F16 [−50, 50]D MN f16(x) = π
D {10 sin2(πy1) + ∑D−1

i=1 (yi −
1)2[1 + 10 sin2(πyi+1)] + (yD − 1)2} +
∑D

i=1 u(xi , 10, 100, 4) yi = 1 + 1
4 (xi + 1)uxi .a.k.m

=
⎧
⎨

⎩

k(xi − a)m xi > a
0 −a ≤ xi ≤ a
k(xi − a)m xi < −a

1 × 10−8

Penalized2 F17 [−50, 50]D MN f17(x) = 1
10 {sin2(πx1) + ∑D−1

i=1
(xi − 1)2[1 + sin2(3πxi+1)] + (xD − 1)2[1 +
sin2(2πxi+1)]} + ∑D

i=1 u(xi , 5, 100, 4)

1 × 10−8

Alpine F18 [−10, 10]D MS f18(x) = ∑D
i=1 |xi . sin(xi ) + 0.1.xi | 1 × 10−8

Levy F19 [−10, 10]D MN f19(x) = ∑D−1
i=1 (xi − 1)2[1 + sin2(3πxi+1)] +

sin2(3πx1) + |xD − 1|[1 + sin2(3πxD)]
1 × 10−8

Weierstrass F20 [−0.5, 0.5]D MN f20(x) = ∑D
i=1

(
∑kmax

k=0 [ak cos(2πbk(xi + 0.5))])
−D

∑kmax
k=0 [ak cos(2πbk0.5)],

a = 0.5, b = 3, kmax = 20
1 × 10−8

Himmelblau F21 [−5, 5]D MS f21(x) = 1
D

∑D
i=1 (x4i − 16x2i + 5xi ) −78

Michalewicz F22 [0, π ]D MS f22(x) = − ∑D
i=1 sin(xi ) sin

20
(

i∗x2i
π

)

−49,−95,−190

taken directly from Kiran et al. (2015) and Gao et al. (2015).
The comparative study is summarized in Table 5 for low-
dimensional functions, in Table 6 for middle-dimensional
functions and in Table 7 for high-dimensional functions. The
results are recorded over 30 independent runs.

Based on the results presented inTable 5, it can be seen that
the mCLABC and the compared ABC variants have given
same mean function values for F7, F11, F12, F16, F20, and
F21. However, mCLABC improves visibly well the results

obtained by the ABC variants on the unimodal functions
F1, F2, F3, F4, F5, and F6. For the rest of test functions,
mCLABC has better performance than at least three com-
pared algorithms.

For middle-dimensional functions of Table 6, mCLABC
shows better results on solving F1, F2, F4, F5, F10 and F15.
Same performance with ABC variants is therefore obtained
for F7, F11, and F21. For the rest of functions, the mCLABC
has equal or better performance than at least three algorithms.
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Table 2 Comparison of
mCLABC, CLABC, and ABC
on solving 15-dimensional
functions F1–F20 and
50-dimensional functions
F21–F22

Function ABC CLABC mCLABC

Mean Std Mean Std Mean Std

F1 2.36e−16 6.35e−17 1.03e−66 4.91e−66 1.72e−62 3.04e−62

F2 2.27e−16 3.66e−17 2.73e−63 1.24e−62 1.35e−58 2.37e−58

F3 2.40e−16 4.61e−17 8.89e−70 2.85e−69 5.59e−64 9.97e−64

F4 2.14e−17 8.42e−18 8.31e−135 3.17e−134 7.47e−122 1.89e−121

F5 5.48e−16 7.89e−17 1.50e−38 6.95e−38 5.71e−34 6.82e−34

F6 2.21e−01 7.15e−02 1.56e−03 3.14e−03 1.05e−04 3.95e−04

F7 0 0 0 0 0 0

F8 6.36e−17 1.63e−17 7.52e−122 4.06e−121 2.24e−122 5.44e−122

F9 2.59e−02 9.84e−03 3.15e−03 1.11e−03 3.69e−03 1.52e−03

F10 6.07e−02 7.81e−02 1.30e−03 5.07e−03 1.75e−01 9.34e−01

F11 0 0 0 0 0 0

F12 0 0 0 0 0 0

F13 2.63e−03 4.57e−03 2.69e−04 1.46e−03 1.48e−03 4.50e−03

F14 5.01e−03 4.32e−03 3.89e−03 5.32e−03 2.91e−03 4.53e−03

F15 1.84e−14 3.36e−15 7.14e−15 1.97e−15 7.05e−15 1.85e−15

F16 2.42e−16 4.70e−17 3.14e−32 1.11e−47 3.14e−32 1.11e−47

F17 2.33e−16 4.71e−17 1.34e−32 5.57e−48 1.34e−32 5.57e−48

F18 3.85e−09 5.35e−09 1.60e−12 6.79e−12 9.34e−31 2.24e−30

F19 1.73e−16 6.00e−17 1.34e−31 1.77e−46 1.34e−31 6.68e−47

F20 0 0 1.17e−07 6.42e−07 0 0

F21 −78.33 4.90e−04 −78.33 7.13e−14 −78.33 5.21e−14

F22 −47.22 3.41e−01 −48.30 2.69e+01 −49.11 1.15e−01

Table 3 Comparison of
mCLABC, CLABC, and ABC
on solving 30-dimensional
functions F1–F20 and
100-dimensional functions
F21–F22

