
Soft Comput (2018) 22:6341–6361
https://doi.org/10.1007/s00500-017-2687-3

METHODOLOGIES AND APPLICATION

Many-objective artificial bee colony algorithm for large-scale
software module clustering problem

Amarjeet1 · Jitender Kumar Chhabra1

Published online: 6 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract The meta-heuristic search algorithms have been
widely applied to solve the various science and engineering
optimization problems. However, the performance of these
algorithms is highly sensitive toward the number of objec-
tive functions and number of decision variables. Recently, it
has been explored by the researchers that the performance
of such algorithm degrades when the number of objective
functions and decision variables increases by some limit.
Hence, these algorithms can be hardly acceptable to the
real-world optimization problems such as software module
clustering problem (SMCP), which contains a large num-
ber of objective functions and decision variables. Previous
researchers have proposed several approaches to address the
many-objective optimization problems by revising existing
meta-heuristic algorithms. Recently, an artificial bee colony
algorithm (ABC), a meta-heuristic algorithm, effectively
used to address the severalmulti-objective optimizationprob-
lems. Even though in most of the cases ABC algorithm
performs better compared to othermeta-heuristic algorithms,
it faces the same problems as other meta-heuristic algo-
rithms for a large number of objective functions and decision
variables. This paper proposes a many-objective artificial
bee colony (MaABC) algorithm to solve many-objective
SMCPs. In this contribution, we revised the original ABC
by using, quality indicator, L p-norm-based (p < 1) dis-
tances, and two external archives concepts. To validate

Communicated by V. Loia.

B Amarjeet
amarjeetnitkkr@gmail.com

Jitender Kumar Chhabra
jitenderchhabra@gmail.com

1 Department of Computer Engineering, NIT Kurukshetra,
Haryana, India

the proposed approach, an extensive comparative study
is performed with the existing many-objective optimiza-
tion algorithms (i.e., Two-Arch2, NSGA-III, MOEA/D, and
IBEA) over seven SMCPs. The statistical analysis of the
results show that the proposed MaABC outperforms exist-
ing many-objective approaches in terms of modularization
quality (MQ), cohesion, coupling, and inverted generational
distance (IGD).

Keywords Artificial bee colony ·Meta-heuristic algorithm ·
Many-objective optimization · Software module clustering

1 Introduction

The optimization problem containing more than three objec-
tive functions is usually regarded as many-objective opti-
mization problem (MaOP) (Khare et al. 2003; Praditwong
and Yao 2007). The MaOP is a special category of multi-
objective optimization problem (MuOP). To solve the low-
dimensional science and engineering MuOPs, various multi-
objective evolutionary algorithms (MOEAs) (e.g., PESA-II
(Corne et al. 2001), SPEA2 (Zitzler et al. 2002), and NSGA-
II (Deb et al. 2002)) have been used successfully.

TraditionalMOEAsbased on the Pareto-dominance selec-
tion principles face great trouble when dealing with MuOPs
with high-dimensional decision variables and many-object-
ive functions (Wang et al. 2015). The empirical studies
(Khare et al. 2003; Praditwong and Yao 2007) have also
demonstrated that the effectiveness of MOEAs based on
the Pareto-dominance selection principles degrades over
large-scale optimization problems. The first reason of such
performance degradation is that as the number of objective
functions increases, the number of non-dominated solutions
increases dramatically in the population that deteriorate the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2687-3&domain=pdf

6342 Amarjeet, J. K. Chhabra

required selection pressure for the candidate solution tomove
in the next generation (Wang et al. 2015; Hughes 2008). The
second reason is that the large number of objective functions
felicitates the sparse distribution of candidate solution in the
high-dimension objective space which hurdle diversity man-
agement.

To improve the performance of MOEAs in case of
MaOPs, researchers have proposed several alternatives of
traditional Pareto-dominance selection, such as L-optimality
(Zou et al. 2008), ε-dominance (Laumanns et al. 2002;
Hadka and Reed 2013), fuzzy dominance (Wang and Jiang
2007), θ-dominance (Yuan et al. 2015), and preference
order ranking (Pierro et al. 2007). We are not provid-
ing details about many other approaches regarding the
many-objective optimization. The works (Bingdong et al.
2015) provided the detailed investigation about the vari-
ous classes of many-objective optimization approaches that
have been used to solve the many-objective optimization
problems. In brief, the works (Bingdong et al. 2015) have
categorized the many-objective optimization approaches in
following major group: objective reduction (e.g., Cinneide
et al. 2012), an indicator based (e.g., Zitzler and Kün-
zli 2004), preference or reference set (e.g., Deb and Jain
2014), decompositions (e.g., Zhang and Li 2007). The main
limitations of these are as follows: (1) The dimensional-
ity reduction may fail in lessening the objective functions
or yielding a solution set that does not contain the whole
Pareto front (Bingdong et al. 2015), (2) in indicator-based
approach, the hyper-volume calculation increases exponen-
tially by the increase in the number of objectives (Cai et al.
2014), (3) in the preference-based approach, the overhead
of decision making associated with the preference elici-
tation is one of the main drawbacks (Asafuddoula et al.
2015), (4) the main difficulty in the decomposition-based
approach is to define proper weight vector (Cai et al.
2014).

In summary, there has beenmuch advancement carried out
to enhance the performance ofMOEAs forMaOPs.However,
these enhancements have not beenwidely explored to address
the real-world, many-objective optimization problems (e.g.,
many-objective SMCPs (MaSMCPs)). The search-based
software engineering (SBSE) exploited various meta-heuris-
tic search algorithms to address the real-world software
engineering problems (Harman and Jones 2001). Recently,
the software module clustering problem (SMCP) has been
regarded as an important search-based software engineer-
ing problem where meta-heuristic search algorithms were
found more effective against deterministic approaches (Pra-
ditwong et al. 2011; Parashar and Chhabra 2016). The SMCP
is natural many-objective optimization problem where many
conflicting objective functions require to be optimized. Most
of the previous work (Praditwong et al. 2011; Kumari
et al. 2013; Kumari and Srinivas 2016) addresses the

SMCP as multi-objective optimization problem using multi-
objective optimization approaches (e.g., NSGA-II). The
work (Mkaouer et al. 2015) first formulated the SMCP
as many-objective software remodularization problems and
solved using NSGA-III (Deb and Jain 2014) a genetic-based
many-objective evolutionary algorithm.Even thoughNSGA-
III has been used successfully to solve the MaSMCP, the
applicability of other widely used meta-heuristic algorithms
(e.g., artificial bee colony algorithm (Karaboga 2005)) has
not been explored.

To solve the MaSMCP, we exploited various positive
concepts, e.g., quality indicator (Zitzler and Künzli 2004),
L p-norm-based (p < 1) distances (Wang et al. 2015), and
two external archives (Wang et al. 2015) from the existing
meta-heuristic approaches and proposed a new approach,
namely many-objective artificial bee colony (MaABC) algo-
rithm. The researchers (Plevris and Papadrakakis 2011; Li
and Yin 2012) have also reported that a good combination of
two or more concepts into search algorithm may be advan-
tageous, and they can perform considerably better than the
single pure search algorithm in handling large-scale real-
world optimization problems. The major contributions of the
proposed work are as follows:

• The SMCP is transformed as search-based many-object-
ive optimization problem, namelymany-objective SMCP
(MaSMCP).TwoMaSMCP formulations, extendedmax-
imizing cluster approach (E-MCA) and extended equal-
size cluster approach (E-ECA) based on multi-objective
software module clustering formulations (Praditwong
et al. 2011), have been designed.

• To address the MaSMCP, a new many-objective meta-
heuristic algorithm, namely many-objective artificial bee
colony (MaABC) algorithm, has been proposed. The
MaABC is designed by incorporating the various positive
concepts (e.g., quality indicator, L p-norm-based (p < 1)
distances, and two external archives from the existing
meta-heuristic approaches into the original ABC algo-
rithm).

• To confirm the supremacy of the proposed MaABC
approach, an extensive comparative study has been con-
ducted and the obtained results are compared with the
relevant existingmany-objective optimization algorithms
(i.e., Two-Arch2 (Wang et al. 2015), NSGA-III (Deb and
Jain 2014), MOEA/D (Zhang and Li 2007), and IBEA
(Zitzler and Künzli 2004) over seven practical software
module clustering problems. The statistical analysis of
the results indicate that the proposed approach outper-
forms existing approaches in terms of modularization
quality (MQ), cohesion, coupling and IGD.

The rest part of this article is arranged as follows: Sec-
tion 2 briefly provides some basic concepts and back-

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6343

ground. Section 3 discusses related work relevant to the
proposed approach. Section 4 presents description of pro-
posed MaABC for object-oriented software (OOS) systems.
Section 5 gives the experimental setup. Section 6 presents
the results and compares with the best performing many-
objective algorithms from the existing literature to show the
supremacy of the MaABC algorithm. Section 7 discusses
the threats to validity. Finally, Sect. 8 gives the concluding
remarks and future research directions.

2 Software module clustering

This section provides the basic background and many-
objective formulation related to search-based software mod-
ule clustering problem.

2.1 Software module clustering problem

To ensure the program design quality such as compre-
hensibility, maintainability, and extendibility, the software
developer organizes the highly cohesive source code ele-
ments (i.e., modules) into the same group (i.e., cluster) and
non-cohesive elements into different groups. The task of
organizing software modules into clusters based on some
criteria is generally referred as software module cluster-
ing problem (SMCP). Formally, the SMCP can be defined
as follows: Given a set N = 1, 2, ..., n of software mod-
ules which are connected with each other with connection
weights w(i, j) where i , j εN , the SMCP consists of
generating a partition P = {C1,C2, ...,Cm} of n∗m clus-
ters, such that 1 ≤ m ≤ n with Ci �= �,Ci ∩ C j =
�, i �= j , and ∪m

i=1Ci = N so as to optimize some
design criteria. In SMCP, the choice of what constitutes
a software elements and a cluster depends on the soft-
ware abstraction level where clustering is performed. This
paper considers object-oriented classes of the source code
as modules and packages (used as group of classes) as clus-
ters.

2.2 Software module clustering as an optimization
problem

The main goal of the SMCP is to find one or more fea-
sible partitions which correspond to extreme values of
certain quality properties. Based on the number of quality
criteria, SMCPs can be addressed by formulating as mono-
objective, multi-objective, and many-objective optimization
problem. The brief descriptions of these formulations are
given below.

