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Abstract The maximal covering location problem (MCLP)
deals with the problem of finding an optimal placement of a
given number of facilitieswithin a set of customers. Each cus-
tomer has a specific demand and the facilities are to be placed
in such away that the total demand of the customers served by
the facilities ismaximized. In this article an improved genetic
algorithm (GA)-based approach,which utilizes a local refine-
ment strategy for faster convergence, is proposed to solve
MCLP. The proposed algorithm is applied on several MCLP
instances from literature and it is demonstrated that the pro-
posed GA with local refinement gives better results in terms
of percentage of coverage and computation time to find the
solutions in almost all the cases. The proposed GA-based
approach with local refinement is also found to outperform
the other existing methods for most of the small as well as
large instances of MCLP.

Keywords Facility location problem · Covering location
problem · Maximal covering location problem (MCLP) ·
Genetic algorithm (GA) · Local refinement

1 Introduction

One of the most popular facility location problems is the cov-
ering location problem (Hamacher and Drezner 2002). The
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objective of a simple version of this problem is to determine
the optimal location and number of facilities in order to cover
all customers. A customer is said to be covered or served by
a facility if it falls within the service distance of that facility.
The covering location problem has several applications in
emergency and military services as well as in public services
such as locating police stations, schools, plants, bus stops,
fire stations to name a few (Chung 1986; Schilling et al.
1993). An important and related problem in this context is
the maximum covering location problem (MCLP) (Adenso-
Diaz and Rodriguez 1997; Church and ReVelle 1974; Galvão
et al. 2000; Hamacher and Drezner 2002; Lorena and Pereira
2002; Resende 1998; ReVelle and Eiselt 2005; Rodriguez
et al. 2012). MCLP is considered when it is not feasible to
cover all customers due to many problems like budgetary
constraints or insufficient resources. For a simple model of
MCLP, the objective is to locate a given number of facilities
such that the number of customers covered by these facilities
is maximized.

Since MCLP is NP-hard in general (Berg et al. 2009;
Gary and Johnson 1979; Megiddo et al. 1983), genetic algo-
rithms (GAs) (Goldberg 1989) could be a better choice for
solving MCLP. GAs are popular search and optimization
strategies guided by the principle of Darwinian evolution.
Here, the parameters of the search space are encoded in
the forms of strings (chromosomes). The population con-
sisting of a set of chromosomes is initialized randomly.
The goodness of a chromosome is measured using a fitness
function which is usually related to the objective function
to be optimized. Some biologically inspired operators such
as selection, crossover and mutation are applied to create
the child population. Subsequently, elitism is performed to
evolve the next generation population using themost-fit chro-
mosomes of the parent and child populations. The algorithm
terminates if some specific criterion is met or the maximum
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Algorithm 1 Pseudocode of genetic algorithm
1: procedure Genetic–Algorithm
2: i = 1;
3: initialize(P(i)); � Initialize population with chromosomes
4: evaluate(P(i)); � Evaluate fitness of initial chromosomes
5: while notTerminated do
6: M(i) = selection(P(i)); � Perform selection to create

mating pool
7: C(i) = crossover(M(i)); � Perform crossover on mating pool
8: T (i) = mutation(C(i)); � Perform mutation on the offspring

solutions
9: evaluate(T (i)); � Evaluate fitness of new population
10: P(i + 1) = createNextGenerationFrom(P(i),T (i)); �

Create next generation population by elitism
11: i = i + 1;
12: end while
13: return(bestChromosome(P(i))); � Return the best

chromosome of last generation
14: end procedure

generation limit is reached. The best-fit chromosome of the
final generation provides the solution. Algorithm 1 shows the
pseudocode of a typical GA.

Suitably designed GAs are known to perform well to
produce near-global optimal results for NP-hard problems.
However, these techniques are often criticized for their rel-
atively high computation time. GAs were used by Jaramillo
et al. (2002) for solving different types of location problems
including MCLP. Fazel Zarandi et al. (2011) also developed
a customized GA to solve MCLP and they applied this to
large instances of MCLP with up to 2500 nodes. However,
some studies have indicated that although classical GA is
very good in quickly locating high performance regions in a
large and complex search place, it is not good enough in
fine-tuning the solutions that are very near to some opti-
mal solution. GA spends most of the time in refining the
initially obtained good solutions to convert them into best
ones. The performance of GA can be improved substan-
tially by incorporating some local improvement strategies
applied on the solutions encoded in chromosomes (García-
Martínez and Lozano 2007).Motivated by this, in this article,
an improvedGA-based approach is proposed to solveMCLP.
In this approach, the chromosomes of GA encode possible
locations of facilities. Fitness of each chromosome is com-
puted by the percentage of coverage by the solution encoded
by it. A local refinement strategy is adopted to improve
the chromosomes locally for faster convergence of GA by
quickly fine-tuning the solutions. The results obtained using
the proposed GA-based technique with local refinement are
compared with the results given by Lagrangian/surrogate
heuristic-based approach in Lorena and Pereira (2002) as
well as the customized GA-based approach in Fazel Zarandi
et al. (2011). It is found to outperform both the approaches in
terms of percentage of coverage and computational time in
most of the cases. Moreover to emphasize the effectiveness

of the local refinement strategy, the results obtained using the
proposed GAwithout this strategy are also mentioned in this
article.

The rest of the article is organized as follows. Related
works are discussed in Sect. 2. Section 3 formally defines
MCLP. In Sect. 4, the proposed GA-based technique is
described in detail. In Sect. 5, the experimental results are
reported and discussed. Finally, Sect. 6 concludes the article.

