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Abstract In this paper, a recently proposed metaheuris-
tic optimization technique called hybrid flower pollination
algorithm (HFPA) is applied to design wideband infinite
impulse response digital differentiators (DDs) and digital
integrators (DIs). In recent years, benchmark nature-inspired
optimization algorithms such as particle swarm optimization
(PSO), simulated annealing, and genetic algorithm have been
employed for the design of wideband DDs and DIs. How-
ever, individually, these algorithms show major drawbacks
such as premature convergence, thus leading to a sub-optimal
solution. HFPA, however, is a hybrid approach which com-
bines the efficient exploitation and exploration capabilities of
two differentmetaheuristics, namely PSOandflower pollina-
tion algorithm (FPA), respectively. The HFPA-based designs
have been compared with real-coded genetic algorithm,
PSO, differential evolution, success-history-based adaptive
differential evolution with linear population size reduction
(L-SHADE), self-adaptive differential evolution (jDE), and
FPA-based designs with respect to the solution quality,
robustness, convergence, and optimization time. Simulation
results demonstrate that among all the algorithms, the HFPA-
based designs consistently achieve superior performances in
the least number of function evaluations. Exhaustive experi-
mentations are conducted to determine the best values of the
control parameters of HFPA for the optimal design of DDs
and DIs. The proposed designs also outperform the recently
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1 Introduction

The frequency response of an ideal differentiator and an ideal
integrator are given by (1) and (2), respectively.

D(ω) = jω (1)

I (ω) = 1/( jω) (2)

where j = √−1 andω is the angular frequency.TheDDsand
the DIs are the digital counterparts of the ideal differentia-
tor and integrator, respectively, and find applications in edge
detection of images (Al-Alaoui 2010), designing the con-
trollers and compensators in digital control systems (Franklin
et al. 1990), obtaining information about velocity and accel-
eration from position in radars and sonars (Skolnik 1980),
and biomedical instrumentation (Shiro and Imidror 1982;
Laguna et al. 1990). Hence, a considerable interest lies in
designing DDs and DIs which can efficiently and accurately
approximate their ideal characteristics with a widebandmag-
nitude response and a smaller group delay. The design and
implementation ofDDs andDIs canbedivided into twobroad
categories, namely the IIRfilter-based approach and the finite
impulse response (FIR) filter-based method. The IIR filters
are preferred over the FIR filters for implementation of DDs
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andDIs because IIRfilters provide higher computational effi-
ciency, needmuch lower order than that of a FIR filter tomeet
the samemagnitude response specifications, and linear phase
response is not essential formany practical applications. This
paper focuses on the implementation of DDs and DIs based
on IIR filters.

Different approaches have been proposed in the litera-
ture to design DDs and DIs. Recursive-type DD of second
order based on Simpson integration rule was proposed by
Al-Alaoui (1994). DDs and DIs employing linear interpola-
tion technique and magnitude stabilization rules were also
reported by Al-Alaoui (1993, 1995). Optimization based on
linear programming was used to determine the optimal set
of coefficients of DIs by Papamarkos and Chamzas (1996).
Tseng employed iterative quadratic programming approach
to design IIR-type DD in Tseng (2000). Numerical integra-
tion rules to design wideband DI and DD of third order
were reported by Ngo (2006). Design of rational approx-
imations to the integrator based on numerical integration
and the concept of delay filter were proposed by Tseng
(2006, 2007). Designs of DDs in the low frequency range
were proposed by Al-Alaoui (2007a). Al-Alaoui (2007b)
and Tseng and Lee (2008a, b) employed fractional sam-
ple delay to control the magnitude and phase responses of
IIR-type DIs and DDs. Tseng et al. employed discrete Hart-
ley transform interpolation approach to design IIR DIs in
Tseng and Lee (2009). Gupta et al. used linear interpolation
rules to design wideband DIs and DDs of different orders
in Gupta et al. (2010, 2011). Recursive wideband DDs and
DIs were reported by Upadhyay (2010, 2012), Upadhyay
and Singh (2011), Jain et al. (2012). Peano kernel- based
DDs were designed by Pei et al. (2010). Candan reported
wideband DDs exhibiting highly accurate phase response
in Candan (2011). In recent years, wideband IIR DIs and
DDs with much improved magnitude responses have been
reported using classical optimization techniques such as pole,
zero, and constant combined with minimax algorithm (Jain
et al. 2013), constrained optimization approach (Nongpiur
et al. 2014), and Fletcher–Powell algorithm (Al-Alaoui and
Baydoun 2013), and nature-inspired optimization algorithms
such as simulated annealing (SA) (Al-Alaoui and Baydoun
2013; Al-Alaoui 2011), genetic algorithm (GA) (Al-Alaoui
and Baydoun 2013), and PSO (Gupta et al. 2014; Jalloul and
Al-Alaoui 2015).

The gradient-based search techniques cannot efficiently
explore the infeasible regions in the nonlinear, non-uniform,
multimodal, and multidimensional design problem search
space (Yang 2014). Also, benchmark nature-inspired opti-
mization algorithms such as PSO and GA show drawbacks
of stagnation and early convergence. Hence, applying such
individual metaheuristic-based approaches also results in a
degraded performance in dealing with the problems involv-
ing nonlinearities and large dimensions since these algo-

rithms can get trapped in local optima. Thus, these algorithms
can also lead to sub-optimal solution (Karaboga 2009). How-
ever, a hybrid algorithm such as HFPA (Abdel-Raouf et al.
2014) combines the efficient search exploration capabilities
of FPA (Yang 2012) and the search exploitation capabili-
ties of PSO algorithm (Kennedy and Eberhart 1995) and
hence achieves a better balance between the diversification
and the intensification phases as compared with the capa-
bility of the individual algorithm. In HFPA, the solution
obtained after exploration and exploitation stages of the PSO
phase is considered as the initial solution for FPA, and the
global best solution of PSO phase is regarded as the best
initial solution for FPA phase. FPA further ensures larger
coverage of the problem search space by mimicking the
behaviour of pollen-carrying insects/birds which travel over
large distances. Mimicking this phenomenon by employing
Lévy flight guarantees an efficient exploration of the global
search space. The global pollination and the local pollina-
tion processes occur based on the judiciously chosen value of
switch probability which ensures the proper balance between
the diversification and the intensification phases. This paper
employs HFPA to design IIR wideband DDs and DIs with
accurate magnitude responses. The noteworthy contributions
of this paper are:

(i) This paper shows the applicability of HFPA for the opti-
mal design of stable, accurate, and wideband IIR-type
DDs and DIs of second and third order.

(ii) The simulation results justify the superiority in the per-
formance of the HFPA-based DDs and DIs over those
of the designs based on different nature-inspired opti-
mization algorithms such asRGA,PSO,DE,L-SHADE,
jDE, and FPA. The performances of the algorithms are
compared in terms of the solution quality, consistency,
convergence rate, and computational time.

(iii) Exhaustive experimentations are carried out to deter-
mine the best values of the control parameters of HFPA
for the optimal design of DDs and DIs. The effects due
to the variation in the values of the parameters of HFPA
on the performances of the designed DDs and DIs are
also extensively analysed.

(iv) This paper also demonstrates the superiority of the pro-
posed designs over all recently reported designs with
respect to magnitude response.

The rest of the paper is structured as follows. Section 2
describes the mathematical formulation of the DD and DI
design. Section 3 discusses the optimization algorithms
employed in this research work. Simulation results are
presented in Sect. 4. Finally, conclusions are drawn in
Sect. 5.

123



Optimal design of wideband digital integrators and differentiators using hybrid flower... 3759

2 Optimization problem

The transfer function of the IIR-type DD and DI of order N
is given by (3) and (4), respectively.

HDD (z) =
∑N

i=0 ai z
−i

∑N
i=0 bi z

−i
(3)

where ai and bi , i = 0, 1, . . . , N , are the numerator and
denominator coefficients of HDD(z), respectively.