• Mono-objective optimization The formulation of SMCP
as a mono-objective optimization problem (MoSMCP)

deals with the task of determining a clustering solution
that optimizes a single quality criterion as fitness func-
tion. From a given cluster design vector c, an optimal
clustering solution c∗ can be determined as follows:

f (c∗) = min /max f (c)|c ∈ Ψ (1)

The symbol Ψ denotes the set of all feasible clustering
solution. The function f can be a minimization or max-
imization function.

• Multi-objective Optimization: The formulation of SMCP
as a multi-objective optimization problem (MuSMCP)
deals with the task of determining a set of trade-off clus-
tering solutions that optimizes more than one and less
than or equal to three design criteria as objective func-
tions simultaneously. From a given cluster design vector
c, a set of trade-off clustering solutions c∗ can be deter-
mined as follows:

f (c∗) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minf1(c), f2(c), . . . , fM(c)T 1 < M

g j (c) ≥ 0 j = 1, ..., P

hk(c) = 0 k = 1, ..., Q

cLi ≤ ci ≤ cUi i = 1, ..., n

(2)

The symbols M and fi represent the number of design
criteria (i.e., objective functions) and the i th design
criterion, respectively. The P , Q, cLi , and cUi denote
the number of inequality design constraints, number of
equality design constraints, lower bound of the decision
variable xi , and upper bound of the decision variable xi ,
respectively.

2.3 Software module clustering as a many-objective
optimization problem

The formulation of SMCP as a many-objective optimization
problem (MaSMCP) deals with the task of determining a
set of trade-off clustering solutions that optimizes more than
three design criteria as objective functions simultaneously.
From a given cluster design vector c, a set of trade-off clus-
tering solutions c∗ can be determined as follows:

f (c∗) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minf1(c), f2(c), . . . , fM(c)T M > 3

g j (c) ≥ 0 j = 1, . . . , P

hk(c) = 0 k = 1, . . . , Q

cLi ≤ ci ≤ cUi i = 1, . . . , n

(3)

The symbols M and fi represent the number of design
criteria (i.e., objective functions) and the i th design cri-

123

6344 Amarjeet, J. K. Chhabra

terion, respectively. The P , Q, cLi , and cUi denote the
number of inequality design constraints, number of equal-
ity design constraints, lower bound of the decision vari-
able xi , and upper bound of the decision variable xi ,
respectively. In the following, we present the two many-
objective formulations, namely extended maximizing cluster
approach (E-MCA) and extended equal-size cluster approach
(E-ECA) for software module clustering problem. These
formulations are, respectively, the extended versions of
maximizing cluster approach (MCA) and equal-size cluster
approach (ECA) proposed in the works (Praditwong et al.
2011).

Extended maximizing cluster approach (E-MCA) The main
aim of E-MCA many-objective software module clustering
formulation is to achieve good clustering having low cou-
pling and high cohesion, while minimizing the number of
isolated clusters, maximizing the number of clusters, mini-
mizing the cluster cyclic dependencies, minimizing average
shortest path length between a source and all other reachable
clusters. The objective functions defined under the E-MCA
approach are:

• Maximizing the sum of intracluster dependencies.
• Minimizing the sum of intercluster dependencies.
• Maximizing the number of clusters.
• Maximizing the modularization quality (MQ).
• Minimizing the number of isolated clusters.
• Minimizing cluster cyclic dependencies.
• Minimizing average shortest path length between a
source and all other reachable clusters.

Extended equal-size cluster approach (E-ECA) The main
goal of the E-ECA approach is to encourage the generation of
clusters of nearly equal size. The objective functions defined
in this formulation are:

• Maximizing the sum of intracluster dependencies.
• Minimizing the sum of intercluster dependencies.
• Maximizing the number of clusters.
• Maximizing the modularization quality (MQ).
• Minimizing the difference between maximum and mini-
mum number of modules in a cluster.

• Minimizing cluster cyclic dependencies.
• Minimizing average shortest path length between a
source and all other reachable clusters.

Modularization quality (MQ) was first introduced by the
works (Mancoridis et al. 1999), later the works (Praditwong
et al. 2011) redefined it. In this paper, we use the MQ def-
inition the same as defined in the works (Praditwong et al.
2011).

3 Basic concepts

3.1 Original ABC algorithm

The artificial bee colony (ABC) is a meta-heuristic search
technique inspired by the intelligent foraging behavior
of honey bees. It was originally designed by Karaboga
(Karaboga 2005). Recently ABC gained wide attention and
found to be effective and well situated for solving the various
types of optimization problems in science and engineering
fields (Dahiya et al. 2010; Jadhav and Bamane 2016; Xian-
neng and Guangfei 2016; Hashim et al. 2016; Amarjeet and
Chhabra 2017a). The working procedure of ABC algorithm
is mainly divided into three essential parts: food source posi-
tions, nectar amount, and different types of honey bees. Each
food source position corresponds to the feasible candidate
solution of the problem, and the nectar amount corresponds to
the food source quality (i.e., fitness of the candidate solution).
The honey bees are classified into three categories: employed
bees, onlooker bees, and scout bees. Each type of honey bees
performs particular operation to generate newcandidate solu-
tions (food source positions). The brief description of the
original ABC algorithm is as follows:

• Population initialization phase The population of ABC
algorithm contains a certain number of food sources (i.e.,
Np), and initially these food sources are produced ran-
domly according to the problem’s search space. For a
continuous optimization problem following equation is
used to initialize the food source.

vid = vmin
id + r × (vmax

id − vmin
id) (4)

where i represents food source number in the popula-
tion with the range of i = 1, 2, . . . Np, d represents the
dimension (i.e., decision variable) of each food source
having range of d = 1, 2, . . . D, r represents a uniform
random number distributed over the interval [0, 1], and
vmax
id and vmin

id represent the upper and lower bounds for
the decision variable d, respectively. After the popula-
tion initialization, each food source is associated a “limit”
variable with 0 value. If a food source in the population
could not be improved after a certain number of trials
(i.e., limit) then that food source is abandoned.

• Employed bee phase In the employed bee phase, the i th
food source vi of the population is assigned to the i th
employed bee, which perform search operation randomly
around the neighbor of current food source, and deter-
mines a new food source as follows.

vnew,d = vid + r × (vid − vkd) (5)

where i ∈ {1, ..., Np}, and selection strategy of index k
is random with the condition k ∈ {1, ..., Np} ∧ k �= i .

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6345

The vnew represents a new food sourcewhich is randomly
chosen from the neighbor. After generating new solution
vnew its fitness is calculated and compared to the original
food source vi ; thereafter, the solution with the highest
fitness value is selected.

• Onlooker bee phase The onlooker bees make a decision
on food sources whether to select or not of the food
source selected by the employed bees. To perform this,
the onlooker bees use the probability values, calculated
using Eq. (6), to select the food source for determining
promising regions in the search space.

pi = f i ti
∑SN

i=n f i ti
(6)

where f i ti is the fitness value of the i th food source.
• Scout bee phase If a food source in employed and
onlooker bee phase cannot be further improved through
a fixed iteration, then that food source is supposed to be
discarded. The scout bee performs a random search oper-
ation over the whole feasible search space and generates
a new food source, and the abandoned food source is
replaced with it.

3.2 Indicator-based ranking

The Pareto-dominance-based MOEAs face challenges in
converging toward the true Pareto front in many-objective
optimization problems. In order to solve this problem,
the ranking strategy of MOEAs was redefined in different
ways (e.g., θ dominance (Yuan et al. 2015), grid domi-
nance (Yang et al. 2013), preference order ranking (Pierro
et al. 2007)). These improved approaches have successfully
used to optimize large-scale many-objective optimization
problems.Min–max strategy (Coello 1996;Coello andChris-
tiansen 1998) is also an alternate which can be used for the
ranking of non-dominated solutions. In this paper, to rank the
non-dominated solution we use the concept of quality indi-
cator Iε+ given in IBEA (Zitzler and Künzli 2004). The Iε+
is used to calculate the minimum distance that one solution
requires, in order to dominate another solution in the objec-
tive space. The value of I ε+ between two solutions c1 and
c2 can be computed as follows:

f (ci) =
∑

c j∈P\{ci }
−e−Iε+(c j ,ci)/0.05 (7)

Iε+(c1, c2) = min
ε

(fi (c1) − ε ≤ fi (c2))1 ≤ i ≤ m (8)

where f (ci) is the fitness of a candidate solution ci of pop-
ulation P , and m is the number of objective functions. This
method of fitness assignment improves the efficiency and
effectiveness of the candidate solution selection process from
the current population for the next generation.

3.3 L p-norm-based (p < 1) distance

The choice of distance metric in high-dimensional appli-
cations is not clear; the notion for the similarity calcu-
lation is very heuristic (Aggarwal and Hinneburg 2001).
Many applications with high-dimensional algorithms and
indexing structures use the Euclidean distance metric. The
study (Aggarwal and Hinneburg 2001) demonstrated that
the efficiency and effectiveness of Euclidean distance (L2-
norm) degrades as the number of dimensions increases.
However, the fractional distances (Lk-norm, k < 1)
and Manhattan distance (L1-norm) perform better in a
high-dimensional space. The concluding remark of the
study (Aggarwal and Hinneburg 2001) also showed that
the fractional distances (Lk-norm, k < 1) are more
effective compared to Manhattan distance (L1-norm) in
a high-dimensional space. The Lk-norm is defined as
follows:

Lk(x, y) =
d∑

i=1

(||xi − yi ||k)1/k |x, y ∈ Rd , k ∈ Z (9)

For MaSMCPs with many numbers of objective functions,
an Lk-norm-based (k < 1) distance measure with a constant
kmay not suit all the cases. Hence, the value of k in this paper
is set as k = 1/m(m is the number of objectives) similar to
the work (Wang et al. 2015).