2 Literature review

Since the introduction of MCLP by Church and ReVelle on
a network (Church and ReVelle 1974), many of its alter-
native versions have been considered in facility location
literature (Assis Corrêa et al. 2009; Atta and Mahapatra
2013; Berman et al. 2010; Davari et al. 2011; Drezner
and Hamacher 2001; Farahani et al. 2012; Karasakal and
Karasakal 2004; Karmakar 2011; Lee and Lee 2010; Maha-
patra 2012; Moore and ReVelle 1982; Pereira et al. 2015;
ReVelle and Eiselt 2005; Spieker et al. 2016). In the present
work, we consider the model of MCLP proposed by Galvão
and ReVelle (1996). In this model, each customer is con-
sidered as a point in a plane and each of them has an
associated demand. These demands can also be considered
as the weights of the points. The potential location of each
facility is restricted to be the locations of customers. Each
facility has its own service distance, within which only, it can
provide its service. The service area of each facility is con-
sidered to be circular with the service distance as the radius
of the circle. The service distance, a parameter of MCLP, is
taken to be same for all the facilities. Therefore, the objec-
tive of MCLP under this model is to locate a given number
of facilities such that the maximal possible demands of cus-
tomers is served within a given service distance. Moreover,
the geometric version of MCLP in this model can be stated
as follows. Given a set of n weighted points on a plane, a
number of facilities k, and a service distance r , find a place-
ment of k circles, each of having radius r , so that the sum of
the weights of the input points covered by k such circles is
maximized.

Many researchers focus on different heuristic approaches
for solving this problem. Galvão and ReVelle developed
a Lagrangian heuristic for MCLP in Galvão and ReVelle
(1996) where they tested their heuristic in a network of up to
150 vertices. They improved both the lower and upper bounds
of the problem and hence provided a better approximate solu-
tion for MCLP compared to Weaver and Church (1984).
Galvão et al. compared the solutions of MCLP obtained
by the two heuristics based on Lagrangian and surrogate
relaxation in Galvão et al. (2000). Comparison was done
using 331 test problems available in the literature with num-
ber of vertices ranging from 55 to 900. Later on, Lorena
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and Pereira (2002) developed another Lagrangian heuris-
tic using Unified Linear Model given by Hillsman (1984)
to obtain better solution for MCLP in reduced computa-
tional time. They got better percentage of coverage than
that obtained by Galvão and ReVelle (1996) and Galvão
et al. (2000). Other approaches used for MCLP are dubbed
greedy adding (Church and ReVelle 1974), greedy adding
with substitution (Church and ReVelle 1974), greedy ran-
domized adaptive search (Resende 1998), genetic algorithms
(GAs) (Fazel Zarandi et al. 2011; Jaramillo et al. 2002).
Although MCLP is NP-hard in general, recently determin-
istic algorithms were proposed to solve the problem using
the tools of computational geometry (De Berg et al. 2000;
Preparata and Shamos 1993) when the number of given
facilities is small and service area of each facility is either
circular (Berg et al. 2009) or square (Mahapatra 2007;Maha-
patra et al. 2015) or rectangular (Mahapatra 2012) in shape.

3 Problem definition

Let us assume that the customers are represented by a set P
of m points in a plane. Each point p j ∈ P , j = 1, 2, . . . ,m,
has a nonnegative demand which is considered as the weight
of the corresponding point. The service area (or coverage
area) of each facility is circular in shape, each having the
radius r , which is a constant. This distance r is known as the
service distance. The center of the circle with radius r is the
location of the facility to be installed. Let the given number
of facilities to be installed be k, 1 ≤ k ≤ m and the set
of centers of these k facilities be {c1, c2, . . . , ck}. Here, the
potential location of each of the k facilities is restricted to the
locations of the customers itself. This implies that ci ∈ P ,
1 ≤ i ≤ k.

A point p j ∈ P is said to be covered (enclosed) by a circle
with center at ci , 1 ≤ i ≤ k, if and only if the Euclidean
distance between p j and ci , denoted as d(p j , ci ), is atmost r ;
otherwise the point p j is not covered by the corresponding
circle. If a point is covered by more than one circle then
the corresponding customer can avail the service from any
one of the facilities which are installed at the centers of such
circles. However, we assume that a customer cannot avail the
service from more than one facility. Note that the objective
of MCLP is to find the locations of k facilities such that the
sum of the demands of the customers covered by k facilities
is maximized.

Let r be the service distance forMCLP, P = {p1, p2, . . . ,
pm} be the set of customers, I = {c1, c2, . . . , cm} be the set
of potential facility sites, and f j be the demand of customer
p j . Suppose ai j = 1 if customer p j ∈ P can be covered
by a facility located at ci ∈ I , and ai j = 0 otherwise. Let k
be the number of facilities to be established. Also x j = 1 if
customer p j is covered, and x j = 0 otherwise; yi = 1means

that a facility must be located at site ci ∈ I , and yi = 0
otherwise. The mathematical formulation of the objective
function ofMCLP, v(MCLP), given by Galvão et al. (2000)
is as follows:

v(MCLP) = max
∑

p j∈P

f j x j (1)

subject to the constraints
∑

ci∈I
ai j yi − x j ≥ 0, p j ∈ P, (2)

∑

ci∈I
yi = k, (3)

x j ∈ {0, 1}, p j ∈ P, (4)

yi ∈ {0, 1}, ci ∈ I. (5)

In this formulation, the objective function denotes the total
demands covered and the goal is to maximize the value of
the objective function. Constraint (2) denotes that a customer
p j ∈ P is covered if and only if there is at least one facility
ci ∈ I such that d(p j , ci ) ≤ r . Constraint (3) restricts the
number of facilities to be exactly k. Constraints (4) and (5)
guarantee the 0 − 1 nature of the decision variables of the
problem. In this work, we consider the locations of the cus-
tomers as the potential locations of the facilities to be placed.
Hence, the set I and the set P are analogous for the problem
considered in this article.

4 Proposed GA for MCLP

In this section, the proposed GA-based solution for the afore-
mentioned MCLP is described. The overall procedure of the
proposed GA-based solution of MCLP is demonstrated in
Fig. 1. In the following subsections, we describe each step
of the proposed method in detail.

