
Soft Comput (2018) 22:5791–5801
https://doi.org/10.1007/s00500-017-2662-z

FOCUS

The information value and the uncertainties in two-stage
uncertain programming with recourse

Mingfa Zheng1,2 · Yuan Yi1 · Xuhua Wang3 · Jian Wang4 · Sheng Mao4

Published online: 3 June 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Based on uncertainty theory, this paper mainly
studies the uncertainties and the information value in the two-
stage uncertain programming with recourse. We first define
three fundamental concepts and investigate their theoretical
properties, based on which we present two optimal indices,
i.e., EVPI and VUS. Then, we introduce a method to calcu-
late the expected value of the second-stage objective function
involving discrete uncertain variables. Due to the complexity
of calculation, the upper bound and lower bound for the two
indices are studied, respectively. Finally, two examples are
given to illustrate these concepts clearly. The results obtained
in this paper can provide theoretical basis for studying uncer-
tainties and information value in decision-making process
under uncertain systems.
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1 Introduction

1.1 Motivation

Nowadays, the two-stage stochastic programming (SP) with
recourse is more practical, and it has become a fundamental
planning tool in the fields of engineering, economics, etc.
If we neglect the randomness in the two-stage stochastic
programming, such as replacing the random vectors (or vari-
ables) by their expected value, some unacceptable results
may happen. Obviously, the perfect (or accurate) stochas-
tic information in future can help to make more profits (or
less cost) if it is available before taking the first-step deci-
sion; thus, how to evaluate the stochastic information value is
important in the decision-making process. Under the random
environment, many researchers have studied the importance
of randomness and the stochastic information value in two-
stage stochastic programming and obtain some results based
on probability theory.

As is known to all, a fundamental premise of employing
probability theory is that the estimated probability is close
enough to the real frequency. Due to the lack of observed
data, we have to invite some experts to provide their belief
degree that each event will occur. Researches showed that
human beings tend to overweight unlikely events, and the
belief degree may have a much larger range than the real
frequency. If we insist on considering the belief degree as
probability, some counterintuitive results will happen. In
this uncertain environment, how to investigate the impor-
tance of such uncertain factors and how to evaluate their
perfect information value are practically important and the-
oretical challenging issues for the real-world applications.
In addition, we know that complexity of computation is
a distinctive feature of two-stage stochastic programming;
therefore, under the uncertain environment, the computa-
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tion of two-stage uncertain programming would be difficult.
Focusing on these problems proposed above, this research
will deal with them explicitly.

1.2 Literature review

An initial example of the two-stage SP problem was given
by Dantzig (1955) who applied the linear programming to
aircraft flight with the random factors. Then, Birge and
Louveaux (2011) investigated the theoretical properties of
two-stage SP with recourse and solution method. He also
defined the “here-and-now” solution, “wait-and-see” solu-
tion, “expected results by using the expected value solution,”
which represented three types of decision-making schemes.
Then, based on the three concepts, the expected value of
perfect information (EVPI) and the value of stochastic solu-
tion (VSS) were introduced. Shapiro and Dentcheva (2014)
investigated how to solve the two-stage SP by dual theory and
presentedmultistage stochastic programmingmodel. Romei-
jnders et al. (2014) presented an approximation method to
two-stage integer programming. Leovey andRomisch (2015)
presented quasi-Monte Carlo methods for linear two-stage
stochastic programming. Since two-stage SP is closer to the
real-world problem, recently, it has been developed rapidly
in applications, such as Parisio and Jones (2015) applied the
two-stage SP approach to employee scheduling; Fan et al.
(2015) investigated water resource allocation planning by
fuzzy two-stage SP method. Eckermann and Willan (2007)
applied the EVPI to the health treatment assignment. More
applications can be referred to Wolf et al. (2014), Hoomans
et al. (2009), Eckermann et al. (2010), etc.

As introduced in the motivation, the frequently used prob-
ability distribution is not appropriate to the some problems
due to the shortage of sample data (or even no sample).
To deal with this inaccurate phenomenon, the uncertainty
theory was founded by Liu (2007) in 2007 and refined by
Liu (2010a) in 2010 based on normality, duality, subaddi-
tivity and product axioms. Since then, uncertainty theory
has been developed continuously such as Liu (2013), Sheng
and Yao (2014), which provides a theoretical foundation for
uncertain programming just like the role of probability the-
ory for stochastic programming. The pioneering research on
uncertain programming and its application was started by
Liu (2009a) in 2009, Liu and Chen (2015) investigated mul-
tiobjective programming and uncertain goal programming
in 2015, Wang et al. (2015) studied the solution method to
the uncertain multiobjective programming, and Zheng et al.
(2017a) further proposed several types of efficient solutions
to the uncertain multiobjective programming and studied
their relations. The application of efficient solutions to the
uncertain multiobjective programming can be referred to
Zheng et al. (2016); Liu and Yao (2015) studied an uncertain
multilevel programming formodeling decentralized decision

systems; Zheng et al. (2017b) first proposed the model of
two-stage uncertain programming and investigated its solu-
tionmethod; Liu (2010a) applied the uncertain programming
to the machine scheduling problem with uncertain process
times, vehicle routing problem and project scheduling prob-
lem; Liu (2010b) initially studied uncertain risk analysis and
uncertain reliability analysis; and Zhang and Peng (2013)
applied the uncertain programming to the optimal assign-
ment problem.

