
Soft Comput (2018) 22:4445–4455
https://doi.org/10.1007/s00500-017-2651-2

METHODOLOGIES AND APPLICATION

An optimized data hiding scheme for Deflate codes

Yuan Xue1 · Yu-an Tan1 · Chen Liang1 · ChangYou Zhang2 · Jun Zheng1,3

Published online: 1 June 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Compression file is a common form of carriers in
network data transmission; therefore, it is essential to inves-
tigate the data hiding schemes for compression files. The
existing data hiding schemes embed secret bits by shrinking
the length of symbols, while they are not secure enough since
the shrinking of symbol length is easily detected. First, we
propose a longest match detecting algorithm that can detect
the data hiding behavior of shrinking the length of symbols,
by checking whether items of the generated dictionary are
longest matches or not. Then, we propose a secret data hid-
ing scheme based on Deflate codes, which reversibly embeds
secret data by altering the matching process, to choose the
proper matching result that the least significant bit of length
field in [distance, length] pair is equal to the current embed-
ded secret bit. The proposed data hiding scheme can resist

Communicated by V. Loia.

B Jun Zheng
zhengjun_bit@163.com

Yuan Xue
xueyuan_1007@163.com

Yu-an Tan
tan2008@bit.edu.cn

Chen Liang
1342313537@qq.com

ChangYou Zhang
changyou@iscas.ac.cn

1 School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China

2 Institute of Software, Chinese Academy of Sciences, Beijing
100190, China

3 Beijing Engineering Research Center of Massive Language
Information Processing and Cloud Computing Application,
Beijing 100081, China

on the longest match detection, and the embedding rate is
higher than DH-LZW algorithm. The experiment shows that
the proposed scheme achieves 5.12% of embedding rate and
10.18% size increase in the compressed file. Moreover, an
optimization is made in providing practical suggestion for
DH-Deflate data hiding. One can choose which format and
size of files are to be selected based upon the optimization,
and thus, data hiding work can be achieved in a convenient
and targeted way.

Keywords Steganography · Information hiding · Deflate
coding algorithm · Optimization

1 Introduction

The rapiddevelopment of the Internet requires the lightweight
of data and its storage security muchmore than before (Parah
et al. 2015; Zhang et al. 2017; Utku Celik et al. 2005; Rui-
jin et al. 2016). Accordingly, users need effective tools to
decrease the size of large data blocks before data transmis-
sion (Xuan et al. 2005; Tseng and Chang 2004; Guo and Liu
2012; Mali et al. 2012; Zhu et al. 2017).

The wide application of compressing tools inspires a new
way for data security, which is to embed secret data in com-
pressed files (Tseng and Chang 2004; Guo and Liu 2012;
Guo and Tsai 2012; Jian et al. 2015; Xuan et al. 2004;
Nikolaidis 2015). Such kind of methods toughen the process
of discovering hidden data for adversaries, since a proper
decompressing method is essential to obtain hidden data
(Parah et al. 2015;Lee et al. 2012;Zhang et al. 2013;Yan et al.
2016; Kumar and Pooja 2010). Additionally, these meth-
ods have advantages over reducing transmission costs and
simultaneously make the transmission more secure (Niko-
laidis 2015; Wu et al. 2006; Chang et al. 2006, 2016; Moulin

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2651-2&domain=pdf

4446 Y. Xueet al.

and Koetter 2005; Zhu et al. 2016; Najafi 2007; Liu and Tsai
2007).

Past 10 years has seen the development of data hiding
algorithms based on compressed tools (Tseng and Chang
2004; Guo and Tsai 2012; Xuan et al. 2004; Kumar and
Pooja 2010; Chang et al. 2006; Moon and Kawitkar 2007;
Yadav et al. 2012). Among large number of compressing
tools, Lempel–Ziv–Welch (LZW) coding is a widely applied
lossless compression algorithm and Shim et al. (2004) pro-
posed the DH-LZW scheme by one character of one symbol
to hide the data. Chen and Chang (2010) proposed the
HCDH-LZW scheme in which received a higher embed-
ding capacity than Shim et al.’s scheme by shrinking the
characters according to the length of the symbol used to
hide the data. Wang et al. (2013) proposed the HPDH-LZW
scheme by modifying the value of LZW codes to hide secret
data.

Schemes based on LZW hold the advantage getting a
higher capacity for data hiding as well as the convenience
of secret data extracting (Shim et al. 2004; Chen and Chang
2010; Bender et al. 1996). However, on the one hand, since
many optimized schemes have been proposed, which hold
higher performance and prevalence, new data hiding algo-
rithm is needed to adapt to these optimized schemes for both
the less time consumption and better compression rate. On
the other hand, since most of these schemes hide secret data
by changing the length of symbols, we discover a detecting
method which can detect the existence of hiding data in such
kind of schemes. Thus, those schemesmay not be considered
as secure ones.

To make up for this defect, our proposed scheme, named
DH-Deflate, is based on a kind of optimized and prevalence
compressing algorithm, Deflate, which is widely applied in
compressing tools and considered to outperform the origi-
nal algorithm, LZ’77. Besides the application of Deflate, our
scheme also changes the algorithm of data hiding to embed
secret data in the process of altering the symbol producing
process, which disables the proposed detecting method to
discover hidden data.

Besides the proposed data hiding scheme, we also work
on providing experiential advice for compression data hiding
achievers. That is, once the size of carriers is constrained
and the embedded rate is specifically required, an advice of
choosing proper file formats can be generalized. Thus, an
optimization is done to shed light on the relationship of data
embedding rate between carrier files format and redundancy.

Our contribution:

1. DH-Deflate a data hiding scheme based upon Deflate
algorithm is proposed to achieve data hiding tasks which
owns compatibility and could be transplant to LZ’77
series algorithms. To the best of our knowledge, this is
the first data hiding scheme realized in Deflate.

2. A longest match detecting algorithm is proposed to judge
if compression files contain embedded data. This algo-
rithm can be applied to detect most existed data hiding
algorithms which achieve data hiding based on shrinking
the length of the longest match. Of course, DH-Deflate
is an exception for our detecting algorithm.

3. An optimization is done to provide advisable inspiration
to data hiding work achievers. They can achieve data hid-
ing in a more purposive and convenient way by utilizing
the optimization in this paper.