4.1 Chromosome encoding

In GAs, possible solutions for the optimization problem in
hand are encoded in the form of strings called chromo-
somes. A possible solution of MCLP is a set of potential
locations of k facilities to be chosen from the set of m cus-
tomers P = {p1, p2, . . . , pm}. Thus a chromosome here
encodes an integer string {t1, t2, . . . , tk} of length k repre-
senting the indices of the k customers chosen as the facilities.
Each element pti ∈ P , i = 1, 2, . . . , k, since the poten-
tial locations of k facilities are restricted to the locations of
the customers itself. For example, if m = 100 and k = 5,
then a chromosome {2, 34, 75, 87, 92} implies that the cus-
tomers p2, p34, p75, p87 and p92 are chosen as the potential
locations of facilities as per the solution encoded in the chro-
mosome.
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Fig. 1 Flowchart of the proposedGA-basedmethod for solvingMCLP

4.2 Population initialization

The initial population consists of P chromosomes where P
is a user defined parameter called population size. Each chro-
mosome of the initial population is generated by selecting k
random indices from the set {1, 2, . . . ,m}. In this work, we
set P = 20 which is chosen experimentally.

4.3 Fitness computation

Fitness of a chromosome represents the goodness of the solu-
tion encoded in it with respect to MCLP. The objective of
MCLP is to maximize the coverage (i.e., the percentage ratio
of total demands of the customers covered by some facilities

to the total demands of all customers). Hence, the coverage
of the solution encoded in a chromosome is considered as the
fitness of the chromosome, as shown in Eq. 1. The fitness is
to be maximized.

4.4 Genetic operators

Three genetic operators, namely selection, crossover and
mutation are used to create the next generation population
from the current one.

4.4.1 Selection

Selection is the process of making a mating pool from the
population. The chromosomes selected in themating pool are
capable of taking part in crossover. Here well-known binary
tournament selection (Goldberg 1989) is used. In binary tour-
nament selection, two chromosomes are randomly picked up
from the population and the better one (with respect to the fit-
ness value) is put in the mating pool. The process is repeated
P times (P being the population size) to create a mating pool
consisting of P parents.

4.4.2 Crossover

Crossover operation is done for information exchange
between twoparents to create twooffspring solutions. Single-
point crossover operation is used here. In each crossover
operation, two chromosomes are randomly chosen from
the mating pool and their elements are swapped beyond a
randomly chosen crossover point within length of the chro-
mosomes. The crossover operation is controlled by crossover
probability μc and repeated P

2 times to fill up the child pop-
ulation withP offspring solutions. The crossover probability
μc is kept constant as 0.9 throughout all the generations.

4.4.3 Mutation

Unlike crossover, mutation refers to perturbation of a single
parent. The following mutation procedure is adopted here.
For each chromosome, each element is tested for a possible
mutation with a mutation probability μm . If an element (a
potential facility location) is to be mutated, it is replaced by
a random point (customer) from the set of its firstN% near-
est neighbors. Here,N is chosen as 5 as it is found to provide
good result. Note that the list of first N% nearest neighbors
of each point is precomputed to avoid run-time computation.
The mutation probability is initialized to a small value of
0.01 and not changed for all the generations where the chro-
mosomes undergo local refinement procedure (see Sect. 4.5).
This ensures that mutation does not disrupt the chromosomes
muchwhen they proceed towards initial convergence through
local refinements. Once the local refinement procedure is not
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Table 1 Test problems

Problem Number of nodes Values of p Values of S

G&R100 Galvão and ReVelle
(1996)

100 [8, 10, 12] [50, 65, 80]

G&R150 Galvão and ReVelle
(1996), Galvão et al. (2000)

150 [8, 10, 12] and
[5, 6, 7, 8, 10, 12, 14, 16, 18, 20]

[75, 80, 85, 90]

B700 Beasley (1990) 700 [20, 24, 28] [13, 15, 20]
B900 Beasley (1990) 900 [20, 24, 28] [10, 13, 16]
SJC324 Lorena and Pereira
(2002)

324 [1, 2, 3, 4] [800, 1200, 1600]

SJC402 Lorena and Pereira
(2002)

403 [1, 2, 3, 4, 5, 6] [800, 1200, 1600]

SJC500 Lorena and Pereira
(2002)

500 [1, 2, 3, 4, 5, 6, 7, 8] [800, 1200, 1600]

SJC708 Lorena and Pereira
(2002)

708 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [800, 1200, 1600]

SJC818 Lorena and Pereira
(2002)

818 [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] [800, 1200, 1600]

ZDS1800 Fazel Zarandi et al.
(2011)

1800 [15, 20, 25] [3.5, 3.75, 4]

ZDS2500 Fazel Zarandi et al.
(2011)

2500 [15, 20, 25] [3.5, 3.75, 4]

done any more, i.e., when the chromosomes have already
converged well towards optimal solutions, mutation proba-
bility is increased to 0.8 to explore the search space around
the near-optimal solutions with the expectation of obtaining
some better solutions.

4.5 Local refinement

After mutation, each chromosome (solution) is locally
updated. Local improvement is done as follows. First, the
customers are clusteredwith respect to the facilities, i.e., each
customer pi is assigned to its nearest facility c j . A cluster
clst j is formed around each facility at c j with the customers
assigned to it (Jain et al. 1999; Mukhopadhyay et al. 2015).
Thereafter, each facility at c j encoded in a chromosome is
updated with ct such that

t = argmin
pi∈clst j

∑

pl∈clst j
fld(pi , pl). (6)

Hence, each facility location is updated by the point which
has minimum weighted sum of distances to the other points
within the cluster corresponding to that facility. This ensures
that the facility locations are shifted towards more centrally
located points with higher demand values, which increases
the overall coverage quickly. Hence, use of this refinement
in the early stages helps faster convergence. Moreover, it
may be noted that in most of the cases, the quality of the
service deteriorates as the distance between customer and

facility increases. Therefore, this refinement strategy also
tries to provide better service to the customers near to the
facility compared to the customers which are far away from
the facility. However, once the best fitness function does not
change for 50 consecutive generations, the local refinement
procedure is not applied any more to allow the chromosomes
evolve freely.

