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Abstract Valuation of an option plays an important role in
modern finance. As the financial market for derivatives con-
tinues to grow, the progress and the power of option pricing
models at predicting the value of option premium are under
investigations. In this paper, we assume that the volatility
of the stock price follows an uncertain differential equation
and propose an uncertain counterpart of the Heston model.
This study also focuses on deriving a numerical method for
pricing a European option under uncertain volatility model,
and some numerical experiments are presented. Numerical
experiments confirm that the developed methods are very
efficient.

Keywords Uncertainty theory · Uncertain finance ·
Uncertain volatility model · European option pricing

1 Introduction

In 1931, Nobert Wiener presented a continuous stochas-
tic process and after that the use of this process has made
adorable changes in asset pricing.

This was the beginning of the way that guided Ito in 1943
to find stochastic calculus. In 1973, Black and Scholes (1973)
provided a formula to price a specific derivative called option.
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Derivatives are financial instruments that their values
depend on the value of something else. Options are a type of
financial derivatives. The value of an option is determined by
the likelihood of change in price of underlying asset. Actu-
ally, it is a contract that gives its holder the right to buyor sell a
prescribed asset (e.g., stock) for a specific price at a specific
time. The prescribed price and the specific time are called
strike price andmaturity date, respectively. Options have two
classifications, call option and put option. Finding the fair
value of options is a problem that forces many researchers
to discuss about it. Black–Scholes model is widely used in
the asset pricing. But in this model, the volatility is assumed
to be constant. To overcome this difficulty, several stochastic
volatility models had been proposed in financial mathemat-
ics such as Hull and White model (1987), Stein and Stein
model (1991), Heston model (1993) and SABR model. In
these models, both stock price and volatility have stochastic
dynamics. The Heston model as one of the most important
stochastic volatility models could make a progress in the
Black–Scholes–Merton model.

We have to notice that, in real life we need a large amount
of historical data to estimate a probability distribution and
it is a really tough job to get a large number of samples.
Besides, in many cases there is no sample to determine a
probability distribution. On the other hand, empirical stud-
ies showed that phenomena like stock price does not act like
randomness or fuzziness. In these cases, we have to invite
some domain experts to estimate the belief degree for each
event. Degrees of belief formally represent the strength with
which we believe the truth of various propositions (Huber
and Schmidt-Petri 2009). Kahneman and Tversky (1979)
showed that the belief degrees have much greater variances
than frequency. So, the human’s belief degrees do not behave
like probability distribution. In order to deal with uncertainty
caused by human, Liu (2007) founded an uncertainty theory.
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Nowadays, uncertainty theory is a branch of mathematics.
This theory is based on normality, duality, subadditivity and
product axioms. In 2008, Liu (2008) proposed uncertain pro-
cess and after that in 2009, he presented a canonical Liu
process. Liu process is an uncertain counterpart of Wiener
process. To describe an uncertain variable and an uncertain
process, Liu introduced the concept of uncertainty distribu-
tion and inverse uncertainty distribution in 2014. Uncertain
differential equation was proposed by Liu (2008) and used
to model the stock price in 2009. Based on it, Chen and Liu
(2010), Liu (2012), Yao (2013) and Yao and Chen (2013)
designed some methods to solve the uncertain differential
equations. Besides, Yao (2013b) proposed some numerical
methods to estimate the integral of the solution. The existence
and uniqueness theorem of solution of uncertain differential
equation was proved by Chen and Liu (2010) and also, Liu
(2009) presented stability of uncertain differential equation.
In 2009, Liu (2009) introduced an uncertain stock model and
obtained some option pricing formulas based on the model.
Later, Peng and Yao (2011), Yu (2012), Chen et al. (2013),
Yao (2015) and Ji and Zhou (2015) investigated widely in
uncertain stock models. In 2011, Chen (2011) derived a for-
mula for pricing American option.

In this paper, we propose a new stock model based on an
assumption that the volatility of the stock follows an uncer-
tain dynamic. Indeed, our model is an uncertain counterpart
of Heston model. The volatility is a measure for variation
of value of a stock model overall time of its performance in
financial markets. Uncertain volatility is defined as an uncer-
tain process in which the return variation dynamic includes
an unpredictable shock in stock prices. Based on this model,
some theorems are proved and we derive a numerical method
for value of European option.