HDI (z) =
∑N

i=0 ci z
−i

∑N
i=0 di z

−i
(4)

where ci and di , i = 0, 1, . . . , N , are the numerator and
denominator coefficients of HDI(z), respectively.

Thus, the frequency responses of the DD and the DI are
given by (5) and (6), respectively.

HDD (ω) = a0 + a1e− jω + a2e−2 jω + · · · + aN e−N jω

b0 + b1e− jω + b2e−2 jω + · · · + bN e−N jω
(5)

HDI (ω) = c0 + c1e− jω + c2e−2 jω + · · · + cN e−N jω

d0 + d1e− jω + d2e−2 jω + · · · + dN e−N jω
(6)

In the DD and DI design configuration, HFPA is employed
to search the optimal values of coefficients of the IIR dig-
ital filters HDD(ω) and HDI(ω) such that their input–output
characteristics accurately match the response of the ideal dif-
ferentiator and integrator, respectively.

The input–output relations of the ideal differentiator and
the proposed DD are given by (7) and (8), respectively.

yD(k) = D(ω) × x(k) (7)

yDD(k) = HDD(ω) × x(k) (8)

where x(k) is the input signal, yD(k) represents the output
of the ideal differentiator, and yDD(k) is the output of the
proposed DD.

The input–output relations of the ideal integrator and the
proposed DI are given by (9) and (10), respectively.

yI (k) = I (ω) × x(k) (9)

yDI(k) = HDI(ω) × x(k) (10)

where yI (k) is the output of the ideal integrator and yDI(k)
represents the output of the proposed DI.

In this paper, HFPA is employed to determine the optimal
values of the coefficients of HDD(ω) and HDI(ω) tominimize
the root-mean-square error (RMSE) forDDandDI as defined
by (11) and (12), respectively.

D( )

HDD( )

x(k)
+

- 

RMSE

HFPA

yD(k)

yDD(k)

Fig. 1 Block diagram of HFPA-based IIR DD design configuration

I( )

HDI( )

HFPA

x(k)
RMSEyI(k)

yDI(k)

+

- 

Fig. 2 Block diagram of HFPA-based IIR DI design configuration

JD =
√
√
√
√ 1

L

L∑

k=1

[yD(k) − yDD(k)]2 (11)

JI =
√
√
√
√ 1

L

L∑

k=1

[yI (k) − yDI(k)]2 (12)

where L is the total number of input samples. At the end
of the stopping criteria of the specified number of function
evaluations, the search agent of HFPA which achieves the
least value ofRMSE is declared as the global optimal solution
vector containing the optimal set of coefficients of HDD(ω)

and HDI(ω), respectively.
The block diagram of the HFPA-based IIR-type DD and

DI design configurations is shown in Figs. 1 and 2, respec-
tively.

The optimal values of coefficients for DDs and DIs to
minimize the objective function given in (11) and (12),
respectively, are also determined using RGA, PSO, DE, L-
SHADE, jDE, and FPA.

The comparison of performances of the designedDDs and
DIs is evaluated in terms of themaximumabsolutemagnitude
error (MAME) metric. TheMAMEs expressed in decibel (dB)
unit for DDs and DIs are defined by (13) and (14), respec-
tively.

MAMED = max{20 log10 ||D(ω)| − |HDD(ω)||}dB (13)
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Fig. 3 Pseudocode of RGA
Define the objective function f(x), x = (x1, x2, ..., xD )T, D=dimension of the problem

Encode the solutions into chromosomes

Randomly generate the initial population

Initialize the crossover rate and mutation rate

while ( t < maximum number of function evaluations)

Create new solution by crossover and mutation

Crossover with the rate of crossover

Mutate chromosomes with the rate of mutation

is improved

Select the current best solution for the next generation

Update t

end while

Decode the results and declare the best solution

MAMEI = max{20 log10 ||I (ω)| − |HDI(ω)||}dB (14)

For the real-time signal processing applications, a smaller
group delay response of the designed system is desirable.
Group delay for DDs and DIs is defined by (15) and (16),
respectively.

τD(ω) = −dθD(ω)

dω
(15)

τI (ω) = −dθI (ω)

dω
(16)

where θD(ω) = � HDD(ω) and θI (ω) = � HDI(ω) are the
phase responses of the HDD(ω) and HDI(ω), respectively.

Performance analysis of the phase response of the DDs
and DIs is investigated in terms of the average group delay
as given by (17) and (18), respectively.

τaD = 1

π

π∫

0

τD(ω)dω (17)

τaI = 1

0.997π

π∫

0.003π

τI (ω)dω (18)

3 Hybrid flower pollination algorithm (HFPA)

In recent years, nature-inspired algorithms have been
employed to design optimal digital filters (Saha et al. 2012,
2013a, b, c; Mahata et al. 2016, 2017). In this section, the
metaheuristic algorithms used for the optimal design ofwide-
band DDs and DIs are described.

3.1 Real-coded genetic algorithm (RGA)

RGA (Goldberg 1989) is a nature-inspired, probabilistic
search optimization approach based on the operations of
crossover, mutation, and selection from a population. The
crossover and mutation operations can either take place at a
single point or at multiple points in the chromosomes. Multi-
point crossover increases the search efficiency of RGA.
Appropriate tuning of parameters, namely type of crossover,
rate of crossover, type of mutation, rate of mutation, and type
of selection of candidate solutions, plays a crucial role in the
quality of solution generated by RGA. The pseudo code of
RGA is shown in Fig. 3.

3.2 Particle swarm optimization (PSO)

PSO (Kennedy and Eberhart 1995; Eberhart and Shi 2001) is
swarm intelligence-based metaheuristic optimization algo-
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Fig. 4 Pseudocode of PSO
Define the objective function f(x), x = (x1, x2, ..., xD )T, D=dimension of the problem

Randomly initialize the velocity vi and the position si of the swarm of particles

Determine initial gbest

while (maximum number of objective function evaluations<10000D)

for loop over all n particles and all D dimensions

Update particle velocity as per (19)

Update particle position according to (20)

Evaluate fitness at the new positions

Determine the pbest for each particle

end for

Determine the gbest solution

Update function evaluation counter

end while

Declare gbest as the global optimal solution vector

rithm that is inspired by the intelligent social behaviour of a
flock/swarmof birds or fish. In PSO, the equations thatmodel
the velocity and the position of a particle/agent are given by
(19) and (20), respectively.

vt+1
i = w×vti+β1×z1×(pbest ti −sti )+β2×z2×(gbest ti −sti )

(19)

where vt+1
i and vti are the velocities of the i th search agent

at the (t +1)th and t th iteration, respectively; w is the inertia
weight; β1 and β2 are two acceleration constants or learning
parameters which control the cognitive and social learning
ability, respectively, of an agent; z1and z2 are two random
numbers drawn from a uniform distribution, z1, z2 ∈ [0, 1];
pbest ti and gbest

t
i are the personal best solution of a particle

and the best solution achieved by the swarm, respectively, till
the t th iteration.

st+1
i = sti + vt+1

i (20)

where sti and st+1
i is the position of the i th agent at t th and

(t + 1)th iteration, respectively.
The pseudocode of PSO is shown in Fig. 4.

3.3 Differential evolution (DE)

DE (Storn and Price 1997) is a bio-inspired, vector-based,
and derivative-free search optimization algorithm based on
mutation, crossover, and selection. Although DE is similar
to RGA in many respects, however, unlike RGA, DE uses
explicit updating equations. The donor vector v at the (t+1)th
iteration is modelled by (21).

vt+1
i = xtp + F(xtq − xtr ) (21)

where xp, xq , and xr are three different vectors at the t th iter-
ation and F is a control parameter called differential weight.