4.6 Elitism

Elitism is employed to avoid losing good solutions due to
randomness of the genetic operators. For this, the parent and
child population for a particular generation are merged and
then the top P solutions according to the fitness values are
propagated to the next generation. This ensures that the best
chromosome obtained so far is not lost.

4.7 Termination criterion

The loop of fitness computation, selection, crossover, muta-
tion, local refinement and elitism is iterated through gener-
ations. As mentioned earlier, the local improvements of the
chromosomes are done until the best fitness value is satu-
rated for 50 generations. Thereafter no local refinement is
performed and the chromosomes are left to evolve freely.
The loop continues until the best fitness value is saturated
for the last 100 generations. The best solution (correspond-
ing to the highest coverage value) is considered as the output
of GA.
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Table 2 Computational results for G&R100

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Ref.
Cov.
(%)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Ref.
Time
(s)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

100 8 50 69.43 69.19 70.49 51.69 0.84 0.94 69.36 69.92 7.84 12.85 70.34 72.9 5.85 9.65

100 10 50 76.23 76 76.94 62.9 1.01 1.15 77.43 79.18 11.75 17.43 77.98 79.38 6.57 9.87

100 12 50 81.61 81.42 82.27 64.26 1.22 1.37 81.53 85.84 10.27 16.34 81.64 86.43 7.23 10.23

100 8 65 87.36 87.09 87.89 53.81 0.9 1.04 85.84 87.03 7.39 11.82 87.59 88.43 5.39 7.14

100 10 65 94.33 94.77 95.57 20.4 1.05 1.16 94.32 95.07 8.86 13.59 94.67 96.39 5.68 6.79

100 12 65 99.18 99.57 100 22.03 2.02 3.13 97.63 99.14 9.23 13.27 98.57 100 6.21 12.07

100 8 80 88.46 88.57 88.92 43.56 0.87 1.1 87.42 88.53 8.44 11.79 87.83 89.49 6.58 9.21

100 10 80 96.21 95.84 96.41 20.54 1.18 1.37 93.74 94.13 9.31 14.55 94.34 96.98 5.63 9.05

100 12 80 100 99.76 100 7.41 2 3.3 98.21 100 10.45 16.73 98.42 100 8.52 13.37

Table 3 Computational results for G&R150

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Ref.
Cov.
(%)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Ref.
Time
(s)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

150 10 70 68.86 69.37 70.74 9 2.99 3.35 70.13 71.61 11.62 16.36 70.84 72.4 8.74 13.23

150 12 70 77.09 77.91 78.69 11 3.69 4.01 78.32 78.76 12.03 17.25 79.01 79.82 8.24 13.91

150 14 70 83.34 83.97 84.66 12 3.6 4.23 82.42 83.98 14.23 17.48 83.65 85.52 12.02 15.87

150 16 70 87.75 88.46 89.35 13 3.75 4.4 88.37 89.06 19.38 23.81 89.72 91.15 16.34 20.26

150 18 70 92.39 92.13 92.92 12 3.84 4.34 92.78 93.46 19.55 25.04 92.82 94.42 10.3 19.09

150 20 70 93.95 95.22 96.28 6 4.36 5.11 95.75 96.88 20.81 27.25 96.35 97.71 15.29 23.04

150 8 75 59.14 59.63 60.46 109.71 2.05 2.36 61.64 62.53 8.85 9.58 63.31 64.42 7.05 8.23

150 10 75 68.86 69.37 70.44 122.35 2.97 3.24 69.56 71.34 10.06 13.83 69.71 71.47 8.49 11.79

150 12 75 77.34 77.53 78.48 127.28 3.54 3.96 78.61 79.46 12.85 15.92 78.73 80.64 9.41 11.32

150 8 80 61.49 62.36 63.63 4 2.14 2.69 61.49 62.74 8.35 12.61 62.94 63.81 7.09 8.25

150 10 80 70.14 71.67 72.99 6 3.09 3.57 72.13 72.46 13.74 17.38 73.93 75.03 7.93 10.46

150 12 80 78.14 78.87 80.1 10 3.46 4.06 78.47 79.50 16.32 20.33 78.78 80.52 10.78 16.43

150 14 80 84.47 84.88 84.64 12 3.55 4.23 82.74 85.85 17.82 24.31 84.22 85.97 10.05 13.38

150 8 85 73.94 74.49 74.64 96.39 3.05 3.35 73.19 74.02 8.35 10.37 73.82 75.4 7.38 9.95

150 10 85 81.56 82.03 83.04 127.59 3.88 4.4 81.95 82.44 13.45 15.82 82.05 83.29 9.66 11.17

150 12 85 87.95 88.51 89.09 154.12 4.11 4.56 87.11 87.64 17.32 20.61 88.71 90.69 10.85 14.55

150 6 90 82.47 81.69 82.88 4 2.75 3.3 79.82 80.45 9.03 13.42 81.43 82.2 6.98 10.13

150 8 90 89.79 89.51 90.3 8 3.73 5.05 88.72 89.35 10.46 13.29 89.68 90.73 7.62 9.63

150 10 90 94.04 94.55 95.07 7 4.14 4.78 94.14 94.83 10.31 12.75 94.21 94.88 9.44 12.35

150 12 90 96.93 97.87 98.27 5 4.71 5.22 96.88 97.46 12.89 18.27 97.4 98.24 12.35 16.41

150 14 90 99.03 99.98 100 5 10.66 12.52 98.78 100 18.34 24.98 99.03 100 16.37 23.27

150 5 95 87.23 88.83 88.95 4 2.15 2.37 86.93 87.54 11.25 14.55 87.84 88.21 7.89 9.34

150 7 95 93.94 94.45 94.85 8 3.88 4.23 95.04 95.52 12.34 18.11 95.12 95.74 11.63 17.05

5 Experimental results

In this section, first the test problems on which the experi-
ments are performed are discussed. Then, the results of the
experiments are reported and discussed in detail.