1.3 Proposed approaches

To the best of our knowledge, the majority of existing lit-
eratures devoted the study of the two-stage programming
problem under the environment, including the theoretical
properties and algorithm. However, under the uncertain envi-
ronment, there are few researches work except Zheng et al.
(2017b), who presented the model of two-stage uncertain
programming with recourse (UPR) and investigated its prop-
erties. Therefore, following the idea of the two-stage UP
problembyZheng et al. (2017b), this papermainly dealswith
the uncertainties and the information value in the two-stage
UP problem. We first define three fundamental concepts,
i.e., “here-and-now” (HN) solution, “wait-and-see” (WS)
solution, “expected results by the expected value” (EEV)
solution, which represent three types of decision-making
schemes to the two-stage UP problem, and we discuss their
theoretical properties. Based on the three concepts above, we
define the difference between WS and HN (i.e., HN-WS) as
the expected value of perfect information (EVPI), and the
difference between WS and HN (i.e., EEV-HN) as the value
of uncertainty (VUS) (considering the minimum of objec-
tive function). The quantity, EVPI, measures the maximum
amount that a decisionmakerwould pay in return for accurate
information, and the quantity, VUS, reflects the importance
of the uncertainties in the actual problem. In addition, this
paper presents a method for calculating the expected value of
the second-stage objective function involving discrete uncer-
tain variables. Duo to the complexity of calculation, we,
respectively, investigate the upper bound and lower for the
two indices. Finally, two examples are given to illustrate the
three concepts and the twooptimal indices clearly. The results
obtained in this paper can provide theoretical basis for study-
ing uncertainties and information value in decision-making
process under uncertain systems.

This paper is organized as follows. In Sect. 2, we review
some basic results in uncertainty theory. Two optimal indices
and the related concepts are proposed in Sect. 3. Section 4
studies the properties of the concepts proposed in this paper
and obtains the upper bound and lower bound on the two opti-
mal indices. In Sect. 5, two numerical examples are given to
demonstrated these concepts explicitly. Finally, a brief sum-
mary is given in Sect. 6.
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2 Preliminaries

Let � be a nonempty set, and L a σ -algebra over �. Each
element � in L is called an event. A set function M from
L to [0, 1] is called an uncertain measure if it satisfies the
following axioms (Liu 2007):

Axiom 1 (Normality Axiom)M{�} = 1 for the universal set
�.

Axiom 2 (Duality Axiom)M{�}+M{�c} = 1 for any event
�.

Axiom 3 (Subadditivity Axiom) For every countable
sequence of events �1,�2, . . ., we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M{�i }.

The triplet (�,L,M) is called an uncertainty space. Further-
more, Liu (2009b) defined a product uncertain measure by
the fourth axiom:

Axiom 4 (Product Axiom) Let (�k,Lk,Mk) be uncertainty
space for k = 1, 2, . . .. The product uncertain measureM is
an uncertain measure satisfying

M

{ ∞∏
k=1

�k

}
=

∞∧
k=1

Mk{�k} (1)

where �k are arbitrarily chosen events from Lk for k =
1, 2, . . ., respectively.

Definition 2.1 (Liu 2007)An uncertain variable is ameasur-
able function ξ from an uncertainty space (�,L,M) to the
set of real numbers, i.e., for any Borel set B of real numbers,
the set

{ξ ∈ B} = {γ ∈ � | ξ(γ ) ∈ B}

is an event.

Definition 2.2 (Liu 2007) The uncertainty distribution � of
an uncertain variable ξ is defined by �(x) = M{ξ ≤ x} for
any real number x .

Definition 2.3 (Liu 2010a) An uncertain distribution � is
said to be regular if its inverse function �−1(α) exists and is
unique for each α ∈ (0, 1.)

Definition 2.4 (Liu 2010a) Let ξ be an uncertain variable
with regular uncertainty distribution �. Then, the inverse
function �−1 is called the inverse uncertainty distribution of
ξ .

Definition 2.5 (Liu 2007) Let ξ be an uncertain variable.
Then, the expected value of ξ is defined by

E[ξ ] =
∫ ∞

0
M{ξ ≥ x}dx −

∫ 0

−∞
M{ξ ≤ x}dx (2)

provided that at least one of the two integrals is finite.

Definition 2.6 (Liu 2007) A k-dimensional uncertain vector
is a function ξ from an uncertainty space (�,L,M) to the set
of k-dimensional real vectors such that {ξ ∈ B} is an event
for any Borel set B of k-dimensional real vectors.