The selection and the updating of the candidate solutions
are modelled by (22).

xt+1
i = ut+1

i if f (ut+1
i ) ≤ f (xti )

= xti , otherwise (22)

The pseudocode of DE algorithm is presented in Fig. 5.

3.4 Flower pollination algorithm (FPA)

FPA (Yang 2012) is a metaheuristic optimization algorithm
which draws inspiration from the process of pollination in
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Fig. 5 Pseudocode of DE
Initialize the population x with randomly generated solutions

Initialize the differential weight F and crossover probability Cr

while (maximum number of objective function evaluations<10000D)

for i = 1 : n

For each xi, randomly select three different vectors xp, xq, and xr

Generate donor vector v as per (21)

Generate a random index Jr ∈{1, 2, ..., D} by permutation

Generate a randomly distributed number ri ∈ [0, 1]

for j = 1 : D

For each vj,i , update

uj,i
t+1 =vj,i

t+1 if  ri Cr  or j = Jr

         =xt
j,i if  ri > Cr  and j ≠ Jr

end

Select and update solution according to (22)

end

end

Declare the best solution as the near-global optimal solution

flowering plants. Since FPA is inspired by the biological pro-
cesses in nature, it falls under the category of bio-inspired
optimization algorithms as defined by the classification list
reported in Fister et al. (2013). FPA employs four different
rules to mimic the pollination process.

Rule 1: Global pollination occurs in biotic and cross-
pollination processes with the flight of pollen-carrying
pollinators (e.g. insects, birds) obeyingLévy distribution.
Rule 2: The process of abiotic and self-pollination does
not require any pollinators and hence is considered as
local pollination.
Rule 3: Flower constancy is considered as the reproduc-
tion probability that is proportional to the similarity of
two flowers involved in pollination.
Rule 4: The choice of performing local pollination or
global pollination is controlled by a parameter called
switch probability p ∈ [01].

With an appropriate tuning of control parameters of FPA,
these four rules can efficiently model the diversification and
the intensification search processes of a metaheuristic opti-
mization algorithm. FPAhas been applied to solve real-world
engineering problems (Bekdas et al. 2015). A survey on the
qualitative and the quantitative analyses of FPA has been
reported in Draa (2015).

The steps of FPA for the optimal design of DDs/DIs are
described below.

Step 1. Each search agent/flower consists of all the
coefficients for the DD/DI to be designed. The control
parameters of FPA are initialized as shown in Table 1.
Step 2. Randomly generate n number of flowers in the
search space.
Step 3.Compute the initial fitness for all the flowers. Find
the best solution B in the initial population.
Step 4. Generate a random number rand ∈ [0, 1] for
each flower. If rand < p, perform the global pollination
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Table 1 Values of control parameters of algorithms for the design of
DDs and DIs

Algorithm Control parameter

RGA Rate of crossover: 0.80; crossover type: two-point;
rate of mutation: 0.01; mutation type: Gaussian;
type of selection: Roulette–Wheel

PSO Inertia weight (w): linear decrease from 0.9 to 0.4;
acceleration constants, (β1, β2) = (2.0, 2.0);
vmin
i = 0.01; vmax

i = 1.0

DE Differential weight, F = 0.50; crossover probability,
Cr = 0.30

L-SHADE Historical memory size, H = 10; p′ value for
current-to-pbest/1 mutation, p′ = 0.11; rarc = 2.5

jDE F : self-adaptive (initial value = 0.50); CR:
self-adaptive (initial value = 0.90); number of
sub-populations = 5;

FPA Switch probability, p = 0.75; Lévy distribution
factor, λ = 1.50; step size, s = 1.25; scaling
factor, γ = 0.12

HFPA Inertia weight (w): linear decrease from 0.9 to 0.4;
acceleration constants, (β1, β2) = (2.0, 2.0);
vmin
i = 0.01; vmax

i = 1.0; switch probability,
p = 0.75; Lévy distribution factor, λ = 1.50; r
step size, s = 1.25; scaling factor, γ = 0.12

according to (23). Else, perform the local pollination as
per (25).

xt+1
i = xti + γ × L(λ) × (B − xti ) (23)

where xt+1
i and xti are the i th flower at the (t+1)th and t th

iteration, respectively, γ is a scaling factorwhich controls
the step size, and L(λ) is a Lévy flight parameter which
determines the strength of the pollination and is defined
by (24). Since the pollen-carrying pollinators travel over
large distances, FPAmimics this phenomenon in the form
of the Lévy parameter. Thus, global pollination allows for
the problem search space to be effectively explored.

L(λ) ∼ λ × 	(λ) × sin(πλ/2)

π
× 1

s1+λ
(24)

where 	(.) is the standard gamma function and s is the
step size.

xt+1
i = xti + ε × (xtj − xtk) (25)

where xtj and x
t
k are the j th and kth flowers, respectively,

at the t th iteration, and ε ∈ [0, 1] is a random number
drawn from a uniform distribution.
Step 5. Evaluate the fitness of all the new flowers. Update
gbest if a new solution is better.
Step 6.Go to step 4 and repeat until the stopping criterion
is met.

Define the objective function f(x), x = (x1, x2, ..., xD )T

Randomly initialize a population of n

Determine the best solution B from the initial population

h probability p ∈ [0, 1]

while (maximum number of objective function evaluations<10000D)

for i = 1 : n

if rand < p

Perform global pollination as per (23)

else

Perform local pollination as per (25)

end if

Evaluate current solutions

If current solutions are better, update them in the population

end for

Determine the current best solution gbest

end while

Declare B as the global optimal solution vector

Fig. 6 Pseudocode of FPA

Step 7. Declare B as the optimal solution vector.

The pseudocode of FPA is shown in Fig. 6.

3.5 Hybrid flower pollination algorithm (HFPA)

HFPA (Abdel-Raouf et al. 2014) is a hybrid metaheuris-
tic, nature-inspired optimization algorithm that combines the
efficient search exploration capabilities of FPA and the pro-
ficient search exploitation capabilities of PSO to attain the
global optimal solution. In HFPA, the optimization process
goes through two phases, namely the PSO phase followed
by the FPA phase. Each search agent in HFPA consists of
all the coefficients of the DD/DI to be designed. The total
number of decision variables is D = (N + 1) × 2. Thus,
the i th search agents in HFPA for the design of DDs and
DIs are represented as: xDDi = [a0i a1i . . . aNi b0i b1i . . . bNi ]
and xDIi = [c0i c1i . . . cNi d0i d1i . . . dNi ], respectively. In the
PSO phase, the velocity and the position of the agents are
updated as per (19) and (20), respectively. After determining
the fitness of all the agents, the pbest and the gbest vectors are
updated at the end of the PSO phase of HFPA. The optimal
solution achieved by the PSO phase (gbest) is considered as
the best starting solution B for the FPA phase, i.e. B = gbest.
All the agents pass through the PSO phase at any iteration t
and go through the local pollination as per (25) or the global
pollination as per (23) in the FPA phase based on the cho-
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sen value of switch probability. At the end of the FPA phase,
the pbest and the gbest vectors are updated if the new fitness
value achieved is better than the previous one. Finally, at the
end of the terminating criterion of the maximum number of
function evaluations, the solution vector B is declared as the
near-global optimal solution.

In this work, the steps used for the design of HFPA-based
DDs and DIs are described below.

Step 1. Randomly initialize the search agents/particles in
the search space.
Step 2. Initialize the other parameters of HFPA as per
Table 1.
Step 3. Determine the initial fitness for each particle.
PSO Phase
Step 4. Determine the initial pbest for every particle and
the gbest solution.
Step 5.Modify the velocity and position of each particle
according to (19) and (20), respectively.
Step 6. Compute the fitness of all the particles. Based on
the fitness value, update gbest andpbest vectors.
FPA Phase
Step 7. Consider B = gbest.
Step 8. Generate a random number, rand ∈ [0, 1], for
each flower. If rand < p, execute global pollination
according to (23). Otherwise, execute local pollination
as per (25).
Step 9. Evaluate the fitness of all the new solution vectors
(pollens). Update pbest and gbest if the new solutions are
better.
Step 10. Repeat from Step 5 until the stopping criterion
is met.
Step 11. Declare B as the global optimal solution vector.