4 Many-objective artificial bee colony (MaABC)

ABC algorithm has demonstrated several advantages: very
few control parameters, relatively easy implementation, and
good exploration and exploitation capability. Previous works
(Karaboga and Basturk 2007, 2008; Karaboga and Akay
2009; Akay and Karaboga 2012) demonstrated that ABC
has better performance than that of an ant colony algorithm
(ACO), particle swarm optimization (PSO), differential evo-
lutionary (DE), and genetic algorithm (GA) in solving large
and complex optimization problems. The applicability and
usefulness of the ABC algorithm has not been studied by
any researcher till date to solve the software multi-objective
SMCPs (more specifically many-objective SMCPs (MaSM-
CPs)).

Based on the optimization concept of ABC and full con-
sideration software module clustering feature, this paper
proposes a many-objective artificial bee colony (MaABC)
algorithm to solve the MaSMCP. Unlike Pareto-dominance-
based multi-objective ABC, the proposed MaABC approach
is designed by evaluating the solution on the basis of quality
indicator (Zitzler and Künzli 2004) and Lp-norm (p<1) dis-
tances (Wang et al. 2015). Additionally, the approach used

123

6346 Amarjeet, J. K. Chhabra

Initialize the parameters: population size (PS), archives size, Trial, Limit

Initialize the population using random process and compute the objective
function values of each clustering solution

Update the external archives CA and DA

St
ep

-1
:I

ni
tia

liz
at

io
n

Send employed bees to search new food source around the current food
sources and calculate the objective function values of new food sources

Update the current population

St
ep

-2
:S

en
d

em
pl

oy
ed

be
e

Collect the set of non-dominated clustering from current population

Select the food source advertized by employed bees depending on selection
probability and search new food source around the selected food source, and

calculate the objective function value of each new food sources

Update the current population

St
ep

-2
:S

en
d

on
lo

ok
er

be
e

Replace it with new random solution

St
ep

-2
:S

en
d

sc
ou

t b
ee

If the solution’s trial
has reached limits?

U
pd

at
e

ar
ch

iv
es

C
A

an
d

D
A

Is
m

ax
im

um
nu

m
be

ro
f

FE
sr

ea
ch

ed
?

R
et

ur
n

th
e

ar
ch

iv
es

C
A

an
d

D
A

No

Yes

No

Yes

Software systems

Software module clustering
solution (food source) encoding

Fig. 1 Framework of proposed MaABC algorithm

two external archives, namely convergence archive (CA) and
divergence archive (DA). The overall process of MaABC
is presented in Fig. 1. Similar to the other meta-heuristic
search optimization algorithms our proposed MaABC is
an iterative process. It begins with an initial population of
randomly generated food source position (i.e., module clus-
tering solutions), and then the following steps are repeated
until a stopping criterion is satisfied: (1) update the exter-
nal archives CA and DA, (2) send the employed bees to
search the new food source around the neighbor of food
source which is already present in her memory, (3) send
onlooker bees on food sources based on food source nec-
tar amounts (i.e., fitness values) advertised by employed
bees, (4) place scout bees randomly in the search area
for finding the new food sources, and (5) store the best
food sources found so far into the external two archives,
(6) repeat the step 2 to 5 until the termination criterion is
satisfied.

4.1 Problem representation

To solve any optimization problems using a search-based
meta-heuristic algorithm, the problem must be defined and
encoded corresponding to the different operators of the algo-
rithms so that problem can be tackled easily and effectively.
The MaSMCP is a discrete many-objective combinatorial
optimization problem. The original ABC algorithm was
designed to address the continuous optimization problem.
To increase its applicability to the discrete combinatorial
optimization problems, researchers always converted the
continuous domain into the discrete domain. And this over-
head causes difficulties to the ABC algorithm.

In this paper, the particular solution of MaSMCP problem
is encoded as a vector of n decision variables where the index
of the vector and value at that index correspond to the mod-
ules and clusters, respectively. Let us consider a particular
module clustering solution ci which is denoted with a vector

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6347

1
2

7

8

6

5

4

3
C1 C2

Graphical model of a single solution

1 1 2 2 2 3 33

1 2 3 4 5 6 7 8

Module clustering encoding

Clustering

C3

Array index represents the
modules and index value
represents the cluster

Fig. 2 Representation of a software module clustering solution

Table 1 Basic symbols and their meaning corresponding to ABC algorithm

Symbols ABC definition MaSMCP definition

1.
→
Ci = (c1i , c

2
i , . . . , c

|D|
i) Food source Candidate solution/clustering solution

2.
→
Ci i th food source i th module clustering solution

3. |D| Number of features of a food source Number of decision variables (i.e., modules)

4. d dth of features of a food source dth of modules of a clustering solution

4. cdi Value of dth feature of the i th food source Value of dth module of the i th solution

5. UBd Upper bound for the dth feature Upper bound for the dth dimension

6. LBd Lower bound for the dth feature Lower bound for the dth dimension

7. |Np| Number of food sources in population Number of clustering solutions in population

ci and decision variables d:
→
Ci = (c1i , c

2
i , ..., c

|D|
i). In this

solution representation, each element cdi of vector ci refers to
a particular dimension of decision variable of the considered
problem. To demonstrate it, let us consider a hypothetical
software system depicted in Fig. 2.

In Fig 2, the module clustering solution for a hypothetical
SMCP contains eight modules distributed in three clusters
C1, C2 and C3. Hence, according to our encoding method, it
is represented as a vector c = [1, 1, 2, 2, 2, 3, 3, 3], where
vector index from 1 to 8 represents the modules and values

1 to 3 correspond to the clusters in which that modules exist.
For example modules 1 and 2 are grouped in the same cluster
C1; hence the value of the vector indexed with 1 and 2 is 1.
Similarly, modules 3, 4, and 5 are in cluster C2 and modules
6, 7, and 8 are in cluster C3. The basic symbols and their
meaning corresponding to ABC algorithm andMaSMCP are
given in Table 1.

4.2 Population initialization

In MaABC each population member (i.e., food source/
candidate solution) is initialized randomly using the formula
cdi = RandInt(UBd

i − LBd
i). The notations UBd

i and LBd
i

correspond to the upper and lower bound on the dth deci-
sion variable for the i th member of the population; RandInt
() denotes a random function that selects a random integer
value between LBd

i and UBd
i . The main steps of the popu-

lation initialization are given in Algorithm 1.

4.3 Send employed bees

In this phase, each employed bees fly toward the current
module clustering solution (food source) that she has in
her memory and exploit a new food source around the
vicinity of the current solution. To force the employed
bees toward a better neighboring solution the employee

123

6348 Amarjeet, J. K. Chhabra

bees are guided by current population and two archives
(CA and DA). To this contribution, the value of each
decision variables for a new solution is determined as fol-
lows:

vdi =
⎧
⎨

⎩

RandInt(cd1 , c
d
2 , . . . , c

d
|Np |) i f r ≥ 0.5

RandInt(cd1 , c
d
2 , . . . , c

d
|CA+DA|) i f r < 0.5

(10)

The RandInt function generates a value by the ran-
domly selected dimension from the population and archives
(CA +DA)with 0.5 probabilities each. The step-by-step pro-
cess of the employed bees is given in Algorithm 2.

4.4 Send onlooker bees

In this step of the algorithm, each onlooker bees make the
selection decision for module clustering solution advertized
by the employed bees on the basis of fitness value (nectar
amount). The onlooker bee selects a solution based on the
probability which is calculated as follows:

pi = f i t (ci)
∑FoodNumber

m=1 f i t (cm)
(11)

where pi is the selection probability of the module clustering
solution ci . The f i t (ci) is the fitness of the module cluster-
ing solution ci advertized by the each employed bee i. The
detailed steps are given in Algorithm 3.

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6349

4.5 Send scout bees

In this phase, if the food source corresponding to the mod-
ule clustering solution does not improve in certain iteration,
then it is abandoned from the population. The employed bees
related to the abandoned food source turn into a scout bee,
and the corresponding food source is changed with a module
clustering solution that is generated in the same manner as
that in the population initialization phase. The detailed steps
are given in Algorithm 4.

4.6 Update CA and DA archives

To guide the employed and onlooker bees in a good direction,
the MaABC algorithm uses the two external archives con-

cepts inspired by the work presented in Wang et al. (2015).
The two archives are used to store best module clustering
solutions found in each generation. These archives are named
as CA (convergence archive) and DA (diversity archive) with
equal fixed size. Both CA and DA archives are updated
according to Algorithm 5.

123

6350 Amarjeet, J. K. Chhabra

4.7 Selection in overflowed CA and DA

If the number of solutions in the CA and DA increases in the
size of CA and DA, then the algorithm activates the selection
method to remove themodule clustering solution correspond-
ing to the food sources from both CA and DA archives. To
select themodule clustering solution from theCAarchive,we
use the concept of quality indicator Iε+ given in IBEA (Zit-
zler and Künzli 2004) discussed in Sect. 3.2 The food source
with low rank is selected from the CA and then removed.
This selection strategy specially is used to ensure the diver-
sity in the CA archive. Finally, an updated CA with a fixed
number of module clustering solutions can be obtained. On
the other hand, in case of DA overflow, we select and delete
the module clustering solution of DA that has a minimum
Lp-norm (p < 1) (i.e., discussed in Sect. 3.3) distance from
the module clustering solutions of the CA archives.

4.8 Termination

The steps send employed bee, send onlooker bee, send scout
bee, and update archive iterate cycle by cycle until the termi-
nation condition is met.

By the termination of the MaABC algorithm, the external
archive CA and DA are returned as the output. In our imple-
mentation, theMaABC terminates after a predefined number
of fitness evaluations.

5 Experimental setup

This section provides detailed description about the experi-
mental setup to assess the proposed MaABC algorithm.

5.1 Software systems

In order to evaluate the performance of our proposedMaABC
algorithm, we have tested it on seven open-source software
systems (i.e., JFreeChart, JHotDraw, JavaCC, JUnit, Java
Servlet API, XML API DOM, and DOM 4 J) with different
characteristics. These software systems have also been used

Table 2 Characteristics of selected software projects

Systems Version #Modules #Dependencies

JFreeChart 0.9.21 401 1420

JHotDraw 6.0b1 398 2175

JavaCC 1.5 154 722

JUnit 3.81 100 276

Java Servlet API 2.3 63 131

XML API DOM 1.0.b2 119 209

DOM 4 J 1.5.2 195 930

to evaluate the similar clustering techniques by the previ-
ous researchers (Amarjeet and Chhabra 2014; Mkaouer et al.
2015; Amarjeet and Chhabra 2015, 2017b). Table 2 provides
a brief summary of the software systems.