Function ABC CLABC mCLABC

Mean Std Mean Std Mean Std

F1 5.90e−16 9.58e−17 3.71e−57 1.89e−56 8.08e−58 1.14e−57

F2 4.98e−16 8.79e−17 2.73e−53 8.74e−53 1.15e−53 3.94e−53

F3 5.53e−16 9.18e−17 7.33e−58 2.86e−57 1.47e−58 1.97e−58

F4 3.39e−17 1.15e−17 3.74e−128 2.60e−127 2.25e−117 1.23e−116

F5 1.31e−15 1.47e−16 3.71e−34 1.55e−33 7.66e−32 9.83e−32

F6 3.86 1.56 3.59 1.21 8.13e−01 5.75e−01

F7 0 0 0 0 0 0

F8 2.17e−16 5.35e−17 2.06e−99 1.05e−98 1.19e−110 7.39e−110

F9 6.02e−02 1.49e−02 8.49e−03 2.90e−03 7.56e−03 3.27e−03

F10 6.25 e−02 9.61e−02 8.12e−03 3.54e−02 5.88e−03 1.66e−02

F11 0 0 0 0 0 0

F12 2.35e−13 1.28e−12 0 0 0 0

F13 9.57e−13 5.24e−12 0 0 0 0

F14 5.73e−03 4.18e−03 1.30e−03 3.36e−03 2.72e−03 4.41e−03

F15 4.40e−14 5.42e−15 1.42e−14 3.56e−15 1.59e−14 3.19e−15

F16 5.22e−16 7.14e−17 1.65e−32 3.19e−33 1.57e−32 5.57e−48

F17 5.16e−16 1.03e−16 1.34e−32 5.57e−48 1.34e−32 5.57e−48

F18 2.45e−07 3.99e−07 2.27e−10 6.45e−10 1.90e−29 4.85e−29

F19 4.43e−16 8.47e−17 2.55e−31 4.55e−31 1.34e−31 6.68e−47

F20 0 0 4.34e−06 1.56e−05 0 0

F21 −78.3308 3.70e−03 −78.3323 1.15e−10 −78.3323 2.64e−13

F22 −93.72 9.01e−01 −95.73 7.46e−01 −97.22 3.11e−01
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Table 4 Comparison of
mCLABC, CLABC, and ABC
on solving 60-dimensional
functions F1–F20 and
200-dimensional functions
F21–F22

Function ABC CLABC mCLABC

Mean Std Mean Std Mean Std

F1 1.31e−15 1.27e−16 1.14e−46 6.75e−46 2.68e−53 3.21e−53

F2 1.11e−15 1.69e−16 6.60e−43 1.63e−42 8.50e−50 1.25e−49

F3 1.29e−15 1.49e−16 1.04e−47 2.04e−47 4.50e−54 4.47e−54

F4 4.77e−17 1.62e−17 1.09e−105 7.68e−105 4.57e−108 2.25e−107

F5 2.98e−15 1.96e−16 5.97e−29 1.51e−28 1.00e−29 1.56e−29

F6 2.06e+01 4.18e+00 16.50 2.90 7.19e+00 1.55e+00

F7 0 0 0 0 0 0

F8 5.29e−16 8.03e−17 3.16e−81 7.17e−81 9.11e−102 3.49e−101

F9 1.28e−01 2.26e−02 2.42e−02 6.58e−03 1.48e−02 5.13e−03

F10 1.03e−01 2.34e−01 2.28e−02 8.56e−02 1.87e−02 5.72e−02

F11 0 0 0 0 0 0

F12 0 0 0 0 0 0

F13 2.47e−04 1.35e−03 0 0 0 0

F14 4.25e−03 4.09e−03 2.91e−03 4.69e−03 2.59e−03 4.37e−03

F15 1.04e−13 8.97e−15 3.54e−14 5.83e−15 4.10e−14 6.34e−15

F16 1.27e−15 1.16e−16 8.64e−33 2.13e−33 7.85e−33 2.78e−48

F17 1.30e−15 1.51e−16 1.34e−32 5.57e−48 1.34e−32 5.57e−48

F18 2.66e−05 9.86e−05 9.58e−10 1.12e−09 4.87e−28 7.57e−28

F19 1.10e−15 1.44e−16 1.48e−31 2.96e−32 1.34e−31 6.68e−47

F20 1.89e−15 4.91e−15 8.67e−05 3.38e−04 0 0

F21 −78.31 4.33e−02 −78.32 1.20e−02 −78.33 2.32e−12

F22 −186.712 1.48 190 1.48 −192.635 4.35e−01

FromTable 7, the compared results ofmCLABCandABC
variants demonstrate again the superiority of mCLABC on
solving the most of high-dimensional test functions. Better
or slightly improved functions means values are therefore
produced by the ABC variants on only five test cases. In
addition, it is important to note that the optimal solution for
the multimodal function F20 has only been reached by the
proposed mCLABC.

Summarizing the above statements, it can be found that
mCLABC performed very well on the unimodal func-
tions for low-, middle-, and high-dimensional problems. For
the multimodal functions, MuABC and ABCVSS showed
better results in solving low-dimensional problems, while
mCLABC outperforms the other algorithms for the middle
and high-dimensional problems.

4.1.3 Comparison of mCLABC and ABC variants by means
of statistical tests

In order to assess the convergence and stability of the pro-
posedmCLABC algorithm, experiments involving statistical
tests ofmCLABCandABCvariants are conducted on numer-
ical functions optimizationproblems.The results are reported
in Tables 8, 9, and 10 in terms of average number of fitness
evaluations (AVEN) and the ratio of the number of success-

ful runs (SR). More precisely, AVEN refers to the average
number of the fitness evaluations exhausted when an algo-
rithm reaches the threshold defined as “accept”, andSR refers
to the ratio of the number of successful runs over the total
number of runs. Boldface indicates the best results among
those obtained by mCLABC and three other compared algo-
rithms, namely CABC, ABCbest, and MuABC. The results
of the compared algorithms are taken directly fromGao et al.
(2015). As can be seen fromTables 8, 9, and 10, the proposed
method shows a comparatively better convergence behavior
than CABC and ABCbest on all cases. The mCLABC can
achieve the 100% success rate on all test functions except
the Griewank function (F13) with 15 dimensions, it is com-
petitive to the recent introduced multiple search MuABC
algorithmwhich has 100%success rate on all the cases except
the Quartic function (F9) with 60 dimensions; however, in
order to get the full success rate, MuABC needed more FEs
(AVEN) than mCLABC in the most of test cases. The sta-
tistical tests results motivate clearly the robustness of the
proposed mCLABC method.