5.1 Test problems

The performance of the proposed algorithm is tested with
both real-world data and random data sets. The test problems
considered in this article are summarized in Table 1 where p
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Table 4 Computational results for B700

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Ref.
Cov.
(%)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Ref.
Time
(s)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

700 20 13 70.03 70.05 70.77 329 135.69 149.23 69.93 70.35 54.43 70.16 70.63 71.27 45.09 59.83

700 24 13 74.44 74.1 74.86 399 164.01 187.9 73.22 73.49 48.92 64.51 74.25 75.19 33.46 48.28

700 28 13 78.05 77.56 78.46 536 198.17 220.87 77.03 77.56 83.28 101.45 77.69 78.46 68.45 79.33

700 20 15 79.56 79.69 80.18 592 163.98 181.75 79.22 79.73 41.25 55.62 79.8 80.2 22.65 34.96

700 24 15 83.17 83.06 83.43 662 199.51 223.33 82.76 83.13 49.23 61.27 83.07 83.85 22.74 33.82

700 28 15 86.18 85.83 87.21 841 235.14 272.27 84.34 85.21 51.29 77.34 86.25 87.34 28.44 38.92

700 20 20 95.76 96.19 96.45 1281 547.08 652.02 95.61 96.04 50.39 74.82 96.28 96.52 20.03 29.37

700 24 20 97.01 97.39 97.57 1641 630.82 759.79 96.55 96.93 55.42 80.12 97.23 97.54 51.19 79.05

700 28 20 98.02 98.26 98.51 2076 737.77 909.94 97.76 97.95 61.73 78.29 98.12 98.33 58.83 72.06

Table 5 Computational results for B900

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Ref.
Cov.
(%)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Ref.
Time
(s)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

Avg.
Cov.
(%)

Max.
Cov.
(%)

Avg.
Time
(s)

Max.
Time
(s)

900 20 10 67.72 67.08 67.7 763 186.2 214.53 66.46 67.07 43.84 54.28 67.38 67.98 24.61 27.88

900 24 10 71.58 70.78 71.44 1099 244.17 264.19 70.89 71.31 47.93 76.46 71.14 71.91 36.69 54.36

900 28 10 75.12 73.73 74.55 1272 298.3 323.73 74.11 74.59 91.47 117.38 74.34 75.21 48.57 69.75

900 20 13 88.03 87.55 87.88 1272 467.75 528.43 86.33 86.68 75.32 96.74 87.43 87.91 37.14 49.23

900 24 13 90.48 89.75 90.19 1656 598.15 696.59 89.15 89.64 83.71 109.35 89.23 90.32 57.66 76.12

900 28 13 92.3 91.58 91.95 1989 771.27 852.51 90.92 91.12 103.57 129.41 91.33 92.07 49.84 62.38

900 20 16 96.73 96.64 96.82 2725 1533.13 178.155 96.04 96.24 100.18 116.73 96.34 96.91 30.76 42.37

900 24 16 97.66 97.76 97.98 3269 1873.06 2750.71 97.02 97.25 119.28 150.35 97.43 97.81 59.04 112.45

900 28 16 98.43 98.58 98.88 4244 2031.29 2575.65 97.39 97.87 147.22 170.71 98.26 98.64 68.02 101.35

Table 6 Computational results
for SJC324

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Cov. (%) Time (s) Cov. (%) Time (s) Cov. (%) Time (s)

324 1 800 44.94 0.28 44.94 2.41 44.94 2.38

324 2 800 72.33 5.92 72.33 2.81 72.33 2.77

324 3 800 95.49 5.33 95.49 3.78 95.49 3.19

324 4 800 99.62 11.92 99.62 6.83 99.62 6.58

324 5 800 100 16.2 100 3.21 100 1.22

324 1 1200 81.73 0.27 81.73 2.34 81.73 2.67

324 2 1200 95.08 5.22 95.08 3.38 95.08 2.97

324 3 1200 100 9.84 100 0.22 100 0.17

324 1 1600 99.76 0.27 99.76 3.27 99.76 2.94

324 2 1600 100 15 100 0.19 100 0.16

and S denote the number of facilities and the service distance
respectively.

The randomdata setsG&R100 andG&R150were used by
Galvão andReVelle (1996) andbyGalvão et al. (2000).These

two data sets correspond to two random networks of 100
and 150 vertices respectively. Here, the number of vertices
indicates the number of customers. The number of arcs in
these networks are determined by a pre-established density
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Table 7 Computational results
for SJC402

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Cov. (%) Time (s) Cov. (%) Time (s) Cov. (%) Time (s)

402 1 800 41.01 0.55 41.01 3.59 41.01 2.56

402 2 800 70.94 10.16 70.94 5.23 70.94 3.33

402 3 800 91.9 11.09 91.9 5.76 91.9 3.28

402 4 800 97.96 12.73 97.85 5.25 97.85 4.04

402 5 800 99.91 29.11 99.66 7.36 99.91 4.87

402 6 800 100 38.01 100 3.59 100 1.76

402 1 1200 66.36 0.71 66.36 2.94 66.36 2.83

402 2 1200 92.79 7.14 92.79 4.83 92.79 3.45

402 3 1200 100 13.46 100 1.22 100 0.18

402 1 1600 96.58 0.77 96.58 3.64 96.58 3.3

402 2 1600 100 11.87 100 2.6 100 2.29

Table 8 Computational results
for SJC500

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Cov. (%) Time (s) Cov. (%) Time (s) Cov. (%) Time (s)

