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Abstract With the rise of cloud computing, data owners
outsource their data to public cloud servers while allowing
users to search the data, aiming at greater flexibility and
economic savings. For privacy considerations, private data
must be encrypted before outsourcing, and this makes the
method of plaintext keyword search infeasible. However, it is
critical to enable encrypted data able to be searched. Consid-
ering the requirements of practical application scenarios, the
function of efficient multi-keyword ranked search and simi-
larity search based on relevance score is necessary for data
users. There proposed a number of multi-keyword searchable
encryption schemes to try to meet this demand. However,
most existing schemes do not satisfy required dynamic
update simultaneously. In this paper, a novel and efficient
dynamic multi-keyword ranked search scheme improved
from traditional secure KNN computation is proposed. The
proposed scheme incorporates the similarity measure “coor-
dinate matching” and “inner product similarity” to improve
the relevance of search keywords to the relevant cloud files. A
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reverse data structure is introduced to allow users to perform
dynamic operations on document collection, either insert-
ing or deleting. The sparse matrix is used to replace the
dense large-scale matrix in index encryption and query vec-
tor encryption to improve efficiency. Experiments show that
the proposed scheme indeed reduces the overhead of compu-
tation and storage compared to MRSE scheme, concurrently
guaranteeing privacy and efficiency.
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1 Introduction

In recent years, cloud computing is being considered the
most innovative technology, where significant advances in
the delivery of information technology and services are
designed. More and more individuals and businesses are
deciding to outsource local data, e.g., personal health records,
financial transactions, e-mails, and government files to cloud
server to achieve great flexibility and low management costs.

Although cloud computing has expressive advantages, the
outsourcing of private data makes users lose control of their
data, so the desire to purchase cloud services becomes very
reluctant. Obviously, for the consideration of privacy preserv-
ing, sensitive data have to be encrypted before outsourcing to
public cloud server. However, it makes the traditional plain-
text keyword search method obsolete and results in huge
overhead on the encrypted data availability. Apparently, it
is quite unrealistic to download and decrypt all data on the
client side. Therefore, developing a secure search service on
encrypted data is a necessity in today’s computing infrastruc-
tures.
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Multi-function schemes which are based on fully homo-
morphic encryption (Gentry 2009) or oblivious RAMs (Gol-
dreich and Ostrovsky 1996) have been proposed to solve
these problems. However, the computing overhead presented
in these schemes is extremely large. As known, the search-
able symmetric encryption (SSE) schemes have advantages
on efficiency and functionality. The first SSE scheme was
proposed by Song et al. (2000). Recently, more and more
researchers focus on variety types of search function, such
as single keyword search, multi-keyword Boolean search,
similarity search, multi-keyword ranked search. Because of
the practicability of multi-keyword ranked search, it is more
popular in research work. Unfortunately, most schemes do
not support dynamic operation and the performance needs to
be further improved.

In this paper, a reverse data structure is utilized to achieve
dynamic update of documents in the multi-keyword ranked
search over encrypted cloud data. For the improvement of the
relevance of search keywords to the relevant cloud files, the
similarity measure “coordinate matching” (Singhal 2001) is
utilized to capture the relevance of cloud files to the interested
keywords. To quantitatively analyze the similarity measure
of cloud documents to the search keywords, the “inner prod-
uct similarity” (Witten and Moffat 1999) was chosen. In the
proposed scheme, each document and search keywords are,
respectively, mapped to a binary vector in which each bit
indicates whether corresponding keyword appears in the doc-
ument or the search query. As described in privacy-preserving
multi-keyword ranked search over encrypted cloud data
scheme (MRSE) (Cao et al. 2014), we also use a secure k-
nearest neighbor (kNN) algorithm (Wong et al. 2009) to meet
the security requirements of index and trapdoor. Besides, we
use sparse matrix to replace the dense large-scale matrix in
index encryption and query vector encryption. To support
data updates, a reverse data structure which is different from
the original one is designed. As overall, the contributions of
this paper are summarized as:

e A novel and efficient scheme improved from traditional
secure kNN computation is proposed,

e The proposed scheme supports dynamic operation on
document collection, either inserting or deleting docu-
ments,

e Experiments show that the proposed scheme indeed
reduces the overhead of computation and storage com-
pared to MRSE scheme, concurrently guaranteeing pri-
vacy and efficiency.