We organize the rest of our article as follows: In Sect. 2,
we provide some definitions and theorems to introduce
uncertainty theory. Uncertain calculus is briefly presented
in Sect. 3, whereas in Sect. 4, uncertain differential equa-
tion is introduced. Some useful stock models are shown in
Sect. 5. We present our stock model in Sect. 6. In Sect. 7,
European call and put option pricing formulas are discussed.
Finally, some algorithms and numerical results are provided
in Sect. 8.

2 Preliminaries

In this section,we introduce some concepts about uncertainty
theory by providing the following definitions and theorems.

Definition 1 (Liu 2007) Let L be a σ -algebra on a nonempty
set �. Each element � ∈ L is called an event. A set function
M : L → [0, 1] is called an uncertain measure if it satisfies
the following axioms:

Axiom 1 (Normality Axiom) M {�} = 1 for the universal
set �.

Axiom 2 (Duality Axiom) M {�} + M {�c} = 1 for any
event �.

Axiom 3 (Subadditivity Axiom) For every countable
sequence of events �1,�2, . . . , we have

M

{ ∞⋃
i=1

�i

}
≤

∞∑
i=1

M {�i } .

The triple (�,L,M) is called an uncertainty space. A prod-
uct uncertain measure was defined by Liu (2009), hence the
fourth axiom of uncertainty theory released as following

Axiom 4 (Product Axiom) Let (�k,Lk,Mk) be uncertainty
spaces for k = 1, 2, . . . , n. Then, the product uncertain
measure M is an uncertain measure on product σ -algebra
L1 × L2 × · · · × Ln satisfying

M

{
n∏

k=1

�k

}
= min

1≤k≤n
Mk {�k}

where �k are arbitrarily chosen events from Lk for k =
1, 2, . . . , respectively.

Definition 2 (Liu 2007) An uncertain variable is a function
X from an uncertainty space (�,L,M) to the set of real
numbers such that {X ∈ B} is an event for any Borel set B
of real numbers.

Definition 3 (Liu 2007) An uncertainty distribution � of an
uncertain variable is defined by

�(x) = M {X ≤ x}

for any real number x.

Definition 4 (Liu 2015) An uncertain variable X is called
normal if it has a normal uncertainty distribution

�(x) =
(
1 + exp

(
π (μ − x)√

3σ

))−1

, x ∈ R

denoted by N (μ, σ ) where μ and σ are real numbers with
σ > 0.

Definition 5 (Liu 2015) An uncertain variable is called log-
normal if ln X is a normal uncertain variable N (μ, σ ). In
other words, a lognormal uncertain variable has an uncer-
tainty distribution

�(x) =
(
1 + exp

(
π (μ − ln x)√

3σ

))−1

, x ≥ 0
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denoted by LOGN (μ, σ ), where μ and σ are real numbers
with σ > 0.

Definition 6 (Liu 2010) An uncertainty distribution�(x) is
said to be regular if it is a continuous and strictly increasing
function with respect to x at which 0 < �(x) < 1, and

limx→−∞�(x) = 0, limx→+∞�(x) = 1.

Definition 7 (Liu 2007) Let X be an uncertain variable with
regular uncertainty distribution�(x). Then, the inverse func-
tion �−1 (α) is called the inverse uncertainty distribution of
X .

Definition 8 (Liu 2010) The uncertain variables X1, X2,

. . . , Xn are said to be independent if

M

{
n⋂

i=1

(Xi ∈ Bi )

}
= min

1≤i≤n
M {Xi ∈ Bi }

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 1 (Liu 2010) Let X1, X2, . . . , Xn be indepen-
dent uncertain variables with regular uncertainty distribu-
tions �1,�2, . . . , �n, respectively. If f (X1, X2, . . . , Xn)

is strictly increasing with respect to X1, X2, . . . , Xm and
strictly decreasing with respect to Xm+1, Xm+2, . . . , Xn,
then

X = f (X1, X2, . . . , Xn)

has an inverse uncertainty distribution

�−1 (α) = f
(
�−1

1 (α) , . . . , �−1
m (α) ,

�−1
m+1 (1 − α) , . . . , �−1

n (1 − α)
)

.

Definition 9 (Liu 2007) Let X be an uncertain variable.
Then, the expected value of X is defined by

E [X ] =
∫ +∞

0
M {X ≥ x} dx −

∫ 0

−∞
M {X ≤ x} dx

provided that at least one of the two integrals is finite.

Theorem 2 (Liu 2007) Let X be an uncertain variable with
uncertainty distribution �. Then

E [X ] =
∫ +∞

0
(1 − �(x)) dx −

∫ 0

−∞
�(x) dx .