The pseudocode of the HFPA for the design of DDs and
DIs is shown in Fig. 7.

The flow chart of HFPA for the design of DDs and DIs is
shown in Fig. 8.

4 Simulation results and discussions

Theexperiments are carriedout in the following environment—
CPU: i3 processor (1.70 GHz), RAM: 2 GB, operating
system: Windows 7, programming language: MATLAB,
software version: MATLAB 7.5.

4.1 Choice of the values for the control parameters

The termination criteria for all the competing algorithms,
namely RGA, PSO, DE, L-SHADE, jDE, and FPA, and the
proposedHFPA for the design ofDDs andDIs are considered
as the total number of objective function evaluations (FEs) =

Define the objective function f(x), x = (x1, x2, ..., xD )T

Initialize the control parameters

Determine initial fitness, pbest, and gbest

while (maximum number of objective function evaluations<10000D)

for loop over all n particles and all D dimensions

Update particle velocity as per (19)

Update particle position according to (20)

Evaluate fitness at new positions

Update pbest and gbest

Set B=gbest

if rand < p

Perform global pollination as per (23)

else

Perform local pollination as per (25)

end if

Determine fitness

Update pbest and gbest if better solutions are achieved

end for

end while

Declare B as the global optimal solution vector

Fig. 7 Pseudocode of HFPA

10000 × D in order to ensure a fair comparison among all
the algorithms (Liang et al. 2012), and the initial population
size is set to 50. After extensive simulation runs, the values of
the control parameters for each algorithm which yielded the
best performances for the designedDDs andDIs are shown in
Table 1. For a detailed analysis of the L-SHADE and the jDE
algorithms, readers can refer to the original papers in Tanabe
and Fukunaga (2014) and Brest et al. (2009), respectively.

The following observations are made while selecting the
values of the control parameters for the algorithms.

(i) With respect to RGA, selecting the value of the
crossover rate parameter above 0.80 results in stagna-
tion of chromosomes and premature convergence in the
search space, hence producing sub-optimal solutions.
On the other hand, choosing crossover rate below 0.80
causes wide oscillations and revisiting of the same solu-
tion in the problem search space. Thus, crossover rate
of 0.80 provides the best balance in the evolutionary
efficiency of RGAwith the two-point type of crossover.
With the Gaussian type of mutation, it is revealed that
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Initialize particles and control parameters of HFPA

Modify velocity and position of particles according to (19) and (20), respectively  

Calculate the fitness of the modified particles 

Generate a random number [0 1]rand ∈

Is rand < p?

Calculate the fitness of all new solutions

Stop

Is maximum number of function 
evaluations reached?

PSO Phase 

FPA Phase 

Update pbest and gbest if the new solutions are better

Do Global Pollination as per (23)Do Local Pollination as per (25)
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No

Determine and store the positions of pbest and gbest

Consider B = gbest

Update pbest and gbest

Declare B as the optimal solution

Evaluate the fitness of all the particles

Fig. 8 Flow chart of HFPA for the optimal design of DD/DI

selection of the mutation rate with a value lower than
0.01 creates solutions which lack diversity. Thus, these
chromosomes are unable to properly explore the mul-
timodal and multidimensional DD/DI design problem
landscape. On the other hand, mutation rate set at a
value higher than 0.01 results in solutions which devi-
ates away from the near-global optima. Proper selection
which results in DDs and DIs yielding the least value
of absolute magnitude error is observed with Roulette-
wheel selection type.

(ii) With respect to PSO, the memory action of the algo-
rithm is emphasizedby the inertiaweight (w)parameter.
It is observed that starting with a high value of w

results in good diversification in the initial stages of
PSO.As the algorithm proceeds,w is linearly decreased
while the particles gain in cognitive and social learn-
ing experience. This leads to improved convergence
behaviour. Through exhaustive experimentations, it is

found that the gradual decrease of w from 0.9 to 0.4
provides the best solution. Different values of accel-
eration constants/learning rates (β1, β2) are chosen to
determine the best possible combination to provide the
balance between the cognitive and the social learning
rates of the particles. It is found that choosing a value
of β1, β2 > 2.0 results in the particles moving away
from the optimal solution due to a reduced emphasis
on the memory component. On the other hand, select-
ing values of the acceleration constants lower than 2.0
decreases the learning ability of the particle. Hence,
β1 = β2 = 2.0 provides the near-global optimal DDs
and DIs for PSO.

(iii) With respect to DE, choosing a value of differential
weight F = 0.50 provides an optimumbalance between
the diversification and the intensification phases. Select-
ing F > 0.50 generates diversified solutions which
result in wide oscillations in the convergence of DE,
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Table 2 Optimal coefficients and performance metrics for the designed DDs

N Algorithm [a0 a1 . . . aN ] [b0 b1 …bN ] MAMED (dB) τaD (samples)

2 RGA [1.2145 −0.5137 −0.5695] [1.0234 0.7298 0.0879] −19.88 0.02

PSO [1.1055 −0.5289 −0.5466] [0.9613 0.6558 0.0519] −20.45 0.05

DE [1.1693 −0.4845 −0.6274] [0.9890 0.7266 0.0734] −21.72 0.03

L-SHADE [1.1104 −0.4756 −0.6186] [0.9435 0.6846 0.0505] −24.90 0.10

jDE [1.3206 −0.5033 −0.7729] [1.1330 0.8847 0.0873] −24.55 0.04

FPA [1.1124 −0.5034 −0.5965] [0.9498 0.6694 0.0485] −28.03 0.14

HFPA [1.1454 −0.4541 −0.7294] [0.9945 0.7911 0.0766] −30.14 1.04

3 RGA [1.1432 0.0638 −0.9520 −0.2959] [0.9988 1.2478 0.3964 0.0083] −20.40 1.06

PSO [1.1536 0.0645 −0.9566 −0.3039] [0.9989 1.2371 0.3993 0.0182] −21.44 1.06

DE [1.1602 −0.4413 −0.7048 −0.0082] [1.0023 0.8005 0.0919 −0.0010] −23.34 0.35

L-SHADE [1.1693 −0.4803 −0.6848 0.0107] [1.0150 0.7879 0.0875 0.0093] −26.41 0.12

jDE [1.1904 −0.4880 −0.6820 0.0191] [1.0330 0.8066 0.1056 0.0195] −26.06 0.05

FPA [1.0792 0.2798 −0.9792 −0.3712] [0.9316 1.3448 0.5121 0.0376] −30.16 0.36

HFPA [1.0681 0.2861 −0.9853 −0.3742] [0.9235 1.3408 0.5129 0.0413] −32.18 1.68

whereas a smaller value of F does not create enough
variety of solutions, thereby leading to sub-optimal
exploration of the DD/DI design problem landscape.
A crossover probability (Cr ) less than 0.30 generates
poor quality of solution due to the incapability of the
agents to explore the infeasible regions.

(iv) In FPA, the switch probability (p) controls the bal-
ance between the intensification and the diversification
phases.After exhaustive trial runs, it is found that choos-
ing a value of p lower than 0.75 results in lack of
diversity. Hence, the flowers are unable to efficiently
explore the infeasible regions in this multimodal design
problem search space. On the other hand, p >0.75
results in a restricted local search, thereby deteriorat-
ing the solution quality. The Lévy parameter L(λ) and
the scaling factor (γ ) control the exploration of the land-
scape. A small value of the Lévy distribution factor (λ)
and γ lead to an inefficient global search. On the other
hand, choosing a larger value for λ and γ produces a
higher diversity in solutions. This results in divergence
from the global optima. Thus, the best choice of values
for λ and γ are 1.50 and 0.12, respectively.