The remainder of this paper is organized as follows.
Section 2 presents related work, and Sect. 3 describes the
system model, threat model, design goals, notations and
preliminaries. Section 4 presents the proposed efficient and
dynamic multi-keyword ranked search scheme that contains
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the framework and detailed construction. The security and
performance analysis are followed in Sect. 5, and finally,
Sect. 6 concludes the paper and directions for future work.

2 Related work

Searchable encryption scheme enables users to perform key-
word search on encrypted data without the need to download
and decrypt all documents. It can be constructed using either
public key cryptography or symmetric key cryptography. As
there is a large number of users encompassed with a large
number of data in cloud, it is more suitable to utilize search-
able symmetric encryption (SSE).

The first SSE scheme was proposed by Song et al. (2000),
which was not proven to be secure nor linear search efficient
to the length of the document collection, and such limita-
tions were addressed by Goh (2003). However, an inherent
problem of using bloom filters is the possibility of false
positives. Curtmola et al. (2011) proposed two new construc-
tions SSE-1 and SSE-2. An adaptive security definition and
solutions were presented in their scheme. Zou et al. (2017)
propose encryption search scheme for content-based image
retrieval using comparable encryption and order-preserving
encryption technology. Functions of these early schemes only
support single keyword search.

Under different threat models, a variety of schemes are
proposed, such as single keyword search (Gajek 2016), sim-
ilarity search (Wang et al. 2014; Tang 2014; Deng et al.
2017; Xhafa et al. 2014), multi-keyword Boolean search
(Zhang and Zhang 2011; Poon and Miri 2015) and multi-
keyword ranked search (Wang et al. 2012; Zhang et al. 2014;
Rane and Ghorpade 2015; Zhangjie et al. 2015; Xia et al.
2016), multi-user search (Kiayias et al. 2016; Ye et al. 2016).
Unfortunately, none of these schemes support multi-keyword
ranked search and dynamic operations simultaneously.

With the proliferation of cloud environments, as develop-
ers and users login with their credentials to manipulate their
files, all operations are performed in cloud-based servers.
Update operation is essential. The scheme proposed by Song
et al. (2000) supported simple dynamic updates, though inef-
ficient. Xia et al. (2016) realized the dynamic update by
storing the unencrypted index tree that augments compu-
tation overhead. Yang et al. (2012) proposed the solution
that combined bloom filter to realize dynamic update. Nev-
ertheless, bloom filter does not satisfy the strict security
requirements. The scheme proposed in Mashauri etal. (2015)
focused only on the keyword dictionary updating, ignored its
computing efficiency however.

Cao et al. (2014) proposed a privacy-preserving multi-
keyword ranked search over encrypted cloud data (MRSE)
scheme. Firstly, depending on whether the keyword appears
in the corresponding document or query, it generates the
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corresponding binary document vector and query vector,
respectively. Secondly, two dense matrices are used to
encrypt secure index and trapdoor for document vector and
query vector, and lastly, the inner product of trapdoor with
each subindex indicates the similarity of query keywords and
the document. From the above-mentioned description, the
efficiency of inner product will be significantly reduced when
the number of keyword in the dictionary increases gradually.
Besides, since the location of keywords is fixed, the vector
structure cannot be modified after the keyword dictionary is
generated. To solve this issue, we utilize sparse block matri-
ces (Yang et al. 2012) instead of the original dense matrices
in the process of index construction and trapdoor genera-
tion. Undoubtedly, this will greatly save the user’s computing
resources. In addition, we reverse the original vector struc-
ture (Mashauri et al. 2015) to adapt to the dynamic update
operation of the document. Furthermore, we will combine
the advantages of schemes proposed in Yang et al. (2012),
Mashauri et al. (2015) to achieve the efficient dynamic multi-
keyword ranked search over encrypted cloud data.

3 DMRS definitions
3.1 Problem formulation
System model

As illustrated in Fig. 1, there are three major entities in a
cloud service system, listed as the data owner, the data user
and the cloud server.

In the scenario of architecture aimed, Data owner intends
to outsource a collection of documents D to cloud server.
After extracting keywords collection W from D, data owner
will first construct an encrypted searchable index I from
collection D, so every file in D is encrypted to generate a
ciphertext collection C. Next, the encrypted index and the
collection C are both outsourced to cloud server concur-
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Fig. 1 Architecture of the multi-keyword ranked search over encrypted
cloud data

rently, as the secret keys of trapdoor and file decryption are
distributed to authorized data users. Finally, the owner should
re-generate the keys after updating his document collection
D.