Theorem 3 (Liu 2010) Let X be an uncertain variable with
regular uncertainty distribution �. Then, we have

E [X ] = ∫10 �−1 (α) dα.

Theorem 4 (Liu and Ha 2010) Assume X1, X2, . . . , Xn are
independent uncertain variables with regular uncertainty
distributions �1,�2, . . . , �n, respectively. If f (X1, X2,

. . . , Xn) is strictly increasingwith respect to X1, X2, . . . , Xm

and strictly decreasingwith respect to Xm+1, Xm+2, . . . , Xn,
then X = f (X1, X2, . . . , Xn)

has an expected value below

E [X ] = ∫10 f
(
�−1

1 (α) , . . . , �−1
m (α) ,

�−1
m+1 (1 − α) , . . . , �−1

n (1 − α)
)

.

3 Uncertain Process

This section presents the concept of uncertain process and
stationary increment process.

Definition 10 (Liu 2008) Let (�,L,M) be an uncertainty
space and let T be a totally ordered set (e.g., time). An uncer-
tain process is a function Xt (γ ) from T × (�,L,M) to the
set of real numbers such that {Xt ∈ B} is an event for any
Borel set B of real numbers at each t ∈ T .

Definition 11 (Liu 2014) An uncertain process Xt is said to
have an uncertainty distribution �t (x) if at each time t , the
uncertain variable Xt has the uncertainty distribution�t (x).

Definition 12 (Liu 2008) An uncertain process Xt is said to
have independent increments if

Xt1 , Xt2 − Xt1 , . . . , Xtk − Xtk−1

are independent uncertain variables where t1, t2, . . . , tk are
any times with t1 < t2 < · · · < tk .

Definition 13 (Liu 2015) An uncertain process is said to
have stationary increments if its increments are identically
distributed uncertain variables whenever the time intervals
have the same length. Also, it is said to be a stationary
independent increment process if it has not only stationary
increments but also independent increments.

Definition 14 (Liu 2009) Let Xt be an uncertain process.
For any partition of closed interval [a, b] with a = t1 < t2 <

· · · < tk+1 = b, the mesh written as


 = max1≤i≤k |ti+1 − ti | .

Then, the time integral of Xt with respect to t is

∫ba Xtdt = lim
→0

k∑
i=1

Xti . (ti+1 − ti )

provided that the limit exists almost surely and is finite. Xt

is said to be time integrable.

123



4156 S. Hassanzadeh, F. Mehrdoust

4 Uncertain differential equation

Definition 15 (Liu 2009) An uncertain process Ct is said to
be a canonical Liu process if

(i) C0 = 0 and almost all sample paths are Lipschitz con-
tinuous,

(i i) Ct has stationary and independent increments,
(i i i) every increment Cs+t − Cs is a normal uncertain

variable with expected value 0 and variance t2. The
uncertainty distribution of Ct is

�t (x) =
(
1 + exp

(
− πx√

3t

))−1

, x ∈ R

and its inverse uncertainty distribution is as follows

�−1
t (α) = t

√
3

π
ln

α

1 − α
.

Definition 16 (Liu 2015) LetCt be a canonical Liu Process.
Then for any real numbers μ1 and σ1 > 0, the uncertain
process

At = μ1t + σ1Ct

is called an arithmetic Liu process, where μ1 is the drift and
σ1 is the diffusion. Besides, the uncertain process

Gt = exp (μ2t + σ2Ct )

is called a geometric Liu process, where μ2 is the log-drift
and σ2 is the log-diffusion.

Definition 17 (Liu 2009) Let Xt be an uncertain process and
let Ct be a canonical Liu process. For any partition of closed
interval [a, b] with a = t1 < t2 < · · · < tk+1 = b, the mesh
written as


 = max1≤i≤k |ti+1 − ti | .

Then, Liu integral of Xt with respect to Ct is defined as

∫ba XtdCt = lim
→0

k∑
i=1

Xti · (
Cti+1 − Cti

)

provided that the limit exists almost surely and is finite. By
this definition, the uncertain process Xt is said to be inte-
grable.

Definition 18 (Chen and Ralescu 2013) Let Ct be a canon-
ical Liu process and let Vt be an uncertain process. If there
exist uncertain processes μt and σt such that

Vt = V0 + ∫t0 μsds + ∫t0 σsdCs

for any t ≥ 0, then Vt is called a Liu process with driftμt and
diffusion σt . Furthermore, Vt has an uncertain differential

dVt = μt dt + σt dCt .

