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Abstract As the technology in automation and computation
advances, traffic data can be easily collected from multiple
sources, such as sensors and surveillance cameras. To extract
value from the huge volumes of available data requires the
capability to process and extract patterns in large datasets.
In this paper, a machine learning method embedded within
a big data analytics platform is constructed by using ran-
dom forests method and Apache Hadoop to predict highway
travel time based on data collected from highway electronic
toll collection in Taiwan. Various prediction models are then
developed for highway travel time based on historical and
real-time data to provide drivers with estimated and adjusted
travel time information.

Keywords Big data · Random forests · Electronic toll
collection (ETC) · Travel time prediction · Apache Hadoop

1 Introduction

To avoid congestion and to increase the utilization of the
entire highway network relies on the ability to predict travel
time in a timely manner (Chien and Kuchipudi 2003; Zhang
and Rice 2003; van Lint 2006; Yildirimoglu and Gerolim-
inis 2013; Vlahogianni et al. 2014). The predicted travel
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time provides the drivers as an aggregated traffic information
that affects their travel plans. A reliable prediction in travel
time needs to meet the following three objectives: accuracy,
robustness, and adaptability (van Lint 2006). The traffic data
on highway can usually be collected by surveillance devices
on fixed locations, such as radio frequency sensors (Chien
and Kuchipudi 2003), loop detectors (Zhang and Rice 2003;
vanLint 2006;Yildirimoglu andGeroliminis 2013), and even
cameras (Innamaa 2005). Various prediction methods have
been used in processing these traffic data, such as time series
methods (Fei et al. 2011), regression models (Wu et al. 2004;
Qiao et al. 2016), and machine learning methods (Innamaa
2005; Khosravi et al. 2011). A more detailed description on
researches related to travel time prediction can be found in
Vlahogianni et al. (2014). For previous travel time predic-
tion, interested readers can be referred to Li and Chen (2013,
2014), and Gal et al. (2017).

Modern sensor-enabled electronic products generate huge
volumes of data in real time. For instance, a single air-
craft turbine will generate 10 TB of data every 30min,
and Google processes more than 24 petabytes of data each
day, while Facebook receives 10 million posts every hour.
The emergence of big data has coincided with the develop-
ment of social media, mobile communications technologies,
cloud computing and new data analytics techniques to fun-
damentally change how we live, work, and interact. Mobile
communications and social media are transforming individ-
ual engagement, and creating new expectations of security,
trust, and value in return for personal information. Cloud
computing is transforming IT and business processes. Big
data analytics are producing new resources which are to
transform business and industry in a paradigm shift. This
exponential increase in data volume has overwhelmed the
storage and processing capacities of mainframe computer
systems along with existing technologies (Chen et al. 2014;
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Kalambe et al. 2015). Big data is mostly unstructured and
entails a wide range of formats and content, indicating that
it can consists of many forms, such as traditional data, meta-
data, streaming, video, media, transaction, digital images,
sensors and audios, social media data, among others.

This paper develops two models to predict freeway travel
time through big data analysis of data collected from the Tai-
wanHighwayElectronicTollCollectionSystems (ETC). The
goal is for the system to provide drivers with accurate travel
time predictions in response to real-time traffic conditions.
Two travel time prediction models are established based on
historical freeway data: one-destination travel time predic-
tion (OTTP) and adaptive travel time prognosis (ATTP). The
performance of the two models is evaluated under different
scenarios. This paper intends to contribute to the highway
travel time prediction in using big data techniques, and a
big data analytics platform is built upon the framework of
Apache Hadoop.

2 Random forests and Apache Hadoop

2.1 Random forests

Random forests are an ensemble of classifiers that construct
multiple decision trees. A combination of tree predictors is
created such that each tree depends on the values of a ran-
dom vector or independently sampled features and assumes
the same distribution for all trees in the forest (Breiman
2001a, b). To date, the random forests model has been widely
applied to various research fields (Greenhalgh and Mirme-
hdi 2012; Chen and Howard 2016; Mistry et al. 2016; Xu
et al. 2016; Joshi et al. 2017). For classification tasks, random
forests typically give high accuracy and fast classification
time. A random forests classifier requires training with large
datasets, which in our study is readily available due to the
nature and extent of the ETC data. Random forests can also
handle the vector of thousands of features and produce a clas-
sifierwith high classification accuracy ifwell trained. For this
reason, random forests will be used in this paper to conduct
highway travel time prediction.