500 1 800 40.31 0.77 40.31 3.56 40.31 2.54

500 2 800 63.2 8.89 63.2 4.78 63.2 3.54

500 3 800 79.82 16.42 79.82 4.89 79.82 4.01

500 4 800 90.29 22.79 90.29 6.62 90.29 4.47

500 5 800 95.7 39.06 95.7 11.47 95.7 9.84

500 6 800 99.08 47.18 99.08 14.38 99.08 12.8

500 7 800 99.92 85.58 99.92 15.91 99.92 10.63

500 8 800 100 103.87 100 17.94 100 5.64

500 1 1200 54.43 1.08 54.43 3.76 54.43 2.77

500 2 1200 91.69 20.48 91.69 4.86 91.69 3.65

500 3 1200 98.41 22.9 98.41 8.83 98.41 6.62

500 4 1200 100 45.92 100 6.23 100 1.29

500 1 1600 75.12 1.15 75.12 4.65 75.12 3.26

500 2 1600 99.8 25.04 99.8 5.94 99.8 3.75

500 3 1600 100 60.74 100 1.86 100 1.28

Table 9 Computational results for SJC708

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Cov. (%) Time (s) Cov. (%) Time (s) Cov. (%) Time (s)

708 1 800 34.69 1.48 34.69 3.65 34.69 2.72

708 2 800 55 22.25 55 6.13 55 4.59

708 3 800 71.4 26.25 70.23 8.54 71.4 6.69

708 4 800 84.07 33.84 83.83 16.73 84.07 13.07

708 5 800 88.81 54.65 88 18.38 88.81 12.54

708 6 800 93.02 66.19 92.6 22.65 93.02 14.69

708 7 800 95.7 74.65 95.39 28.44 95.7 17.16

708 8 800 97.83 108.81 97.31 37.39 97.83 25.29

708 9 800 99.21 139.98 98.78 38.12 99.1 17.08
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Table 9 continued

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Cov. (%) Time (s) Cov. (%) Time (s) Cov. (%) Time (s)

708 10 800 99.88 165.26 49.17 32.55 99.99 20.6

708 11 800 100 207.51 99.93 30.43 100 19.13

708 1 1200 48 1.98 48 5.36 48 2.98

708 2 1200 84.23 3.63 84.23 9.82 84.23 4.53

708 3 1200 92.68 30.4 92.68 12.42 92.68 5.74

708 4 1200 98.73 55.97 98.57 11.27 98.73 6.44

708 5 1200 99.79 84.69 98.73 16.56 99.66 7.24

708 6 1200 100 98.7 99.66 20.23 100 4.19

708 1 1600 69.56 2.04 69.56 5.65 69.56 3.84

708 2 1600 96.59 64.87 96.59 8.42 96.59 4.7

708 3 1600 98.74 52.73 98.59 8.18 98.59 5.38

708 4 1600 100 71.4 100 4.37 100 2.75

Table 10 Computational results for SJC818

n p S Lorena and Pereira (2002) GA (without Refinement) GA (with Refinement)

Cov. (%) Time (s) Cov. (%) Time (s) Cov. (%) Time (s)

818 1 800 28.77 1.48 28.77 4.47 28.77 2.86

818 2 800 45.62 29.16 45.62 7.72 45.62 5.48

818 3 800 60.02 37.02 59.81 10.54 60.02 6.32

818 4 800 73.46 43.83 73.37 14.63 73.46 7.72

818 5 800 84.1 51.03 83.05 23.38 84.1 13.52

818 6 800 88.82 73.87 87.59 31.65 88.82 17.73

818 7 800 92.34 99.8 90.45 42.33 92.34 22.03

818 8 800 95.25 129.84 95.12 45.59 95.35 18.11

818 9 800 97.2 158.02 96.31 43.76 97.36 18.78

818 10 800 98.19 197.79 97.36 40.38 98.55 22.22

818 11 800 99.48 215.36 98.36 47.62 99.74 34.52

818 12 800 99.78 283.91 99.42 62.63 99.81 20.49

818 13 800 99.92 299.89 99.68 57.93 99.98 21.78

818 14 800 100 337.02 99.83 42.41 100 31.17

818 1 1200 39.81 1.71 39.81 6.77 39.81 4.12

818 2 1200 69.56 49.16 69.56 9.04 69.56 5.57

818 3 1200 86.43 35.21 86.43 14.74 86.43 5.69

818 4 1200 92.67 25.95 91.91 18.95 92.67 8.23

818 5 1200 97.75 89.97 95.45 29.62 97.75 16.58

818 6 1200 99.89 106.61 99.31 14.58 99.59 7.74

818 7 1200 100 137.31 99.96 10.72 99.96 5.71

818 1 1600 57.69 2.64 97.69 4.97 57.69 3.78

818 2 1600 84.5 43.72 84.5 8.52 84.5 5.22

818 3 1600 94.87 53.89 94.87 10.37 94.87 5.22

818 4 1600 98.95 62.28 98.95 15.78 98.95 5.07

818 5 1600 100 110.4 100 6.17 100 3.16
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δ which is defined as the ratio of the number of arcs in the
network to the number of arcs in the corresponding complete
network (Galvão andReVelle 1996). Galvão et al. considered
δ as 0.10 and 0.05 for G&R100 and G&R150 respectively.
They set the length of each arc for both the networks as an
integer value taken randomly from a uniform distribution in
the range [40, 60]. Then, Floyd’s algorithm is used to obtain
the corresponding distance matrices. The demand of each
customer forG&R100 is sampled fromauniformdistribution
in the range [20, 30]. For G&R150, the demands are obtained
from a normal distribution with mean and standard deviation
equal to 80 and 15 respectively.

In addition, from Beasley’s OR Library (Beasley 1990),
the data sets pmed32 and pmed39 with 700 and 900 ver-
tices respectively are obtained to form the distance matrices
of B700 and B900 respectively. These data sets are for p-
median problem (Hamacher and Drezner 2002; Mladenović
et al. 2007). That is why these data sets do not include the
demand of each customer. So the demand of each customer is
sampled from a normal distribution with mean 80 and stan-
dard deviation 15 (Galvão et al. 2000).