Data users are entities that are authorized to access the
documents of the data owner. To search the document col-
lection, data users take some interested keywords as input.
A query vector is generated according to the set of query
keywords, followed by generating the trapdoor according to
search vector. Thereafter, data users make use of keys to
decrypt the top-k most relevant encrypted files returned from
cloud server.

Cloud server stores the encrypted secure searchable index
and the collection of encrypted files. Cloud server has the
responsibility to search over the secure index and return the
top-k encrypted documents to users. Besides, cloud server
updates the encrypted index and encrypted document collec-
tion as well when the document collection has been updated
by data owner.

Threat model

In the model proposed, the cloud server is considered as
“honest-but-curious.” That is, the cloud server will act hon-
estly according to the designated protocol and will not distort
user data or query results. However, it may learn additional
information about the secure index and search requests. As
described in MRSE_II scheme (Cao et al. 2014), we only
consider those servers with stronger attack ability, e.g., the
known background model. In such a model, the cloud server
is able to acquire more information. Such data may include
the correlation relationship of given trapdoors and the sta-
tistical information of document set. With the help of such
statistical knowledge, the cloud server could confirm cer-
tain keywords by analyzing the uploaded trapdoor, the secure
index or the search results.

Design goals

To enable efficient, dynamic and secure multi-keyword
ranked search over outsourced encrypted cloud data under
the aforementioned model, the design goals of the proposed
scheme are listed as:

e Multi-keyword Ranked Search the proposed scheme is
designed to support multi-keyword search and provide
the similarity ranking of search results,

e Search efficiency the proposed scheme hammers at
achieving higher search efficiency by improving origi-
nal secure kKNN-based MRSE scheme,

e Dynamic update in order to increase practicability, the
proposed scheme supports the dynamic update of the doc-
ument set,
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e Privacy preserving the proposed scheme aims to meet
strict privacy requirements. The encrypted index and
trapdoor should be generated to not permit any informa-
tion leakage about keywords and encrypted documents.
The keyword privacy and the trapdoor unlinkability
should be guaranteed in the search process by cloud
server.

3.2 Notations and preliminaries
Notations

In this paper, notations presented in Table 1 are used.

Preliminaries on Secure kNN Computation

The secure k-nearest neighbor computation can be used to
encrypt the vectors, and such encrypted vectors can still be
utilized to compute the Euclidean distance. The proposed
scheme makes use of the inner product similarity as intro-
duced in MRSE (Cao et al. 2014).

The specific encryption process is described as follows.
First, the document vector D and the search vector Q are split
into two random vectors {D’, D"} and {Q’, Q"}, respec-
tively, according to the indicator S. Specifically, if the j-zh bit
of Sis 0, D'[j] and D"[/] are the same and equal to D[],
while Q'[j] and Q”[/] are set to random numbers so that
their sum is equal to Q[j]. If the j-rh bit of S'is 1, Q'[j] and
Q"[j]are the same and equal to Q[ j], while D’[ j]1and D" []
are set to random numbers so that their sum is equal to D[j].
Then, the two pairs of split vector {D’, D"} and {Q’, Q"'}

Table 1 Notation

D The plaintext collection, denoted as a set of m
documents D = (dy, dp, ..., dy;)

C The ciphertext collection, stored in cloud server and
denoted as C = (cy, ¢2, ..., Ci)

(o The updated documents collection

1 The encrypted searchable index, denoted as
1 =, I, ..., I,), where I; is the subindex built
for d;

w The dictionary extracted from D, denoted as a
collection of n keywords W = (wy, wa, ..., wy)

Wgr An updated dictionary that deleting several
documents leads to reduction of keywords

W, The subset of W and the interested keywords in a
search request

T The trapdoor calculated by data user for the search
request W,

Ry The top-k-ranked id set of documents that containing
interested keywords W,

dj A modified document in an adding or deleting
operation
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are encrypted as {M! D', MI D"} and (M ' Q', My 'Q"},
respectively, where the M1and M, are two invertible matri-
ces. The formula for the relevance score is as follows.

Score(D, Q) = (MI D'y - (M;{' Q') + (MID"y- (M5 Q")
— (MITD/)TMI_I Q/ + (MQTD”)TMz_l Q//
— D/TMlel Q/ + D//TMQM;] Q//
=D/'Q/+D//'Q//
=D-Q (1)

The formula demonstrates that the inner product of doc-
ument vector D and search vector Q can be calculated in
encrypted form. However, the original secure kNN algorithm
could not be used in our scheme directly. Some modifica-
tions on the vector structure should be done to meet the
privacy requirements of DMRS. Detailed processes of algo-
rithm for the proposed scheme are shown in Fig. 2. With
such improvements, the proposed scheme is able to provide
various possible privacy guarantees within the known back-
ground models.