Definition 19 (Liu 2008) SupposeCt is a canonical Liu pro-
cess, and f and g are two functions. Then,

dXt = f (t, Xt ) dt + g (t, Xt ) dCt (1)

is called an uncertain differential equation. A solution is a
Liu process Xt that satisfies (1) identically in t .

Theorem 5 (Wang 2012) Let f be a function of two vari-
ables, and σt be an integrable process. Then, the uncertain
differential equation

dXt = f (t, Xt ) dt + σt X
p
t dCt , p 	= 1

has an analytic solution

Xt = (Yt + Zt )
1

1−p

where

Yt = (1 − p) ∫t0 σsdCs

and Zt solves the uncertain differential equation

dZt = (1 − p) (Yt + Zt )
− p

1+p f
(
t, (Yt + Zt )

1
1−p

)
dt

with initial value Z0 = X1−p
0 .

Theorem 6 (Existence and Uniqueness Theorem) (Chen
and Liu 2010) The uncertain differential equation

dXt = f (t, Xt ) dt + g (t, Xt ) dCt

has a unique solution if the coefficients f (t, x) and g (t, x)
satisfy the linear growth condition

| f (t, x)| + |g (t, x)| ≤ L (1 + |x |) , ∀x ∈ R, t ≥ 0

and Lipschitz condition

| f (t, x) − f (t, y)| + |(g(t, x) − g(t, y)|
≤ L|x − y|,∀x, y ∈ R, t ≥ 0

for some constant L. Moreover, the solution is sample-
continuous.
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Definition 20 (Yao and Chen 2013) Let α be a number with
0 < α < 1. An uncertain differential equation

dXt = f (t, Xt ) dt + g (t, Xt ) dCt

is said to have an α-path Xα
t if it solves the corresponding

ordinary differential equation

dXα
t = f

(
t, Xα

t

)
dt + ∣∣g (

t, Xα
t

)∣∣ �−1 (α) dt

where �−1 (α) is the inverse standard normal uncertainty
distribution, i.e.,

�−1 (α) =
√
3

π
ln

α

1 − α
.

In this case, Xt is called a contour process.

Theorem 7 (Yao and Chen 2013) Let Xt and Xα
t be the

solution and α-path of the uncertain differential equation

dXt = f (t, Xt ) dt + g (t, Xt ) dCt

respectively. Then

M
{
Xt ≤ Xα

t ,∀t} = α,

M
{
Xt > Xα

t ,∀t} = 1 − α.

Theorem 8 (Yao and Chen 2013) Let Xt and Xα
t be the

solution and α-path of the uncertain differential equation

dXt = f (t, Xt ) dt + g (t, Xt ) dCt

respectively. Then, the solution Xt has an inverse uncertainty
distribution �−1

t (α) = Xα
t .

Theorem 9 (Yao and Chen 2013) Let Xt and Xα
t be the

solution and α-path of the uncertain differential equation

dXt = f (t, Xt ) dt + g (t, Xt ) dCt

respectively. Then, for any monotone function J , we have

E [J (Xt )] = ∫10 J
(
Xα
t

)
dα.

5 Some stock models in uncertain markets

In 2009, Liu (2009) presented a stock model based on an
assumption that the stock price follows uncertain differential
equation and proposed an uncertain stock model as follows

{
dBt
Bt

= rdt
dSt
St

= μdt + σdCt

where Bt is the bond price, St denotes stock price, r is the
riskless interest rate, μ is the log-drift, σ is the log-diffusion
and Ct is a canonical Liu process.

Also, Peng and Yao (2011) proposed a stock model as an
uncertain counterpart of Black–Karasinski’s model in 2011.
This model is as follows{

dBt
Bt

= rdt
dSt = (m − αSt ) dt + σ StdCt

where r,m, α, and σ are some constants andCt is a canonical
Liu process.

In both models, the interest rate is constant. But in 2015,
Yao (2015) assumed that both interest rate and the stock price
follow uncertain differential equation and gave an uncertain
stock model as follows{

drt
rt

= μ1dt + σ1dC1t
dSt
St

= μ2dt + σ2dC2

where μ1 and σ1 are the log-drift and log-diffusion of the
interest rate rt , respectively, and μ2 and σ2 are the log-drift
and log-diffusion of the stock price St , respectively. In this
model,C1t andC2t are independent canonical Liu processes.