5.2 Research questions

To evaluate the effectiveness of MaABC, we answer the fol-
lowing research questions.

RQ1. Does proposed approach produce clustering solution
having a betterMQcompared to existing approaches?

RQ2. Does proposed approach produce clustering solu-
tion having a better coupling compared to existing
approaches?

RQ3. Does proposed approach produce clustering solu-
tion having a better cohesion compared to existing
approaches?

RQ4. Does proposed approach produce clustering solu-
tion having a better IGD compared to existing
approaches?

To answer these research questions, we cluster the seven
software systems using the proposed MaABC and existing
many-objective meta-heuristic search algorithms.

5.3 Existing algorithms and parameter settings

In order to verify the performance of the proposed many-
objective algorithm, the four state-of-the-art many-objective
meta-heuristic search algorithms (i.e., Two-Arch2 (Wang
et al. 2015), NSGA-III (Deb and Jain 2014), MOEA/D
(Zhang and Li 2007), and IBEA (Zitzler and Künzli 2004))
are considered. These algorithms are implemented in jMetal,
a multi-objective meta-heuristic framework, on a 16-core
2.60 GHz Intel Xeon CPU with 8 GB RAM. The parameter
settings of each algorithm (i.e., proposed and state-of-the-art
algorithms) are given in Table 3. To have a fair comparison of
considered algorithms, each of the algorithms is given equal

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6351

Table 3 Algorithms and their
parameter values

Algorithms Parameter Values

1 NSGA-III Population size 10*N

Number of fitness evaluations 200* N

Crossover weight 0.8–1.0

Mutation weight 0.04 *log2(N)

Reference points 100

Number of division 5

2 IBEA Archive size 10*N

Number of fitness evaluations 200* N

3 MOEA/D Neighborhood size 20

Max replacement 5

H 200

Number of fitness evaluations 200* N

4 Two_Arch 2 Population size 10*N

Crossover weight 0.8 to 1.0

Mutation weight 0.04 *log2(N)

Number of fitness evaluations 200* N

Size of CA 5*N

Size of DA 5*N

5 MaABC Number of food sources (population size) 10*N

Number of fitness evaluations 200* N

Size of CA (convergence archive) 5*N

Size of DA (divergence archive) 5*N

Number of employed bees 10*N

Number of onlooker bees 10*N

Number of scout bees 0.05*N

* N represents the number of modules of the studies software systems

number of number of fitness evaluations (NFE) (Črepinšek
et al. 2014).

5.4 Collecting results and statistical tests

The many-objective meta-heuristic search algorithms are
stochastic optimizer, i.e., they can generate different results
on each run over the same problem. In this experiment, the
results are collected from the experiment by executing each
of the meta-heuristics on each problem instance by 31 inde-
pendent simulation runs.

6 Results and analysis

In order to evaluate the behavior of our proposed algo-
rithm, we compare MaABC with Two_Arch2, NSGA-III,
MOEA/D, and IBEA on 7 many-objective software module
clustering problems with 7 numbers of objective functions.
The compared meta-heuristic algorithms are all representa-
tives of multi-objective evolutionary algorithms for many-
objective optimization problems. The results of MaABC,

Two_Arch2, NSGA-III, MOEA/D, and IBEA on the each
problem are shown in Tables 4, 5, 6, 7, 8, 9, 10, 11, where
the algorithms are statistically analyzed by usingWilcoxon’s
rank sum test with 95% confidence level (α = 0.05) (Arcuri
and Fraser 2013). Sections 6.1, 6.2, 6.3, and 6.4 present com-
parison among MaABC, Two_Arch2, NSGA-III, MOEA/D,
and IBEA algorithms regardingMQ, coupling, cohesion, and
IGD, respectively.

6.1 The MQ value as assessment criterion

In this section, the proposed software module clustering
approach,MaABC,was comparedwith Two_Arch2, NSGA-
III, MOEA/D, and IBEA in terms of MQ values. Table 4
presents metric MQ in terms of median and standard devia-
tion obtained from different meta-heuristic algorithms with
E-MCA formulation on the seven problem suite. Similarly,
Table 5 presents metric MQ in terms of median and standard
deviation obtained from different meta-heuristic algorithms
with E-ECA formulation on the seven problem suite.

If we see the results presented in Table 4, it clearly
indicates that the MQ values achieved by the MaABC

123

6352 Amarjeet, J. K. Chhabra

Table 4 Median MQ values obtained from algorithms with E-MCA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 18.973 (0.351) 18.033 (0.230)[−] 17.584 (0.505)[−] 18.028 (0.057) [−] 17.852 (0.223)[−]

JHotDraw 12.671 (0.531) 11.853 (0.497)[−] 12.628 (0.611)[≈] 11.886 (0.548)[−] 11.871 (0.477)[−]

JavaCC 6.529 (0.126) 6.928 (0.108) [+] 6.462 (0.103)[−] 5.851 (0.060)[−] 5.659 (0.150)[−]

JUnit 6.479 (0.274) 6.162 (0.262)[−] 6.290 (0.123)[−] 6.370 (0.182)[≈] 6.139 (0.139)[−]

Java Servlet API 3.514 (0.342) 3.056 (0.207)[−] 2.914 (0.144)[−] 2.884 (0.120)[−] 2.874 (0.149)[−]

XML API DOM 5.550 (0.472) 5.299 (0.283)[≈] 5.153 (0.441)[−] 5.123 (0.371)[−] 4.883 (0.292)[−]

DOM 4 J 12.476 (0.589) 11.568 (0.407)[−] 11.461 (0.541)[−] 11.399 (0.435)[−] 11.546 (0.554)[−]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

Table 5 Median MQ values obtained from algorithms with E-ECA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 19.167 (0.434) 18.195 (0.216)[−] 18.096 (0.233)[−] 18.077 (0.277)[−] 18.116 (0.250)[−]

JHotDraw 12.923 (0.264) 12.347 (0.394)[≈] 12.347 (0.662)[≈] 12.182 (0.379)[−] 11.996 (0.440)[−]

JavaCC 7.464 (0.153) 6.962 (0.110)[≈] 6.943 (0.200)[≈] 6.754 (0.192)[−] 6.619 (0.228)[−]

JUnit 7.197 (0.234) 6.227 (0.220)[−] 6.397 (0.139)[−] 6.438 (0.132)[−] 6.130 (0.256)[−]

Java Servlet API 3.856 (0.217) 3.588 (0.123)[≈] 3.474 (0.149)[−] 3.423 (0.173)[−] 3.460 (0.182)[−]

XML API DOM 6.158 (0.528) 5.415 (0.342)[−] 5.246 (0.339)[−] 5.140 (0.804)[−] 5.418 (0.483)[−]

DOM 4 J 12.369 (0.482) 11.668 (0.725)[≈] 11.283 (0.555)[−] 11.472 (0.606)[−] 11.556 (0.415)[−]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

Table 6 Median coupling values obtained from algorithms with E-MCA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 656.51 (47.45) 687.81 (42.51)[≈] 704.52 (46.10)[−] 741.29 (43.36)[−] 765.13 (89.28)[−]

JHotDraw 789.76 (33.12) 813.10 (41.07)[−] 815.45 (45.40)[−] 827.06 (44.95)[−] 832.97 (62.22)[−]

JavaCC 214.03 (23.78) 227.97 (33.44)[≈] 230.77 (26.50)[−] 231.42 (13.98)[−] 245.32 (32.29)[−]

JUnit 76.25 (21.21) 91.74 (14.67)[−] 92.65 (10.52)[−] 82.81 (8.24)[−] 91.97 (20.85) [−]

Java Servlet API 21.13 (11.78) 26.03 (8.85)[≈] 25.65 (4.71)[≈] 31.74 (8.44)[−] 31.97 (9.45)[−]

XML API DOM 65.31 (14.48) 76.65 (11.37)[−] 79.74 (20.66)[−] 81.48 (12.50)[−] 82.97 (9.52)[−]

DOM 4 J 241.54 (83.18) 234.94 (74.66)[≈] 255.45 (47.64)[≈] 243.19 (71.03)[≈] 253.26 (69.39)[≈]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

approach are significantly better over themost of the problem
instances. Most specifically, if we compare theMQ values of
MaABC with MQ values of each individual algorithm, we
observed that (1) the comparative results between MaABC
and Two_Arch2 algorithms show that the MaABC is able
to achieve better Two_Arch2 in six problems out of seven,
in which five cases are significantly better. (2) The com-
parison results between MaABC and NSGA-III show that
the MaABC approach performs better in six problems out
of seven problems, in which 4 cases are significantly better.

(3) The comparative results between MaABC and other two
algorithms (i.e., MOEA/D and IBEA) show that theMaABC
approach outperforms MOEA/D and IBEA in most of the
cases.