The following section is devoted to an overview of data
hiding algorithms based on compressed file and our proposed
scheme. In Sect. 2, we will review several related compress-
ing algorithms and data hiding schemes. Section 3 proposes
a longest match detecting algorithm for detecting the exis-
tence of LZW-based hidden data. In Sect. 4, we propose our
data hiding scheme. The experimental results and optimiza-
tion are illustrated in Sect. 5. Limitation and future work are
described in Sect. 6, and Sect. 7 shows our conclusion.

2 Preliminaries

In this section, LZW compression algorithm and its several
data hiding schemes including DH-LZW scheme, HCDH-
LZW scheme, HPDH-LZW scheme are introduced. Deflate
compression algorithm is also briefly described.

2.1 LZW algorithm

LZW is a lossless data compression algorithm proposed by
Abraham Lempel, Jacob Ziv, and Terry Welch, which codes
variable-length symbolswith fixed-length codes in the dictio-
nary (Welch 1984). During encoding phase, sequenceswhich
do not exist in dictionary will be regarded as a new symbol
and inserted into the next unused location of dictionary; then,
the sequences are partly coded and outputted. In LZW algo-
rithm, the dictionary initializes with ASCII values 0–255;
thus, the shortest code length is 9 bits (Wu et al. 2006). Dur-
ing decoding phase, encoded data are decoded according to
its dictionary. Since this phase can build a same dictionary
with encoding phase automatically, receivers do not need to
synchronize its dictionary with senders.

2.2 DH-LZW data hiding scheme

The DH-LZW scheme is a data hiding algorithm based on
LZW algorithmwhich is proposed by Shim et al. (2004). Via
dropping the last character of the symbols, secret data can be
embedded into the compressed files by bytes.

The basic idea of DH-LZW is to modify symbol’s length
during the encoding phase until the least significant bit of

123

An optimized data hiding scheme for Deflate codes 4447

Table 1 Data hiding and data extracting phases of DH-LZW

Data hiding Data extracting

Input Original code Output New item Hidden bit Input Old code Output New item Extracted bit

aa 97 97 256= aa 97 a

b 97 97 257= ab 97 97 a 256= aa

b 98 98 258= bb 98 97 b 257= ab

a 98 98 259= ba 98 98 b 258= bb

aa 256 256 260= aaa 256 98 aa 259= ba

bb 257 257 261= abb 257 256 ab 260= aaa

ba 258 258 262= bba 258 257 bb 261= abb

bbb 261 257 263= abb 0 257 258 ab 262= bba

ab 262 258 264= bba 0 258 257 bb 263= abb 0

ba 261 261 265= abba 1 261 258 abb 264= bba 0

aa 260 260 260 261 aaa 265= abba 1

symbol’s length is equal to embedding secret bit, which
means if the least significant bit of symbol’s length equals
to the hidden bit, the symbol will remain unchanged, else
drop the last character of symbol to let them consistent.
Thus, during the decoding phase, the embedded data can
be extracted by figuring out the least significant bit of each
symbol’s length.

Accounting for algorithm’s efficiency (Wang et al. 2013),
the DH-LZW scheme sets a threshold called THD to judge
if a symbol is available to hide secret bit, a symbol cannot
be used to hide secret bit if its length is not larger than THD.
When extracting embedded bits, if a symbol’s length is not
larger than THD, this symbol’s least significant bit would not
be outputted to the secret data files.

Example 1 Set the source file ”aabbaaabbbabbbabbaaa,”
THD is 3, and secret file is ”001.”

An example of DH-LZW schemes is given in Example 1,
and its specific results are shown in Table 1. In encoding
phase, before the 263rd item is generated, the length of sym-
bol ”abbb” is 4, which can embed a secret bit. The first secret
bit is ”0” which is not equal to (4–1); thus, the last charac-
ter of symbol ”abbb” is dropped. Similarly, when getting the
264th item, symbol ”bbab” drops the character ”b” to hide
the second secret bit ”0.” And before the 265th item is added
to the dictionary, symbol ”abba” whose length is 4 can be
used to hide a secret bit. The third secret bit ”1” equals to
(4–1), and the symbol remains unchanged.

In decoding phase, the 263rd and 264th items have already
existed in the dictionary, and we can get the secret bit ”0”
from the least significant bit of (3–1). The length of 265th
item is 4, fromwhich the secret bit ”1” can be extracted since
the least significant bit of (4–1) is 1.

2.3 Optimized schemes of DH-LZW

Some optimized schemes of DH-LZW have been proposed
in the last several years. Chen andChang (2010) proposed the
HCDH-LZW scheme, which enlarged the data hiding capac-
ity of the original scheme. The main idea of HCDH-LZW
scheme is to shrink the symbol according to the symbol’s
length, m = log2(n − 1), where m is how many bit can
be embedded in one symbol and n is symbol’s length. For
example, if symbol’s length is 2 or 3, it can be used to hide
1 bit, or if the length is between 4 and 7, 2 bits can be hided
in the symbol. Wang et al. (2013) proposed the HPDH-LZW
scheme, which realized data hiding by modifying LZW code
according to the hidden bit. For example, if the hidden bit is
”0,” the output LZW code will remain equal to the original
LZW code; however, if the hidden bit is ”1,” the output LZW
code will be the sum of original LZW code and currently
dictionary size.

2.4 Deflate algorithm

Deflate algorithm is an optimize compressing algorithm
based on LZ’77 algorithm (Lonardi et al. 2007; Lonardi and
Szpankowski 2003). Different from LZW algorithm, Deflate
algorithm compresses files by representing sequential sym-
bols with its longest match’s distance and length pairs in
sliding window. A sliding window is a buffer which stores
the compressed data blocks.

During the encoding phase, at very beginning, slidingwin-
dow fills itself with data blocks and encodes them directly.
Then, sliding window scans source files and encodes new
data block with longest matches buffered in the window.