4 The DMRS scheme

In this section, we present the formal definition of DMRS
scheme, following with the design and architecture details.

4.1 Framework

Definition 1 (Efficient dynamic multi-keyword ranked
search scheme, DMRS) A DMRS scheme consists of five
polynomial-time algorithms DMRS = (KeyGen, BuildIndex,
TrapdoorGen, Search, Update), such that:

K < Keygen(15): is a probabilistic key generation algo-
rithm that is executed by data owner to set up the scheme.
It takes a security parameter s and returns a secret key
K ={S, M, M3}.

(I,C) < BuildIndex(K, D): it is executed by owner to
generate indexes. It takes a secret key K and a document
collection D as inputs and returns an index / and ciphertext
C.

T < TrapdoorGen (K,W): it is executed by user to
generate a trapdoor to query keywords that is a subset of
dictionary. It takes a secret key K and interested keywords
W, as inputs and returns a trapdoor 7.

Ry < Search(I,T)k): it is executed by server to search for
documents in D that contains words Wj,. It takes an index /
for a collection D, the number of interested documents k and
a trapdoor T'for query g as inputs, and returns Ry, the top-k
ranked id set.

Ke, KR, I¢, Ir, C' < Update(K, d;): it is executed by
owner to generate new secret key, indexes and ciphertext for
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Keygen(1%):

Py’

BuildIndex(K, D): For every document d:

number &(j) by extending the dimension.

document d,.

pi'lil=p!"li1=pili].

TrapdoorGen(K, W, ):

remaining bit are set to 0.

it to user.

1. Generate an n+u+1 bit vector S and six pairs of (n+u+1)x(n+u+1) dimension matrices and the
corresponding invertible matrices M, (M; ’)'1, M, (Mz”)'l, M;", (M, ”)'1, M, (Mg”)-l, P, (PI)'I, P,

2. Set M1:M1I'P1'M1” and MQZMZI'PZ'MQN, Output K:(S, M], Mg),

1. Data owner generates a 1+u+n bit vector p;.

2. The first bit of p;is set to 1, the (j+1)-th entry in p; where j&[1, u] is set to a random

3. The last n bit of p,[j] represent whether the corresponding keyword w; appears in the

4. Split vector p; to {p;T/1, p:"l/1}: for every bit of p;: if (S[/1=1), p;lj1+pr:"T/1=pij]; else

5. The subindex /; is built by multiplying p,[/] and p;"[j] with M;’, P;, M;" and M,', P,, M,"".
6. Obtain ciphertext ¢; with symmetric encryption algorithm.
7. Upload the collection of ciphertext and encrypted index (C, /) to the server.

1. Input 7 keywords of interest, one n+u+1 bit binary vector ¢ is generated.
2. The top #n bit of g[/] indicates whether keyword w; €W is true or false.

3. Select v out of # dummy keywords randomly, the corresponding entries in ¢ are set to 1 and all the

4.Splitg to {g', ¢"} with vector S: if (S[j] =1), ¢l/1= ¢"l/1 = qU/1; else ¢'j1+ ¢"/1=ql/]-
5. Get T=(¢"(M;")"(P,/ "M, g (M2 (M.
Search(l, T, k): After receiving the trapdoor 7, for every J; generated from ¢, the cloud server calculate

the inner product similarity of 7"and /;. Sort the similarity score of result documents set R, and return

Fig. 2 The improved kNN-based scheme

the added or deleted document d;. It takes the original secret
key K and the updated document d; as inputs and returns
the new secret key (K., Kg), indexes (., Ig) and ciphertext
C'.

4.2 The DMRS construction

In this subsection, details on the construction are described.
We utilize sparse diagonal matrix (Yang et al. 2012) to
improve the kNN-based MRSE scheme and adopt new vec-
tor structure (Mashauri et al. 2015) reversed from MRSE
scheme. Therefore, the improved scheme can realize effi-
cient and dynamic multi-keyword ranked search under strict
privacy requirements.