The MQ values achieved by each of the algorithm with
E-ECA formulation presented in Table 5 show that the pro-
posed MaABC approach outperforms in most of the cases.
TheMaABC performs better than Two_Arch2 in all cases, in
which three cases are significantly better. The MaABC also
performs better than NSGA-III in all cases, in which five

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6353

Table 7 Median coupling values obtained from algorithms with E-ECA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 641.71 (42.15) 665.03 (38.62)[≈] 691.00 (45.70)[−] 684.90 (42.58)[−] 684.42 (44.91)[−]

JHotDraw 731.10 (63.24) 803.10 (74.15)[−] 817.13 (73.08)[−] 780.77 (63.81)[≈] 757.68 (68.03)[≈]

JavaCC 195.33 (45.17) 197.55 (49.16)[−] 234.55 (26.16)[≈] 226.97 (59.54)[≈] 227.32 (32.15)[≈]

JUnit 63.97 (15.39) 74.35 (10.39)[−] 80.35 (80.35)[−] 82.61 (5.44)[−] 74.65 (8.58)[−]

Java Servlet API 18.13 (7.65) 30.00 (8.82)[−] 29.97 (8.35)[−] 28.58 (3.07)[−] 30.13 (5.91)[−]

XML API DOM 71.53 (4.31) 76.55 (10.08)[≈] 79.52 (13.19)[≈] 76.23 (16.03)[≈] 79.55 (5.81)[−]

DOM 4 J 235.53 (63.18) 241.74 (75.22)[≈] 284.48 (42.05)[−] 262.61 (70.79)[−] 283.39 (33.24)[−]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

Table 8 Cohesion values obtained from algorithms with E-MCA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 1454.43 (56.36) 1414.19 (42.51)[≈] 1397.48 (46.10)[−] 1360.71 (43.36)[−] 1336.87 (89.28)[−]

JHotDraw 1391.22 (25.15) 1361.90 (41.07)[−] 1359.55 (45.40)[−] 1347.94 (44.95)[−] 1342.03 (62.22)[−]

JavaCC 514.23 (32.81) 494.03 (33.44)[≈] 491.23 (26.50)[≈] 490.58 (13.98)[−] 476.68 (32.29)[−]

JUnit 201.65 (23.13) 184.26 (14.67)[−] 183.35 (10.52)[−] 193.19 (8.24)[−] 184.03 (20.85)[−]

Java Servlet API 114.74 (11.25) 104.97 (8.85)[≈] 105.35 (4.71)[≈] 99.26 (8.44)[−] 99.03 (9.45)[−]

XML API DOM 148.31 (23.57) 132.34 (11.19)[−] 129.63 (20.43)[−] 127.75 (12.37)[−] 126.34 (9.53)[−]

DOM 4 J 693.14 (65.21) 685.06 (74.66)[≈] 674.55 (47.64)[≈] 686.81(71.03)[≈] 676.74 (69.39)[≈]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

Table 9 Cohesion values obtained from algorithms with E-ECA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 1471.14 (43.13) 1436.97 (38.62)[≈] 1411.00 (45.70)[−] 1417.10 (42.58)[≈] 1417.58 (44.91)[−]

JHotDraw 1421.26 (23.24) 1371.90 (74.15)[−] 1357.87 (73.08)[−] 1394.23 (63.81)[≈] 1417.32 (63.03)[≈]

JavaCC 531.14 (49.25) 524.45 (49.16)[−] 487.45 (26.16)[−] 495.03 (59.54)[−] 494.68 (32.15)[−]

JUnit 213.13 (23.31) 201.65 (10.39)[≈] 195.65 (18.41)[−] 193.39 (5.44)[−] 201.35 (8.58)[≈]

Java Servlet API 115.83 (5.13) 101.00 (8.82)[−] 101.03 (8.35)[−] 102.42 (3.07)[−] 100.87 (5.91)[−]

XML API DOM 153.45 (10.21) 132.84 (10.16)[≈] 130.19 (13.58)[≈] 133.28 (16.03)[≈] 129.63 (5.80)[−]

DOM 4 J 694.42 (63.21) 688.26 (75.22)[≈] 645.52 (42.05)[−] 667.39 (70.79)[≈] 646.61 (33.24)[−]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

cases are significantly better. The MOEA/D and IBEA per-
form significantly worst MaABC in all problem instances.
The results also show that the MQ values achieved by
MaABC with E-ECA formulation are more effective com-
pared to E-MCA formulation.

Figure 3 presents the results ofMQachieved by each of the
considered algorithms with E-MCA and E-ECA formulation
over all seven problem instances. From Fig. 3, it is clear that
the proposed MaABC is able to generate clustering solution
having better MQ values compared to Two_Arch2, NSGA-
III, MOEA/D, and IBEA.

6.2 Coupling as an assessment criterion

To answer the research question RQ2, the software module
clustering generated by proposed approach and rival algo-
rithms has been evaluated in terms of coupling as an assess-
ment criterion. The values of coupling obtained by MaABC
and existingmany-objective optimization algorithms with E-
MCA many-objective software clustering formulation over
all seven problems are shown in Table 6. The values of
coupling obtained by MaABC and existing many-objective
optimization algorithms with E-ECA many-objective soft-

123

6354 Amarjeet, J. K. Chhabra

Table 10 IGD values obtained from algorithms with E-MCA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 5.721 × 10−4 5.740 × 10−4[≈] 6.283 × 10−4[−] 6.615 × 10−4[−] 6.721 × 10−4[−]

JHotDraw 7.765 × 10−3 7.954 × 10−3[−] 7.785 × 10−3[≈] 8.008 × 10−3[−] 8.092 × 10−3[−]

JavaCC 5.464 × 10−3 5.492 × 10−3[≈] 5.271 × 10−3[+] 5.721 × 10−3[−] 5.734 × 10−3[−]

JUnit 4.001 × 10−4 4.194 × 10−4[−] 4.229 × 10−4[−] 4.321 × 10−4[−] 4.343 × 10−4[−]

Java Servlet API 6.813 × 10−4 7.062 × 10−4[−] 7.212 × 10−4[−] 7.314 × 10−4[−] 7.257 × 10−4[−]

XML API DOM 6.182 × 10−3 6.365 × 10−3[−] 6.413 × 10−3[−] 6.478 × 10−3[−] 6.495 × 10−3[−]

DOM 4 J 7.856 × 10−3 8.172 × 10−3[−] 8.215 × 10−3[−] 8.392 × 10−3[−] 8.412 × 10−3[−]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

Table 11 IGD values obtained from algorithms with E-ECA formulation

Systems MaABC Two_Arch2 NSGA-III MOEA/D IBEA

JFreeChart 5.521 × 10−4 5.533 × 10−4[≈] 6.261 × 10−4[−] 6.723 × 10−4[−] 6.645 × 10−4[−]

JHotDraw 7.665 × 10−3 7.734 × 10−3[−] 8.241 × 10−3[−] 8.123 × 10−3[−] 8.012 × 10−3[−]

JavaCC 5.261 × 10−3 5.386 × 10−3[−] 5.671 × 10−3[−] 5.721 × 10−3[−] 5.734 × 10−3[−]

JUnit 4.004 × 10−4 4.104 × 10−4[≈] 4.106 × 10−4[≈] 4.124 × 10−4[−] 4.123 × 10−4[−]

Java Servlet API 6.662 × 10−4 7.125 × 10−4[−] 7.212 × 10−4[−] 7.314 × 10−4[−] 7.341 × 10−4[−]

XML API DOM 6.183 × 10−3 6.365 × 10−3[−] 6.324 × 10−3[−] 6.502 × 10−3[−] 6.328 × 10−3[−]

DOM 4 J 8.021 × 10−3 8.218 × 10−3[−] 8.187 × 10−3[−] 8.356 × 10−3[−] 8.512 × 10−3[−]

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MaABC and each of Two_Arch2, NSGA-III, MOEA/D, and IBEA. The
symbols “−”, “+,” and “≈” denote the performance of the corresponding algorithm is significantly worse than, better than, and not significantly
different than that of the proposed MaABC, respectively

0

2

4

6

8

10

12

14

16

18

20

M
Q

 V
al

ue
s

E-MCA

MaABC

Two_Arch2

NSGA-II

MOEA/D

IBEA

0
2
4
6
8

10
12
14
16
18
20

M
Q

 V
al

ue
s

E-ECA

MaABC

Two_Arch2

NSGA-III

MOEA/D

IBEA

Fig. 3 Comparison of MQ values obtained from algorithms with E-EMA and E-ECA

ware clustering formulation are shown in Table 7. To make
the distinction among each algorithm, the coupling results are
also demonstrated using bar charts which are demonstrated
in Fig. 4.

In cases of E-MCA formulation, the coupling results
reported in Table 6 show that the MaABC performs better

thanTwo_Arch2,NSGA-III,MOEA/D, and IBEAapproach-
es in all seven softwaremodule clustering problems, inwhich
most of the cases are significantly better in favor of MaABC.
Similarly, in case of E-ECA formulation the coupling results
demonstrated in Table 7 show that the MaABC also per-
forms better Two_Arch2, NSGA-III, MOEA/D, and IBEA

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6355

0

100

200

300

400

500

600

700

800

900
C

ou
pl

in
g

E-MCA

MaABC
Two_Ach2
NSGA-III
MOEA/D
IBEA

0

100

200

300

400

500

600

700

800

900

C
ou

pl
in

g

E-ECA

MaABC
Two_Arch2
NSGA-III
MOEA/D
IBEA

Fig. 4 Comparison of coupling values obtained from algorithms with E-EMA and E-ECA

approaches in all seven problem instances in which most of
the cases are significantly better in favor of MaABC.

Now if we compare the coupling results between E-MCA
andE-ECAformulation, the coupling results demonstrated in
Tables 6 and 7 also show that the module clustering solution
obtained byMaABCwithE-ECA ismore effective compared
to E-MCA formulation.

The achieved coupling results of MaABC, Two_Arch2,
NSGA-III, MOEA/D, and IBEA are also demonstrated in
Fig. 4. It is clearly observed that the coupling values of
MaABC presented in Fig. 4 are better in most of the cases
compared to Two_Arch2, NSGA-III, MOEA/D, and IBEA
with both E-MCA and E-ECA formulations.

6.3 Cohesion as an assessment criterion

To answer the research question RQ2, this section com-
pares the cohesion of module clustering solutions pro-
duced by the proposed MaABC approach and existing
many-objective meta-heuristic algorithms (i.e., Two_Arch2,
NSGA-III, MOEA/D, and IBEA). To validate the answer
of approach, each algorithm was analyzed with two soft-
ware module clustering many-objective formulations (i.e.,
E-MCA and E-ECA) over all seven module clustering prob-
lems.

Table 8 compares the median and standard deviation
results in terms of cohesion between MaABC and each of
the existing rival many-objective meta-heuristic algorithms
(i.e., Two_Arch2, NSGA-III, MOEA/D, and IBEA) with E-
MCA formulation over seven SMCPs. Similarly, Table 9
compares the median and standard deviation results in terms
of cohesion between MaABC and each of the existing rival
many-objective meta-heuristic algorithms with E-MCA for-
mulation over seven SMCPs.

For all the problem instances, the cohesion values pre-
sented in Table 8 clearly indicate that the proposed MaABC
is able to achieve better cohesion when compared with each
algorithm, in which most of the cases are statistically sig-
nificant in favor of MaABC. Similarly, the cohesion results
of the E-ECA formulation presented in Table 9 also indicate
that the MaABC is able to achieve better cohesion values
compared to existing algorithms in all cases in which most
of the cases are significantly better.