For each tree, the feature selection is conducted randomly,
so the split node also differs from tree to tree, depending on
the feature selection. The basic steps of the random forests
algorithm are summarized below:

(1) Let the number of training cases be N , and the number
of variables in the classifier be M (i.e., the number of
features).

(2) Decide the numberm of input variables (i.e., features) to
be used to determine the decision at a node of the tree;
m should be considerably smaller than M . In general,

the default number m is the square root of M in many
open-source software.

(3) To construct trees, choose a training set k times with
replacement from all N available training cases. Each of
these datasets is called a bootstrap dataset. The number
k indicates the number of tress to be trained.

(4) For each tree node, randomly choose m variables on
which to make the decision at that node. Calculate the
best split based on these m variables in the training set.

(5) Each tree is fully grown and not pruned.

At each node of the individual decision tree, the best split
is chosen based on a random variable. In this paper, the “Gini
Index” is used to calculate the gini value to determine the best
split point. The random forests algorithm uses the gini index
taken from the classification and regression tree (CART)
learning system to construct decision trees. The gini impu-
rity represents a measure of how often a randomly chosen
element from the set would be incorrectly labeled if it were
randomly labeled according to the distribution of labels in the
subset. If a dataset contains elements from two classes, the
gini index is defined as follows (Harris and Grunsky 2015):

Gini(T ) = 1−
n∑

j=1

(p2j ) (1)

where p j is the relative frequency of class j in a dataset T ,
and n is the number of classes in the dataset.

If a dataset T is split into two subsets T1 and T2 with
respective sizes N1 and N2, then the gini index of the split
data is defined by

Ginisplit(T ) = N1

N
Gini(T1)+ N2

N
Gini(T2) (2)

The flow chart of the random forests algorithm is presented
as follows (Fig. 1):

2.2 Apache Hadoop

The Apache Hadoop was proposed by Doug Cutting and
Mike Cafarella in 2005. It is an open-source software frame-
work that supports data intensive distributed applications.
Hadoop is designed for storing data and running applications
on clusters of commodity hardware. It provides massive stor-
age for any kind of data, enormous processing power, and
the ability to handle virtually limitless concurrent tasks or
jobs. It can work independently across multiple computers,
processing very large volumes of data. There are two main
cores in Hadoop: Hadoop Distributed File System (HDFS)
and MapReduce. File distribution is handled through HDFS
andMapReduce jobs. The Hadoop system features one mas-
ter node and multiple slave nodes. HDFS is a storage layer in
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Fig. 1 Random forests
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which each data file is spread over many nodes. MapReduce
works as a processing layer for the Hadoop programming
model. The Hadoop architecture with one master and three
slaves constructed in this study is illustrated in Fig. 2.

2.2.1 MapReduce

MapReduce is a programming model and a software frame-
work that forms the core of Apache Hadoop. It allows for
massive scalability across hundreds or thousands of servers in
a Hadoop cluster. The HadoopMapReduce library expresses
computation in two phases:Map andReduce (Dean andGhe-
mawat 2008). The map phase breaks down individual data

elements into tuples (i.e., key/value pairs). The second pro-
cessing step is reduce phase, which takes the output from a
map as input and combines those data tuples into a smaller
set of tuples. These are two phases of MapReduce shown in
Fig. 3.

2.2.2 Apache Mahout

Apache Mahout is an open source project and scalable
machine learning library (Jain and Jain 2014). Along with
the Hadoop platform, Mahout is a promising technology for
analyzing and solving data intensive problems, with built-in
libraries for solving clustering, categorization, and classi-
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fication problems like K-mean, fuzzy K-mean, Dirichlet,
RandomForests and others (Cunha et al. 2015). It can be used
to apply multiple algorithms, run in parallel with Hadoop.