4.2.1 The improved KNN computation

From the above analysis, we can see that the origin to the
cause of low efficiency of MRSE is the utilization of large-
scale matrices. Therefore, the sparse matrices are used to
replace the original dense matrices, for higher efficiency
considerations. The modifications on the original KNN tech-
nique are the same as the scheme in Yang et al. (2012). For the
consideration of the trade-off between efficiency and secu-
rity, the invertible matrix M is set as the product of two
block diagonal matrix M} and a permutation matrix P. That
is M; = M} - P- M{ where M|, M{ are two block diagonal
matrix, and M{=diag(A1, Az, ..., A;), Axisan’ x n’ dimen-
sion random matrix, M{'=diag(Bi, Ba, ..., B;) and By is a
n’ x n’ dimensions random matrix. The modified invertible
matrix M> is generated as the same as M.

@ Springer
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After above processes, cloud server will be hard to ana-
lyze the relations between queries and indexes because every
keyword could be mixed randomly. Obviously, owing to the
introduction of sparse matrix, the number of calculations
will be reduced significantly. From the following experi-
mental analysis, these modifications can achieve the balance
between efficiency and security. Detailed construction is pre-
sented in Fig. 2.

Atpresent, the proposed scheme will not be able to answer
for the changes provisionally, even data owner has updated
several documents. In the next step, we make use of the new
vector structure to support the updates on the collection of
documents.

4.2.2 Update operation

In MRSE scheme, the positions of real keywords in document
vector and search vector are fixed and it cannot make any
improvement to support dynamic updating operations. We
can invert the existing structure to acquire the novel dynamic
vector structure as the same way presented in Mashauri et al.
(2015) and get the new index structure.

The new index structure is detailed in Mashauri et al.
(2015), in which the first position is the constant 1 and u
dummy keywords are following; the last positions are used
to indicate the presence or absence of nreal keywords. It is
utilized in DMRS scheme, and it will enable the proposed
scheme to support updating operations. If there is any key-
word added to W, e.g., w;, then the value of corresponding
index vector p[1 4+ u + n + j]is set to 1; otherwise, it is set
to 0. When the user requests to search some keywords, the
search vector is generated in the same way as the procedure
of index vector construction. Detailed processes of updating
operations are illustrated as follows.

Updating document collection will lead to the change of
dictionary size. Next, data owner should update the keys
for generating secure index set and trapdoor. Besides, the
t updated documents will be extracted and will derive the
number r of deletion or addition of keywords. The detailed
algorithms of keys update are shown in Fig. 3.

(1) KeyExtend: According to the number r of extracted
keywords, this algorithm generates a r bit binary vector,
two pairs of  x r dimension matrices and the correspond-
ing reversible matrices (S, M},, (M],)~', M},, (M},)~",
My, (M) My, (MY)™!). The new generated matri-
ces are added to the original matrices (M|, M{, M}, MY,
M)~ )= (M)~ (M) and get the two pairs of
modified matrices (M., M2, (M1.)~!, (M2.)™") by block
diagonal technique (Ishai et al. 2006). Then, all elements of
Sre will be copied to S and will obtain a n + u + r+1 bit
vector S,. Details of this process are shown in Fig. 3.

(2) KeyReduce: First, it generates four (n + u + 1 —
r) X (n +u 4+ 1 — r) dimension random permutation
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matrices (P g, Pag, (P1g) ™", (Pag)~"). Next, the elements
of the last » rows and r columns in the original matri-
ces M, (M)~ My, (My)~!, My (M{)~!, My, (M3) ™!

will be deleted and will derive four pairs of (n + u + r +
1) x (n + u + r + 1) dimension matrices (M, (M{R)_l,

My g, (M5 )™ MY, (M{)™Y, MY g, (MYR)™").  Then,
compute Mip = M{R - Pig - M;/R, Mrr = MéR

Par - My, (Mip)~™" = (Mip)~" - (PiR)™" - (M)~
(Mop)™' = (Myp)~" - (Pap)™! - (MYp)~!. Finally, this
algorithm traverses the new dictionary and the old one. If
a keyword exists in the both dictionaries, then the certain
bit is copied into the new splitting vector Sg and omitted
otherwise.

The addition or deletion of the documents also requires
updating the indexes. The detailed algorithms of indexes
update are shown in Fig. 4.

(3) IndexExtend: Index recreation is influenced by the
number r of modified keywords. First, the algorithm extends
the r entries following the last entry of document vector p
for the original document. Then, call the algorithm BuildIn-
dex(K, D) to get all document vectors pj., the new index
1. Finally, subciphertext set is generated and added into the
original one.