Theorem 2.1 (Liu 2010a)Let ξ and η be independent uncer-
tain variables with finite expected values. Then, for any real
numbers a and b, we have

E[aξ + bη] = aE[ξ ] + bE[η]. (3)

Theorem 2.2 (Liu 2010a) Let ξ be an uncertain variable
with regular uncertainty distribution�. If the expected value
exists, then

E[ξ ] =
∫ 1

0
�−1(α)dα

Theorem 2.3 (Liu 2010a) Let ξ1, ξ2, . . . , ξn be indepen-
dent uncertain variables with regular uncertainty distribu-
tions �1,�2, . . . , �n, respectively. If the function f (x1,
x2, . . . , xn) is strictly increasing with respect to x1, x2, . . . ,
xm and strictly decreasing with respect to xm+1, xm+2, . . . ,

xn, then ξ = f (ξ1, ξ2, . . . , ξn) is an uncertain variable with
inverse uncertainty distribution


−1(α) = f (�−1
1 (α),�−1

2 (α), . . . , �−1
m (α),

�−1
m+1(1 − α),�−1

m+2(1 − α), . . . , �−1
n (1 − α)).

Theorem 2.4 (Liu 2007) Let ξ be an uncertain variable and
f a convex function. If E[ξ ] and E[ f (ξ)] are finite, then

f (E[ξ ]) ≤ E[ f (ξ)].

3 Three concepts and two optimal indices in
two-stage UPR problem

In order to present the three expected value solution concepts,
we first discuss the basic model of two-stage UPR prob-
lem. Under the uncertain environment, a two-stage uncertain
programming with recourse problem can be formulated as
follows by Zheng et al. (2017b)
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min
x

cT x + min
y

qT (γ )y

s.t. Ax = b
T (γ )x + Wy = h(γ )

x ≥ 0, y ≥ 0.

(4)

where x ∈ Rn1 , y ∈ Rn2 are decision variables, c is a known
vector in Rn1 , b is a known vector in Rm1 , A and W are
known matrices of size m1 × n1 and m2 × n2, respectively,
W is called recourse matrix which is assumed to be fixed for
the convenience computation.

For each realization γ ∈ Γ, T (γ ) is m2 × n1, q(γ ) ∈
Rn2 , h(γ ) ∈ Rm2 . Piecing together the uncertain compo-
nents of the problem (4), we obtain an uncertain vector
ξ T (γ ) = (q(γ )T , h(γ )T , T1(γ ), . . . , Tm2(γ )) with N =
n2 + m2 + (m2 + n1) components, where Ti (γ ) is the i th
row of the technology matrix T (γ ). Let Ξ ⊂ Rn be the sup-
port of ξ which is the smallest closed subset in Rn such that
M{Ξ} = 1.

The decision-observation schemecan be described as fol-
lows

decision on x
observation of uncertain event γ

decision on y.

According to this scheme, the problem (4) obtains two
unsolved optimization problems. Assuming that x and γ are
given, the second-stage problem, or recourse problem can be
formulated as follows

⎧⎪⎨
⎪⎩
min
y

qT (γ )y

s.t. T (γ )x + Wy = h(γ )

y ≥ 0,

(5)

where x belongs to the feasible set S1 = {x | Ax = b, x ≥
0}. By the above analysis, we know that the second-stage
problem is a more difficult one. For each γ ∈ Ξ , the value
y(γ ) is the solution of a linear programming. To stress this
fact, sometimes we use the notion of a deterministic equiv-
alent programming. For a given realization γ of uncertain
variable ξ , let

Q(x, ξ(γ )) = min{qT (ξ(γ ))y|Wy = h(ξ(γ ))

−T (ξ(γ ))x, y ≥ 0}

be the second-stage value function, where ξ is an uncertain
vector.

Next,wewill define three basic concepts of expected value
solution for the model (4). For convenience, Q(x, ξ(γ )) is
indiscriminately denoted by Q(x, γ ) throughout this paper.

3.1 HN solution

Denote the expected second-stagevalue function (or recourse
function) as

QE(x) = Eξ [Q(x, γ )] (6)

where Eξ is the expected value operatorwith respect to uncer-
tain vector ξ .

Therefore, the two-stage UPR problem can be rewritten
as follows⎧⎪⎨
⎪⎩
min
x

z(x) = cT x + QE(x)

s.t. Ax = b
x ≥ 0

(UPR) (7)

where QE(x) = Eξ [Q(x, γ )], and
⎧⎪⎨
⎪⎩

Q(x, γ ) = min
y

qT (γ )y

s.t.T (γ )x + Wy = h(γ )

y ≥ 0.

(8)

Obviously, by the above discussion, the problem (7) can be
rewritten as follows⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min
x

z(x) = cT x + Eξ [min
y

qT (ξ)y]
s.t. Ax = b

T (ξ)x + Wy = h(ξ)

x ≥ 0, y ≥ 0

(UPR) (9)

where ξ is an uncertain vector defined on the uncertainty
space (�,L,M).

Definition 3.1 We define the “here-and-now” solution (HN)
(or recourse problem) in the problem (9) as

HN = min
x

Eξ z(x, ξ) = min
x

{cT x + QE(x)} = z(x∗)

with an optimal solution, x∗.