Accounting for algorithm’s efficiency, if a symbol’s
longest match length is less than a threshold (usually set to
3), encoder will skip this symbol, else the encoder calculates

123

4448 Y. Xueet al.

Table 2 Compression phase
and decompression phase of
Deflate

Compression Decompression

Input Window Output Input Window Output

a a a a

a a a a a a

b aa b b aa b

b aab b b aab b

a aabb a a aabb a

aabb aabba [5,4] [5,4] aabba aabb

b aaabb b b aaabb b

abbb aabbb [4,4] [4,4] aabbb abbb

abb babbb [4,3] [4,3] babbb abb

a bbabb a a bbabb a

a babba a a babba a

a abbaa a a abbaa a

the distance between the longest match and symbol and con-
ducts a [distance, length] pair. Then, the [distance, length]
pair will be encoded to Huffman codes as output. Finally,
the sliding window slides ”distance” length and encodes the
following data blocks.

In decoding phase, [distance, length] pairs are decoded
according to the slide window. A simple example of the
Deflate algorithm is presented in Table 2 for providing a
better understanding of Deflate.

Example 2 The size of sliding window is assumed to be 5.
The source file is assumed to be “aabbaaabbbabbbabbaaa.”
[5, 4] means distance is 5 and length is 4.

It can be seen from Table 2, in the compression phase,
before the sliding window is fully filled, the input character
is coded directly. The window then begins to slid and gener-
ates [distance, length] code pairs. The encoder tries to find
the longest match and express it with [distance, length]. For
those whose length of longest match is shorter than 3, the
encoder codes it directly. In the data extracting phase, a sin-
gle character is directly decoded and the [distance, length]
pairs are transformed to strings according to the window.

3 Detect data hiding behavior of altering symbol
length

3.1 Longest match detecting algorithm

The proposed longest match detecting algorithm can be
applied to detect whether LZW compressed files contain
secret data. In LZW algorithm encoding phase, all items in
the dictionary are unique, which means each new symbol
must be a longest match. However, in DH-LZW algorithm
encodingphase, not all items are unique, since symbolmaybe

modified for data hiding. Thus, new symbol may not always
be a longestmatch. The possibilities that a symbol is a longest
match or not are approximately equal, whichmeans the more
the secret bits, the higher the possibility we can discover a
non-longest match. For practical reason, we always try to
embed as much secret data as possible; in such situation, our
detecting scheme obtains a very high possibility of detecting
if a file contains hidden data. The algorithm is summarized as
shown in Algorithm 1. With this algorithm, rivals can easily
figure out if there are hidden data.

Algorithm 1 The data hiding detection algorithm
1 let T, bu f f er, i, f ← φ, φ, 1, 0
2 while have not finished decoding yet
3 phrase i ←decode the next phrase as according to the standard
LZW decoder
4 T ←The first character of phrase i
5 bu f f er ← phrase i
6 if i > 1
7 check the existence of phrase(i − 1) + T in bu f f er
8 if (exist)
9 f ← 1
10 i ← i + 1
11 return (f)

3.2 Examples of longest match detecting algorithm

To showhow the longestmatch detecting algorithmworks, an
example is given in Table 3. The source files and secret files
are all completely same with the corresponding examples
given in Sect. 2. Example 3 is the longest match detection
for DH-LZW.

ForHCDH-LZW, since this scheme also embeds secret bit
via changing symbols’ length, the longest match detection
can also detect whether there are hidden bits or not, just as
DH-LZW does.

123

An optimized data hiding scheme for Deflate codes 4449

Table 3 Longest match
detection for DH-LZW

Data extracting

Input Old code Output New item Longest match Detect flag

97 a

97 97 a 256= aa aa 0

98 97 b 257= ab ab 0

98 98 b 258= bb bb 0

256 98 aa 259= ba ba 0

257 256 ab 260= aaa aaa 0

258 257 bb 261= abb abb 0

257 258 ab 262= bba bba 0

258 257 bb 263= abb abbb 1

261 258 abb 264= bba bbab 1

260 261 aaa 265= abba abba 0

For HPDH-LZW, this scheme does not change symbols’
length, and the long longest match detection cannot find the
hidden bits. However, as it has been introduced before, rivals
can easily use other methods to find the hidden data.

It can be seen that longest match detection for DH-LZW
and HCDH-LZW can detect if there is a hidden bit if only
there is a change of symbol length.

4 The secure data hiding scheme for Deflate codes

Instead of embedding secret bits via shrinking symbols, our
proposed scheme embeds secret bits into the longest match
generating process. Thus, this scheme could confirm that all
symbols generated will not be shrunken and remained as
longest matches.

4.1 Data embedding

The encoding phase of the proposed scheme is shown in
Fig. 1. n denotes the longest match’s length, the generat-
ing phase of which is controlled to hide a secret bit. The
encoder scans the whole sliding window from beginning side
to end and finds out all of the longest matches in the slid-

Sliding window Current position

ln1 nwn2

T1 T2 Tw T

d1

d2

dw

DH-Deflate algorithm:

The longest match:

Fig. 1 Embedding strategy of the proposed scheme

ing window (noting T1, T2, . . .), their lengths are calculated
(marked in n1, n2, . . .), and those whose length is too short
are dropped. Different from the original Deflate algorithm
where l = {n1, n2, . . .}max, the longest match is select from
(T1, T2, . . .) in the principle of l = {nk | nk(mod2) = b}max,
T = {Tk |nk = l, dk = {di |ni = l }min}. Thus, each suc-
cessful match phase can embed a hidden bit. If T = φ, the
current position’s character will be coded singly. The data
hiding algorithm (DH-Deflate) is summarized as shown in
Algorithm 2.

Algorithm 2 DH-Deflate encoding algorithm
Input Source file and Secret file
Output Deflate code
1 let b, T HD, i,m, P ← {0, 1} , φ, 0, |M | , | |
2 let T HD ≥ 3
3 while i < m do
4 while n ≥ T HD do
5 let R ← {(d1, n1), (d2, n2), ..., (dw, nw)}be the character

string set of longest match in sliding window
6 if ∃k (1 ≤ k ≤ w) nk(mod2) = b
7 append T = {Tk |nk = l, dk = {di |ni = l }min }
8 append Tk ← (dk , nk)
9 else Code the single character separately.
10 append p ← p + 1
11 while n < T HD do
12 Code the single character separately
13 return P

4.2 Data extraction

In the data extracting procedure, assuming the current length
of longest match is C’, if C’ is larger than 2, the secret bit is
equal to the least significant bit of C’. Each [distance, length]
pair contains a secret bit. For example, if C’ is 6, then the
secret bit is ”0”; if C’ is 5, then the secret bit is ”1.” The data
extracting algorithm is summarized as shown inAlgorithm 3.