A detailed study of control parameter sensitivity of HFPA for
the design of DDs and DIs is presented in Sect. 4.4.

4.2 Digital differentiator

Table 2 presents the optimal coefficients of the DDs with
N = 2 and 3, achieved by the competing algorithms and the
HFPA.

4.2.1 Comparison of frequency responses among the
designed DDs

Table 2 shows that the HFPA-based DDs achieve the least
values of MAMED metric and also demonstrate a competi-
tive performance in terms of τaD. The magnitude, absolute
magnitude error (AME), phase, and group delay response
comparison plots of the designed DDs are shown in Fig. 9a–
h which confirms the effectiveness of HFPA in accurately
yielding the rational digital approximations to the ideal dif-
ferentiator.

4.2.2 Average case performance analysis

Based on fifty independent runs, the evaluation of the per-
formance in terms of the best, worst, mean, and standard
deviation (std. dev.) indices with respect to theMAMED met-
ric among the competing algorithms and the HFPA-based
designed DDs is shown in Table 3. The HFPA-based designs
achieve the best performances in terms of all the statistical
indices. Also, the least values of std. dev. achieved by the
HFPA-based DDs demonstrate the robustness of HFPA. Fig-
ure 10a, b shows the variation of the MAMED metric of the
designed DDs of orders 2 and 3, respectively, with respect to
the total number of independent runs.

4.2.3 Consistency analysis

In this section, the validation of the consistency in the per-
formance of the competing algorithms and HFPA using the t
test (Montgomery and Runger 2003) and theMann–Whitney
U test (Montgomery and Runger 2003), Derrac et al. (2011)
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Fig. 9 a Comparison of magnitude responses for DDs of order 2. b.
Comparison of AME responses for DDs of order 2. c Comparison of
phase responses for DDs of order 2. d Comparison of group delay
responses for DDs of order 2. e Comparison of magnitude responses

for DDs of order 3. f Comparison of AME responses for DDs of order
3. g Comparison of phase responses for DDs of order 3. h Comparison
of group delay responses for DDs of order 3
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Table 3 Statistical results of
MAMED (dB) metric for the
designed DDs

Algorithm N = 2 N = 3

Best Worst Mean SD Best Worst Mean SD

RGA −19.88 11.22 −5.75 6.19 −20.40 12.57 −6.49 6.70

PSO −20.45 5.42 −9.74 5.43 −21.44 4.04 −8.67 5.92

DE −21.72 3.14 −9.50 5.48 −23.34 −1.38 −10.50 5.34

L-SHADE −24.90 −1.15 −12.47 5.27 −26.41 1.25 −14.01 5.26

jDE −24.55 −2.00 −12.12 5.29 −26.06 −3.40 −13.60 5.24

FPA −28.03 −5.66 −16.67 5.33 −30.16 −7.79 −18.19 4.52

HFPA −30.14 −9.22 −19.24 4.62 −32.18 −10.38 −20.69 4.41
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Fig. 10 a. Variation of MAMED (dB) with respect to the number of independent trial runs for DDs of order 2. b Variation of MAMED (dB) with
respect to the number of independent trial runs for DDs of order 3

is presented. The null hypothesis statement for both these
tests is considered as: “No significant difference in terms
of the MAMED metric is achieved”. The confidence level
(CL) for both the tests is set at 99%. The number of samples
considered for the competing algorithms and HFPA is fifty
each for conducting the two- sample t test. For performing
the Mann–Whitney U test, sample sizes of (n1, n2) are con-
sidered, where n1 and n2 represent the size of the sample
obtained for the competing algorithm and the HFPA, respec-
tively. The decision regarding the hypothesis is represented
by the index H (H = 0: accept; H = 1: reject). The tests
results in terms of the H index, the p value (p val), and the
confidence interval (ci) are shown in Table 4. Results con-
firm thatHFPA rejects the null hypothesis for nearly all cases,
except when compared with FPA.

4.2.4 Convergence analysis

The convergence of the algorithms for the design of DDs of
orders 2 and 3 is shown in Fig. 11a, b, respectively, which

justify the effectiveness of HFPA in converging to the near-
global optima in the least number of FEs.

4.2.5 Execution time analysis

Fifty independent runs are carried out to determine the best,
worst, mean, and std. dev. indices with respect to the opti-
mization time (in seconds) required to reach the termination
criteria by the algorithms for the optimal design of DDs.
Based on the results presented in Table 5, it is confirmed
that HFPA being a hybrid algorithm of FPA and PSO is
outperformed by both PSO and FPA individually. How-
ever, as compared with RGA, DE, L-SHADE, and jDE,
HFPA reaches the termination criteria in the least time. Since
computational cost is one of the performance indices to deter-
mine an algorithms’ efficiency, it can be concluded that a
hybridization of FPA with RGA or DE will result in an
increased computational time as compared with the fusion
of FPA with PSO. Hence, a hybrid of FPA and PSO pro-
vides a better balance between the quality of solution and the
optimization time.
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Table 4 Hypothesis tests results
for the designed DDs

Algorithm pair N t test Mann–Whitney U test

H p val ci n1 n2 H p val

RGA-HFPA 2 1 1.17 × 10−21 −16.36, −10.61 6 9 1 0.0015

8 12 1 5.96 × 10−4

3 1 4.84 × 10−22 −17.19, −11.22 6 9 1 0.0027

8 12 1 0.0017

PSO-HFPA 2 1 2.26 × 10−15 −12.15, −6.85 6 9 1 0.0047

8 12 1 0.0077

3 1 6.79 × 10−20 −14.77, −9.28 6 9 1 3.99 × 10−4

8 12 1 2.47 × 10−4

DE-HFPA 2 1 7.96 × 10−16 −12.41, −7.08 6 9 0 0.0359

8 12 1 0.0097

3 1 1.66 × 10−17 −12.77, −7.61 6 9 1 0.0015

8 12 1 0.0023

L-SHADE-HFPA 2 1 2.84 × 10−11 −10.49, −5.05 6 9 0 0.0206

8 12 1 0.0078

3 1 3.75 × 10−9 −9.39, −3.97 6 9 0 0.0176

8 12 1 0.0023

jDE-HFPA 2 1 6.39 × 10−10 −9.85, −4.39 6 9 1 0.0028

8 12 1 0.0018

3 1 8.45 × 10−10 −9.83, −4.35 6 9 1 0.0048

8 12 0 0.0491

FPA-HFPA 2 0 0.0118 −5.18, 0.06 6 9 0 0.5286

8 12 0 0.5119

3 1 0.0061 −4.85, −0.15 6 9 0 0.3884

8 12 0 0.2976
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Fig. 11 a Convergence profiles of algorithms for the design of DDs of order 2. b Convergence profiles of algorithms for the design of DDs of
order 3

4.2.6 Comparison of the proposed HFPA-based DDs with
the literature

The comparison summary of the magnitude responses in
terms of MAMED metric and the phase responses in terms

of τaD metric for the proposed HFPA-based DDs with those
of the designs based on various state-of-the-art approaches
is shown in Table 6. The HFPA-based designs outperform all
the reported designs by yielding the least value ofMAMED .
Figure 12a–h shows the magnitude, phase, AME, and group
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Table 5 Execution time needed for the design of DDs

Algorithm N Execution time (s)

Best Worst Mean SD

RGA 2 232.154 233.116 232.644 0.283

3 257.576 258.409 257.914 0.245

PSO 2 154.082 154.924 154.562 0.214

3 169.312 170.205 169.776 0.242

DE 2 219.845 220.807 220.352 0.259

3 238.624 239.598 239.103 0.281

L-SHADE 2 248.251 249.104 248.627 0.238

3 267.007 267.986 267.443 0.246

jDE 2 241.128 242.091 241.584 0.231

3 260.852 261.697 261.236 0.248

FPA 2 170.443 171.316 170.902 0.272

3 186.296 187.049 186.660 0.223

HFPA 2 198.887 199.657 199.245 0.207

3 222.112 223.013 222.549 0.249

delay comparison plots of the HFPA-based designs with the
reported DDs.