3.2 WS solution

Suppose that the uncertainties in the problem (9) can bemod-
eled through a number of scenarios. Let ξ be the uncertain
vector whose realizations correspond to the various scenar-
ios. Define⎧⎪⎨
⎪⎩
min
x

z(x, ξ(γ )) = cT x + min{qT (γ )y|Wy

= h(γ ) − T (γ )x, y ≥ 0}
s.t. Ax = b, x ≥ 0

(10)

as the optimization problem associated with one particular
scenario γ .
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We may also reasonably assume that there exists at least
one x ∈ Rn1 such that z(x, ξ(γ )) < +∞. If not, there would
exist no feasible solution for at least one scenario; in such
a situation, no reasonable stochastic programming model
could be established. This assumption implies that, for all
ξ(γ ) ∈ Ξ , there exists at least one feasible solution which
in turn means the existence of at least one optimal solution.
Let x̄(ξ(γ )) denote some optimal solution to problem (10).
As in a scenario method, we might be interested in finding
all solutions x̄(ξ(γ )) of problem (10) for all scenarios and
the related optimal objective values z(x̄(ξ(γ )), ξ(γ )).

Here, we assume that we somehow have the ability
to find these decisions x̄(ξ(γ ) and their objective value
z(x̄(ξ(γ )), ξ(γ )) so that we can in a position to calculate
the expected value of the correspondingly optimal objective
value, which is called “wait-and-see” (WS) solution.

Definition 3.2 We define the “wait-and-see” (WS) solution
as

WS = Eξ {min
x

z(x, ξ(γ ))} = Eξ z(x̄(ξ(γ )), ξ(γ )).

3.3 EEV solution

For practical purpose, we would believe that finding the WS
solution is still toomuchworkbecause it delivers a set of solu-
tions instead of one solution that would be implementable.
Therefore, a natural temptation is to solve a much simpler
problem: the one obtained by replacing all uncertain vectors
or uncertain variables in problem (9) with their expected val-
ues. This is called expected value (EV) problem, which is
simply

EV = min
x

z(x, ξ̄) = z(x̄(ξ̄)) (11)

with optimal solution x̄(ξ̄), where ξ̄ is the expected value
of ξ , and x̄(ξ̄) (called expected value solution(EV)) is an
optimal solution to the EV problem.

In practical decision-making process, we would feel at
least a little insecure about advising to take decision x̄(ξ̄).
Indeed, unless x̄(ξ) is somehow independent of ξ , there is no
reason to believe that x̄(ξ̄) is in any way near the solution of
the problem (9). Therefore, in order to preciselymeasure how
good or, more frequently, how bad a decision x̄(ξ̄) is in terms
of the problem (9), we should find a method to evaluate the
value of the uncertain solution which begins with defining
the following concept of expected results of using the EV
solution.

Definition 3.3 We define the expected results of using the
EV solution (EEV) to be

EEV = Eξ z(x̄(ξ̄), ξ).

3.4 The EVPI and VUS

Ifwe can obtain the precise uncertain information in the prob-
lem (9) by purchasing or other means, there is no doubt that
it is helpful to make decisions. There is a natural question:
How much is the information? Based on uncertainty theory,
we present a concept called the expected value of perfect
information (EVPI) to solve this problem. Unfortunately, in
some practical problems, we cannot obtain any information
by all means. Under these circumstances, how can we evalu-
ate the uncertainties in the problems? Therefore, the concept
of the value of uncertain solution (VUS) is also proposed in
this subsection.

Definition 3.4 The expected value of perfect information
is the difference between the wait-and-see solution and the
here-and-now solution, namely

EV P I = HN − WS.

Remark 1 The quantity, EVPI, measures the maximum
amount that a decision maker would be ready to pay in return
for complete or accurate information about the future.

Definition 3.5 The value of fuzzy solution is the difference
between the here-and-now solution and the EEV, namely

V FS = EEV − HN .

Remark 2 The quantity, VUS, reflects the importance of the
uncertainties in the problem.

4 Basic properties

Theorem 4.1 For the two-stage UPR problem (9), we have

W S ≤ HN ≤ EEV .

Proof For any realization, ξ(γ ), we have

z(x̄(ξ(γ )), ξ(γ )) ≤ z(x̄∗, ξ(γ )),

where, as described before, x∗ denotes the optimal solution
to the here-and-now problem.

By the definition of uncertain vector, it is easy to obtain

Eξ [z(x̄(ξ(γ )), ξ(γ ))] ≤ Eξ [z(x̄∗, ξ(γ ))],

which, by the definitions, is

WS ≤ HN .
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On the other hand, since x̄(ξ̄) is just one feasible solution to
the two-stage UPR problem (9), evidently,

Eξ [z(x̄∗, ξ(γ ))] ≤ Eξ [z(x̄(ξ̄), ξ(γ ))],

that is,

HN ≤ EEV .

The proof is complete. �	

Theorem 4.2 For the two-stage UPR problem (9) with fixed
recourse matrix W and fixed objective coefficients q, we can
obtain

EV ≤ WS.

Proof We first prove that the f (ξ) = min
x

z(x, ξ(γ )) is a

convex function with respect to ξ . Since

min
x

z(x, ξ(γ )) = cT x + min{qT y|Wy

= h(γ ) − T (γ )x, y ≥ 0},

it is evidently sufficient to prove that the second-stage optimal
objective function Q(x, ξ) is convex with respect to ξ .