123

4450 Y. Xueet al.

Algorithm 3 The data extracting algorithm of DH-Deflate
Input Deflate code
Output Source file and Secret file
1 let P, M ←empty string, empty string
2 for each (d, l) ∈ P do
3 while n < T HD
4 Code the single character separately
5 while n ≥ T HD
6 b′ = nk(mod2)
7 append P ← b′
8 append M ← (dk , nk)
9 return (P, M)

To show our proposed scheme more intuitively, an exam-
ple is given in Table 4. The compressing phase’s 6th–11th
input is given in Table 4.

Example 3 Assuming that the size of slid window is 5,
the source file is ”aabbaaabbbabbbabbaaa.” The secret bits
”001,” [5,3] means distance is 5 and length is 3.

In Table 4, when encoder is going to compress the 6th
input character, the longest match is “aabb,” the length of
“aabb” is 4, and the least significant bit of which is equal to
the first secret bit “0,” which means it is available to hide the
secret bit “0.” The 8th input has the longest match “abbb,”
and the least significant bit of “abbb” is “0” which is equal
to the second secret bit. The 9th input has the longest match
“abb,” least significant bit of which is “1” equaling to the
third secret bit. In data extracting phase, the decoder finds
all of [distance, length] pairs and their parities of length are
equal to the secret file “001.”

4.3 Performance discussion

This section deduces the performance of the proposed
scheme. We analyze Mn for a binary source, X = X1X2.

X3 . . ., where the xi are random variables on the binary
alphabet with Pr(xi = 0) = pi and Pr(xi = 1) = qi .
Y = Y1Y2Y3 · · ·is the hiding data series where the Y j are ran-
domvariables on the binary alphabetwith Pr(Y j = 0) = p j

′
and Pr(Y j = 1) = q j

′. Our goal is to figure out the prob-
ability of a successful data hiding for DH-Deflate. Firstly,
assuming that the size of sliding window is w byte, we

conclude (1), in which Pr
(
=
m
n byte

)
presents the longest

match’s length in positionm byte(m is in the slidingwindow).

Pr
(
=
m
n byte

)

= 8n−1
Π

v=0
(pm+v pi+w+v+1 + qm+vqi+w+v+1) (1)

Nextly, we try to work out the probability of the longest
match’s length equals ton,which ismarked as Pr(=

max
n byte),

andhereweconclude (3). The Pr(<
t
n by te) in (3) is deduced

from (1) which is represented in (2).

Pr
(
<
m
n byte

)
= n=1

Σ
r=1

Pr
(
=
m
r byte

)
(2)

Pr
(

=
max

n byte
)

= w

Σ
m=1

Pr
(
=
m
n byte

)
w

Π
t=1

Pr(<
t
n byte)

Pr(<
m
n byte)

+ w

Σ
m1=1

w

Σ
m2=1

(m1 �=m2)

Pr

(
=
m1

n byte

)
Pr

(
=
m2

n byte

)

w

Π
t=1

Pr(<
t
n byte)

Pr(<
m1

n byte)Pr(<
m2

n byte)
+ · · ·

+ w

Σ
m1=1

w

Σ
m2=1

· · · w

Σ
mw=1

(ma �=mb,i f a �=b)

Pr

(
=
m1

n byte

)

· · · Pr
(

=
mw

n byte

) w

Π
t=1

Pr(<
t
n byte)

Pr(<
m1

n byte) · · · Pr(<
mw

n byte)
(3)

Table 4 Data hiding and data
extracting phases of DH-Deflate

Data hiding Data extracting

Input Window Output Secret bit Input Window Output Extracted bit

a a a a

a a a a a a

b aa b b aa b

b aab b b aab b

a aabb a a aabb a

aabb aabba [5,4] 0 [5,4] aabba aabb 0

b aaabb b b aaabb b

abbb aabbb [4,4] 0 [4,4] aabbb abbb 0

abb babbb [4,3] 1 [4,3] babbb abb 1

a bbabb a a bbabb a

a babba a a babba a

a abbaa a a abbaa a

123

An optimized data hiding scheme for Deflate codes 4451

Fig. 2 Five test images

To figure out the probability of a successful data hiding
for DH-Deflate in condition that the longest match’s length
is n, we calculated Pr(n (mod 2)) = Y j

′ in (4), and then, we
get the Pr(success

n
) in (5). Finally, our aim Pr(success) is

deduced in (6). As it has been shown above, the success rate
of DH-Deflate is correlated with both the carrier source and
the hiding data series.

Pr(n (mod2) = Y j
′) = Pr((Y j = 0)&(n =

max
4, 6, 8 · · ·))

+ Pr((Y j = 1)&(n =
max

3, 5, 7 · · ·))
= p j

′(Pr(=
max

4) + Pr(=
max

6) + Pr(=
max

8) · · ·)
+ q j

′(Pr(=
max

3) + Pr(=
max

5) + Pr(=
max

7) · · ·)

(4)

Pr(success
n

) = Pr((=
max

n byte)&n(mod2) = Y j
′)

+ Pr((=
max

n byte)&(n(mod2) �= Y j
′)&(=

m
(n − 1) byte))

+ Pr((=
max

n byte)&(n(mod2) �= Y j
′)

&(=
m

(n − 1) byte)&(= (n − 3) byte))

+ · · · + Pr((=
max

n byte)&(n(mod2) �= Y j
′)

&(=
m

(n − 1) byte)&((=
m

(n − 3) byte))& · · ·

&

{
(=
m
5 byte)&(=

m
3 byte)(n = 3, 5, 7, · · ·)

(=
m
6 byte)&(=

m
4 byte)(n = 4, 6, 8, · · ·))

(5)

Pr(success) = ∞
Σ
s=3

Pr(=
max

s byte)Pr(success
s

) (6)

5 Experimental result

5.1 Performance evaluation via scheme comparison

The proposed scheme is implemented based on zlib ver
1.2.8, an frequently used open-source library of provid-
ing compress/decompress features, and we modify the
”longest_match()” function in Deflate.c which controls the
generation of longest matches. Nearly, 300 lines of C code
are added.