Regarding the integration of Apache Hadoop and random
forests, interested readers can be referred to Rio et al. (2014)
and Singh et al. (2014).

3 Proposed approaches

3.1 One-destination travel time prediction (OTTP)

In the one-destination travel time prediction (OTTP)module,
the freeway under study is divided into k sections by gantry.
Each section (from gantry to gantry) contains a range of use-
ful traffic information includingTime (by hour), Day,Vehicle
Type, Traffic Flow, Travel Time, and Space Mean Speed. All
the traffic information is recorded by sensors installed on the
gantry. Figure 4 provides a schematic diagram of freeway
sections in the OTTP module.

The OTTP module is developed for use in normal traffic
conditions and does not account for unexpected traffic con-
gestion or accidents; thus, the training data of Model One is
divided into 24 hourly time intervals. The data during each
time interval will be used to train one forest consisting of sev-
eral decision trees. The representative training datasets in the
OTTPmodule are displayed in Fig. 5. As to the user-specified
departure time, the training dataset which is the closest to the
departure time is used for travel time prediction via theOTTP
module.

For OTTP feature selection, we considered the features of
Time (by hour), Day, Gantry From, Gantry To, and Vehicle
Type. The OTTP model includes two major steps: train-
ing and prediction. We constructed forests using randomly
selected parameter combinations and different numbers of
trees during the training step. For the prediction step, “travel

Fig. 4 Schematic diagram of
freeway sections in the OTTP
module

k k+1 k+2 k+3

00-01 01-02 23-2422-23

For all gantries in the journey

Fig. 5 Schematic diagram of time-based datasets in the OTTP module
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time” as the target is predictedbyvotingvia the forests trained
in the first step. The detailed procedure of the two steps in
the OTTP module for a single gantry-to-gantry section is
illustrated in Fig. 6. Assuming that only two classes are con-
sidered in the figure, the result is assigned to class A by the
voting output, where class A represents the travel time level
in this segment.

Since the OTTP module is developed based on the
one-time, gantry-to-gantry predictionmodel bymeans of his-
torical data, it cannot accommodate dynamic, abrupt changes
in freeway traffic conditions. To enhance prediction adapt-
ability and accuracy, we developed Model two, an adaptive
travel time prognosis, to remedy the shortcomings of the
OTTP model.

Time of record
Day

Vehicle type
Gantry From

Gantry To

Training Step

Feature Selection Forests Constructed

Time of record
Day

Vehicle type
Gantry From

Gantry To

Input Feature

A

B

A

Voting

A

Prediction Step

Result

Fig. 6 Detailed two-step procedure in the OTTP module

3.2 Adaptive travel time prognosis (ATTP)

In the ATTP module, the freeway is, as before, divided into
k sections by gantry. In Fig. 7, we intend to predict the travel
time from interchange A to interchange C using the OTTP
module and to adapt the travel time in terms of real-time data
using the ATTP module. For illustration purposes, a large
number of vehicles enter the freeway at interchangeB, result-
ing in traffic congestion in section k + 1. This unexpected
activity (or event) would produce significant errors in travel
time prediction by means of the OTTP module. The ATTP
module is designed to reduce the severity of such prediction
errors.

We collected real-time data from Traffic Data Collec-
tion System (TDCS), i.e., the Taiwan Highway Electronic
Toll Collection Systems (ETC), and adapted travel time pre-
diction to real-time traffic flows. We conducted travel time
prognosis for two upcoming sections k + 1 and k + 2, based
on the current section k. We constructed the forests involv-
ing imminent traffic conditions determined by gantry-based
historical data, regardless of day or time of recording, as
demonstrated in Fig. 8. We input the real-time data of these
three sections to the forests for training according to individ-
ual gantries to update the travel time of each section. If the
travel time prediction between OTTP and ATTP differs sig-
nificantly, we update the OTTP travel time using the ATTP
travel time to the freeway user.