Denote

g(T (γ ), h(γ )) = min{qT y|Wy = h(γ ) − T (γ )x, y ≥ 0}.

Suppose that γ1, γ2 ∈ Γ , and T (γ1), h(γ1), T (γ2), h(γ2) ∈
Ξ . Denote

Tλ = λT (γ1) + (1 − λ)T (γ2), hλ = λh(γ1) + (1 − λ)h(γ2).

If y∗
1 and y∗

2 are the optimal solutions to the problems
g(T (γ1), h(γ1)) and g(T (γ2), h(γ2)), respectively. Then,
∀λ ∈ (0, 1), λy∗

1 + (1 − λ)y∗
2 is a feasible solution to the

problem g(Tλ, hλ). Let y∗ be the optimal solution to the
g(Tλ, hλ), we have

g(Tλ, hλ) = qT y∗ ≤ qT λ(y∗
1 + (1 − λ)y∗

2 )

= λqT y∗
1 + (1 − λ)qT y∗

2

= λg(T (γ1), h(γ1)) + (1 − λ)g(T (γ2), h(γ2)),

which shows that the g(T (γ ), h(γ )) is a convex function;
thus, the function f (ξ) = min

x
z(x, ξ(γ )) is a convex func-

tion with respect to ξ .
By Theorem 2.4, we obtain

f (E[ξ ]) ≤ E[ f (ξ)],

namely,

min
x

z(x, ξ̄) ≤ E[min
x

z(x, ξ(γ ))],

which, by the definitions of EV and WS, is

EV ≤ WS.

The proof is complete. �	
Theorem 4.2 does not hold for general two-stage UPR

problem. For example, if only the q in problem (9) is uncer-
tain, similarly, we can easily prove that z(x, ξ) is a concave
function and the Jensen’s inequality cannot be applied.

Theorem 4.3 For the fixed recourse matrix W and fixed
objective coefficients q, let x∗ be an optimal solution to the
problem (9) and x̄(ξ̄) an optimal solution to the problem EV
problem (11). Then,

EEV + (x∗ − x̄(ξ̄))T η ≤ HN ,

where η ∈ ∂Eξ (z(x̄(ξ̄), ξ)), the subdifferential set of
Eξ (z(x, ξ)) at x̄(ξ̄).

Proof By the proof of Theorem 4.2 and properties of convex
function, it is easy to obtain that Eξ (z(x, ξ)) is convex. By
the subgradient inequality, the relation

Eξ z(x1, ξ) + (x2 − x1)
T η ≤ Eξ (z(x2, ξ))

holds at point x1 for any x2. Substitute x̄(ξ̄) and x∗ for the
points x1 and x2, respectively, and we have

Eξ z(x̄(ξ̄), ξ) + (x2 − x1)
T η ≤ Eξ z(x

∗, ξ),

which is

EEV + (x∗ − x̄(ξ̄))T η ≤ HN .

In order to obtain the another bound on the HN solu-
tion, we consider a slightly different version of the recourse
problem defined as follows

⎧⎪⎨
⎪⎩
min
x

z p(x, ξ) = cT x + min{qT y|Wy ≥ h(ξ) − T x, y ≥ 0}
s.t. Ax = b

x ≥ 0.

(12)

Compared with the problem (10), only the right-hand side
of the problem (12) is uncertain and the second-stage con-
straints are inequalities. We can easily apply all definitions
and relations to z p. If we further assume that h(ξ) is bounded
above, an additional inequality results as follows. �	
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Theorem 4.4 Consider the problem (12) and the related def-
inition

HN = min
x

Eξ z p(x, ξ).

Suppose that h(ξ) is bounded above by a fixed quantity hmax .
Let xmax be an optimal solution to z p(x, hmax ). Then,

HN ≤ z p(xmax , hmax ).

Proof For any ξ in Ξ and x ≥ 0, a feasible solution to
Wy ≥ hmax −T x, y ≥ 0 is also a feasible solution toWy ≥
h(ξ)−T x, y ≥ 0. Thus, z p(x, hmax ) ≥ z p(x, h(ξ)). Hence,
z p(x, hmax ) ≥ Eξ z p(x, h(ξ)). Evidently,

z p(xmax , hmax ) ≥ min
x

Eξ z p(x, h(ξ)) = HN .

The proof is complete. �	
Similarly, if we consider the following the problem

⎧⎪⎨
⎪⎩
min
x

zq (x, ξ) = cT x + min{qT y|Wy ≤ h(ξ) − T x, y ≥ 0}
s.t. Ax = b

x ≥ 0,

(13)

then a similar conclusion can be obtained as follows.

Theorem 4.5 Consider the problem (13) and the related def-
inition

HN = min
x

Eξ zq(x, ξ).

Suppose that h(ξ) is bounded below by a fixed quantity hmin.
Let xmin be an optimal solution to zq(x, hmin). Then,

HN ≤ zq(xmin, hmin).

Proof Similar to Theorem 4.4, this proof can be easily
obtained. The proof is complete. �	

Theorem 4.6 Suppose that the uncertain vector in the two-
stage UPR problem is discrete taking on finite values γ j with
correspondingly weights p j defined by the followingEq.(15),
j = 1, 2, . . . , N , we have

z∗ ≤ WS < z∗

where

z∗ = min
j

z(x(ξ(γ j )), ξ(γ j )), z∗ = max
j

z(x(ξ(γ j ))ξ(γ j )).