Now if we compare the cohesion results between E-MCA
formulation (for all problem instances and for all algorithms)
and E-ECA formulation (for all problem instances and for
all algorithms), it can be easily observed that the each algo-
rithm on each problem instance the E-ECA formulation is
able to generate better cohesion results compared to E-MCA
formulation.

Figure 5 presents the results of cohesion achieved by each
of the considered algorithms with E-MCA and E-ECA for-
mulation over all seven problem instances. From Fig. 5, it
is clear that the proposed MaABC is able to generate clus-
tering solution having better cohesion values compared to
Two_Arch2, NSGA-III, MOEA/D, and IBEA.

6.4 IGD as assessment criterion

In the previous sections, we compared MaABC with exist-
ing many-objective algorithms (i.e., Two_Arch2, NSGA-III,
MOEA/D, and IBEA) in terms of structural quality metrics
(i.e., MQ, coupling, and cohesion). In this section, we com-
pare the MaABC with existing algorithms in terms of IGD
values for both E-MCA and E-ECA formulations. Tables 10
and 11 show the median IGD values for MaABC and all rival
algorithms under comparison. For the E-MCA formulation,
Table 10 shows that MaABC outperforms other algorithms,

123

6356 Amarjeet, J. K. Chhabra

0
200
400
600
800

1000
1200
1400
1600

C
oh

es
io

n

E-MCA
MaABC
Two_Arch2
NSGA-III
MOEA/D
IBEA

0
200
400
600
800

1000
1200
1400
1600

C
oh

es
io

n

E-ECA
MaABC
Two_Arch2
NSGA-III
MOEA/D
IBEA

Fig. 5 Comparison of cohesion values obtained from algorithms with E-EMA and E-ECA

except in the JavaCC problem instance where MaABC per-
forms significantly worse NSGA-III. In existing algorithms,
Two_Arch2 performs better than NSGA-II, MOEA/D, and
IBEA in most of the cases. Additionally, NSGA-III seems to
be better MOEA/D and IBEA. For E-ECA formulation, the
IGD values presented in Table 11 indicate that the MaABC
performs significantly better existing approaches in most of
the cases.

6.5 Results summary

This section discusses the contributions and implications
of our proposed MaABC approach in solving the MaSM-
CPs using proposed MaABC. The main contribution of
the MaABC with respect to existing MOEAs is that the
MaABC integrates the external archive and indicator-based
concepts into the ABC algorithm to achieve a good balance
between exploration and exploitation in case of MaSM-
CPs. The results presented in Sects. 3.1 to 3.4 showed
that the MaABC performed better compared to the existing
many-objective optimization approaches (i.e., Two_Arch2,
NSGA-II, MOEA/D, and IBEA) in terms of MQ, coupling,
cohesion, and IGD in most of the cases. Hence, it can be con-
cluded that the proposed approach can be a good alternate for
solving the software clustering problems containing many-
objective functions compared to other existing approaches.

7 Threats to validity

To clarify the limitations and strengths of our proposedmulti-
objective software module clustering approach, we explore
the factors that could influence the validity of the achieved
results. There are two major categories of threats (i.e., exter-

nal validity and internal validity) that could affect the results
of proposed approach.

External validity (or selection validity) corresponds to the
degree to which obtained results (samples) of the approach
can be generalized to the broad perspective of problems.
In search-based software engineering, this is a very impor-
tant threat to validity of results because of the large number
of diverse software projects available to any study of soft-
ware module clustering. In our experimentation, this threat
to validity has been mitigated by the fact that the pro-
posed approach is concerned with module dependency graph
(MDG), an abstract representation of software systems. Since
there is a many to one relation between the software sys-
tems and MDG (i.e., many individual software systems can
map into a single MDG), the findings for a set of MDGs
of a particular size are relevant to wider MDGs. In order to
mitigate the possible external threats to validity, the experi-
mentation uses various size of MDGs, both un-weighted and
weighted.

Internal validity corresponds to the degree to which con-
clusions can be drawn about the causal effect of independent
variables on the dependent variables. In this empirical study,
possible internal threats come from violations of statisti-
cal assumptions or inappropriate statistical tests, inaccurate
underlying analysis, and the extent to which the variables
used in the experiment precisely measure the concepts they
claim to measure. In this empirical study, we useWilcoxon’s
rank sum test. Wilcoxon’s rank sum test is more appropriate
when the type of distribution of data is unknown.

8 Related works

To address the SMCPs, large numbers of analytical and
search-based approaches have been proposed. The formu-

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6357

lation of SMCPs as search-based optimization problem
and solving it using search-based meta-heuristic algorithms
gained wide attention. Based on the problem formulation,
the search-based software module clustering approaches
can be categorized into single-objective, multi-objective,
and many-objective software module clustering. The sub-
sequent subsections discuss literature background of these
approaches.

8.1 Single-objective optimization approaches

In the works by Mancoridis et al. (1998), the authors pro-
posed a single-objective search technique to cluster the
software systems. In this contribution, they adapted the
genetic algorithm (GA) as search algorithm and designed a
modularization quality (MQ) metric to guide the search pro-
cess. In order to improve the MQ’s effectiveness, the metric
was redefined over the years (Mitchell andMancoridis 2002;
Praditwong et al. 2011). Later the authors (Mancoridis et al.
1999) proposed a single-objective optimization tool named
as Bunch for software module clustering. The effectiveness
of the Bunch was evaluated over medium- and large-size
software systems.

Doval et al. (1999) proposed a single-objective opti-
mization technique for finding the good partition of the
module dependency graph (MDG). The MDG is a graphical
representation of software systems, where nodes represent
the software elements and edges represent the dependency
between elements. They used GA as search technique and
MQ as fitness function. The work (Mitchell and Man-
coridis 2002) adapted genetic algorithm, simulated anneal-
ing, and hill-climbing algorithms to cluster the software
systems.

Harman et al. (2002) introduced an encoding scheme
for representation of the software clustering solution which
reduces the size of the search space and proposed new
crossover method to support the retention and formation
of building blocks. They claimed that the new designed
crossover method is more effective for genetic algorithms
compared to the standard crossover method. Mahdavi et al.
(2003) presented a multiple hill-climbing algorithm to clus-
ter the software systems. They evaluated the proposed
approach over 19 software projects and found that pre-
sented approach has generated good results. The works
(Mitchell et al. 2004) illustrated that designing the search
landscape for search-based meta-heuristic optimization is
a good approach for gaining insight into the search algo-
rithms.

Harman et al. (2005) performed an empirical study for
evaluation of robustness of two fitness function (i.e., MQ
and EVM). The robustness results of MQ and EVM were
compared. The comparison results showed that the both fit-
ness function degrades slowly as the percentage of mutation

is applied, but the EVM fitness function emerges to be more
robust compared to MQ fitness function. Praditwong (2011)
proposed anewgroupinggenetic algorithm (GGA) to address
the single-objective software module clustering problems.

The works (Jinhuang and Jing 2016) introduced a new
quality metric, namely modularization similarity (MS), for
software clustering problem. The MS is based on the struc-
tural similarity and experience and knowledge of software
design. The main goal of the MS is to guide the module clus-
tering process toward good-quality clustering solutions. They
also compared the clustering results obtained through MS
with the results ofMQ. The comparison results demonstrated
that the MS outperforms the basic MQ. Table 12 provides a
brief description of about the single-objective software mod-
ule clustering approaches.

8.2 Multi-objective optimization approaches

Praditwong et al. (2011) presented two multi-objective for-
mulations, namely equal-size cluster approach (ECA) and
maximizing cluster approach (MCA), for software module
clustering problems. Each of the MCA and ECA multi-
objective formulations consists of five different partial con-
flicting objective functions. To optimize each MCA and
ECA formulation, they used a Two-Archive-based GA (Pra-
ditwong and Yao 2006). They evaluated the effectiveness
of MCA and ECA formulations over the real-world mod-
ule clustering problems. Their experimental results claimed
that the proposed MCA and ECA-based multi-objective
approaches are able to generate significantly better clus-
tering results than the existing single-objective clustering
approaches.

Barros (2012) conducted an empirical study to assess
the effectiveness and efficiency of two multi-objective for-
mulations while searching clustering solution with multi-
objective meta-heuristic algorithms. The works (Kumari
et al. 2013) were claimed to be the first for applying the
hyper-heuristics multi-objective approach to address the
software module clustering problems. They evaluated the
supremacyof the proposedworkon six software systemswith
multiple conflicting objective functions. They reported that
the hyper-heuristics-basedmulti-objective approach requires
less computational cost in generating better-quality cluster-
ing solutions compared to existing approaches.

The works (Amarjeet and Chhabra 2014) presented a
multi-objective software module clustering approach aim-
ing to preserve the core components of the existing software
modularizationwhile clustering process of software systems.
The approach was evaluated on seven software clustering
problems with MCA and ECA multi-objective module clus-
tering formulations. Their empirical results claimed that the
approach was able to preserve the core components and at
the same time it also achieved the desired clustering qual-

123

6358 Amarjeet, J. K. Chhabra

Table 12 Summary of relevant single- and multi-objective optimization approaches

Reference Objective function Search technique No. of systems No. of systems

Mancoridis et al. (1999) MQ GA 5 Single-objective

Mancoridis et al. (1999) MQ GA, HC, SA 1 Single-objective

Doval et al. (1999) MQ GA 1 Single-objective

Mitchell and Mancoridis (2002) MQ GA, HC, SA 5 Single-objective

Harman et al. (2002) Coupling, cohesion GA, HC 7 Single-objective

Mahdavi et al. (2003) MQ HC 19 Single-objective

Mitchell et al. (2004) MQ GA 1 Single-objective

Harman et al. (2005) MQ, EVM HC 6 Single-objective

Praditwong et al. (2011) MQ GGA 17 Single-objective

Praditwong et al. (2011) MCA, ECA Two-Archive GA 17 Multi-objective

Barros (2012) MCA, ECA NSGA-II 13 Multi-objective

Kumari et al. (2013) MCA, ECA Hyper-heuristics 6 Multi-objective

Amarjeet and Chhabra (2014) MCA, ECA NSGA-II 7 Multi-objective

Amarjeet and Chhabra (2017c) MCA, ECA NSGA-II 6 Multi-objective

Kumari and Srinivas (2016) MCA, ECA Hyper-heuristics 12 Multi-objective

Jinhuang and Jing (2016) MQ, MS GA, HC, MAEA 17 Single-objective

Amarjeet and Chhabra (2016) Fitness HS, GA, DE, ABC, HC 8 Single-objective

Amarjeet and Chhabra (2017a) IMCI, BMCI, MCI, MSI NSGA-II 8 Multi-objective

ity. Amarjeet and Chhabra (2017c) formulated the software
module clustering problem as a problem of improving the
package structure within the existing clustering. To this con-
tribution, they proposed different objective functions that
help in improving the existing package structure of the soft-
ware systems.