This experiment is done onWin7 64-bit operating system,
Intel(R) Core(TM) i5-3210M CPU@2.50GHz,4 GB RAM.

In our experiment, four text files and five image files are
used to evaluate the performance of the proposed scheme.
For the text files, ”Obama” is Obama’s speech; ”Lincoln” is
Lincoln’s Gettysburg address; ”Hamlet” is one of the Shake-
spear’s famous works; and ”Pride” is a novel named ”Pride
and prejudice” written by Jane Austen, first published in
1813. Paper-b*.txt and paper-s*.txt in the same size and for-
mat of Paper-b.txt and paper-s.txt in Chen and Chang (2010)
are chosen as testing samples. Such replacement is reason-
able since DH-Deflate performs stable among txt carriers
which will be deduced in the following Sect. 5.2. For the
image files, five popular 256*256 images, as shown in Fig. 2,
are included, such as Baboon, Goldhill, Boat, Lena, and Pep-
per.

We choose the DH-LZW scheme as a reference because
both DH-LZW and our proposed scheme try to hide one
secret bit in one symbol. The experiment results are shown
in Table 5. The hidden secret bits are generated as a ran-
dom sequence. The sizes of the files and compressed size
(LZW and Deflate) shown in tables are measured in bytes,
and the hidden data are measured in bit; the data hiding and
data extracting time are measured in second. Tables 5 and 6

Table 5 Comparison to DH-LZW scheme for text and image files

File name Original
size

LZW
size

Deflate
size

DH-LZW DH-Deflate Embedded rate Variant quantities

(A) (B) Size (C) Hidden
bit (D)

Size (E) Hidden
bit (F)

DH-LZW
D/8*C

DH-Deflate
F/8*E

DH-LZW
8*(C-A)/D

DH-Deflate
8*(E-B)/F

Obama 13, 504 9, 992 6, 158 10, 184 670 6,612 2,349 0.82% 4.44% 2.29 1.55

Lincoln 1, 450 1, 027 704 1, 059 94 737 193 1.11% 3.27% 2.72 1.37

Paper-b* 80, 316 57, 677 33, 361 59, 513 5,459 36,861 13,578 1.15% 4.60% 2.69 2.06

Paper-s* 20, 079 14, 477 9, 678 14, 869 1,358 10,368 3,229 1.14% 3.89% 2.31 1.71

Baboon 65, 536 71, 824 23, 040 71, 824 3 25,126 12,844 0.00% 6.39% 0.00 1.30

Goldhill 65, 536 67, 024 16, 506 67, 152 500 18,524 9,595 0.09% 6.47% 2.05 1.68

Boat 65, 536 59, 602 16, 251 60, 042 1,833 18,118 8,779 0.38% 6.06% 1.92 1.70

Lena 65, 536 69, 116 16, 900 69158 116 18,774 8,932 0.02% 5.95% 2.90 1.68

Pepper 65, 536 68, 443 15, 230 68, 513 144 17,296 8,355 0.03% 6.04% 3.89 1.98

Average 1,130.78 7539.33 0.53% 5.23% 2.31 1.67

123

4452 Y. Xueet al.

Table 6 Comparison to the original Deflate scheme for data hiding and data extracting time

File name Filesize Original Deflate DH-Deflate Deflate size
increase

Embedding
rate

Hiding
time (ms)

Extracting
time (ms)

Size(B) Hiding
time (ms)

Extracting
time (ms)

Size(E) Hidden bit
(F)

(E-B)/B F/8*E

Obama 13,504 2.72 0.93 6,158 3.12 1.06 6,612 2,349 7.37% 4.44%

Lincoln 1,450 1.19 0.61 704 1.31 0.7 737 193 4.69% 3.27%

Paper-b* 80,316 1.76 0.72 33,361 54.77 3.8 36,861 13, 578 10.49% 4.60%

Paper-s* 20,079 1.04 0.052 9678 12.56 2.4 10,368 3,229 7.13% 3.89%

Hamlet 180,728 22.96 0.372 77,061 34.46 4.29 85,712 33,203 11.23% 4.84%

Pride 689,323 88.1 12.08 266,907 117.69 13.91 303,436 121,306 13.69% 5.00%

Baboon 65,536 9.36 1.82 23,040 13.37 1.91 25,126 12,844 9.05% 6.39%

Goldhill 65,536 8.89 1.43 16,506 11.45 1.68 18,524 9, 595 12.23% 6.47%

Boat 65,536 9.18 1.54 16,251 12.08 1.88 18,118 8,779 11.49% 6.06%

Lena 65,536 9.94 1.47 16,900 10.67 1.64 18,774 8,932 11.09% 5.95%

Pepper 65,536 8.22 1.43 15,230 10.38 1.73 17,296 8,355 13.57% 6.04%

Increase Increase

Average 42% 35.8% 10.18% 5.12%

compare the hiding capacities of the proposed scheme and
the DH-LZW scheme. The variant quantities show on aver-
age the influence of embedded data to carrier files’ size. The
result shows that DH-LZW causes a larger size increment in
hiding the same size of data. For testing data, the author of
DH-LZW uses four text files and five image files.

According to the proposed scheme, the capacity of secret
data that a file can hold is depending on symbols generated
in the data hiding phase, which means the amount of [dis-
tance, length] pairs. For DH-LZW, the embedding capacity
is depended on the number of embeddable symbols, the DH-
LZW symbols which are shorter than 3 are not available for
data hiding, and hence, the proposed scheme can get a larger
capacity for hiding secret data.

Table 6 shows the data hiding and data extracting time of
the original Deflate scheme and the proposed scheme. It can
be easily seen that the average hiding time of the proposed
scheme increases 42%, and the average extracting time of
the proposed scheme increases 35.8%.The time of hiding
and extracting phase increases because of the existence of
hidden bit. In the phase of data embedding, if all lengths of
the longest matches in slid window do not match with the
embedded hidden bit, the hidden bit will be left until it finds
a corresponding longest match, which causes the increase in
the hiding time. For the extracting phase, it needs time to
calculate the parity of length for each [length distance] pair,
which generates the increase in extracting time.