The ATTP module feature selection considered the fea-
tures of Vehicle Type, Traffic Flow, Gantry From, Gantry

k k+1 k+2

Fig. 8 Schematic diagram of gantry-based datasets in the ATTP mod-
ule

Fig. 7 Schematic diagram of
the ATTP module

A B C

k k+1 k+2 k+3
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Fig. 9 Three major steps of the ATTP module

To, Travel Time, and Space Mean Speed. The ATTP mod-
ule consists of three major steps: training, prognosis, and
adaptation. As usual, we constructed forests with randomly
selected parameter combinations and different numbers of
trees in the current section and the following two sections
during the training step. For the prognosis step, travel time
prediction is obtained by voting with real-time data as inputs
into the forests trained in the first step. We then compare the
travel time prediction against the one returned by the OTTP
module. If the OTTPmodule fails to reflect the current traffic
situation in the upcoming sections, we update the travel time
using the ATTP result. Figure 9 shows the three major steps
of the ATTP module, where the result is assigned to class B
by voting as the ATTP travel time prediction.

4 Experimental study

In this experimental study, data were taken from Traffic Data
Collection System (TDCS), i.e., the Taiwan Highway Elec-
tronic Toll Collection Systems (ETC). TDCS records travel

time, mean speed, and trip length for each vehicle, along
with overall traffic flow by gantry. The content of TDCS is
tabulated in Table 1.

In this section, all the data in 2015 are earmarked for train-
ing, and the January and February data in 2016 are used for
testing. Twomodels were developed for application in differ-
ent situations: one-destination travel time prediction (OTTP)
and adaptive travel time prognosis (ATTP).

4.1 Prediction results of one-destination travel time
prediction

Here, the experiments are classified by travel distance as
short, medium, and long distance. For each travel distance,
the number of features considered at each internal node
of random forests is m, randomly chosen as suggested by
Breiman (2001a, b) to be m = int(log2 M + 1) where M is
the total number of features. This is called the random sub-
space method. Due to the with-replacement sampling policy
in random forests, every bootstrap dataset can have duplicate
data records and some data records may be missing from
the original dataset. This missing dataset is called out-of-
bag examples. The out-of-bag (OOB) error is defined as the
average prediction error of random forests models using the
bootstrap aggregating to subsample data, in relation to the
out-of-bag examples.

Based on the OOB error analysis, it has been discovered
that the travel time OOB prediction error stabilizes as the
number of trees reaches 50. To assess the effectiveness of
travel time prediction for each travel distance, the number
of trees in the forest is set to k = 50. In every experiment,
we compute the prediction error for the evaluation purpose.
The experimental results are displayed in Tables 2, 3, and 4.
The performance measure, mean absolute percentage error
(MAPE), is used to examine the prediction performance. The
number in parenthesis is the standard deviation of MAPE.
The MAPE statistic usually expresses accuracy as a percent-
age calculated as follows:

MAPE = 1

n

n∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣ (3)

where At is the actual travel time value and Ft is the forecast
travel time value, and n is the number of the January and
February data in 2016 for testing.

According to the simulation results shown above, the aver-
age MAPE results cluster around 5% for the three distance
categories using the OTTP module. MAPE primarily dic-
tates the averaged prediction error along the various roadway
segments. The OTTP module may produce a noticeable pre-
diction error, but the MAPE results are smoothed over a
large amount of testing data. Basically, the OTTP module
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Table 1 Features details of forms M03A–M08A from TDCS

Form no. Content of features

M03A Time interval Gantry ID Direction Vehicle Type Traffic Flow – – –

M04A Time interval Gantry From Gantry To Vehicle Type Travel Time Traffic Flow – –

M05A Time interval Gantry From Gantry To Vehicle Type Space Mean Speed Traffic Flow – –

M06A Vehicle type Detection time_O Gantry ID_O Detection time_D Gantry ID_D Trip length Trip end Trip infor-
mation

M07A Time interval Gantry From Vehicle Type Averaged Travel Time Traffic Flow – – –

M08A Time interval Gantry From Gantry To Vehicle Type Traffic Flow – – –

is capable of providing freeway users a reasonably accurate
travel time prediction for a specific day and time as no abrupt
changes in freeway traffic conditions occur. In fact, theOTTP
module seems unfazedwith respect to three different distance
categories, producing about 5% of MAPE. Since the OTTP
module is constructed on a time basis, including the time
by hour and the day by week, the prediction error should be
stable in spite of travel distances.