4.2 Experiments on CEC 2005 and CEC 2013
composition functions

Now, to further assess the effectiveness of the proposed
mCLABC approach, experiments on CEC functions are
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Fig. 6 Convergence curves of basic ABC, CLABC, and mCLABC for selected numerical test functions
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Table 8 Convergence speed and successful rate comparisons of ABCs on solving 15-dimensional functions F1–F20 and 50-dimensional functions
F21–F22

Function CABC (Gao et al. 2013a) ABCbest (Gao et al. 2012) MuABC (Gao et al. 2015) mCLABC

AVEN SR AVEN SR AVEN SR AVEN SR

F1 1.56e+04 100 1.62e+04 100 1.11e+04 100 9.60e+03 100

F2 2.07e+04 100 2.05e+04 100 1.41e+04 100 1.25e+04 100

F3 1.42e+04 100 1.44e+04 100 1.02e+04 100 8.52e+03 100

F4 5.66e+03 100 4.87e+03 100 4.14e+03 100 5.32e+03 100

F5 2.41e+04 100 2.42e+04 100 1.70e+04 100 1.41e+04 100

F6 1.16e+04 100 3.09e+03 100 2.71e+03 100 1.74e+03 100

F7 6.02e+03 100 6.19e+03 100 4.10e+03 100 3.85e+03 100

F9 3.56e+04 100 4.93e+03 100 3.81e+03 100 3.54e+03 100

F10 1.42e+04 100 1.87e+04 70 1.03e+04 100 9.57e+03 100

F11 1.80e+04 100 1.87e+04 100 1.42e+04 100 1.17e+04 100

F12 1.90e+04 100 1.91e+04 100 1.49e+04 100 1.23e+04 100

F13 2.65e+04 96 3.14e+04 68 2.24e+04 100 2.57e+04 86.67

F15 2.58e+04 100 2.61e+04 100 1.83e+04 100 1.53e+04 100

F16 1.33e+04 100 1.40e+04 100 9.54e+03 100 8.56e+03 100

F17 1.47e+04 100 1.51e+04 100 1.07e+04 100 9.09e+03 100

F18 2.30e+04 100 2.52e+04 100 1.85e+04 100 1.76e+04 100

F19 1.69e+04 100 1.66e+04 100 1.08e+04 100 1.05e+04 100

F20 2.80e+04 100 2.86e+04 100 1.91e+04 100 1.76e+04 100

F21 1.43e+04 100 1.59e+04 100 1.18e+04 100 1.13e+04 100

Table 9 Convergence speed and successful rate comparisons of ABCs on solving 30-dimensional functions F1–F20 and 100-dimensional functions
F21–F22

Function CABC (Gao et al. 2013a) ABCbest (Gao et al. 2012) MuABC (Gao et al. 2015) mCLABC

AVEN SR AVEN SR AVEN SR AVEN SR

F1 3.30e+04 100 3.53e+04 100 2.38e+04 100 1.99e+04 100

F2 4.39e+04 100 4.61e+04 100 2.93e+04 100 2.59e+04 100

F3 3.09e+04 100 3.37e+04 100 2.17e+04 100 1.86e+04 100

F4 1.22e+04 100 9.80e+03 100 5.62e+03 100 1.41e+04 100

F5 5.07e+04 100 5.46e+04 100 3.44e+04 100 2.99e+04 100

F6 5.32e+04 100 1.67e+04 100 1.39e+04 100 1.18e+04 100

F7 1.34e+04 100 1.46e+04 100 8.90e+03 100 8.76e+03 100

F9 3.63e+04 100 3.30e+04 100 1.77e+04 100 1.80e+04 100

F10 3.52e+04 100 5.51e+04 60 2.27e+04 100 2.54e+04 100

F11 4.15e+04 100 4.34e+04 100 3.92e+04 100 5.56e+04 100

F12 4.24e+04 100 4.28e+04 100 3.25e+04 100 2.60e+04 100

F13 4.45e+04 96 4.26e+04 100 3.15e+04 100 4.49e+04 100

F15 5.32e+04 100 5.75e+04 100 3.72e+04 100 3.16e+04 100

F16 2.78e+04 100 3.05e+04 100 1.91e+04 100 1.74e+04 100

F17 3.11e+04 100 3.36e+04 100 2.21e+04 100 1.91e+04 100

F18 5.03e+04 100 5.61e+04 100 3.91e+04 100 3.85e+04 100

F19 3.51e+04 100 2.46e+04 100 2.26e+04 100 2.14e+04 100

F20 5.83e+04 100 6.20e+04 100 3.93e+04 100 4.02e+04 100

F21 3.09e+04 100 4.50e+04 100 2.35e+04 100 2.36e+04 100

F22 9.45e+04 82 – 0 5.43e+04 100 6.87e+04 100
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Table 10 Convergence speed and successful rate comparisons ofABCs on solving 60-dimensional functions F1–F20 and 200-dimensional functions
F21–F22

Function CABC (Gao et al. 2013a) ABCbest (Gao et al. 2012) MuABC (Gao et al. 2015) mCLABC

AVEN SR AVEN SR AVEN SR AVEN SR

F1 6.96e+04 100 7.87e+04 100 4.92e+04 100 4.16e+04 100

F2 9.06e+04 100 1.01e+05 100 6.07e+04 100 5.51e+04 100

F3 6.66e+04 100 7.62e+04 100 4.65e+04 100 3.99e+04 100

F4 2.46e+04 100 2.11e+04 100 1.19e+04 100 3.82e+04 100

F5 1.06e+05 100 1.18e+05 100 7.21e+05 100 6.28e+04 100

F6 1.52e+05 62 1.26e+05 100 1.12e+05 100 4.45e+04 100

F7 2.83e+04 100 3.25e+04 100 1.93e+04 100 1.82e+04 100

F9 – 0 – 0 – 0 4.75e+04 100

F10 8.70e+04 100 1.71e+05 22 5.47e+04 100 7.55e+04 100

F11 8.20e+04 100 9.13e+05 100 7.65e+04 100 1.26e+05 100

F12 8.56e+04 100 9.47e+04 100 724e+04 100 5.56e+04 100

F13 8.64e+04 86 8.99e+04 100 6.29e+04 100 1.03e+04 100

F15 1.10e+05 100 1.21e+05 100 7.56e+04 100 6.62e+04 100

F16 5.62e+04 100 6.46e+04 100 3.93e+04 100 3.60e+04 100

F17 6.50e+04 100 7.46e+04 100 4.39e+04 100 3.96e+04 100

F18 1.03e+05 100 1.26e+05 100 7.94e+04 100 8.36e+04 100

F19 7.42e+04 100 7.47e+04 100 4.46e+04 100 4.34e+04 100

F20 1.20e+05 100 1.09e+05 100 8.14e+04 100 8.69e+04 100

F21 6.38e+04 100 7.26e+04 100 4.69e+04 100 4.96e+04 100

F22 – 0 – 0 1.16e+05 100 1.55e+05 100

conducted in this section. For this purpose, composition
functions of CEC2005-type (Suganthan et al. 2005) and
CEC2013-type (Liang et al. 2013) are used. For each type,
unimodal and multimodal composition functions including
basic functions, expanded functions, and hybrid functions
are considered.