4.3 Digital integrator

Table 7 presents the optimal coefficients of the DIs of orders
2 and 3 achieved by the various algorithms used in this paper.

4.3.1 Comparison of frequency responses among the
designed DIs

Comparison of frequency response performances for the DIs
designed by the various algorithms is shown in Table 7. The
HFPA-based designs yield the least value ofMAMEI metric
and also demonstrate a competitive performance in terms
of τaI. Figure 13a–h show the magnitude, phase, AME, and
group delay response comparison plots of the designed DIs
which clearly demonstrate the superiority of theHFPA-based
designs in accurately approximating the frequency response
of the ideal integrator.

Table 6 Comparison summary of the HFPA-based DDs with the literature

N References Technique Model name MAMED (dB) τaD (samples)

2 Al-Alaoui (2011) (20) Numerical integration DD2A 9.80 1.00

Al-Alaoui (2011) (29) Simulated annealing DD2B −15.52 0.93

Jain et al. (2012) (6) Genetic algorithm DD2C −19.39 −0.37

Al-Alaoui and Baydoun (2013) (6) Simulated annealing DD2D −20.82 0.50

Al-Alaoui and Baydoun (2013) (10) Genetic algorithm DD2E −26.72 0.50

Al-Alaoui and Baydoun (2013) (14) Fletcher–Powell DD2F −20.03 0.51

Gupta et al. (2014) (11) Particle swarm optimization DD2G 14.66 2.00

Nongpiur et al. (2014) (Proposed Method 1 Example 2)* Constrained optimization DD2H −16.24 0.50

Nongpiur et al. (2014) (Proposed Method 1 Example 3)* Constrained optimization DD2I −20.50 0.50

Nongpiur et al. (2014) (Proposed Method Example 13)* Constrained optimization DD2J −24.91 0.50

Jalloul and Al-Alaoui (2015) (Inversion of eqn. no. 15)* Particle swarm optimization DD2K −27.67 0.50

Present work Hybrid flower pollination algorithm DDHFPA2 −30.14 1.04

3 Al-Alaoui (2011) (21) Numerical integration DD3A 73.37 0.00

Al-Alaoui (2011) (27) Simulated annealing DD3B −18.52 3.02

Al-Alaoui and Baydoun (2013) (7) Simulated annealing DD3C −18.66 0.50

Al-Alaoui and Baydoun (2013) (11) Genetic algorithm DD3D −24.88 0.50

Al-Alaoui and Baydoun (2013) (15) Fletcher–Powell DD3E −24.14 0.50

Gupta et al. (2014) (12) Particle swarm optimization DD3F 10.97 3.78

Nongpiur et al. (2014) (Proposed Method 2 Example 2)* Constrained optimization DD3G −16.24 1.50

Nongpiur et al. (2014) (Proposed Method 2 Example 3)* Constrained optimization DD3H −20.49 1.49

Jalloul and Al-Alaoui (2015) (40) Particle swarm optimization DD3I −21.05 6.58

Jalloul and Al-Alaoui (2015) (41) Particle swarm optimization DD3J −22.69 −2.58

Present work Hybrid flower pollination algorithm DDHFPA3 −32.18 1.68

[] indicates the reference number; () indicates the equation number in the reference number where the DD model has been reported; * that the
equation number is not mentioned
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Fig. 12 aComparison ofmagnitude responses of theHFPA- basedDD
of order 2 with the literature. b Comparison of phase responses of the
HFPA-based DD of order 2 with the literature. c Comparison of abso-
lute magnitude error responses of the HFPA-based DD of order 2 with
the literature. d Comparison of group delay responses of the HFPA-
based DD of order 2 with the literature. e Comparison of magnitude

responses of the HFPA-based DD of order 3 with the literature. f Com-
parison of phase responses of the HFPA- based DD of order 3 with the
literature. g Comparison of absolute magnitude error responses of the
HFPA-based DD of order 3 with the literature. h Comparison of group
delay responses of the HFPA- based DD of order 3 with the literature
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Table 7 Optimal coefficients and performance metrics for the designed DIs

N Algorithm [c0 c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB) τaI (samples)

2 RGA [0.0837 0.9101 0.5399] [0.9909 −0.4519 −0.5402] −14.08 0.47

PSO [0.0719 0.9228 0.5468] [0.9795 −0.4170 −0.5617] −17.55 0.53

DE [0.0982 0.9051 0.5422] [0.9999 −0.4536 −0.5458] −22.94 0.52

L-SHADE [0.0818 0.9196 0.5617] [1.0019 −0.4416 −0.5608] −28.23 0.49

jDE [0.0871 0.8971 0.5167] [0.9744 −0.4493 −0.5257] −26.89 0.49

FPA [0.1015 0.9243 0.5404] [1.0010 −0.4369 −0.5646] −32.03 0.49

HFPA [0.0820 0.9176 0.5400] [1.0010 −0.4621 −0.5387] −36.52 0.50

3 RGA [0.8791 0.7058 0.1441 0.0134] [1.0180 −0.3814 −0.5465 −0.0901] −19.71 0.50

PSO [0.8769 0.7013 0.1421 0.0183] [1.0170 −0.3856 −0.5424 −0.0890] −22.72 0.50

DE [0.8816 0.7023 0.1448 0.0131] [1.0180 −0.3839 −0.5434 −0.0901] −24.80 0.49

L-SHADE [0.8875 0.7119 0.1462 0.0078] [1.0250 −0.3850 −0.5534 −0.0871] −34.98 0.52

jDE [0.8892 0.7124 0.1365 0.0060] [1.0270 −0.3866 −0.5646 −0.0760] −33.15 0.50

FPA [0.8831 0.6990 0.1452 0.0165] [1.0179 −0.3839 −0.5424 −0.0918] −36.79 0.51

HFPA [0.8507 0.6886 0.1463 0.0113] [0.9836 −0.3627 −0.5284 −0.0925] −41.92 0.50

4.3.2 Average case performance analysis

The evaluation of the performances in terms of different
statistical performance indices with respect to the MAMEI

metric among the algorithms for the design of DIs is carried
out based on fifty independent runs, and the results are shown
in Table 8. The HFPA-based DIs outperform all the designs
based on the competing optimization algorithms. The least
value of std. dev. forMAMEI metric yielded by HFPA-based
designs justifies the robustness of the algorithm. Figure 14a,
b shows the variation of MAMEI of the designed DIs of
orders 2 and 3, respectively, with respect to the total number
of independent runs.

4.3.3 Consistency analysis

The consistency in the performance of the HFPA for the
design ofDIs is conducted by employing the hypothesis tests,
and the results are presented in Table 9. The null hypothesis
statement for both of these tests is defined as: “No signifi-
cant difference in terms of the MAMEI metric is achieved”.
The significance level and the total number of samples con-
sidered for the algorithms for performing the tests are the
same as followed in Sect. 4.2.3. Results confirm that HFPA
rejects the null hypothesis in all cases with respect to the t
test. However, the Mann–Whitney U test results show sim-
ilarity between the performances of FPA- and HFPA- based
DIs of order 2.

4.3.4 Convergence analysis

Comparison of the fitness convergence of the algorithms for
the design of DIs of orders 2 and 3 is shown in Fig. 15a, b,

respectively. HFPA achieves the fastest convergence to the
global optima with respect to the number of FEs.