Besides these, some real-world data are also considered
to test the performance of the proposed GA. These data sets
are taken from the geo-referenced database of São José dos
Campos city, Brazil. The data sets SJC324, SJC402, SJC500,
SJC708, and SJC818 consist of 324, 402, 500, 708, and 818
vertices, respectively. Lorena and Pereira (2002) used these
data available in the following website: http://www.lac.inpe.
br/~lorena/instancias.html.

The data sets ZDS1800 and ZDS2500 are used to check
the performance of the proposed algorithm for large instances
of MCLP. Fazel Zarandi et al. (2011) used these random
data sets having the following specifications. ZDS1800 and
ZDS2500 correspond to networks of 1800 and 2500 nodes
respectively. The locations of the nodes are generated ran-
domly from a uniform distribution in the range [0, 30], and
the demand of each node is sampled from a uniform distri-
bution in the range [0, 100].

5.2 Results and discussion

The proposed GA is programmed using MATLAB and run
on Intel Core 2 duo with 2.2GHz processor and 3 GB RAM
having Windows XP operating system. The computational
results are compared with the data given by Lorena and
Pereira (2002) and Fazel Zarandi et al. (2011). The percent-
age of coverage values and computational times obtained
using the proposed GA without local refinement and with
local refinement are reported in Tables 2, 3, 4, 5, 6, 7, 8, 9,
10, 11 and 12 for all the data sets. The better or same values
obtained by the proposed GA with local refinement as com-
pared to the other existing algorithms are marked in bold.
For some instances, the proposed GA with local refinement

takes more time than that reported by Lorena and Pereira
(2002) and Fazel Zarandi et al. (2011). However, these extra
computational times can be afforded if percentage of cov-
erage is improved. It may be noted that the improvement
in percentage of coverage is crucial when high budgets are
involved for setting up the facilities. Moreover, the facilities
are installed only once and thus the locations of the facil-
ities corresponding to the maximum coverage are always
taken. Hence, higher improvement in percentage of coverage
is more important than the computational cost. In this article,
the results corresponding to themaximum coverage are taken
for comparison. The three parameters of the problem, viz.,
number of customers, number of facilities and service dis-
tance are indicated by the columns n, p and S, respectively
in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12.

The computational results for the networks with 100, 150,
700 and 900 vertices (customers) are shown in Tables 2,
3, 4 and 5, respectively. In these four tables, the best val-
ues of coverage reported by Galvão and ReVelle (1996) and
Galvão et al. (2000) and the respective computational times
are indicated in the columns Ref. Cov. (%) and Ref. Time (%)
respectively. It is evident that in terms of maximum coverage
the proposed GA with local refinement gives better results
for all the instances of the data set G&R100 in comparison
with the maximum coverage reported by Lorena and Pereira
(2002) as shown in Table 2. The proposed GA with local
refinement performs better in 19 instances out of total 23
instances for the data set G&R150 as shown in Table 3. The
proposed GA with refinement strategy gives better or same
results in 7 instances out of total 9 instances and 6 instances
out of total 9 instances for data sets B700 and B900 respec-
tively as shown in Tables 4 and 5, respectively. For better
understanding of the results obtained using the proposed GA
with refinement strategy, the difference between the obtained
maximum percentage coverage using the proposed GA with
local refinement with the reference coverage percentage and
the maximum coverage percentage given in the columns 4
and 6 of Tables 2, 3, 4 and 5 are been plotted in Figs. 2, 3, 4
and 5, respectively. In Figs. 2, 3, 4 and 5, other1 and other2
refer to the reference coverage percentage and the maximum
coverage percentage corresponding to the columns 4 and 6
of Tables 2, 3, 4 and 5, respectively.

The computational results for the data sets SJC324,
SJC402, SJC500, SJC708 and SJC818 are shown in Tables 6,
7, 8, 9 and 10, respectively. In terms of maximum cover-
age compared to Lorena and Pereira (2002), the proposed
GA with refinement strategy yields better or same results
in all the instances of the data sets SJC324 and SJC500 as
shown inTables 6 and8, respectively.Moreover, the proposed
GA with local refinement provides better or same maximum
coverage compared to Lorena and Pereira (2002) in 10, 18
and 24 instances out of 11, 21 and 26 instances of the data
sets SJC402, SJC708 and SJC818 respectively as depicted in
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Fig. 2 Performance comparison for G&R100. GA: maximum percentage coverage using proposed GAwith local refinement mentioned in column
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Fig. 3 Performance comparison for G&R150. GA: maximum percentage coverage using proposed GA with refinement mentioned in column 15
of Table 3, other1: reference coverage percentage mentioned in column 4 of Table 3, other2: maximum coverage percentage mentioned in column
6 of Table 3

Tables 7, 9, and 10, respectively. For visual illustration, the
difference between the obtained maximum percentage cov-
erage (given in column 8) using the proposed GA with the
coverage percentage given in the column 4 of Tables 7, 9 and
10 are plotted in Figs. 6, 9 and 10, respectively. In Figs. 6, 7
and 8, other refers to the coverage percentage corresponding
to the column 4 of Tables 7, 9 and 10 given by Lorena and
Pereira (2002).