In 2016, Sun and Su (2016) proposed a mean-reverting
stock model with floating interest rate. They released this
stock model based on the presumption that the stock model
fluctuates periodically around a certain price in the long term.
The Sun-Su’s model is as follows{
drt = (m1 − a1rt ) dt + σ1dC1t

dSt = (m2 − a2St ) dt + σ2dC2t

where m1,m2, a1, a2, σ1 and σ2 are some real numbers with
a1, a2 	= 0.

6 The stock model with an uncertain volatility

There is one point that can be seen in all mentioned models
which is the constant volatility. In this section, we present
a new stock model as an uncertain counterpart of Heston
model. Uncertain volatility is described as an uncertain pro-
cess which lets the volatility follows canonical Liu process
and makes the value of the option much better adapted to the
realities of the market.

We consider that a stock price can be described by an
uncertain model if the behavior of the stock price satisfies
uncertain differential equation and present the stock model
with uncertain volatility as follows

⎧⎨
⎩

dBt = r Btdt
dSt = St

(
μdt + √

σt dC1t
)

dσt = κ (θ − σt ) dt + σ
√

σt dC2t

(2)
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where C1t and C2t are two independent canonical Liu pro-
cesses. Other uncertain variables of the model are defined as
follows

• St : the stock price at time t
• Bt : the bond price at time t
• σt : volatility of the stock price
• r : risk-free interest rate
• μ : the log-drift of the stock price
• κ : rate of reversion to the long-term price variance
• θ : long-term price variance
• σ : volatility of the volatility.

We assume that θ > 0 and κ > 0. Indeed, the volatility
dynamic is just same as Chen and Gao’s model (2013) for an
uncertain interest rate model.

The matrix form of Eq. (2) is given by

⎛
⎝ dBt

dSt
dσt

⎞
⎠ =

⎛
⎝ r Bt

μSt
κ (θ − σt )

⎞
⎠ dt +

⎛
⎝ 0√

σt St
σ
√

σt

⎞
⎠

⎛
⎝ 0
dC1t

dC2t

⎞
⎠ (3)

where Ct = (C0,C1t ,C2t )
T .

Three-compartment model Eq. (3) would be expressed as
follows

dXt = F (t, Xt ) dt + G (t, Xt ) dCt (4)

where

F = ( f1, f2, f3)
T and G = (g1, g2, g3)

T .

Besides, we have

dXt = (dBt , dSt , dσt )
T ,

F (t, Xt ) = (r Bt , μSt , κ (θ − σt )) and

G (t, Xt ) = (
0,

√
σt St , σ

√
σt

)
.

Eq. (4) now appears like one-dimensional uncertain differ-
ential equation.

There is no analytic solution for model (2). In order to
overcome this problem, we provide the following theorem
for applying the α-path method as a numerical method.

Theorem 10 Suppose that Yt and Y α
t be the solution and

α-path of an uncertain differential equation

dYt = f1 (t,Yt ) dt + g1 (t,Yt ) dC1t

respectively. Let |h (t, y)| be a continuous increasing func-
tion. Then, the solution Xt of an uncertain differential
equation

dXt = f2 (t, Xt ) dt + h (t,Yt ) g2 (t, Xt ) dC2t

is a contour process with an α-path Xα
t that solves the cor-

responding ordinary differential equation

dXα
t = f2

(
t, Xα

t

)
dt + ∣∣h (

t,Y α
t

)
g2

(
t, Xα

t

)∣∣�−1 (α) dt

where

�−1 (α) =
√
3

π
ln

α

1 − α
, α ∈ (0, 1)

and C1t and C2t are independent canonical Liu processes.
In other words

M
{
Xt ≤ Xα

t ,∀t} = α

M
{
Xt > Xα

t ,∀t} = 1 − α.

Proof Given α ∈ (0, 1). We define the following sets

P = {t ∈ [0, T ] |h (t,Yt ) g2 (t, Xt ) ≥ 0}
N = {t ∈ [0, T ] |h (t,Yt ) g2 (t, Xt ) < 0}

Then P ∪ N = [0, T ]. Also, write


+
1 =

{
γ
∣∣dC2t

dt
≤ �−1 (α) ,∀t ∈ (0, s]

}
,


−
1 =

{
γ
∣∣dC2t (γ )

dt
≥ �−1 (1 − α) ,∀t ∈ (0, s]

}
,

�+
1 =

{
λ
∣∣dC1t (λ)

dt
≤ �−1 (α) ,∀t ∈ (0, c]

}

and

�+
1 =

{
λ|dC1t (λ)

dt
≥ �−1 (1 − α) ,∀t ∈ (0, c]

}
.