4.2 Prediction results of adaptive travel time prognosis

In this section, the simulation study focuses on travel time
adaptation in the short-distance category.As before, the num-
ber of features is set identical to the OTTP module and the
number of trees is k = 50. We compute the prediction error
of MAPE using the travel time prognostic. If the OTTPmod-
ule produces a large error, the travel time will be updated
to the ATTP result. The accuracy of the travel time prog-
nostic is then evaluated and compared. In this study, if the
prediction time between the OTTP and ATTP modules dif-
fers by more than 15%, then the prediction time by the ATTP
module will be used to replace the one returned by using
the OTTP module. The comparison results are shown in
Tables 5, 6, and 7. Note that in an earlier simulation study
three different percentages, 10, 15 and 20%, in prediction
time difference between the OTTP and ATTP modules were
tested. We found that if the level of 10% was used, then the
update to the ATTP result will be overkill. If the level of 20%
was used, then the traffic dynamic cannot be appropriately
accommodated.

Comparison results show that, in some instances, the
ATTP module significantly improves travel time prediction,
possibly due to use of historical data to train the OTTP
module leaving it unable to closely predict real-time traf-
fic conditions in 2016. Under such circumstances, the ATTP

module takes the dynamic traffic information into consider-
ation and recalculates the travel time in a prognostic manner.
Overall, the ATTP simulation results demonstrate that most
travel times can be accurately predicted using real-time ETC
data, with the ATTP module providing improved prediction
accuracy over the OTTP model. Note that the ATTP module
can be applied to longer distances. In this paper, we only
presented the prediction results of the ATTP module on the
short distances for the illustration purpose.

5 Conclusion

This paper implements a randomforests algorithmonApache
Hadoop for travel time prediction and prognosis fromTaiwan
electronic toll collection (ETC) data. The forecastmodels use
historical data and dynamic data. The current practice for
predicting travel time assumes that vehicle speed remains
constant along the various roadway segments. This approach
produces large prediction errors, especially when segment
speeds vary temporally. We developed models to predict
travel time before departure and adapt to dynamic traffic
patterns. Experimental results show that the one-destination
travel time prediction (OTTP) model provides high accuracy
for normal traffic conditions, while the adaptive travel time
prognosis (ATTP) can effectively adapt to dynamic traffic
patterns. Combining the two models provides highly accu-
rate travel time prediction for freeway drivers. The OTTP
module helps highway drivers select optimal departure times
to avoid traffic congestion and thus minimize travel time.
The ATTP module provides accurate time of arrival predic-
tions based on analysis of current traffic conditions, allowing
drivers to select alternate routes to further reduce travel
times.
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Table 5 ATTP versus OTTP
short-distance results (1)

Time Gantry From Gantry To MAPE of OTTP MAPE of ATTP Improvement (%)

01/18 Zhongli Airport 21.6250 10.8750 10.7500

8:45 Airport Taoyuan 27.8750 12.4770 15.3980

Taoyuan Linkou 10.4736 8.0000 2.4736

Table 6 ATTP versus OTTP
short-distance results (2)

Time Gantry From Gantry To MAPE of OTTP MAPE of ATTP Improvement (%)

01/17 Sanchong Taipei 4.7222 0.1944 4.5278

15:20 Taipei Yuanshan 31.2000 14.6200 16.5800

Yuanshan Neihu 5.0344 0.1379 4.8965

Table 7 ATTP versus OTTP
short-distance results (3)

Time Gantry From Gantry To MAPE of OTTP MAPE of ATTP Improvement (%)

02/01 Wudu Dahua 0.1875 0.1875 0.0000

20:55 Dahua Badu 0.0769 0.0769 0.0000

Badu Keelung 31.0000 0.8000 30.2000
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