Figure 3 is generated based on Table 5 and shows the
variation tendency of embedding rate for both DH-LZW and
DH-Deflate. The embedding rate means how many percent
of capacity is used to embed secure data bits in the com-
pressed files. It is obviously that DH-Deflate owns a higher

E
m

b
ed

d
in

g
ra

te
(%

)

-1

0

1

2

3

4

5

6

7

File name

O
ba

m
a

Li
nc

ol
n

Pa
pe

r-b
*

Pa
pe

r-s
*

Ba
bo

on

G
ol

dh
ill

Bo
at

Le
na

Pe
pp

er

Table1_DH-LZW
Table1_DH-Deflate

Fig. 3 Embedding rates for the texts and images

embedding rate in our nine testing samples and DH-Deflate
performs much better than DH-LZW in image format car-
riers. The average embedding rate of the DH-LZW and the
DH-Deflate, respectively, is 0.53% and 5.23%, and it means
how many percent of capacity is used to embed secure data
bits in the whole compressed files.

5.2 Hiding capacity inspiration for different file formats

This section discusses the relationship between data redun-
dancy and embedding rate of DH-Deflate while it makes
an optimization in providing practical suggestion for data
hiding.

123

An optimized data hiding scheme for Deflate codes 4453

Table 7 Test results of 33 typical sample files

File name File type Original
size (I)

Deflate
size (B)

DH-
Deflate
size (E)

Hidden bit
size (F)

Embedding
rate (G)

Compression
rate (H)

G/H F/I

A10 .jpg 842,468 841,483 841,979 1,110 0.02% 99.88% 0.02% 0.02%

DSCN3974 .jpg 1,114,198 1,105,070 1,106,377 756 0.01% 99.18% 0.01% 0.01%

DSCN4465 .jpg 694,895 683,616 684,759 367 0.01% 98.38% 0.01% 0.01%

paper3 pdf 130,799 75,627 76,838 5,709 0.93% 57.82% 1.61% 0.55%

paper2 pdf 2,597,907 2,457,775 2,465,497 5,608 0.03% 94.61% 0.03% 0.03%

FlashMX pdf 4,526,946 3,868,993 3,916,959 130,942 0.42% 85.47% 0.49% 0.36%

MicroSql .DLL 36,032 18,193 19,176 2,256 1.47% 50.49% 2.91% 0.78%

Microres .DLL 2,358,944 387,849 425,088 82,074 2.41% 16.44% 14.66% 0.43%

MSO97 .DLL 3,782,416 2,226,806 2,407,974 441,445 2.29% 58.87% 3.89% 1.46%

document2 .doc 872,488 331,607 370,173 136,341 4.60% 38.01% 12.10% 1.95%

document3 .doc 285,184 71,411 81,279 13,730 2.11% 25.04% 8.43% 0.60%

ohs .doc 4,168,192 1,056,474 1,133,454 108,896 1.20% 25.35% 4.73% 0.33%

Goldhill .bmp 65,536 16,506 18,524 9,595 6.47% 25.19% 25.68% 1.83%

Boat .bmp 65,536 16,269 18,063 8,710 6.06% 24.80% 24.44% 1.67%

rafale .bmp 4,149,414 1,399,893 1,861,304 530,019 3.56% 33.74% 10.55% 1.60%

BINARIES .txt 17,847 7,102 7,716 2,453 3.97% 39.79% 9.98% 1.72%

GRAPHICS .txt 14,106 5,341 6,324 1,866 3.69% 37.86% 9.75% 1.65%

world95 .txt 2,988,578 1,019,013 1,148,030 370,047 4.03% 34.10% 11.82% 1.55%

binaries .dat 2,205,710 676,760 739,125 289,950 4.90% 30.68% 15.97% 1.64%

graphics .dat 333,535 129,338 140,751 57,549 5.11% 38.78% 13.18% 2.16%

texts .dat 774,167 268,996 293,419 120,766 5.14% 34.75% 14.79% 1.95%

pg53617 .mobi 645,142 548,916 577,494 16,819 0.36% 85.08% 0.42% 0.33%

pg53618 .mobi 471,573 408,803 417,277 11,821 0.35% 86.69% 0.40% 0.31%

pg53624 .mobi 717,935 622,450 632,486 20,542 0.41% 86.70% 0.47% 0.36%

pg53617 Epub 189,938 177,818 178,360 1318 0.09% 93.62% 0.10% 0.09%

pg53618 Epub 153,883 150,651 150,843 533 0.04% 97.90% 0.04% 0.04%

pg53624 Epub 213,551 211,348 211,509 351 0.02% 98.97% 0.02% 0.02%

every wav 6,994,092 6,715,767 6,708,656 4,654 0.01% 96.02% 0.01% 0.01%

OnTheRadio wav 31,907,570 30,574,399 30,616,317 130,555 0.05% 95.82% 0.05% 0.05%

mike wav 1,708,300 1,208,638 1,264,838 163,565 1.62% 70.75% 2.29% 1.20%

serrano tif 1,498,414 142,191 184,651 67,901 4.60% 9.49% 48.47% 0.57%

monarch tif 1,179,784 842,534 905,554 106,066 1.46% 71.41% 2.04% 1.12%

peppers3 tif 786,568 665,630 701,155 46,329 0.83% 84.62% 0.98% 0.74%

In total, 33 typical sample files in 11 different formats
(Table 7) are selected from maximum compression library
and Internet. All of these file formats are frequently used in
huge size data transmission. Their specific basic information
(including file format and original size) and experiment data
(for example, compression rate) are shown in table. Figure 4
shows the relationship between original file size and embed-
ding file size of DH-Deflate. Figures 5 and 6 give a data
hiding inspiration for some most common file types.

In Fig. 4, the histogram shows the rate between embed-
ded size and original file size of 11 common file formats.
Displayed in ascending order of the average format rate (the

average embedding rate in a same file type), it is obviously
that the embedding rates in unit size are varied in different
file format. Figure 5 shows the average embedding rate of
11 formats. For format, eg., JPEG, files in such formats have
been encoded in a compression way for data transmission,
compression tools usually cannot make them further smaller,
and some situation may in turn become larger. On the other
hand, files in text format such as .bpm or .dat which contains
larger redundancy hold the highest average embedding rate
in around 5.1%.