(4) IndexReduce: Firstly, it generates the new dictionary
W extracted from the updated document set. Next, this algo-
rithm will call BuildIndex(K, D) to generate the updated
indexes IR, and finally, delete the subindex /; and the cipher-
text ¢, j €(0, r]. Details of this process are shown in Fig. 4.

5 The security and performance analysis

The security and performance analysis of the proposed
scheme is given in this section.

5.1 The precision and privacy
Precision

As proposed in MRSE, the random insertion of dummy
keywords has negative influence on the similarity score of
documents to queried keywords. The procedure of dealing
with dummy keyword inserting in our scheme is as the same
as MRSE. Therefore, we only focus on the influence on preci-
sion and efficiency resulted from the different way of splitting
large-scale matrix.

From the above introduction, the accuracy may be affected
by the order of the block matrix. To improve the search
efficiency, the large-scale matrix can be split into several
small-scale block matrix. However, it may result that less
keywords are mixed. On the contrary, the order of block
matrix is larger; then, the efficiency is reduced, but secu-
rity is guaranteed. The order of block matrix is decided by
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KeyExtend(KX, r):

1. Retrieve the original key K;
2. Generate a r bit vector S,., two pairs of »xr dimension matrices and the corresponding
invertible matrices M., (M;.)", My, (Ma)", M, (M"Y, Mo, (Ma.") '
3. Generate a (ntutr+1)x(ntutr+1) dimension unit matrix £;
4. Compute EM;'= diag(M,., My"), EM,"=diag(M,.", M,"), (EM,")"'=diag(M,.)", (M;)"),
(EM,"Y'=diag(M;."Y', (M"Y, EMy=diag(My., M), EM,"=diag(Ms.", ~ M,"),
(EM,)'=diag(M>.Y", (M:)"), (EM."y'=diag(M>.")", (M.")"), where diag() denotes the
block diagonal operation [25];
5. Copy the value of every position in S and S,, into a new vector S, in order;
6. Randomly upset the elements of £ by column and get four random permutation matrices (P;.,
P, (Ple)-l’ (PZe)-l);
7. Set four (ntu+r+1)x(nt+u+r+1) dimension matrices respectively as follows.

M, =EM;"P;,EM;", M ~EM,"Ps,EM,",

(M) =(EM;Y"(Pr) (EM; "Y', (Mae) '=(EM:) - (Poe) -(EM,"Y s
8. Output the new key K, with 5-tuple as {S., M., M>,, (M,e)'l, (MZe)'l}.

KeyReduce(K, r):
1. Retrieve the original key K;
2. Delete the last » rows and 7 columns elements of M,’, (M,")", M,', (MZ’)'I, M (M"Y, M,
(Mg")’1 and get the (ntu+1-r)X(ntu+1-r) dimension matrices M;z', (Mz ')'1, Mog', (Mg 3'1, M;g",
(Mir")", Mog", (Mog")";
3. Generate a (n+u+1-r)x(ntu+1-r) dimension unit matrix £, then randomly upset the elements
of E by column and get four random permutation matrices (P;z, P2z, (PJR)'I, (PZR)'I);
4. For each keyword in W and updated dictionary Ws:
if (w exists in W and W simultaneously)
copy the value of corresponding bit for w from S to Sg;
else skip the bit position;
5. Set four (ntutl-r)X(ntut+l-r) dimension
Mip=Mg"Pir Mip", Mog=Mop"Pop Mog",
(M) '=(MiY " (Pie) (M"Y, (Mog) ' =(Mog'y ' (Po) - (Ma"Y '
6. Output the new key Kz with 5-tuple as {Sg, Mz, Mg, (M), (Mag)™"}.

matrices respectively as  follows:

Fig. 3 Algorithms of key update

the size of keyword dictionary. For the experimental time
savings, the number of documents in the collection and the
sizes of dictionary is set to 1000. Figure 5 shows the com-
parison to different influences on search precision with the
different order o of smaller-scale matrix in the proposed
scheme. As described above, increasing the dimension of
the block matrix can further improve the accuracy, but affect
the performance as well. Therefore, the proposed scheme

provides users with a trade-off between performance and
accuracy.