Notice that s, c ∈ [0, T ]. P and N are disjoint sets, and
C1t and C2t are independent increment processes, and by
assumption, we have

M
{

+

1

} = α,

M
{

−

1

} = α,

M
{

+

1 ∩ 
−
1

} = α,

M
{
�+

1

} = α,

M
{
�−

1

} = α,

M
{
�+

1 ∩ �−
1

} = α

and

M
{

+

1 ∩ �+
1

} = min
{
M

{
Σ+

1

}
,M

{
Λ+

1

}} = α,

M
{

−

1 ∩ �−
1

} = min
{
M

{
Σ−

1

}
,M

{
Λ−

1

}} = α
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and

M
{(


+
1 ∩ �+

1

) ∩ (

−

1 ∩ �−
1

)} = α.

For any β ∈ (

+

1 ∩ �+
1

) ∩ (

−

1 ∩ �−
1

)
, we have

h (t,Yt (β)) g2 (t, Xt (β))
dC2t

dt
≤ ∣∣h (

t,Y α
t

)
g

(
t, Xα

t

)∣∣ �−1 (α) dt,∀t ∈ [0, T ] .

Then

Xt (β) ≤ Xt ,∀t ∈ [0, T ] .

Hence, we can write

M
{
Xt ≤ Xα

t ,∀t ∈ [0, T ]
}

≥ M
{(


+
1 ∩ �+

1

) ∩ (

−

1 ∩ �−
1

)} = α. (5)

Besides, define


+
2 =

{
γ |dC2t

dt
> �−1 (α) ,∀t ∈ (0, s]

}
,


−
2 =

{
γ |dC2t (γ )

dt
< �−1 (1 − α) ,∀t ∈ (0, s]

}
,

�+
2 =

{
λ|dC1t (λ)

dt
> �−1 (α) ,∀t ∈ (0, c]

}

and

�+
2 =

{
λ|dC1t (λ)

dt
< �−1 (1 − α) ,∀t ∈ (0, c]

}
.

Notice that s, c ∈ [0, T ]. P and N are disjoint sets and C1t

andC2t are independent increment processes and by assump-
tion, we have

M
{

+

2

} = 1 − α,

M
{

−

2

} = 1 − α.,

M
{

+

2 ∩ 
−
2

} = 1 − α,

M
{
�+

2

} = 1 − α,

M
{
�−

2

} = 1 − α,

M
{
�+

2 ∩ �−
2

} = 1 − α

and

M
{

+

2 ∩ �+
2

} = min
{
M

{
Σ+

2

}
,M

{
Λ+

2

}} = 1 − α,

M
{

−

2 ∩ �−
2

} = min
{
M

{
Σ−

2

}
,M

{
Λ−

2

}} = 1 − α

and

M
{(


+
2 ∩ �+

2

) ∩ (

−

2 ∩ �−
2

)} = 1 − α.

For any β ∈ (

+

2 ∩ �+
2

) ∩ (

−

2 ∩ �−
2

)
, since

h (t,Yt (β)) g2 (t, Xt (β))
dC2t

dt
>

∣∣h (
t,Y α

t

)
g

(
t, Xα

t

)∣∣�−1 (α) dt,∀t ∈ [0, T ] ,

we have

Xt (β) > Xα
t ,∀t ∈ [0, T ] .

Hence, we can write

M
{
Xt > Xα

t ,∀t ∈ [0, T ]
}

≥ M
{(


+
2 ∩ �+

2

) ∩ (

−

2 ∩ �−
2

)} = 1 − α. (6)

Since

M
{
Xt ≤ Xα

t ,∀t ∈ [0, T ]
}

+M
{
Xt > Xα

t ,∀t ∈ [0, T ]
} ≤ 1,

From inequalities (5) and (6), we have

M
{
Xt ≤ Xα

t ,∀t ∈ [0, T ]
} = α,

M
{
Xt > Xα

t ,∀t ∈ [0, T ]
} = 1 − α.


�

7 European option pricing

In this section, we consider a European option and propose
a numerical method to price this type of option based on our
proposed stock model (2).

In order to value a European option price, we define this
type of contract.

We recall that aEuropean call option is a contract that gives
its holder the right but not the obligation to buy a prescribed
stock for a certain price at a determined time in future.

We now consider a European call optionwith a strike price
K and maturity date T . Then, its valuation is as follows

C = e−rT E
[
(ST − K )+

]
where ST is the stock price at time T .