The works (Kumari and Srinivas 2016) presented the
hyper-heuristic approach named as multi-objective hyper-
heuristic evolutionary algorithm (MHypEA) to solve the
multi-objective software module clustering problems. They
evaluated the hyper-heuristic approach using MCA and
ECA multi-objective formulation given by Praditwong et al.
(2011). The clustering results obtained through MHypEA
compared with clustering achieved through NSGA-II and
Two-Archive algorithm (Praditwong and Yao 2006). The
comparison results showed that theMHypEAperforms better
than the NSGA-II and Two-Archive algorithms. The works
(Amarjeet and Chhabra 2017c) presented a multi-objective
approach to address the software module clustering problem.
They proposed a new objective functions based on the lexical
and structural information. The results demonstrated that the
combined use of lexical and structural information is able
to generate better clustering solution compared to individual
structural or lexical information.

8.3 Many-objective optimization approaches

The study (Praditwong et al. 2011) reported that the multi-
objective formulation of the software module clustering

problem and solving it using multi-objective evolutionary
algorithms has been found more effective compared to the
single-objective formulation of software module clustering
problem. This is mainly due to the balanced exploration
and exploitation ability of multi-objective evolutionary algo-
rithms. Despite the success of multi-objective evolutionary
algorithms, it does not perform well in problems that belong
to the many-objective optimization field (Mkaouer et al.
2015).

In the literature of multi-objective software module clus-
tering, many studies use the multi-objective evolutionary
algorithms to solve the software clustering problems (e.g.,
Praditwong et al. 2011;Barros 2012;Kumari et al. 2013). The
main reasons of performance degradation of multi-objective
evolutionary algorithms with many-objective optimization
are as follows: (1) As the number of objective functions in
optimization problem increases by more than three, it faces
difficulties in differentiating the solutions of population, (2)
the execution time taken by non-dominated sorting process of
multi-objective evolutionary algorithms increases, resulting
in increase in overall time complexity of algorithm (Hughes
2008).

To address the challenges of the multi-objective evolu-
tionary algorithms, many approaches have been proposed
in the literature of multi-objective evolutionary algorithms.
Interested researchers/academicians can find more details in
the literature survey presented by works (Wang et al. 2015).
They classified the many-objective optimization approaches
into the following groups: (1) objective reduction approaches

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6359

Table 13 Summary of relevant many-objective approaches applied in SBSE

Reference Algorithm Category Area Number of objectives

Praditwong et al. (2011) Two-Archive GA Reference Design phase 5

Sayyad et al. (2013a, b) IBEA Indicator Requirement analysis phase 5

Sayyad et al. (2013a, b) IBEA Indicator Requirement analysis phase 5

Yao (2013) Two-Archive GA Reference Design phase 5

Kalboussi et al. (2013) P-MOET Preference Testing phase 7

Mkaouer et al. (2014) NSGA-III Preference Maintenance phase 15

Ramirez et al. (2014) SPEA2, NSGA-II, ε-MOEA,
MOEA/D, GrEA

Decomposition Design phase 6

Olaechea et al. (2014) GIA, IBEA Indicator Requirement phase 7

Mkaouer et al. (2015) NSGA-III Reference Maintenance phase 8

Mkaouer et al. (2016) NSGA-III Reference Maintenance phase 8

(e.g., Cinneide et al. 2012; Gong et al. 2013), (2) preference-
based approaches (e.g., Said and Bechikh 2013) , (3) ref-
erence set-based approaches (e.g., Deb and Jain 2014), (4)
indicator-based approaches (e.g., Zitzler and Künzli 2004;
Bader 2011), (5) aggregation-based approaches (e.g., Garza-
Fabre et al. 2009), (6) relaxed dominance-based approaches
(e.g., GarzaspsFabre et al. 2010), (7) decomposition-based
approaches (e.g., Zhang and Li 2007), and (8) external
archive-based approaches (e.g., Praditwong and Yao 2006;
Wang et al. 2015). Table 13 provides the summary of the
many-objective methodologies of the software engineering
field.

9 Conclusions and future works

This work investigated the incorporation of indicator-based
ranking and two external archive techniques into artificial
bee colony algorithm in order to solve the software mod-
ule clustering problems with many objectives (i.e., more
than three objective functions). The proposed ABC-based
module clustering approach is named as many-objective
artificial bee colony algorithm (MaABC). Two versions
of many-objective software module clustering formulations
(i.e., extended equal-size cluster approach (E-ECA) and
extended maximizing cluster approach (E-MCA)) have been
introduced. To verify the performance of proposed MaABC,
it has been evaluated on seven software clustering prob-
lems obtained from different module dependency graphs
(MDGs) of object-oriented software systems. The clustering
results obtained fromMaABC have also been compared with
existing approaches (i.e., Two_Arch2, NSGA-II, MOEA/D,
and IBEA) in terms of MQ, coupling, cohesion, and IGD.
The achieved clustering results demonstrated that MaABC
is able to generate better clustering compared to exist-
ing approaches. Future works include a detailed empirical

study on different ranking strategies (e.g., θ-dominance, grid
dominance, preference order ranking) for non-dominated
solutions including min–max method to solve the many-
objective software remodularization problem.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest

Human participants This study does not contain any studies with
human participants or animals performed by any of the authors.

References

Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behav-
ior of distance metrics in high dimensional space. Springer, New
York

Akay B, Karaboga D (2012) A modified artificial bee colony algorithm
for real parameter optimization. Inf Sci 192:120–142

Amarjeet P, Chhabra JK (2014) An empirical study of the sensitivity
of quality indicator for software module clustering. In: 2014 sev-
enth international conference on contemporary computing (IC3),
Noida, pp 206–211

Amarjeet P, Chhabra JK (2015) Improving package structure of object-
oriented software usingmulti-objective optimization andweighted
class connections. J King Saud Univ Comput Inf Sci. Available
online 2 November 2015

Amarjeet P, Chhabra JK (2016) Harmony search based remodular-
ization for object-oriented software systems. Comput Lang, Syst
Struct 47:153–169

Amarjeet P, Chhabra JK (2017a) TA-ABC: two-archive artificial bee
colony for multi-objective software module clustering problem. J
Intell Syst. doi:10.1515/jisys-2016-0253

Amarjeet P, Chhabra JK (2017b) Improving modular structure of soft-
ware system using structural and lexical dependency. Inf Softw
Technol 82:96–120

Amarjeet P, Chhabra JK (2017c) Improving package structure of object-
oriented software usingmulti-objective optimization andweighted
class connections. J King Saud Univ-Comput Inf Sci 29(3):349–
364

123

http://dx.doi.org/10.1515/jisys-2016-0253

6360 Amarjeet, J. K. Chhabra

ArcuriA, FraserG (2013)Parameter tuning or default values?Anempir-
ical investigation in search-based software engineering. Empir
Softw Eng 18(3):594–623

Asafuddoula M, Ray T, Sarker R (2015) A decomposition-based evo-
lutionary algorithm for many objective optimization. IEEE Trans
Evolut Comput 19(3):445–460

Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-
based many-objective optimization. Evolut Comput 1(19):45–76

Barros M (2012) An analysis of the effects of composite objectives in
multi-objective software module clustering. In: Proceedings of the
fourteenth international conference on genetic and evolutionary
computation, pp 1205–1212

Bingdong L, Jinlong L, Tang K, Xin Y (2015) Many-objective evolu-
tionary algorithms: a survey. ACM Comput Surv 48(1):1–37

Cai D, Yuping W, Miao Y (2014) A new evolutionary algorithm based
on contraction method for many-objective optimization problems.
Appl Math Comput 247:191–205

Cinnéide M, Tratt L, Harman M, Counsell S, Moghadam IH (2012)
Experimental Assessment of Software Metrics Using Automated
Refactoring. In: Proceedings of the ACM-IEEE international sym-
posium on empirical software engineering and measurement. pp
49–58

Coello CA (1996) An empirical study of evolutionary techniques
for multiobjective optimization in engineering design. PhD the-
sis, Department of Computer Science, Tulane University, New
Orleans, LA

Coello CA, Christiansen AD (1998) Two new GA-based methods for
multiobjective optimization. Civil Eng Syst 15(3):207–243

Corne D, Jerram N, Knowles J, Oates M (2001) PESA-II: region-
based selection in evolutionary multiobjective optimization. In:
Proceedings of the 3rd annual conference on genetic evolutionary
computation, pp 283–290

Črepinšek M, Liu SH, Mernik M (2014) Replication and comparison
of computational experiments in applied evolutionary computing:
common pitfalls and guidelines to avoid them. Appl Soft Comput
19:161–170

Dahiya SS, Chhabra JK, Kumar S (2010) application of artificial bee
colony algorithm to software testing. In: 2010 21st Australian soft-
ware engineering conference, Auckland, pp 149–154

Deb K, Jain H (2014) An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part I: Solving problems with box constraints. IEEE
Trans Evolut Comput 18(4):577–601

Deb K, Agrawal S, Pratap A,Meyarivan T (2002) A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
6(2):182–197

Doval D, Mitchell BS, Mancoridis S (1999), Automatic clustering of
software systems using a genetic algorithm. In: Proceedings of
IEEE conference on software technology and engineering practice
(1999), pp 73–81

Garza-Fabre N, Pulido GT, Coello CAC (2009) Ranking methods for
many-objective optimization. In: Advances in artificial intelli-
gence MICAI 2009, pp 633–645

Garza-Fabre N, Pulido GT, Coello CAC (2010) Alternative fitness
assignment methods for manyobjective optimization problems. In:
Artificial evolution, pp 146–157

Gong D, Sun J, Ji X (2013) Evolutionary algorithms with preference
polyhedron for interval multiobjective optimization problems. Inf
Sci 233:141–161