When trying to achieve data hiding, if a specific file is
affordable in embedding, all secret information shall be taken

123

4454 Y. Xueet al.

H
id

d
en

 b
it

 s
iz

e
/ O

ri
g

in
al

 fi
le

 s
iz

e
(%

)

0

0.5

1

1.5

2

2.5

3

File name

A
10

.jp
g

D
S

C
N

39
74

.jp
g

D
S

C
N

44
65

.jp
g

pg
53

61
7.

E
pu

b
pg

53
61

8.
E

pu
b

pg
53

62
4.

E
pu

b

pg
53

61
7.

m
ob

i
pg

53
61

8.
m

ob
i

pg
53

62
4.

m
ob

i

pa
pe

r3
.p

df
pa

pe
r2

.p
df

F
la

sh
M

X
.p

df

ev
er

y.
w

av
O

nT
he

R
ad

io
.w

av
m

ik
e.

w
av

M
ic

ro
S

ql
.D

LL
M

ic
ro

re
s.

D
LL

M
S

O
97

.D
LL

se
rr

an
o.

tif
m

on
ar

ch
.ti

f
pe

pp
er

s3
.ti

f

do
cu

m
en

t2
.d

oc
do

cu
m

en
t3

.d
oc

oh
s

B
IN

A
R

IE
S

.tx
t

G
R

A
P

H
IC

S
.tx

t
w

or
ld

95
.tx

t

bi
na

rie
s.

da
t

gr
ap

hi
cs

.d
at

te
xt

s.
da

t

G
ol

dh
ill

.b
m

p
B

oa
t.b

m
p

ra
fa

le
.b

m
p

Table1_Rate

Fig. 4 Relationship of file redundancy and embedded capacity which
is illustrated as the rate of embedded size and original file size of 33
typical sample files in 11 different formats

A
ve

ra
g

e
em

b
ed

d
in

g
 r

at
e

(%
)

0

1

2

3

4

5

6

File format

JP
EG

EP
U

B

M
ob

i

PD
F

W
av

D
LL Ti

f

D
oc Tx

t

D
at

Bm
p

Table1_Embedding rate

Fig. 5 Distribution of average embedding rate in 11 different formats

into consideration. In this paper, by analyzing the average
embedding rate of 11 formats of file carriers, optimization
in providing practical suggestion for DH-Deflate data hid-
ing is done based upon experiment results. As Fig. 5 shows,
four sections are divided considering the average embedding
rates: 0–1.50, 1.51–3.00, 3.01–4.50, and 4.51–6.00%. This
brings an inspiration on piratical DH-Deflate data hiding.
For example, if 10,000 bytes are to be embedded, the aver-
age sizes of carrier files are varying: 76,923.1 KB for JPEG,
2173.9 KB for pdf, 378.8 KB for doc, 256.4 KB for txt and
198.1 KB for dat.

Figure 6 intuitively reveals which format of carrier files is
available for achieving some certain DH-Deflate data hiding
tasks. If the sizes of carrier files are constrained to no larger
than 400KBwhile no less than 4KBdata are to be embedded,
according to Fig. 6, only the strings of tif, doc, txt, bmp, and
dat pass through the section which represents the section met

C
ar

ri
er

 fi
le

 s
iz

e
(K

B
)

0

100

200

300

400

500

600

700

800

Secret text size (KB)
0 1 2 3 4 5 6 7 8

Table1_File size

Epub

JPEG

PDF

Mobi
Wav

Tif

Txt

DLL

Doc
Bmp

Dat

Fig. 6 Format of carrier files available for achieving a certain DH-
Deflate data hiding tasks. (Constraint: secret text size = 4 KB, carrier
file size ≤ 400 KB)

the requirement. Thus, .tif, .doc, .txt, .bmp, and .dat are the
possible carriers. One can choose which format and size of
files are to be selected and data hiding work can be achieved
in a convenient and targeted way.

6 Limitation and future work

DH-Deflate will change the original size of compressed
files by altering the compressing process. If rivals can get
the relevant information of compressed files such as the
version of compression software, compression parameters
(window size, compression level, etc.), it is possible to dis-
cover whether a suspicious compressed file contains hidden
secret data by uncompressing it to get the source data, com-
pressing the source data again with the same version of
compression tool and parameters, and then checking if the
resulting compressed data are same as the suspicious one.
However, since the compress file usually does not contain all
of above information, and there are a plenty more of com-
pression tools frequently used, it is hard for rivals to detect the
existence of secret data embedded by our proposed scheme.

In the future work, we are committed to improving the
efficiency of our scheme by referring to the improved scheme
of DH-LZW.

7 Conclusion

In this paper, we proposed a longest match detecting algo-
rithm which can detect the existence of secret embedded by
the existing LZWdata hiding scheme.We also proposedDH-
Deflate, a secure data hiding scheme based on the Deflate
compression code, that can fight against the above detect-
ing algorithm. The experiment shows the proposed scheme

123

An optimized data hiding scheme for Deflate codes 4455

achieves 5.12% of embedding rates with the cost of 10.18%
size increase in the compressed file. In addition, the data
hiding performance of Deflate algorithm is much better than
LZWalgorithmbecause thatDeflate codes use differentways
to store the redundant information. Moreover, the Deflate
algorithm is now widely used in many compression tools,
and our proposed scheme shall be much easier to deploy
than the existing LZW-based ones. Lastly, via optimization
analysis, it can be found that formats with high redundancy
such as .txt, .dat, .bmp own higher and stable embedding rate.