Proof From the following Eq.(16), we know that

N∑
j=1

p j = 1.

Thus, for any γ j , we have

min
j

z(x(ξ(γ j ), ξ(γ j )) ≤
∑N

j=1
p j {min z(x(ξ(γ j ), ξ(γ j ))}

≤ max
j

z(x(ξ(γ j ), ξ(γ j )),

namely

min
j

z(x(ξ(γ j ), ξ(γ j )) ≤
∑N

j=1
p j z(x̄(ξ(γ j ), ξ(γ j ))

≤ max
j

z(x̄(ξ(γ j ), ξ(γ j )), (14)

where x̄(ξ(γ j ), ξ(γ j )) is the optimal solution to the prob-
lem min z(x(ξ(γ j ), ξ(γ j )) for any γ j . It follows from the
definition of WS and the inequality (14) that

min
j

z(x(ξ(γ j ), ξ(γ j )) ≤ WS ≤ max
j

z(x̄(ξ(γ j ), ξ(γ j ));

thus,

z∗ ≤ WS < z∗.

The proof is complete. �	
Theorem 4.7 For the two-stage UPR problem (9), we have

EV P I ≥ 0,

VUS ≥ 0.

Proof It is evident to obtain this conclusion by Theorem 4.1.
This proof is complete. �	
Theorem 4.8 For the two-stage UPR problem (9) with fixed
recourse matrix W and fixed objective coefficients q, we can
obtain

EV P I ≤ EEV − EV,

VUS ≤ EEV − EV .

Proof Evidently, it can be verified byTheorem4.2. The proof
is complete. �	
Remark 3 From Theorem 4.8, we can obtain that the EV P I
and the VUS are nonnegative (anyone would be surprised
if this is not true) and are both bounded above by the same
quantity. When EEV = EV , both the EV P I and VUS
are vanished. A sufficient condition to this is to have x̄(ξ)
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independent of ξ . In such situations, the optimal solutions
are insensitive to the value of the uncertain elements, and we
can find them by any given uncertain vector such as ξ̄ . Hence,
it is unnecessary to solve a recourse problem. Such extreme
situations occur rarely.

5 Numerical examples

In this section, we take two examples to illustrate how to
calculate the EV P I and VUS. To further study the proper-
ties of the two optimal indices, these two examples are also
designed to demonstrate the cases in which one of the two
concepts is null and the other is positive.

Let us begin with the expected value of discrete uncertain
variable in order to deal with the two-stage UPR problem
involving discrete uncertain variables. Assume that the dis-
crete uncertain variable ξ takes the expert’s experimental data

(ξ1, α1), (ξ2, α2), . . . , (ξn, αn),

which meet the following consistence conditions (perhaps
after rearrangement)

ξ1 ≤ ξ2 ≤ · · · ≤ ξn, 0 = α1 ≤ α2 ≤ · · · ≤ αn = 1.

Based on the experimental data, discrete uncertain variable
ξ has the following experimental uncertain distribution

�(x) =

⎧⎪⎨
⎪⎩

α1, if x ≤ ξ1

αi + (αi+1−αi )(x−ξi )
ξi+1−ξi

, if ξi ≤ x ≤ ξi+1, 1 ≤ i < n,

αn, if x ≥ ξn

where 0 = α1 < α2 · · · < αn = 1.
Define

pi = αi+1 − αi−1

2
, i = 1, 2, . . . , n, (α0 = 0, αn+1 = 1)

(15)

as the weights of discrete point ξi , i = 1, 2, . . . , n, respec-
tively.

Then, it is easy to know that the corresponding weights
satisfy the following constraints

pi ≥ 0,
n∑

i=1

pi = 1, i = 1, 2, . . . , n. (16)

By Definition 2.5, we can deduce that the expectation of
discrete uncertain variable ξ is represented in the formula

E[ξ ] =
n∑

i=1

piξi . (17)

Assume that the second-stage value functions satisfy the con-
dition

Q(x, ξ1) ≤ Q(x, ξ2) · · · ≤ Q(x, ξn).

Then, the second-stage objective function QE(x) can be cal-
culated by the following formula

QE(x) =
n∑

i=1

pi Q(x, ξi ). (18)

Next, wewill take two examples to illustrate the properties
of the two optimal indices.
a. EV P I = 0 and VUS �= 0

Example 5.1 Consider the following two-stage UPR prob-
lem⎧⎪⎪⎪⎨
⎪⎪⎪⎩
min
x

z(x, ξ) = x1 + 4x2 + min{y1 + 10y+
2 + 10y−

2 |y1
+y−

2 − y−
2 = ξ + x1 − 2x2, y1 ≤ 2, y ≥ 0}

s.t. x1 + x2 = 1,
x ≥ 0,

(19)

where ξ is a linear uncertain variable with the following
uncertainty distribution

Φ(x) =
⎧⎨
⎩
0, i f x < 1
(x − a)/(b − a), i f 1 ≤ x ≤ 3
1. i f x > 3

Calculate the EV P I and VUS.
For a given x and ξ , we can obtain

y∗(x, ξ)

=
⎧⎨
⎩

y1 = ξ + x1 − 2x2, y2 = 0, i f 0 ≤ ξ + x1 − 2x2 ≤ 2
y1 = 2, y+

2 = ξ + x1 − 2x2 − 2, i f ξ + x1 − 2x2 > 2
y−
2 = 2x2 − x1 − ξ. i f ξ + x1 − 2x2 < 0

Hence,

z(x, ξ)

=
⎧⎨
⎩
2x1 + 2x2 + ξ, i f 0 ≤ ξ + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ, i f ξ + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ, i f ξ + x1 − 2x2 < 0.