For CEC 2005 test case, the population size is chosen as
40, the maximum number of evaluations is set to 320,000,
and the parameter limit is 1000. All functions are tested with
dimensionality of 10 and run for 30 times. The optimization
results of mCLABC, and the compared ones obtained by
binary version ABC based on genetic operators (GB-ABC)
(Ozturk et al. 2015), quantum inspired binary PSO (QBPSO)
(Chung et al. 2011) and binary version of theABC (DisABC)
(Kashan et al. 2012) are presented in Table 11. From this
table, it is easy to notice that mCLABC shows the best per-
formance among the compared algorithms on four unimodal
complex composition functions f1, f2, f4, and f5. Here, only
the mCLABC can obtain a global optimal solution for f1
and a near-global optimal solution for f4 and f5. For the
multimodal functions f6–f17, mCLABC is much better than
DisABC, QBPSO, and GB-ABC on f6, f7, f9, and f11–f17
test functions. The mCLABC was able to reach the optimum
for two multimodal functions f9 and f15. Besides, as far as
we know, there is no algorithm that was able to find global or

near-global optimal solution for any of the composition test
functions f1–f17 with the same performance as the proposed
mCLABC does.

Besides, mCLABC is compared with recent differential
evolution (DE) algorithms on solving CEC 2005 optimiza-
tion problems. Table 12 shows the obtained results for 30-
dimensional composition functions processed over 300,000
evaluations (FEs) with population size set to 60, a param-
eter limit value of 900 and run for 25 times independently.
The comparative study is conducted with reference to the
experiments and settings reported in Wang et al. (2014),
where the results of some other powerful DEs are provided.
More precisely, the performance of mCLABC is compared
with DE algorithm based on self-adaptive parameter con-
trol (jDE) (Brest et al. 2006), self-adaptive DE (SaDE) (Qin
et al. 2009), composite DE (CoDE) (Wang et al. 2011), and
DE based on covariance matrix learning and bimodal distri-
bution parameter setting (CoBiDE) (Wang et al. 2014). As
can be noticed, comparable results were achieved on most
of the CEC 2005 functions with visible improvements on
multimodal composition functions. The proposed mCLABC
found better results than the compared DE variants on opti-
mizing the basic multimodal functions f6–f12, the expanded
multimodal functions f13–f14 and the hybrid composition
functions f15, f18–f20, f22, and f25. Our strategy performed
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Table 11 Experimental results of ABC variants, QBPSO, and mCLABC on 10-dimensional CEC 2005 test functions

Function DisABC (Kashan et al. 2012) QBPSO (Chung et al. 2011) GB-ABC (Ozturk et al. 2015) mCLABC

Mean Std Mean Std Mean Std Mean Std

f1 −103.56 142.39 −334.94 78.78 −336.54 112.75 −450 0

f2 −74.43 170.08 −270.45 173.75 −280.57 151.46 −450 2.35e−28

f3 −44.47 161.15 −291.45 153.19 −303.56 145.54 7080.96 22996.50

f4 −64.12 154.92 −332.52 122.57 −341.57 96.855 −450 1.39e−28

f5 83.19 155.51 −115.02 166.90 −136.87 177.21 −309.99 7.32e−13

f6 740.04 183.25 577.09 138.99 533.92 127.21 390 4.17e−25

f7 −149.06 15.47 −171.42 8.82 −167.25 9.06 −179.84 0.163

f8 −119.66 0.08 −119.79 0.07 −119.73 0.09 −119.75 0.057

f9 −309.69 0.07 −309.81 0.06 −309.67 0.11 −330 0

f10 −309.67 0.07 −309.78 0.08 −309.66 0.12 102.64 5.896

f11 110.29 0.09 110.19 0.09 110.32 0.10 93.21 0.999

f12 −439.67 0.08 −439.81 0.07 −439.75 0.09 −456.33 7.15

f13 −109.68 0.08 −109.81 0.09 −109.68 0.12 −129.92 0.074

f14 −279.66 0.08 −279.75 0.08 −279.64 0.09 −297.50 0.437

f15 472.64 48.95 435.10 174.28 412.57 189.24 120 0

f16 472.43 67.26 449.07 160.37 411.04 164.88 240.195 11.99

f17 472.22 59.78 398.99 183.57 367.16 165.15 238.45 10.99

same or better than jDE in 20 tests, SaDE in 19 tests, CoDE
in 15 tests, and CoBiDE in 16 tests. Moreover, mCLABC
outperforms or is same as the adaptive differential evolu-
tion with optional external archive algorithm, named JADE
(Wang et al. 2014), in 18 test cases. The results of JADE
are not included in Table 12 for the sake of brevity only.
Additionally, among all optimization results of JADE, jDE,
SaDE, CoDE, and CoBiDE, a noticeable achievement of the
proposed mCLABC giving an average value of 9.04e−08
and a standard deviation value of 2.55e−07 of the multi-
modal f6 error values was obtained over 25 independent
runs. For this particular test case, the recent DE variant
referred to as CoBiDE algorithm (Wang et al. 2014) showed
a mean value of 4.13e−02 and a standard deviation of
9.21e−02. On the other hand, similar performance to at least
one compared new DE algorithm on five test functions is
reached by using the modified cooperative learning ABC
algorithm.

For CEC 2013 test case, the proposed algorithm is com-
pared to four ABC variants and two DE variants, i.e., ABC
with Powell’s local search (PABC) (Gao et al. 2013b), mod-
ified ABC (MABC) (Akay and Karaboga 2012), compact
ABC (comABC) (Dao et al. 2014), enhanced compact ABC
(EcABC) (Banitalebi et al. 2015), persistent compact DE
(cDE) (Mininno et al. 2011), and memetic compact DE
(McDE) (Neri and Mininno 2010) by considering 28 com-
position functions with D = 50, 100. In the experiments,
we use the same parameter settings as those of the compared
methods reported in Banitalebi et al. (2015). The number of

FEs is set to 5000 ∗ D. All the results are obtained from 50
independent runs. The experimental results are provided in
Tables 13 and 14. As can be seen fromTable 13 (D = 50) and
Table 14 (D = 100), the proposed mCLABC was able to get
better solutions than the other compared algorithms on 21 test
functions with D = 50 and 23 test functions with D = 100.
Specifically, the performance of mCLABC is clearly the best
among the six algorithms for the unimodal functions f1–f5.
The mCLABC outperforms all the compared algorithms on
solving f1, f3, and f5, while EcABC shows better results on
only f2 and f4. In addition, it can be seen that only mCLABC
can find the near-optimumof f1 and f5with dimensionality of
100. Moreover, comparison results on the set of multimodal
composition functions f6–f20 show us that the EcABC per-
forms better for f16 and f6 (with D = 50), while MABC and
McDEare the best for f15with D = 50 and D = 100, respec-
tively. For the rest of the comparedmultimodal test functions,
mCLABC is visibly superior. Besides, with regard to com-
position functions f21–f28, PABC outperforms mCLABC
for functions f21 and f22 with D = 50, and EcABC looks
better than mCLABC for only f27 with D = 100. How-
ever, the performance of mCLABC is same or better than
the compared algorithms for the rest of composition func-
tions.