4.3.5 Execution time analysis

Based on fifty independent runs, the best, worst, mean, and
std. dev. indices of computational time required to complete
10000 × D FEs by the algorithms for the design of DIs are
shown in Table 10. HFPA being an association of PSO and
FPA achieves the third fastest execution time.

4.3.6 Comparison of the proposed HFPA-based DIs with
the literature

Table 11 shows the comparison summary of frequency
responses for the proposedHFPA-basedDIswith those of the
designs based on both classical and nature-inspired optimiza-
tion approaches published in the literature. The HFPA-based
designs attain the smallest value of MAMEI . Competitive
performances in terms of τaI are also achieved by the pro-
posed designs. Figure 16a–h shows the magnitude, phase,
AME, and group delay comparison plots with the published
literature.

4.4 Sensitivity analysis

The effects due to the variation in the control parameters
of HFPA, namely inertia weight (w), acceleration constants
(β1, β2), switch probability (p), Lévy distribution factor (λ),
scaling factor (γ ), and population size (n) on the performance
of the designed DDs and DIs with respect to the MAMED

and the MAMEI metrics, are presented in this section. The
number of trial runs considered for each case is fifty. While
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Fig. 13 a Comparison of magnitude responses for DIs of order 2.
b Comparison of AME responses for DIs of order 2. c Comparison
of phase responses for DIs of order 2. d Comparison of group delay
responses for DIs of order 2. e Comparison of magnitude responses for

DIs of order 3. f Comparison of AME responses for DIs of order 3. g
Comparison of phase responses for DIs of order 3. h Comparison of
group delay responses for DIs of order 3
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Table 8 Statistical results of
MAMEI (dB) metric for the
designed DIs

Algorithm N = 2 N = 3

Best Worst Mean SD Best Worst Mean SD

RGA −14.08 8.82 −4.76 5.37 −19.71 9.88 −4.93 6.41

PSO −17.55 3.72 −7.13 4.84 −22.72 6.84 −6.98 6.26

DE −22.94 8.64 −9.49 5.98 −24.80 1.97 −10.34 6.44

L-SHADE −28.23 −3.93 −16.12 5.54 −34.98 −9.42 −21.80 6.31

jDE −26.89 0.47 −14.79 5.35 −33.15 −6.76 −20.73 6.42

FPA −32.03 −2.68 −16.45 5.94 −36.79 −1.30 −18.08 7.57

HFPA −36.52 −11.68 −23.38 5.10 −41.92 −16.25 −28.73 5.81
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Fig. 14 a Variation ofMAMEI (dB) with respect to number of independent trial runs for DIs of order 2. b Variation ofMAMEI (dB) with respect
to number of independent trial runs for DIs of order 3

varying a specific parameter of HFPA, the values of the other
control parameters are selected as per Table 1.

4.4.1 Effect due to the variation in the inertia weight (w)

The results with respect to the different statistical indices in
terms of the MAMED and the MAMEI metrics due to the
variation in the value of w for the HFPA-based DDs and DIs
are shown in Tables 12 and 13, respectively. The value ofw is
linearly decreased in three different ranges, viz. from 0.7 to
0.4, 0.8 to 0.4, and0.9 to 0.4.Results demonstrate the superior
performance of the proposed DDs and DIs when w is varied
from 0.9 to 0.4. Hence, it can be concluded that starting with
a large value ofw followed by its gradual decrease results in a
better diversification in the initial stages and an intense local
search during the final stages of the PSO phase of HFPA.

4.4.2 Effect due to the variation in the acceleration
constants (β1 and β2)

Three different combinations of the acceleration constants
(β1, β2) are considered in order to analyse the performance

of the HFPA-based DDs and DIs in terms of the magni-
tude response error metrics, and the results are presented
in Tables 14 and 15, respectively. Results demonstrate that
choosing β1 = β2 = 2 provides the best performance with
respect to all the different statistical indices for theMAMED

and the MAMEI metrics. Since β1 and β2 emphasize the
cognitive and the social learning ability, respectively, of a
particle, hence, choosing a high value for both these learning
parameters provides a better performance in the PSO phase
of HFPA.

4.4.3 Effect due to the variation in the switch probability
(p)

Tables 16 and 17 present the optimal coefficients and the
comparison summary in terms of various statistical indicators
for MAMED and the MAMEI metrics achieved by HFPA-
based DDs and DIs, respectively, for different values of p.
Results confirm that p = 0.75 achieves an optimal balance
between the exploitation and the exploration phases in the
multimodal DD and DI design problem search space.
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Table 9 Hypothesis tests results
for the designed DIs

Algorithm pair N t test Mann–Whitney U test

H p val ci n1 n2 H p val

RGA-HFPA 2 1 1.98 × 10−32 −21.37, −15.87 6 9 1 3.99 × 10−4

8 12 1 2.47 × 10−4

3 1 2.02 × 10−35 −27.01, −20.58 6 9 1 3.99 × 10−4

8 12 1 2.47 × 10−4

PSO-HFPA 2 1 1.01 × 10−29 −18.85, −13.63 6 9 1 4.00 × 10−4

8 12 1 2.47 × 10−4

3 1 9.69 × 10−34 −24.84, −18.66 6 9 1 3.99 × 10−4

8 12 1 2.47 × 10−4

DE-HFPA 2 1 5.47 × 10−22 −16.80, −10.96 6 9 1 4.00 × 10−4

8 12 1 4.47 × 10−4

3 1 8.27 × 10−28 −21.29, −15.07 6 9 1 3.99 × 10−4

8 12 1 3.33 × 10−4

L-SHADE-HFPA 2 1 8.01 × 10−10 −10.05, −4.45 6 9 1 0.0076

8 12 1 0.0049

3 1 1.47 × 10−7 −10.15, −3.72 6 9 1 0.0048

8 12 1 0.0062

jDE-HFPA 2 1 9.06 × 10−13 −11.33, −5.83 6 9 1 0.0028

8 12 1 0.0023

3 1 2.88 × 10−9 −11.12, −4.74 6 9 1 0.0028

8 12 1 0.0038

FPA-HFPA 2 1 1.04 × 10−8 −9.83, −4.01 6 9 0 0.1134

8 12 0 0.0971

3 1 4.32 × 10−12 −14.20, −7.11 6 9 1 3.99 × 10−4

8 12 1 4.47 × 10−4
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Fig. 15 a Convergence profiles of algorithms for the design of DIs of order 2. b Convergence profiles of algorithms for the design of DIs of order
3

4.4.4 Effect due to the variation in the Lévy distribution
factor (λ)

The optimal coefficients and the values of the performance
indices with respect to the error metrics for the DDs and DIs
designed using HFPA with the values of λ chosen as 1.20,

1.50, and 1.75 are presented in Tables 18 and 19, respec-
tively. Results demonstrate that the best performance for
HFPA is obtained with λ of 1.50. Hence, λ = 1.50 pro-
vides an improved global search and helps to overcome the
infeasible regions in the search space during the FPAphase of
HFPA.
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Table 10 Execution time
needed for the design of DIs

Algorithm N Execution time (s)

Best Worst Mean SD

RGA 2 235.231 236.142 235.696 0.273

3 259.624 260.501 260.110 0.271

PSO 2 157.003 157.937 157.480 0.262

3 171.579 172.398 172.011 0.238

DE 2 223.047 223.982 223.512 0.273

3 240.856 241.719 241.290 0.256

L-SHADE 2 239.162 240.077 239.501 0.233

3 258.564 259.395 258.934 0.241

jDE 2 234.114 235.101 234.652 0.235

3 255.348 256.276 255.804 0.252

FPA 2 172.749 173.604 173.132 0.249

3 188.791 189.619 189.173 0.263

HFPA 2 201.104 201.998 201.516 0.229

3 224.137 225.011 224.608 0.245

Table 11 Comparison summary of the HFPA-based DIs with the literature

N References Technique Model name MAMEI (dB) τaI (samples)