(20)

Note that the first-stage constraint x1 + x2 = 1, evidently,
we have z(x, ξ) = 2 + ξ in the first of these three regions.
By the first-stage constraint and the definition of the regions,
we can easily check that z(x, ξ) ≥ 2 + ξ in the other two
regions.

Thus, ∀x∗ ∈ {(x1, x2)|x1 + x2 = 1, x ≥ 0} is an optimal
solution to the problem (19) for −x1 + 2x2 ≤ ξ ≤ 2− x1 +
2x2, or equivalently, for 2 − 3x1 ≤ ξ ≤ 4 − 3x1.

By the analysis on the solutions, we can obtain that
the solution x̄ = (1/3, 2/3) is the optimal solution to the
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problem (19) for all ξ . We can also obtain different opti-
mal solutions for various uncertain variable ξ . For example,
x̄∗
1 = (0, 1) is optimal for ξ ∈ [2, 3], and x̄∗

2 = (1, 0) is
optimal for only ξ = 1.

Note that the solution x̄ = (1/3, 2/3) is optimal for all
ξ , by the definition of HN solution and WS solution we can
conclude that HN=WS. Next we will calculate the objective
value of the optimal solution x̄ = (1/3, 2/3) to the initial
problem (19), i.e., the HN solution. Evidently, in this sit-
uation, we know that z(x∗, ξ) = 2 + ξ for all ξ ∈ [1, 3].
By Definition 2.4, we can obtain the universe distribution of
linear uncertain variable ξ as follows

Φ−1
ξ (α) = 2α + 1.

By Theorem 2.2, the expected value of ξ can be obtained as
follows

E[ξ ] =
∫ 1

0
�−1(α)dα =

∫ 1

0
(2α + 1)dα = 2.

It follows from Theorem 2.1 that

min
x

E[z(x, ξ)] = E[min
x

z(x, ξ)] = E[2 + ξ ] = 4,

which implies that HN=WS=4.
Hence,

EV P I = HN − WS = 0.

Next, we will discuss the EEV solution.
In the problem (19), we replace the uncertain variable

ξ with its expected value, i.e., ξ̄ = 2, and then obtain the
following deterministic programming problem

z(x, ξ̄ = 2) =
{
4, i f 0 ≤ x1 ≤ 2

3
27x1 − 14, i f 2

3 ≤ x1 ≤ 1.
(21)

Easily, we can obtain that the optimal solutions to the prob-
lem (19) are x̄(2) = {x |x1 + x2 = 1, 0 ≤ x ≤ 2/3}
and the corresponding optimal objective value is 4, i.e.,
EV = min

x
E[z(x, ξ̄ )] = 4.

Without loss of generality, take the optimal solution
x̄(ξ̄ ) = (2/3, 1/3) in the problem (19), and we have

z(x(ξ̄ ), ξ) =
{
2 + ξ, i f 1 ≤ ξ < 2
−16 + 10ξ, i f 2 ≤ ξ ≤ 3.

Hence, by the definition of EEV, we have

EEV = Eξ [z(x̄(ξ̄ ), ξ)]
= E1≤ξ≤2[z(x̄(ξ̄ ), ξ)] + E2≤ξ≤3[z(x̄(ξ̄ ), ξ)]
=

∫ ∞

0
M{z(x̄(ξ̄ ), ξ) ≥ r}dr = 17

4
.

It follows from the definition of VUS that

VUS = EEV − HN = 17

4
− 4 = 1

4
.

b. EV P I �= 0 and VUS = 0

Example 5.2 Replace the uncertain variable in the Exam-
ple 5.1 with discrete uncertain variable ξ ∼ (0, 3/2, 2, 3)
which has belief degrees 0, 1/2, 2/3, 1, respectively, and then
calculate the EVPI and VUS.

By the analysis above, we can obtain:

For ξ = 0, x̄(0) = {
x |x1 + x2 = 1, 2

3 ≤ x1 ≤ 1
}
;

For ξ = 3
2 , x̄(

3
2 ) =

{
x |x1 + x2 = 1, 1

6 ≤ x1 ≤ 5
6

}
;

For ξ = 2, x̄(2) = {
x |x1 + x2 = 1, 0 ≤ x1 ≤ 2

3

}
;

For ξ = 3, x̄(3) = {
x |x1 + x2 = 1, 0 ≤ x1 ≤ 1

3

}
.