The computational results for the data sets ZDS1800 and
ZDS2500 are reported in Tables 11 and 12, respectively. It
appears from the tables that the proposed GA with local
refinement performs better for all the instances of the data
sets ZDS1800 and ZDS2500 in terms of maximum coverage
given by Fazel Zarandi et al. (2011). The better performance
of the proposed GA with refinement is also demonstrated in
Figs. 9 and 10. In these figures, other1 and other2 refer to
the coverage percentage obtained using CPLEX and maxi-
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Fig. 4 Performance comparison for B700. GA: maximum percentage coverage using proposed GA with refinement mentioned in column 15 of
Table 4, other1: reference coverage percentage mentioned in column 4 of Table 4, other2: maximum coverage percentage mentioned in column 6
of Table 4
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Fig. 5 Performance comparison for B900. GA: maximum percentage coverage using proposed GA with refinement mentioned in column 15 of
Table 5, other1: reference coverage percentage mentioned in column 4 of Table 5, other2: maximum coverage percentage mentioned in column 6
of Table 5
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Fig. 6 Performance comparison for SJC402. GA: maximum percentage coverage using proposed GA with refinement mentioned in column 8 of
Table 7, other : coverage percentage mentioned in column 4 of Table 7
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Fig. 7 Performance comparison for SJC708. GA: maximum percentage coverage using proposed GA with local refinement mentioned in column
8 of Table 9, other : coverage percentage mentioned in column 4 of Table 9
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Fig. 8 Performance comparison for SJC818. GA: maximum percentage coverage using proposed GA with refinement mentioned in column 8 of
Table 10, other : reference coverage percentage mentioned in column 4 of Table 10
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Fig. 9 Performance comparison for ZDS1800. GA: maximum percentage coverage using proposed GA with refinement mentioned in column 13
of Table 11, other : coverage percentage mentioned in column 5 of Table 11, other2: maximum coverage percentage mentioned in column 7 of
Table 11
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Fig. 10 Performance comparison for ZDS2500. GA: maximum percentage coverage using proposed GA with refinement mentioned in column
13 of Table 12, other1: coverage percentage mentioned in column 5 of Table 12, other2: maximum coverage percentage mentioned in column 7
of Table 12

mum coverage percentage corresponding to the columns 5
and 7 of Tables 11 and 12.

It is evident from the results reported in all the tables that
the proposed GA with local refinement performs better than
the proposed GA without local refinement in terms of per-
centage of coverage. For few instances, the proposed GA
without refinement strategy gives same percentage of cov-
erage as obtained using the GA with refinement using more
computation time. This signifies the effectiveness of the local
refinement strategy to the proposed GA in terms of solution
quality and convergence. It is also evident from the results
reported in all the tables and the figures that whenever the
proposed GA with local refinement outperforms the results
given by Lorena and Pereira (2002) and Fazel Zarandi et al.
(2011), the improvement in terms of maximum coverage is
significant. However, for the few cases, where the proposed
GAwith refinement strategy fails to improve the results given
by Lorena and Pereira (2002), the failure is marginal. As a
whole, the proposed GA with local refinement is found to
provide better results in reasonable time in most of the cases
for both random and real-world data sets. It has also per-
formed equally well for both small and large instances of the
problem.

6 Conclusion

In this article, we have proposed a GA-based approach for
solving the maximal covering location problem. The pro-
posedGA-based approach utilizes a local refinement strategy
during initial generations to guide the search for poten-
tial facility locations. Use of this local refinement strategy
improves its overall rate of convergence. The performance

of the proposed technique has been demonstrated on several
benchmark data sets. Moreover, its performance has been
comparedwith that of existing heuristic approaches and other
GA-based approaches and illustrated both numerically and
visually. The proposed approach has been found to outper-
form the existing approaches in most of the cases.
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Mladenović N, Brimberg J, Hansen P, Moreno-Pérez JA (2007) The
p-median problem: a survey of metaheuristic approaches. Eur J
Oper Res 179(3):927–939

MooreGC,ReVelleC (1982) The hierarchical service location problem.
Manag Sci 28(7):775–780

Mukhopadhyay A, Maulik U, Bandyopadhyay S (2015) A survey
of multiobjective evolutionary clustering. ACM Comput Surv
47(4):61:1–61:46

Pereira MA, Coelho LC, Lorena LA, De Souza LC (2015) A hybrid
method for the probabilistic maximal covering location–allocation
problem. Comput Oper Res 57:51–59

Preparata F, Shamos M (1993) Computational geometry: an intro-
duction. Monographs in Computer Science. Springer, New York.
https://books.google.co.in/books?id=gFtvRdUY09UC

ResendeMG(1998)Computing approximate solutions of themaximum
covering problem with GRASP. J Heuristics 4(2):161–177

ReVelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey.
Eur J Oper Res 165(1):1–19

Rodriguez FJ, Blum C, Lozano M, García-Martínez C (2012) Iterated
greedy algorithms for the maximal covering location problem. In:
European conference on evolutionary computation in combinato-
rial optimization. Springer, pp 172–181

Schilling DA, Jayaraman V, Barkhi R (1993) A review of covering
problems in facility location. Location Sci 1(1):25–55

Spieker H, Hagg A, Gaier A, Meilinger S, Asteroth A (2016) Multi-
stage evolution of single-and multi-objective MCLP. Soft Comput
1–14. doi:10.1007/s00500-016-2374-9

Weaver J, Church R (1984) A comparison of direct and indirect pri-
mal heuristic/dual bounding solution procedures for the maximal
covering location problem. Unpublished paper

123

https://books.google.co.in/books?id=C8zaAWuOIOcC
http://dx.doi.org/10.1016/S0305-0548(01)00021-1
https://books.google.co.in/books?id=gFtvRdUY09UC
http://dx.doi.org/10.1007/s00500-016-2374-9

	Solving maximal covering location problem using genetic algorithm with local refinement
	Abstract
	1 Introduction
	2 Literature review
	3 Problem definition
	4 Proposed GA for MCLP
	4.1 Chromosome encoding
	4.2 Population initialization
	4.3 Fitness computation
	4.4 Genetic operators
	4.4.1 Selection
	4.4.2 Crossover
	4.4.3 Mutation

	4.5 Local refinement
	4.6 Elitism
	4.7 Termination criterion

	5 Experimental results
	5.1 Test problems
	5.2 Results and discussion

	6 Conclusion
	Acknowledgements
	References