Privacy
The DMRS scheme is improved based on MRSE_II scheme

(Cao et al. 2014). In the process of the secure index con-
struction and the trapdoor generation, several large-scale
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IndexExtend(K,, r):

p;

all documents;

IndexReduce(Ky, r):

3. Delete the ciphertext c;, j €(0, 7];

4. For each updated document:

5. For the remaining documents:

1. For each original document, extend the » entries following the last entry of document vector
2. Generate a series of 1-+u-+n+r bit vectors p;, according to the new keyword dictionary for
3. Call the algorithm BuildIndex(K, D) and get the new indexes /,;

4. Encrypt d;, j €(0, ¢] by utilizing symmetric encryption mechanism;

5. Output the new collections of ciphertext and index (1., C).

1. Delete the » reduced keywords and generate updated dictionary Wg;
2. Delete the sub-index J; for the ¢ deleted document d;, j (0, ];

Generate a | +u-+n-r bit document vector pg according to Wy for the remaining document set;

Call BuildIndex(K, D) to generate the new indexes /;
6. Output the new collections of ciphertext and index (I3, C).

Fig. 4 Algorithms of index update
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dense matrices were utilized to encrypt document vectors and
search vectors in MRSE scheme. Also, the system parameter
w is chosen to determine the number of dummy entries in
data and query vectors.

Theorem 5.1 The DMRS is secure against scale analysis

attack ifthe MRSE_II scheme is secure against scale analysis
attack under the known background model.

@ Springer

Proof In the proposed scheme, for the search performance
considerations, the large scale of matrices is divided into
smaller scale of block diagonal matrices. As described in
the proposed scheme, two random block matrices orderly
multiply a random permutation matrix. Consequently, dif-
ferent terms will also be mixed and it increases the index
and trapdoor attack difficulty from the cloud server. Thus,
the keyword privacy and the trapdoor unlinkability will be
reinforced if the secret keys are kept well. As description of
MRSE, there is a trade-off between security and precision.
Lower accuracy will enhance the security of sorting results,
though it may induce the result that user is unable to obtain
the possible interested documents. Hence, this scheme can
also provide users with a trade-off parameter to meet the
different needs of accuracy and privacy.

In ranked search, access pattern is the rank order of the
search results. There are several effective methods, e.g., pri-
vate information retrieval (PIR) technique (Ishai et al. 2006)
can be used to protect the access pattern. And due to the
fact that the cloud server is in charge of most computations,
secure hardware can be used to protect the privacy of access
pattern. As presented in MRSE, in order to meet the privacy
requirements, the overall rank privacy Py is processed in the
same way. Therefore, the proposed scheme also can provide
a balance between precision and rank privacy like MRSE. O
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Fig. 6 The overhead of index construction. a For different size of dataset with the same dictionary, m = 4000. b For different size of dictionary

with the same document dataset, n = 1000

5.2 The performance analysis

In this section, we analyze the performance of the proposed
DMRS scheme. We demonstrate a thorough experimen-
tal evaluation of the scheme in a simulation environment.
Experiments are implemented on a computer with Intel core
i5-M480 2.67GHz processor, 6 GB memory, 1GB AMD
Radeon HD 6400M graphics card, running Win7 (64 bit)
system. Gauss matrix, invertible matrix and matrix multipli-
cation are achieved by using MATLAB. The performance
of our scheme is compared with MRSE scheme (Cao et al.
2014).

Computing overhead

From the above description, we can deduce that the overhead
of the proposed scheme is minimal. The series of binary
vectors and random matrices to denote dataset and keys,
respectively, are randomly generated, and computing over-
head of index construction, trapdoor generation, search and
update operations will be compared and analyzed next.

1) Index construction

The process of index construction is done within two steps.
The former one is to map the keyword dictionary extracted
from each document to a data vector, while the latter is the
encryption of a set of data vectors. The dimension of data
vector directly determines the time of mapping or encrypting,
and the dimension of vector is determined by the size of the
dictionary. The time of generating whole index is related to
the number of user’s documents. Figure 6a shows that given
the same dictionary (n = 4000), time of index construction
for the two schemes increases linearly with the increasing
size of dataset. Figure 6b demonstrates that, given the same
number of files (m = 1000), DMRS consumes much less

time than MRSE on constructing indexes. DMRS and MRSE
are sensitive to the size of keyword dictionary for index con-
struction. Despite it, DMRS shows better performance in
both situations.

2) Trapdoor Generation

Compared with index construction, trapdoor generation
consumes relatively less time. Figure 7a shows that the time
of generating a trapdoor in MRSE is greatly affected by the
number of keywords in the dictionary. Figure 7b demon-
strates that the time of trapdoor generation in MRSE scheme
is about 80% larger than DMRS scheme. The difference of
overheads to generate trapdoors is mainly caused by larger
scale of matrices and smaller scale of matrices in MRSE and
DMRS, respectively. Additionally, it reveals that the size of
dictionary has little effect on the trapdoor generation.