Based on the above comparisons, the superiority of
mCLABC on solving complex CEC high-dimensional prob-
lems is then clearly justified. In fact, reaching global or
near-global optimums of some composition test functions
by the proposed method is a great finding.
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Table 12 Experimental results of DEs and mCLABC on 30-dimensional CEC 2005 test functions

Fun jDE (Brest et al. 2006) SaDE (Qin et al. 2009) CoDE (Wang et al. 2011) CoBiDE (Wang et al. 2014) mCLABC

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 0 0 0 0 0 0 0 0 0 0

f2 1.11e−06 1.96e−06 8.26e−06 1.65e−05 1.69e−15 3.95e−15 1.60e−12 2.90e−12 1.74e−13 3.37e−13

f3 1.98e+05 1.10e+05 4.27e+05 2.08e+05 1.05e+05 6.25e+04 7.26e+04 5.64e+04 1.95e+05 1.38e+05

f4 4.40e−02 1.26e−01 1.77e+02 2.67e+02 5.81e−03 1.38e−02 1.16e−03 2.74e−03 6.89e+02 1.14e+03

f5 5.11e+02 4.40e+02 3.25e+03 5.90e+02 3.31e+02 3.44e+02 8.03e+01 1.51e+02 3.07e+03 6.17e+02

f6 2.35e+01 2.50e+01 5.31e+01 3.25e+01 1.60e−01 7.85e−01 4.13e−02 9.21e−02 9.04e−08 2.55e−07

f7 1.18e−02 7.78e−03 1.57e−02 1.38e−02 7.46e−03 8.55e−03 1.77e−03 3.73e−03 2.37e−02 1.48e−02

f8 2.09e+01 4.86e−02 2.09e+01 4.95e−02 2.01e+01 1.41e−01 2.07e+01 3.75e−01 2.09e+01 6.69e−02

f9 0 0 2.39e−01 4.33e−01 0 0 0 0 0 0

f10 5.54e+01 8.46e+00 4.72e+01 1.01e+01 4.15e+01 1.16e+01 4.41e+01 1.29e+01 1.04e+02 4.47e+01

f11 2.79e+01 1.61e+00 1.65e+01 2.42e+00 1.18e+01 3.40e+00 5.62e+00 2.19e+00 2.36e+01 3.03e+00

f12 8.63e+03 8.31e+03 3.02e+03 2.33e+03 3.05e+03 3.80e+03 2.94e+03 3.93e+03 2.41e+03 2.55e+03

f13 1.66e+00 1.35e−01 3.94e+00 2.81e−01 1.57e+00 3.27e−01 2.64e+00 1.13e+00 8.56e−01 1.60e−01

f14 1.30e+01 2.00e−01 1.26e+01 2.83e−01 1.23e+01 4.81e−01 1.23e+01 4.90e−01 1.23e+01 3.18e−01

f15 3.77e+02 8.02e+01 3.76e+02 7.83e+01 3.88e+02 6.85e+01 4.04e+02 5.03e+01 1.96e+01 3.66e+01

f16 7.94e+01 2.96e+01 8.57e+01 6.94e+01 7.37e+01 5.13e+01 7.38e+01 3.66e+01 2.02e+02 4.19e+01

f17 1.37e+02 3.80e+01 7.83e+01 3.76e+01 6.67e+01 2.12e+01 7.25e+01 2.02e+01 1.18e+02 3.79e+01

f18 9.04e+02 1.08e+01 8.68e+02 6.23e+01 9.04e+02 1.04e+00 9.03e+02 1.05e+01 8.52e+02 6.43e+00

f19 9.04e+02 1.11e+00 8.74e+02 6.22e+01 9.04e+02 9.42e−01 9.03e+02 1.04e+01 8.51e+02 6.12e+00

f20 9.04e+02 1.10e+00 8.78e+02 6.03e+01 9.04e+02 9.01e−01 9.04e+02 5.95e−01 8.50e+02 1.15e+01

f21 5.00e+02 4.80e−13 5.52e+02 1.82e+02 5.00e+02 4.88e−13 5.00e+02 4.62e−13 5.00e+02 4.98e−13

f22 8.75e+02 1.91e+01 9.36e+02 1.83e+01 8.63e+02 2.43e+01 8.62e+02 2.80e+01 7.02e+02 1.66e+02

f23 5.34e+02 2.77e−04 5.34e+02 3.57e−03 5.34e+02 4.12e−04 5.34e+02 1.30e−04 5.34e+02 3.20e−04

f24 2.00e+02 2.85e−14 2.00e+02 6.20e−13 2.00e+02 2.85e−14 2.00e+02 2.85e−14 2.00e+02 1.17e−13

f25 2.11e+02 7.32e−01 2.14e+02 2.00e+00 2.11e+02 9.02e−01 2.10e+02 7.73e−01 2.03e+02 8.89e+00

5 Study of the robustness of the proposed
optimization strategy

The demonstrated performance of the proposed mCLABC
strategy is achieved on the basis of the optimization process
as described by the algorithmic structure, which is given in
Fig. 2. Obviously, some settings need to be set in a convenient
way for satisfactory results. The adequacy of the settings
might result from the study of the robustness and perfor-
mance of the mCLABC model with respect to a number of
design parameters, in particular, the number of subgroups of
employed and onlooker foragers, the multi-search strategy,
and the mechanism of selecting the number of food features
to be altered by the foragers simultaneously at each process-
ing time.
To complete the study, we investigated the effects of all of
these design parameters by conducting a number of experi-
ments on five benchmark numerical functions selected as F1,
F10, F11, F13 and F15 from Table 1. For this purpose, the
test functions are set with dimension 30 and the maximum

number of FEs is chosen as 100,000. The experiments are
repeated 30 times.