It follows from Eq.(17) that the expected value of ξ is
obtained as follows

ξ̄ = E[ξ ] =
4∑

i=1

piξi = 1

4
× 0 + 1

3
× 3

2
+ 1

4
× 2 + 1

6
× 3

= 3

2
.

Let us take x̄(ξ̄ ) = (2/3, 1/3), and it follows from the defi-
nition of EV that

EV = z(x̄(ξ̄ ), 3/2) = 2 × 2

3
+ 2 × 1

3
+ 3

2
= 7

2
.

Evidently,

z(x̄(ξ̄ ), 0) = 2 + 0 ≤ z

(
x̄(ξ̄ ),

3

2

)
= 2 + 3

2

≤ z(x̄(ξ̄ ), 2) = 2 + 2 ≤ z(x̄(ξ̄ ), 3) = −16 + 30.

It follows from Eq.(18) that

EEV = Eξ [z(x̄(ξ̄ ), ξ)] =
4∑

i=1

pi z

((
2

3
,
1

3

)
, ξi

)

= p1z

((
2

3
,
1

3

)
, 0

)
+ p2z

((
2

3
,
1

3

)
,
3

2

)

+ p3z

((
2

3
,
1

3

)
, 2

)
+ p4z

((
2

3
,
1

3

)
, 3

)

= 1

4
(2 + 0) + 1

3

(
2 + 3

2

)
+ 1

4
(2 + 2)

+ 1

6
(−16 + 30) = 5.

In order to obtain theWS solution, we should consider the
different optimal solutions for all three cases. Evidently, there
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are many optimal solutions, such as x̄(0) = (1, 0), x̄(3/2) =
(1/2, 1/2), x̄(2) = (1/4, 3/4), x̄(3) = (0, 1) for the three
cases, respectively.

Evidently,

z(x̄(ξ1), ξ1) = 2 + ξ1 ≤ z(x̄(ξ2), ξ2) = 2 + ξ2

≤ z(x̄(ξ3), ξ3) = 2 + ξ3 ≤ z(x̄(ξ4), ξ4)

= 2 + ξ4.

Hence, by the definition of WS solution and Eq.(18), we can
get

WS = Eξ z(x̄(ξ), ξ)

=
4∑

i=1

z(x̄(ξi ), ξi )

= p1z(x̄(ξ1), ξ1) + p2z(x̄(ξ2), ξ2) + p3z(x̄(ξ3), ξ3)

+p4z(x̄(ξ4), ξ3)

= 1

4
(2 + 0) + 1

3

(
2 + 3

2

)
+ 1

4
(2 + 2) + 1

6
(2 + 3) = 7

2
.

In order to obtain theHN solution, we should solve the uncer-
tain programming min

x
Eξ [z(x, ξ)]. For any given x and ξ ,

we have

HN = min
x

Eξ [z(x, ξ)]
= min

x
{p1z(x, ξ1) + p2z(x, ξ2) + p3z(x, ξ3) + p4z(x, ξ4)}

= min
x

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

{
2x1 + 2x2 + ξ1, i f 0 ≤ ξ1 + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ1, i f ξ1 + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ1, i f ξ1 + x1 − 2x2 < 0.

+ 1
3

{
2x1 + 2x2 + ξ2, i f 0 ≤ ξ2 + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ2, i f ξ2 + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ2, i f ξ2 + x1 − 2x2 < 0.

+ 1
4

{
2x1 + 2x2 + ξ3, i f 0 ≤ ξ3 + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ3, i f ξ3 + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ3, i f ξ3 + x1 − 2x2 < 0.

+ 1
6

{
2x1 + 2x2 + ξ4, i f 0 ≤ ξ4 + x1 − 2x2 ≤ 2
−18 + 11x1 − 16x2 + 10ξ4, i f ξ4 + x1 − 2x2 > 2
−9x1 + 24x2 − 10ξ4, i f ξ4 + x1 − 2x2 < 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= min
2
3 ≤ x1 ≤ 1
x1 + x2 = 1

{ 1
4 (2x1 + 2x2 + ξ1) + 1

3 (2x1 + 2x2 + ξ2) + 1
4 (2x1

+2x2 + ξ3) + 1
6 (−18 + 11x1 − 16x2 + 10ξ4)

}

=
⎧⎨
⎩
min
x

7
2 x1 − x2 + 3

s.t.x1 + x2 = 1
2
3 ≤ x1 ≤ 1, x2 ≥ 0

= 5

whose optimal solution is x∗ = (2/3, 1/3). Evidently,

EV = WS = 7/2 ≤ HN = 5 = EEV .

Thus,

EV P I = HN − WS = 3/2,

and

VUS = EEV − HN = 0.

6 Conclusions

Based on three types of decision-making schemes, three
expected value solutions to two-stage UP problemswere pre-
sented; then, the concepts of two optimal indices, i.e., EVPI
and VUS, were defined. Due to the complexity of calcula-
tion, the general solution method to calculate the expected
value of the second-stage objective function only involving
discrete uncertain variables was introduced. Two numerical
examples were given to illustrate these concepts explicitly.
The theoretical results obtained in this paper can provide
theoretical basis for studying uncertainties and information
value in decision-making process under uncertain systems.
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