Hadka D, Reed P (2013) Borg: an auto-adaptive many-objective evolu-
tionary computing framework. Evolut Comput 21(2):231–259

Harman M, Hierons R, Proctor M (2002) A new representation and
crossover operator for search-based optimization of software
modularization. In: Proceedings of the genetic and evolutionary
computation conference, pp 1351–1358

Harman M, Jones BF (2001) Search-based software engineering. Inf
Softw Technol 43(14):833–839

HarmanM,Swift S,MahdaviK (2005)An empirical study of the robust-
ness of two module clustering fitness functions. In: Proceedings
of the 7th annual conference on Genetic and evolutionary compu-
tation

Hashim A, Hashim BO, Ayinde MA, Abido M (2016) Optimal place-
ment of relay nodes in wireless sensor network using artificial bee
colony algorithm. J Netw Comput Appl 64:239–248

Hughes EJ (2008) Fitness assignment methods for many-objective
problems. In: Multi-objective problem solving from nature. From
concepts to application, pp 307–329

Jadhav HT, Bamane PD (2016) Temperature dependent optimal power
flowusing g-best guided artificial bee colony algorithm. Int J Electr
Power Energ Syst 77:77–90

Jinhuang H, Jing L (2016) A similarity-based modularization qual-
ity measure for software module clustering problems. Inf Sci
342(10):96–110

Kalboussi S, Bechikh S, Kessentini M, Said LB (2013), Preference-
based many-objective evolutionary testing generates harder test
cases for autonomous agents. In: Proceedings of the 5th inter-
national symposium on search-based software engineering, pp
245–250

Karaboga D (2005) An idea based on honey bee swarm for numerical
optimization. Technical Report-TR06, Erciyes University, Engi-
neering Faculty, Computer Engineering Department

KarabogaD,AkayB (2009)A comparative study of artificial bee colony
algorithm. Appl Math Comput 214(1):108–132

Karaboga D, Basturk B (2007) A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algo-
rithm. J Glob Optim 39(3):459–471

Karaboga D, Basturk B (2008) On the performance of artificial bee
colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

Khare V, Yao X, Deb K (2003) Performance scaling of multi-objective
evolutionary algorithms. In: Evolutionary multi-criterion opti-
mization. Lecture notes in computer science. vol 2632, pp 376–390

Kumari AC, Srinivas K (2016) Hyper-heuristic approach for multi-
objective software module clustering. J Syst Softw 117:384–401

Kumari AC, Srinivas K, Gupta MP (2013) Software module clustering
using a hyper-heuristic based multi-objective genetic algorithm.
In: 2013 IEEE 3rd international advance computing conference
(IACC), Ghaziabad, pp 813–818

Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining conver-
gence and diversity in evolutionary multi-objective optimization.
Evolut Comput 10(3):263–282

Li X, Yin M (2012) Hybrid differential evolution with artificial bee
colony and its application for design of a reconfigurable antenna
array with discrete phase shifters. IET Microw Antenna Propag
6:1573–1582

Mahdavi K, Harman M, Hierons RM (2003) A multiple hill climbing
approach to software module clustering. In: Proceedings of the
international conference on software maintenance, pp 315–324

Mancoridis S,Mitchell BS, ChenYF,Gansner ER (1999)Bunch: a clus-
tering tool for the recovery and maintenance of software system
structures. In: Proceedings of the IEEE international conference
software maintenance, 1999, pp 50–59

Mancoridis S, Mitchell BS, Chen YF, Rorres C, Gansner ER (1998)
Using automatic clustering to produce high-level system organiza-
tions of source code. In: Proceedings of the international workshop
program comprehension, pp 45–53

Mitchell BS, Mancoridis S (2002) Using heuristic search techniques to
extract design abstractions from source code. In: Proceedings of
the genetic and evolutionary computation conference, pp 1375–
1382

Mitchell B.S, Mancoridis S, Traverso M (2004) Using interconnection
style rules to infer software architecture relations. In: Proceedings

123

Many-objective artificial bee colony algorithm for large-scale software module clustering problem 6361

of the conference on genetic and evolutionary computation, pp
1375-1387

Mkaouer MW, Kessentini M, Bechikh S (2016) On the use of
many quality attributes for software refactoring: a many-objective
search-based software engineering approach. Empir Softw Eng
21(6):2503–2545

Mkaouer MW, Kessentini M, Bechikh S, Deb K, Cinnéide MO (2014)
High dimensional search-based software engineering: finding
tradeoffs among 15 objectives for automated software refactoring
using NSGA-III. In: Proceedings of the genetic and evolutionary
computation conference, pp 1263–1270

Mkaouer MW, Kessentini M, Shaout A, Koligheu P, Bechikh S, Deb K,
Ouni A (2015) Many objective software remodularization using
NSGA-III. ACM Trans Softw Eng Methodol 24(3):1–17

Olaechea R, Rayside D, Guo J, Czarnecki K (2014) Comparison of
exact and approximate multi-objective optimization for software
product lines. In: Proceedings of the 18th international software
product line conference, pp 92–101

Parashar A, Chhabra JK (2016) An approach for clustering class cou-
pling metrics to mine object oriented software components. Int
Arab J Inf Technol (IAJIT) 13(3):239–248

Pierro FD, Khu S-T, Savi’c DA (2007) An investigation on preference
order ranking scheme for multi-objective evolutionary optimiza-
tion. IEEE Trans Evolut Comput 11(1):17–45

Pierro FD, Khu ST, Savic DA (2007) An investigation on preference
order ranking scheme for multiobjective evolutionary optimiza-
tion. IEEE Trans Evolut Comput 11(1):17–45

Plevris P, Papadrakakis M (2011) A hybrid particle swarm-gradient
algorithm for global structural optimization. Comput Aided Civil
Infrastruct Eng 26:48–68

Praditwong K (2011) Solving software module clustering problem by
evolutionary algorithms. In: Eighth international joint conference
on computer science and software engineering, pp 154–159

Praditwong K, Harman M, Yao X (2011) Software module cluster-
ing as a multi-objective search problem. IEEE Trans Softw Eng
37(2):264–282

Praditwong K, Yao X (2006) A new multi-objective evolutionary opti-
mization algorithm: the two-archive algorithm. In: Cheung Y-M,
Wang Y, Liu H (eds) Proceedings of the international conference
computational intelligence and security, vol 1, pp 286–291

Praditwong K, Yao X (2007) How well do multi-objective evolutionary
algorithms scale to large problems. In: Proceedings IEEE congress
evolutionary computing (CEC), Singapore, pp 3959–3966

Ramirez A, Romero JR, Ventura S (2014) On the performance of mul-
tiple objective evolutionary algorithms for software architecture

discovery. In: Proceedings of the 2014 conference on genetic and
evolutionary computation, pp 1287–1294

Said LB, Bechikh S, Ghédira K (2013) The r-dominance: a new dom-
inance relation for interactive evolutionary multicriteria decision
making. Proc IEEE Trans Evolut Comput 14(5):801–818

SayyadAS, IngramJ,MenziesT,AmmarH (2013)Scalable product line
configuration: a straw to break the camel’s back. In: IEEE/ACM
28th international conference on automated software engineering,
pp 465–474

Sayyad AS, Menzies T, Ammar H (2013) On the value of user pref-
erences in search-based software engineering: a case study in
software product lines, pp 492–501

Wang G, Jiang H (2007) Fuzzy-dominance and its application in evo-
lutionary many objective optimization. In: Proceedings of the
international conference on computational intelligence and secu-
rity workshops, pp 195–198

Wang H, Jiao L, Yao X (2015) Two_Arch2: an improved two-archive
algorithm for many-objective optimization. IEEE Trans Evolut
Comput 19(4):524–541

Xianneng L, Guangfei Y (2016) Artificial bee colony algorithm with
memory. Appl Soft Comput 41:362–372

Yao X (2013) Some recent work on multi-objective approaches to
search-based software engineering. In: Proceeding of the 5th sym-
posium on search based software engineering, pp 4–15

Yang S, Li M, Liu X, Zheng J (2013) A grid-based evolutionary algo-
rithm formany-objective optimization. IEEETransEvolutComput
17(5):721–736

Yuan Y, Xu H, Wang B, Yao X (2015) A new dominance relation
based evolutionary algorithm for many-objective optimization.
IEEE Trans Evolut Comput 20(1):16–37

Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algo-
rithm based on decomposition. Proc IEEE Trans Evolut Comput
11(6):712–731

Zitzler E, Künzli S (2004) Indicator-based selection in multi-objective
search. Parallel problemsolving fromnature–PPSNVIII. Springer,
Berlin, pp 832–842

ZouX, ChenY, LiuM,Kang L (2008)A new evolutionary algorithm for
solving many-objective optimization problems. IEEE Trans Syst
Man Cybern-Part B 38(5):1402–1412

Zitzler E, LaumannsM, Thiele L (2002) SPEA2: improving the strength
Pareto evolutionary algorithm. In: Proceedings of the evolutionary
methods design optimization control application, pp 95–100

123

	Many-objective artificial bee colony algorithm for large-scale software module clustering problem
	Abstract
	1 Introduction
	2 Software module clustering
	2.1 Software module clustering problem
	2.2 Software module clustering as an optimization problem
	2.3 Software module clustering as a many-objective optimization problem

	3 Basic concepts
	3.1 Original ABC algorithm
	3.2 Indicator-based ranking
	3.3 Lp-norm-based (p < 1) distance

	4 Many-objective artificial bee colony (MaABC)
	4.1 Problem representation
	4.2 Population initialization
	4.3 Send employed bees
	4.4 Send onlooker bees
	4.5 Send scout bees
	4.6 Update CA and DA archives
	4.7 Selection in overflowed CA and DA
	4.8 Termination

	5 Experimental setup
	5.1 Software systems
	5.2 Research questions
	5.3 Existing algorithms and parameter settings
	5.4 Collecting results and statistical tests

	6 Results and analysis
	6.1 The MQ value as assessment criterion
	6.2 Coupling as an assessment criterion
	6.3 Cohesion as an assessment criterion
	6.4 IGD as assessment criterion
	6.5 Results summary

	7 Threats to validity
	8 Related works
	8.1 Single-objective optimization approaches
	8.2 Multi-objective optimization approaches
	8.3 Many-objective optimization approaches

	9 Conclusions and future works
	References