Theorem 11 The valuation of a European call option of the
stock price (2) with expiration date T and strike price K is
as follows

C = e−rT
∫ 1

0

(
Sα
T − K

)+
dα
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where

Sα
T = S0 exp

(
μT + ∫T

0

√
σα
t

√
3

π
ln

α

1 − α
dt

)

and σα
t is the solution of the following ordinary differential

equation

dσα
t = κ

(
θ − σα

t

)
dt + σ

√
σα
t

√
3

π
ln

α

1 − α
dt,

κ, θ and σ are some constants.

Proof According to Theorem 10, St is a contour process and
itsα-path is the solution of the following ordinary differential
equation

dSα
t = Sα

t

(
μ +

√
σα
t

√
3

π
ln

α

1 − α

)
dt

and σα
t is the solution of the following ordinary differential

equation

dσα
t = κ

(
θ − σα

t

)
dt + σ

√
σα
t

√
3

π
ln

α

1 − α
dt.

Besides, the price of a European call option is

C = e−rT E
[
(ST − K )+

]
.

Then, by Theorems 3 and 9, the theorem is proved. 
�
Another classification of a European option is a put option.

Indeed, a European put option is a contract that gives its
holder the right but not the obligation to sell a prescribed
stock for a certain price at a determined time in future.

Consider a European put option with a strike price K and
maturity date T . Then, its valuation is

P = e−rT E
[
(K − ST )+

]
where ST is the stock price at time T .

Theorem 12 The valuation of a European put option of the
stock price (2) with expiration date T and strike price K is
as follows

P = e−rT
∫ 1

0

(
K − Sα

T

)+
dα

where

Sα
T = S0 exp

(
μT +

∫ T

0

√
σα
t

√
3

π
ln

α

1 − α
dt

)

and σα
t is the solution of the following ordinary differential

equation

dσα
t = κ

(
θ − σα

t

)
dt + σ

√
σα
t

√
3

π
ln

α

1 − α
dt,

κ, θ and σ are some constants.

Proof Based on Theorem 10, St is a contour process and its
α-path is the solution of the following ordinary differential
equation

dSα
t = Sα

t

(
μ +

√
σα
t

√
3

π
ln

α

1 − α

)
dt

and σα
t is the solution of the following ordinary differential

equation

dσα
t = κ

(
θ − σα

t

)
dt + σ

√
σα
t

√
3

π
ln

α

1 − α
dt.

Besides, the price of a European put option is

P = e−rT E
[
(K − ST )+

]
.

Then, by Theorems 3 and 9, the theorem is proved. 
�

8 Numerical results

In this section, we propose an algorithm to calculate the price
of European option under the stock model (2). Some numer-
ical examples are provided which their parameters are given
by Dunn et al. (2014)

The following algorithm calculates the European call
option under the stock price model (2).

Step 0: Fix the exercise date at time T , fix the volatility
at time zero σα

0 = σ0 and choose N = 100 and set i =
1, 2, . . . , N − 1.
Step 1: Set α ← i

N .
Step 2: set i ← i + 1.
Step 3: Solve the corresponding ordinary differential equa-
tion via Runge–Kutta scheme (Shen and Yang 2015),

dσ
αi
t = κ

(
θ − σ

αi
t

)
dt + σ

√
σ

αi
t

√
3

π
ln

αi

1 − αi
dt

and

dSαi
t = Sα

t

(
μ +

√
σ

αi
t

√
3

π
ln

αi

1 − αi

)
dt,

respectively. Then obtain σ
αi
T and Sαi

T for i = 1, 2, . . . , 99.
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Step 4: Calculate the positive deviation between the stock
price and strike price at time T

(
Sαi
T − K

)+ = max
(
0, Sαi

T − K
)
.

Step 5: Calculate

exp (−rT )
(
Sαi
T − K

)+
.

If i < N − 1, return to step 2.
Step 6: Calculate the value of the European call option

C ← 1

N − 1
exp (−rT )

∑N−1

i=1

(
Sαi
T − K

)+
.

Consider a European put option under the stock model
(2). According to Theorem 12, the following algorithm is
designed to price a mentioned option.