5.1 Subgroups partitioning effect

The proposed mCLABC strategy employs three subgroups
of foragers at both employed and onlooker phases. For anal-
ysis purpose, five test cases introducing different structural
modifications on the original mCLABC are considered. For
clarity, the test case denoted asmCLABC (EBS,OBS) stands
for mCLABC strategy with EBS employed subgroups and
OBSonlooker subgroups. In the first test case, employed bees
are categorized into three subgroups while the onlookers are
kept in one group. The second test operates with one group of
employed and three subgroups of onlookers. The remaining
test cases use equal number of subgroups (2, 4 or 6) of both
employed and onlooker bees. The search strategies of the
compared variants are chosen same as the originalmCLABC.

The results are listed in Table 15 where it appears
clearly that the mCLABC is better than mCLABC(3,1)
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Table 13 Performance of mCLABC on 50-dimensional CEC 2013 test functions

Fun PABC (Gao
et al. 2013b)

MABC
(Akay and
Karaboga
2012)

comABC
(Dao et al.
2014)

EcABC
(Banitalebi
et al. 2015)

mCLABC

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 1.364e−12 1.49e−13 1.606e−12 9.18e−13 1.062e−01 6.65e−01 1.591e−12 1.84e−13 2.274e−13 1.45e−13

f2 1.299e+07 9.72e+06 2.080e+07 6.04e+06 5.645e+08 4.10e+07 5.832e+06 3.11e+05 5.784e+06 4.02e+06

f3 1.474e+09 8.25e+08 1.083e+09 2.13e+09 2.899e+11 9.53e+10 6.312e+08 4.35e+07 1.561e+08 2.31e+08

f4 1.443e+05 4.32e+04 1.578e+05 1.94e+04 7.308e+04 8.28e+03 3.398e+04 2.25e+03 1.150e+05 1.89e+04

f5 1.250e−12 8.31e−13 1.477e−12 8.23e−12 1.107e+03 3.64e+02 6.063e−04 2.30e−05 1.137e−13 3.77e−13

f6 4.408e+02 3.99e+01 4.674e+01 7.01e+00 2.244e+03 7.36e+02 3.968e+01 9.39e−01 4.285e+01 5.07e−01

f7 1.636e+02 6.56e+01 1.498e+02 5.16e+01 1.475e+02 8.05e+02 1.856e+02 6.22e+01 1.056e+02 1.46e+01

f8 2.117e+01 9.84e+00 2.123e+01 2.46e+00 2.114e+01 5.21e+00 2.106e+01 3.14e+00 2.115e+01 3.58e−02

f9 6.013e+01 1.06e+00 6.156e+01 4.87e+00 7.791e+01 2.23e+01 7.141e+01 1.44e+01 5.663e+01 4.05e+00

f10 2.338e+00 9.28e−02 2.713e+00 4.92e−01 2.663e+12 4.58e+02 9.705e−02 4.46e−03 8.630e−02 5.80e−02

f11 2.273e−13 1.98e−14 4.705e−13 8.46e−14 7.757e+02 5.73e+01 2.855e+02 9.63e+00 5.684e−14 3.04e−14

f12 3.841e+02 9.51e+01 8.257e+02 1.74e+02 8.840e+02 6.48e+01 8.327e+02 7.35e+01 1.959e+02 5.10e+01

f13 6.861e+02 4.22e+01 7.038e+02 4.18e+01 8.049e+02 6.12e+01 7.561e+02 8.01e+01 3.023e+02 4.45e+01

f14 1.165e+01 4.17e+00 3.409e+00 3.91e−01 1.057e+04 1.18e+04 3.733e+03 1.07e+02 2.124e+00 2.31e+00

f15 8.880e+03 6.01e+02 6.489e+03 2.56e+02 1.404e+04 7.85e+03 6.504e+03 9.17e+02 8.241e+03 6.90e+02

f16 1.967e+00 5.39e+00 1.524e+00 7.92e−01 3.648e+00 5.62e+00 1.201e+00 6.02e−01 2.194e+00 3.44e−01

f17 5.150e+01 1.71e+00 5.104e+01 3.07e+01 1.025e+03 2.03e+03 5.982e+02 4.08e+01 5.079e+01 1.37e−02

f18 5.612e+02 4.04e+01 7.895e+02 2.42e+01 1.237e+03 8.91e+02 1.381e+03 4.38e+02 2.223e+02 3.24e+01

f19 2.272e+00 1.75e−01 9.302e+01 3.76e+02 5.088e+05 3.48e+01 2.504e+01 5.21e+00 7.095e−01 1.99e−01

f20 8.665e+01 8.81e+00 2.457e+01 1.51e+00 2.503e+01 3.73e+00 2.051e+01 6.24e+00 2.217e+01 8.89e−01

f21 2.002e+02 3.26e+01 2.017e+03 9.87e+02 4.509e+03 2.84e+03 1.122e+03 3.67e+02 3.883e+02 3.28e+02

f22 5.996e+01 1.72e+00 2.714e+03 6.23e+02 1.030e+04 7.32e+03 2.562e+03 8.85e+02 4.098e+01 3.01e+01

f23 1.018e+04 4.65e+03 8.459e+04 6.86e+03 1.552e+04 5.08e+03 9.586e+03 2.61e+02 2.316e+03 9.70e+02

f24 3.451e+02 1.06e+01 3.865e+02 2.32e+01 4.453e+02 4.19e+01 3.787e+02 1.36e+01 3.315e+02 1.85e+01

f25 3.763e+02 8.51e+01 4.257e+02 1.58e+01 4.192e+02 1.74e+02 3.866e+02 9.87e+00 3.570e+02 5.64e+00

f26 2.015e+02 3.56e+01 2.022e+02 3.56e+01 5.083e+02 3.67e+01 2.076e+02 1.97e+01 2.003e+02 1.05e−01

f27 1.946e+03 6.98e+02 2.207e+03 1.85e+03 2.524e+03 2.44e+02 1.892e+03 8.90e+01 1.584e+03 4.59e+02

f28 3.782e+02 3.58e+01 4.109e+03 2.81e+02 7.632e+03 2.86e+03 2.116e+03 7.79e+02 4.000e+02 1.16e−12

and mCLABC(6,6) for the multimodal functions F11 and
F13, respectively, and again performs in the same way
as mCLABC(1,3), mCLABC(2,2) and mCLABC(4,4) for
those two multimodal functions (F11 and F13). Also,
mCLABC(6,6) outperforms mCLABC on F10 and F15, but
easily traps into local optimumwhen solving the multimodal
function F13. Overall, it should be noticed that increasing
the number of equal employed and onlooker partitions from
3 to 6 will not have significant improvement on the results.