3) Search

In fact, search process executed by the cloud server is
composed of computing and ranking similarity scores for
documents dataset. Figure 8 shows that the search overhead
depends on the size of documents set, and the number of key-
words in a query has low influence. Figure 8b demonstrates
that the proposed scheme is about 5 times faster than MRSE
in different numbers of search keywords.

4) Update

As presented in MRSE, the keys and indexes will be regen-
erated when the size of dictionary is changed. In this set of
experiments, we compare the time overhead on the key and
index updates in DMRS with the time to regenerate the keys
and the time to reconstruct the set of the document indexes
in MRSE when the number of keywords extracted from the
update documents is changed.

Figure 9 shows that the overhead of index construction
and key extension increases, encompassed with the num-
ber of keywords extracted from the newly added documents.

@ Springer
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Besides, the extension performance of the proposed scheme
is better than MRSE. This tremendous time savings bene-
fits from that DMRS uses block diagonal matrix design, and
the presented algorithms support reusing the original set of
indexes and keys.

Figure 10 indicates that the overhead of index construction
and key reduction decreases with the number of keywords
extracted from the newly deleted documents. As shown in
Fig. 10a, the reduction performance of DMRS is more advan-
tageous when the dictionary size is very large. In other words,
the more keywords are deleted, the more times of calcula-
tion for each original matrix. While Fig. 10b depicts, the
time overhead of index update in DMRS is smaller than
MRSE.

From Figs. 9 and 10, the updates performance of DMRS
is better than the MRSE. This is mainly due to the fact

@ Springer

that the proposed scheme can reuse the original keys and
index. The proposed scheme does not make any modifica-
tions when the number of keywords is changed. However,
in MRSE, the keys should be regenerated and the indexes
should be reconstructed when the size of dictionary is
changed.

Storage overhead

From the above experimental analysis we can see clearly that
the time overhead is minimal. The cloud server only stores
the ciphertexts and the secure index. The size of the index
is mainly determined by the size of document collection and
the number of keywords. As can be seen from Table 2, the
index sizes of two schemes grow linearly with the number of
keywords. Obviously, DMRS scheme takes up less space.
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Table 2 Size of index with m = 1000

Size of dictionary 2000 4000 6000 8000 10,000
MRSE(MB) 30.5 61 91.6 122.1 152.6
DMRS(MB) 30.2 60.4 90.6 120.9 151.1

The trapdoor for query keywords is generated according to
the keywords dictionary and sent to the cloud server. There-
fore, the size of trapdoor is mainly determined by the size of
dictionary. From Table 3, the storage overhead of trapdoor
is smaller than the index, and it is sensitive to the number of
keywords such as the secure index.

Table 3 Size of trapdoor with m = 1000

Size of dictionary 2000 4000 6000 8000 10,000
MRSE (KB) 31.3 62.5 93.8 125 156.3
DMRS (KB) 30.9 61.9 92.8 123.8 154.7

6 Conclusions and future work

In this paper, we present a novel scheme that it supports
efficient and dynamic multi-keyword ranked search over
encrypted cloud data. Like MRSE scheme, the efficient
similarity measure of “coordinate matching” is chosen to

@ Springer
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effectively obtain the relevance of outsourced documents
to the queried keywords, and “inner product similarity” is
used for the analysis of similarity measure. Besides, we
use block sparse diagonal matrix and permutation matrix to
improve search speed and ensure the privacy requirement in
this proposed scheme. The new and secure index structure
is constructed to realize dynamic operation. Evaluations on
the security and efficiency of the proposed scheme under
different settings presented indicate that the DMRS scheme
introduces lower overhead on both computation and commu-
nication than MRSE scheme.

There are still many challenge problems in SSE schemes,
as the most of SSE schemes mainly consider the chal-
lenge from the cloud server. Actually, there are many secure
challenges in a multi-user scheme. Fine-grained access
authorization and the revocation of the user are big chal-
lenges. In the future works, we will try to improve the SSE
scheme to handle these challenge problems. In addition, we
will explore supporting other multi-keyword semantics (e.g.,
weighted query) over encrypted data, integrity check of rank
order in search result and privacy guarantees in the untrusted
server model.
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