Step 0: Fix the exercise date at time T , fix the volatility
at time zero σα

0 = σ0 and choose N = 100 and set i =
1, 2, . . . , N − 1.
Step 1: Set α ← i

N .
Step 2: set i ← i + 1.
Step 3: Solve the corresponding ordinary differential equa-
tion via Runge–Kutta scheme proposed by Shen and Yang
(2015),

dσ
αi
t = κ

(
θ − σ

αi
t

)
dt + σ

√
σ

αi
t

√
3

π
ln

αi

1 − αi
dt

and

dSαi
t = Sα

t

(
μ +

√
σ

αi
t

√
3

π
ln

αi

1 − αi

)
dt,

respectively. Then obtain σ
αi
T and Sαi

T for i = 1, 2, . . . , 99.
Step 4: Calculate the positive deviation between the stock
price and strike price K at time T

(
K − Sαi

T

)+ = max
(
0, K − Sαi

T

)
.

Step 5: Calculate

exp (−rT )
(
K − Sαi

T

)+
.

If i < N − 1, return to step 2.
Step 6: Calculate the value of the European put option

P ← 1

N − 1
exp (−rT )

N−1∑
i=1

(
K − Sαi

T

)+
.

Example 1 Assume that spot price is 425.73, maturity date
is 24 days, the risk-free interest rate and the log-drift are
6.50 × 10−4 and strike price is 395. Let κ = 2, θ = 5.16 ×

10−5, σ0 = 0.001 and σ = 2.38 × 10−3. Then, the price of
a European call option is C = 30.75.

Table 1 summarizes the parameter that we used for com-
parison between uncertain stock model and stochastic stock
model. The option price via the Heston model in stochastic
form is estimated by Monte Carlo simulation method.

The European call option prices on uncertain stock model
and stochastic stock model are outlined in Table 2.

Next, we provide an example for a European put option
and compare the value of put options in two approaches,
stochastic and uncertain approaches.

Example 2 Assume that spot price is 425.73, maturity date
is 24 days, the risk-free interest rate and the log-drift are
6.50 × 10−4 and strike price is 470. Let κ = 2, θ = 5.16 ×
10−5, σ0 = 0.001 and σ = 2.38 × 10−3. Then, the price of
a European put option is P = 44.25.

According to Tables 2, 3, Figs. 1, and 2, we can see
that the European option prices under uncertain approach
is close enough to the stochastic approach. Based on the
data given by Dunn et al. (2014), the uncertain approach
performs much better than the classical stochastic approach;

Table 1 Parameters

r 6.50 × 10−4

μ 6.50 × 10−4

σ0 0.001

σ 2.38 × 10−3

θ 5.16 × 10−5

κ 2

ρ : Correlation coefficient for two Wiener processes 0.1

Table 2 European call option valuation comparison

Maturity
date (days)

Spot
price

Strike
price

Option pricing via
uncertain approach

Option pricing via
stochastic approach

24 425.73 395 30.75 31.74

24 425.73 400 25.75 26.58

24 425.73 405 20.75 20.66

24 425.67 410 15.7 15.77

24 425.68 415 10.7 11.47

87 425.73 380 45.82 45.51

87 425.73 385 40.82 40.76

87 425.73 390 35.82 35.58

87 425.73 395 30.82 30.62

87 425.73 400 25.82 26.90

115 425.73 380 45.86 45.90

115 425.73 390 35.86 35.88

115 425.73 400 25.87 25.53
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Table 3 European put option valuation comparison

Maturity
date
(days)

Spot
price

Strike
price

Option pricing via
uncertain approach

Option pricing via
stochastic approach

24 425.73 450 24.25 24.36

24 425.73 455 29.25 28.62

24 425.73 460 34.25 34.20

24 425.67 465 39.25 38.87

24 425.68 470 44.25 44.01

87 425.73 430 4.25 5.86

87 425.73 435 9.17 9.79

87 425.73 440 14.17 13.92

87 425.73 445 19.16 19.21

87 425.73 450 24.16 23.25

115 425.73 455 29.12 29.30

115 425.73 460 34.12 32.72

115 425.73 465 39.11 38.45
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Fig. 1 Price of European call option via stochastic and uncertain
approaches for a 24-day period

see Dunn et al. (2014). Actually, it is so close to the actual
price.

9 Remarks and conclusions

In this paper, we assumed that the volatility of the stock
price follows an uncertain differential equation instead of
being constant and proposed a new stock model which is an
uncertain counterpart of the Heston model. Furthermore, we
present a numerical method for obtaining a European option
price under the proposed uncertain model. The numerical
results indicate our model has high pricing accuracy and effi-
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P
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Fig. 2 Price of European put option via stochastic and uncertain
approaches for a 24-day period

ciency. In the future, it could be interesting to continue the
investigation of the effect uncertain interest rate models have
on the option prices.
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