Acknowledgements This research was supported by the National
Natural Science Foundation of China (Nos. U1636213, 61370063,
61379048, 61672508).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data
hiding. IBM Syst J 35((3.4)):313–336

Chang C-C, Tai W-L, Lin C-C (2006) A reversible data hiding scheme
based on side match vector quantization. IEEE Trans Circuits Syst
Video Technol 16(10):1301–1308

Chang C-C, Nguyen T-S, LinM-C, Lin C-C (2016) A novel data-hiding
and compression scheme based on block classification of SMVQ
indices. Digit Signal Proc 51:142–155

Chen C-C, Chang C-C (2010) High-capacity reversible data-hiding
for lzw codes. In: Computer modeling and simulation, 2010.
ICCMS’10. Second international conference on, vol 1. IEEE, pp
3–8

Guo J-M, Liu Y-F (2012) High capacity data hiding for error-diffused
block truncation coding. IEEE Trans Image Process 21(12):4808–
4818

Guo J-M, Tsai J-J (2012) Reversible data hiding in low complexity and
high quality compression scheme. Digit Signal Proc 22(5):776–
785

Jian LI, Pan Z, Zheng J, Sun F, Xinxin YE, Yuan K (2015) The security
analysis of quantum sagr04 protocol in collective-rotation noise
channel. Chin J Electron 24(4):689–693

Kumar A, Pooja K (2010) Steganography-a data hiding technique. Int
J Comput Appl 9(7):19–23

Lee Y-P, Lee J-C, Chen W-K, Chang K-C, Jiunn S, Chang C-P (2012)
High-payload image hiding with quality recovery using tri-way
pixel-value differencing. Inf Sci 191:214–225

Liu T-Y, Tsai W-H (2007) A new steganographic method for data hid-
ing in microsoft word documents by a change tracking technique.
IEEE Trans Inf Forensics Secur 2(1):24–30

Lonardi S, Szpankowski W (2003) Joint source-channel lz’77 coding.
In: Data compression conference, 2003. Proceedings. DCC 2003.
IEEE, pp 273–282

Lonardi S, Szpankowski W, Ward MD (2007) Error resilient lz’77 data
compression: algorithms, analysis, and experiments. IEEE Trans
Inf Theory 53(5):1799–1813

Mali SN, Patil PM, Jalnekar RM (2012) Robust and secured image-
adaptive data hiding. Digit Signal Proc 22(2):314–323

Moon SK, Kawitkar RS (2007) Data security using data hiding. In:
Conference on computational intelligence andmultimedia applica-
tions, 2007. International conference on, vol 4. IEEE, pp 247–251

Moulin P,Koetter R (2005)Data-hiding codes. Proc IEEE93(12):2083–
2126

Najafi HL (2007) A neural network approach to audio data hiding based
on perceptual masking model of the human auditory system. Appl
Intell 27(3):269–275

Nikolaidis A (2015) Reversible data hiding in jpeg images utilising zero
quantised coefficients. IET Image Proc 9(7):560–568

Parah SA, Sheikh JA, Hafiz AM, Bhat GM (2015) A secure and robust
information hiding technique for covert communication. Int J Elec-
tron 102(8):1253–1266

Ruijin ZHU, Tan Y, Zhang Q, Fei WU, Zheng J, Yuan XUE (2016)
Determining image base of firmware files for arm devices. IEICE
Trans Inf Syst E99.D(2):351–359

Shim Hiuk Jae, Ahn Jinhaeng, Jeon Byeungwoo (2004) Dh-lzw: loss-
less data hiding in lzw compression. In: Image processing, 2004.
ICIP’04. 2004 International conference on, vol 4. IEEE, pp 2195–
2198

Tseng H-W, Chang C-C (2004) High capacity data hiding in JPEG-
compressed images. Informatica 15(1):127–142

Utku Celik M, Sharma G, Murat Tekalp A, Saber E (2005) Loss-
less generalized-lsb data embedding. IEEE Trans Image Process
14(2):253–266

Wang Z-H, Yang H-R, Cheng T-F, Chang C-C (2013) A high-
performance reversible data-hiding scheme for lzw codes. J Syst
Softw 86(11):2771–2778

Welch TA (1984) A technique for high-performance data compression.
Computer 17(17):8–19

Wu Y, Lonardi S, Szpankowski W (2006) Error-resilient lzw data com-
pression. In: Data compression conference (DCC’06). IEEE, pp
193–202

Xuan G, Shi YQ, Ni ZC, Chen J, Yang C, Zhen Y, Zheng J (2004) High
capacity lossless data hiding based on integer wavelet transform.
In:Circuits and systems, 2004. ISCAS’04. Proceedings of the 2004
international symposium on, vol 2. IEEE, pp II–29

Xuan G, Shi YQ, Yang C, Zheng Y, Zou D, Chai P (2005) Lossless data
hiding using integer wavelet transform and threshold embedding
technique. In: 2005 IEEE international conference on multimedia
and expo. IEEE, pp 1520–1523

Yadav D, Singhal V, Bandil DK (2012) Reversible data hiding tech-
niques. Int J Electron Comput Sci Eng 1(2):380–383

Yan F, Tan Y, Zhang Q, Fei W, Cheng Z, Zheng J (2016) An effective
raid data layout for object-based de-duplication backup system.
Chin J Electron 25(5):832–840

Zhang X, Tan Y, Xue Y, Zhang Q, Li Y, Zhang C, Zheng J (2017) Cryp-
tographic key protection against frost for mobile devices. Clust
Comput 1–10. doi:10.1007/s10586-016-0721-3

Zhang W, Xiaocheng H, Li X, Nenghai Y (2013) Recursive histogram
modification: establishing equivalency between reversible data
hiding and lossless data compression. IEEE Trans Image Process
22(7):2775–2785

ZhuR, TanY, ZhangQ, LiY, Zheng J (2016)Determining image base of
firmware for arm devices by matching literal pools. Digit Investig
16:19–28

Zhu R, Zhang B, Mao J, Zhang Q, Tan YA (2017) A methodology for
determining the image base of arm-based industrial control system
firmware. Int J Crit Infrastruct Prot 16(3):26–35

123

http://dx.doi.org/10.1007/s10586-016-0721-3

	An optimized data hiding scheme for Deflate codes
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 LZW algorithm
	2.2 DH-LZW data hiding scheme
	2.3 Optimized schemes of DH-LZW
	2.4 Deflate algorithm

	3 Detect data hiding behavior of altering symbol length
	3.1 Longest match detecting algorithm
	3.2 Examples of longest match detecting algorithm

	4 The secure data hiding scheme for Deflate codes
	4.1 Data embedding
	4.2 Data extraction
	4.3 Performance discussion

	5 Experimental result
	5.1 Performance evaluation via scheme comparison
	5.2 Hiding capacity inspiration for different file formats

	6 Limitation and future work
	7 Conclusion
	Acknowledgements
	References