5.2 Food features alteration effect

During foraging process, employed or onlooker bees mod-
ify the features of the food source being exploited. Thus, the
number of altered features at a given processing time might

affect considerably the process of food sources exploitation.
This in turn might influence the quality of the results. To ana-
lyze this aspect, four food features alteration strategies are
tested. The first strategy labeled as “Single” adopts an updat-
ing mechanism that alters one random parameter only for
all processing times. The second referred to as “Full” mod-
ifies all dimensions of a food source simultaneously. The
strategy “Random” selects randomly the number of simul-
taneous evolving parameters in the range [1, D], while the
strategy “Combined” combines the mechanisms of the above
strategies according to the following rule: employed bees are
managed to start by changing one random dimension. Then,
when the number of iterations reaches i ter = MCN/5, the
algorithm will have to select randomly the number of param-
eters to be optimized from [1, D]. While reaching the end
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Table 14 Performance of mCLABC on 100-dimensional CEC 2013 test functions

Fun cDE
(Mininno
et al. 2011)

McDE
(Neri and
Mininno
2010)

comABC
(Dao et al.
2014)

EcABC
(Banitalebi
et al. 2015)

mCLABC

Mean Std Mean Std Mean Std Mean Std Mean Std

f1 4.063e−02 8.14e−03 1.077e+05 9.02e+04 3.150e+00 4.17e−01 1.294e−02 2.78e−03 2.273e−13 4.97e−13

f2 1.986e+08 9.13e+07 1.169e+09 4.89e+08 1.840e+09 2.93e+08 5.617e+06 9.57e+06 1.337e+07 5.80e+06

f3 5.179e+10 3.71e+10 1.790e+16 3.37e+16 4.740e+14 3.69e+13 3.058e+09 1.57e+09 1.538e+09 1.20e+09

f4 1.071e+05 7.15e+04 1.879e+05 2.41e+04 2.548e+05 4.03e+04 7.721e+03 4.85e+04 2.171e+05 3.27e+04

f5 4.209e−02 9.33e−02 1.336e+04 9.56e+03 5.688e−01 5.75e−01 1.755e−02 9.59e−01 5.684e−13 8.15e−13

f6 5.598e+03 3.92e+02 2.735e+04 1.68e+04 1.436e+04 6.49e+05 1.548e+02 6.78e+02 1.886e+02 2.33e+01

f7 8.156e+04 7.06e+03 1.452e+04 7.31e+03 3.175e+06 4.51e+06 3.893e+05 2.76e+05 1.407e+02 2.11e+01

f8 2.129e+01 6.94e+00 3.311e+01 6.44e+00 2.323e+01 2.96e+00 2.132e+01 8.23e+00 2.129e+01 3.32e−02

f9 1.397e+02 4.38e+02 1.605e+02 3.68e+01 4.640e+02 1.83e+01 1.495e+02 7.95e+01 1.335e+02 5.58e+00

f10 2.786e+03 6.46e+02 7.107e+03 6.25e+03 1.356e+04 7.85e+03 5.998e+02 1.86e+02 8.44e−02 6.58e−02

f11 1.021e+03 6.79e+02 9.425e+02 7.75e+02 8.959e+02 4.86e+02 2.147e+02 7.09e+02 5.684e−14 1.32e−13

f12 1.239e+03 4.98e+03 2.063e+03 5.08e+02 3.762e+03 3.06e+02 1.994e+03 6.55e+01 5.978e+02 7.07e+01

f13 1.921e+03 2.55e+02 2.267e+03 7.94e+02 2.685e+03 8.71e+03 2.713e+03 5.85e+02 8.179e+02 8.10e+01

f14 9.034e+03 5.05e+03 1.014e+04 8.01e+03 1.391e+04 2.78e+04 1.051e+03 5.47e+02 3.532e+00 1.59e+00

f15 1.746e+04 8.48e+03 1.126e+04 3.52e+03 2.058e+04 9.39e+03 1.934e+04 1.38e+02 1.701e+04 1.19e+03

f16 3.106e+00 2.54e+00 3.636e+00 8.75e−01 4.351e+00 5.54e−01 1.797e+00 9.29e−01 2.696e+00 3.17e−01

f17 1.221e+03 6.16e+02 2.561e+03 3.01e+02 2.404e+03 2.07e+02 1.064e+03 3.49e+01 1.016e+02 4.06e−02

f18 3.085e+03 4.73e+03 2.389e+03 8.41e+02 2.558e+03 2.31e+03 2.721e+03 5.85e+02 5.789 e+02 7.13e+01

f19 3.006e+02 5.49e+01 1.253e+05 1.75e+04 6.744e+05 2.25e+04 8.191e+01 7.57e+00 1.898e+00 3.89e−01

f20 5.00e+01 0.00e+00 5.00e+01 0.00e+00 5.00e+01 0.00e+00 5.00e+01 0.00e+00 5.00e+01 0.00e+00

f21 4.267e+02 9.34e+01 7.739e+03 1.84e+02 3.067e+03 4.21e+02 4.261e+02 7.79e+01 3.820e+02 3.88e+01

f22 1.095e+04 4.69e+04 1.346e+04 4.38e+03 1.777e+04 9.04e+03 2.082e+04 7.94e+03 9.780e+01 4.75e+01

f23 2.279e+04 3.11e+03 3.345e+04 2.58e+03 3.442e+04 4.08e+03 2.214e+04 6.01e+03 2.308e+04 1.66e+03

f24 7.651e+02 6.89e+01 7.355e+02 6.02e+02 6.791e+02 7.11e+01 6.163e+02 7.48e+00 5.274e+02 3.43e+01

f25 7.820e+02 4.50e+02 6.107e+02 3.21e+01 6.476e+02 1.17e+01 6.332e+02 1.52e+01 5.574e+02 1.12e+01

f26 6.624e+02 9.61e+01 7.052e+02 5.07e+01 7.445e+02 4.24e+01 2.076e+02 2.59e+01 2.009e+02 2.72e−01

f27 2.521e+03 4.31e+02 4.542e+03 2.62e+02 5.128e+03 8.01e+02 3.204e+03 2.63e+02 3.571e+03 8.43e+02

f28 1.508e+04 3.49e+03 1.446e+04 5.78e+03 1.815e+04 4.83e+03 1.417e+04 5.79e+03 3.222e+03 7.98e+02

of the optimization process, i.e., between i ter = 4
5MCN

and i ter = MCN , the employed bees will update all param-
eters of the solution. Subsequently, after completion of the
employed bee phase, the three subgroups of onlookers will
start to update one random parameter of the solution. Then,
when i ter = MCN/5, the onlooker bees will have to select
randomly the number of parameters to be optimized from
[1, D]. The search strategies in those test cases are same as
mCLABC.

The results are compared in Table 16. As can be seen,
mCLABC that alters all parameters simultaneously (full) is
unable to outperform the original mCLABC on any test func-
tion. The mCLABC with “Single” strategy and mCLABC
with “Random” strategy show slightly improved or same
results as the mCLABC on only one test function. The

mCLABC with combined strategy overpasses the mCLABC
on F1 and F15, while the mCLABC is better on F10, F11,
and F13, and finds the global optimal solution for F11 and
F13.

This analysis proves that the process used in mCLABC to
select the number of food features to be altered simultane-
ously at each iteration provides better results. The strategy to
select the number of parameters to be optimized by process-
ing time operates as a schedulingmechanism that contributes
to the enhancement of the overall mCLABC performance.

5.3 Search strategy effect

The effect of solution updating rules on the mCLABC algo-
rithm is now investigated through three different variants
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Table 16 Performance analysis of mCLABC by means of food features alteration strategy

Function Food feature alteration strategy type of mCLABC

Single Full Random Combined Proposed

Mean Std Mean Std Mean Std Mean Std Mean Std

F1 3.60e−57 1.23e−56 5.85e−18 2.01e−17 9.07e−74 4.52e−73 4.93e−75 2.20e−74 8.08e−58 1.14e−57

F10 2.77e−01 7.46e−01 42.29 27.71 14.26 20.02 4.79e−01 1.92 5.88e−03 1.66e−02

F11 0 0 32.07 8.86 7.66 2.54 2.37e−16 7.71e−16 0 0

F13 1.53e−09 8.35e−09 3.31e−01 4.76e−01 2.44e−02 2.66e−02 7.40e−18 4.05e−17 0 0

F15 3.30e−14 3.90e−15 7.49 1.68 1.20 8.97e−01 1.08e−14 4.00e−15 1.59e−14 3.19e−15

Table 17 Performance analysis of mCLABC by means of search updating rule strategy

Function Multi-search strategy of mCLABC

SS1 SS2 SS3 Proposed

Mean Std Mean Std Mean Std Mean Std

F1 4.91e−57 8.57e−57 1.11e−56 1.82e−56 5.21e−56 2.10e−55 8.08e−58 1.14e−57

F10 1.05e−01 5.38e−01 2.80e−01 1.48e+00 2.79e−01 1.04e+00 5.88e−03 1.66e−02

F11 0 0 0 0 0 0 0 0

F13 0 0 4.93e−04 1.88e−03 2.47e−04 1.35e−03 0 0

F15 1.58e−14 4.32e−15 1.44e−14 3.54e−15 1.27e−14 3.77e−15 1.59e−14 3.19e−15

using multiple search strategies labeled as SS1 (search strat-
egy 1), SS2 (search strategy 2) and SS3 (search strategy 3).
The SS1 uses three global search equations, i.e., Eqs. (4),
(5) and (6) for employed subgroups 1, 2 and 3, respectively,
while onlooker foragers subgroups 1, 2 and 3 employ the
local search equations Eqs. (7), (8), and (9), respectively.
The search mechanism will call the whole solution updat-
ing rules at each iteration. Similarly, according to the search
mechanism defined in SS2, a search equation from the set
described above could be called more than one time in a
given processing time or even could not be used at all. For
SS3, the Eqs. (4), (7) and (8) are used by the employed sub-
groups 1, 2 and 3, respectively and the Eqs. (5), (6) and (9)
by the onlooker subgroups 1, 2 and 3, respectively. The strat-
egy of selecting the evolving parameters in those test cases
is same as mCLABC. The results are shown in Table 17.

According to the obtained results, it can be concluded
that whether SS1, SS2 or SS3 is used, the mCLABC algo-
rithm shows superiority on functions F1 and F10. On the
other hand, mCLABC and mCLABC with SS1 were able
to determine the global optimum of functions F11 and F13.
The proposed mCLABC gives generally better results on all
test functions except for the case F15 where the solutions are
slightly different.

From this thorough analysis and based on the results
shown inTables 15, 16 and 17, it is important to notice that the
design parameters of the cooperative learningABCoptimiza-
tion strategy influence differently the quality of the obtained
solutions. Although the original mCLABC shows superior-

ity in the most of test cases, the analysis of the impact of
structural and parameter settings being introduced through
different tests demonstrate the robustness and the merits of
the proposed optimization strategy.

6 Conclusion

Aiming to further improve the performance of ABC opti-
mization, a modified cooperative foraging learning strategy
based on multiple solution search rules is developed in the
present study. The original scheme of generating subgroups
of employed foragers adopted in the CLABC framework
is extended to the onlooker phase with modified structural
and parametric settings. Since the feasibility of the approach
can be fully motivated upon natural behavioral principles of
bee swarms, it was of major importance for us to consider
its integration to the algorithmic structure of the original
CLABC algorithm with making all necessary tunings and
modifications so that higher computational performance and
robustness can be achieved. The modified cooperative for-
aging strategy, referred to as mCLABC, involves local and
global search rules through which separate subgroups of for-
agers evolve differently and simultaneously at both employed
or onlooker stages with allowing mutual exchange of infor-
mation about the foraging process. To assess the extent of
improvement, the proposed mCLABC algorithm is com-
pared to ABC and CLABC algorithms, and to other recent
ABCs variants on solving numerical and composition func-
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tions optimization problems. From different simulations, it
can be concluded that the mCLABC improved considerably
well the quality of the solutions and the convergence per-
formance in the most of numerical experiments. Moreover,
the superiority of the proposed mCLABC algorithm on solv-
ing complex CEC high-dimensional problems was visibly
justified, where reaching global or near-global optimums of
some composition test functions represents a great finding.
To complete the study, a robustness analysis is conducted
in order to evaluate the impact of different parametric and
structural settings on the performance of the proposed strat-
egy, namely the partitioning scheme of foragers, the search
strategy and the food sources alteration mechanism. Future
works will be devoted to the parallelization of the proposed
algorithm with application to intelligent systems design.
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