2 Al-Alaoui (2011) (15) Numerical integration DI2A 27.20 0.00

Jain et al. (2012) (3) Genetic algorithm DI2B −16.80 0.54

Jain et al. (2012) (4) Genetic algorithm DI2C 13.58 0.36

Al-Alaoui and Baydoun (2013) (inversion
of eqn. no. 6)

Simulated annealing DI2D −2.63 0.50

Al-Alaoui and Baydoun (2013) (inversion
of eqn. no. 10)

Genetic algorithm DI2E −1.08 0.50

Al-Alaoui and Baydoun (2013) (inversion
of eqn. no. 14)

Fletcher Powell DI2F −4.14 0.50

Jain et al. (2013) (20) Minimax and pole, zero, and
constant optimization

DI2G −11.27 0.45

Gupta et al. (2014) (8) Particle swarm optimization DI2H −9.83 0.54

Jalloul and Al-Alaoui (2015) (15) Particle swarm optimization DI2I −32.47 0.50

Present work Hybrid flower pollination
algorithm

DIHFPA2 −36.52 0.50

3 Al-Alaoui (2011) (16) Numerical integration DI3A 19.46 0.00

Al-Alaoui (2011) (24) Simulated annealing DI3B −10.91 1.51

Al-Alaoui and Baydoun (2013) (inversion
of eqn. no. 7)

Simulated annealing DI3C −10.24 0.50

Al-Alaoui and Baydoun (2013) (inversion
of eqn. no. 11)

Genetic algorithm DI3D 0.66 0.50

Al-Alaoui and Baydoun (2013) (inversion
of eqn. no. 15)

Fletcher–Powell DI3E −10.07 0.50

Jain et al. (2013) (20) Minimax and pole, zero, and
constant optimization

DI3F −18.25 0.49

Gupta et al. (2014) (9) Particle swarm optimization DI3G −21.37 0.53

Jalloul and Al-Alaoui (2015) (22) Particle swarm optimization DI3H −25.97 2.51

Present work Hybrid flower pollination
algorithm

DIHFPA3 −41.92 0.50

[] indicates the reference number.
() indicates the equation number in the reference paper where the DI model have been reported
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Fig. 16 a Comparison of magnitude responses of the HFPA-based DI
of order 2 with the literature. b Comparison of phase responses of the
HFPA-based DI of order 2 with the literature. c Comparison of absolute
magnitude error responses of the HFPA-based DI of order 2 with the
literature. d Comparison of group delay responses of the HFPA-based
DI of order 2 with the literature. e Comparison of magnitude responses

of the HFPA-based DI of order 3 with the literature. f Comparison of
phase responses of the HFPA-based DI of order 3 with the literature. g
Comparison of absolute magnitude error responses of the HFPA-based
DI of order 3with the literature. hComparison of group delay responses
of the HFPA- based DI of order 3 with the literature
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Table 12 Performance of HFPA-based DDs based on different values of inertial weight (w)

N w linearly decreases from [a0 a1 . . . aN ] [b0 b1 . . . bN ] MAMED (dB)

Best Worst Mean SD

2 0.7–0.4 [1.1450 −0.4610 −0.7201] [0.9987 0.7951 0.0823] −27.96 −8.67 −17.40 4.65

0.8–0.4 [1.1380 −0.4598 −0.7143] [1.0030 0.8100 0.0913] −28.61 −9.04 −18.11 4.71

0.9–0.4 Refer Table 2 Refer Table 2 −30.14 −9.22 −19.24 4.62

3 0.7–0.4 [0.9919 −0.0340 −0.7944 −0.1899] [0.8635 1.0010 0.2920 0.0188] −29.57 −9.02 −18.43 4.50

0.8–0.4 [0.9898 −0.0176 −0.7645 −0.1771] [0.8514 0.9797 0.2808 0.0174] −30.52 −9.61 −19.75 4.48

0.9–0.4 Refer Table 2 Refer Table 2 −32.18 −10.38 −20.69 4.41

Table 13 Performance of HFPA-based DIs based on different values of inertia weight (w)

N w linearly decreases from [c0 c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB)

Best Worst Mean SD

2 0.7–0.4 [0.0833 0.9196 0.5384] [1.0020 −0.4629 −0.5389] −34.19 −9.83 −20.04 5.16

0.8–0.4 [0.0818 0.9182 0.5393] [1.0006 −0.4623 −0.5386] −34.46 −10.16 −21.59 5.18

0.9–0.4 Refer Table 7 Refer Table 7 −36.52 −11.68 −23.38 5.10

3 0.7–0.4 [0.8810 0.6994 0.1461 0.0169] [1.0150 −0.3791 −0.5429 −0.0926] −38.00 −14.18 −26.04 5.85

0.8–0.4 [0.8823 0.7080 0.1446 0.0125] [1.0170 −0.3784 −0.5475 −0.0913] −40.03 −14.74 −27.36 5.92

0.9–0.4 Refer Table 7 Refer Table 7 −41.92 −16.25 −28.73 5.81

Table 14 Performance of HFPA-based DDs based on different values of acceleration constants (β1, β2)

N β1 β2 [a0 a1 . . . aN ] [b0 b1 . . . bN ] MAMED (dB)

Best Worst Mean SD

2 1.5 1.5 [1.1570 −0.4615 −0.7294] [1.0080 0.8034 0.0827] −27.15 −8.06 −17.38 4.71

2.0 2.0 Refer Table 2 Refer Table 2 −30.14 −9.22 −19.24 4.62

2.5 2.5 [1.1475 −0.4481 −0.7220] [0.9967 0.7988 0.0836] −29.07 −8.54 −18.60 4.66

3 1.5 1.5 [1.0370 −0.0330 −0.7586 −0.2108] [0.8935 1.0210 0.3257 0.0303] −29.22 −7.96 −18.04 4.49

2.0 2.0 Refer Table 2 Refer Table 2 −32.18 −10.38 −20.69 4.41

2.5 2.5 [0.9828 −0.0148 −0.7743 −0.1757] [0.8513 0.9923 0.2893 0.0200] −30.83 −9.85 −19.81 4.52

Table 15 Performance of HFPA-based DIs based on different values of acceleration constants (β1, β2)

N β1 β2 [c0 c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB)

Best Worst Mean SD

2 1.5 1.5 [0.0838 0.9200 0.5391] [1.0019 −0.4626 −0.5399] −32.86 −9.82 −20.11 5.04

2.0 2.0 Refer Table 7 Refer Table 7 −36.52 −11.68 −23.38 5.10

2.5 2.5 [0.0796 0.9219 0.5376] [1.0040 −0.4693 −0.5350] −34.45 −10.27 −21.09 5.18

3 1.5 1.5 [0.8766 0.6983 0.1476 0.0151] [1.0140 −0.3796 −0.5453 −0.0892] −37.77 −14.02 −25.17 5.88

2.0 2.0 Refer Table 7 Refer Table 7 −41.92 −16.25 −28.73 5.81

2.5 2.5 [0.8784 0.7014 0.1456 0.0167] [1.0150 −0.3785 −0.5456 −0.0908] −40.39 −15.78 −27.45 5.82
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Table 16 Performance of HFPA-based DDs based on different values of switch probability (p)

N p [a0 a1 . . . aN ] [b0b1 . . . bN ] MAMED (dB)

Best Worst Mean SD

2 0.40 [1.1700 −0.4126 −0.7211] [1.0070 0.8197 0.0911] −26.98 −6.31 −16.14 4.58

0.50 [1.1350 −0.4513 −0.7020] [0.9981 0.8027 0.0902] −27.47 −6.94 −16.95 4.61

0.60 [1.1580 −0.4478 −0.7057] [0.9979 0.7867 0.0793] −27.90 −7.42 −17.09 4.54

0.70 [1.1370 −0.4579 −0.7237] [0.9929 0.7945 0.0823] −29.13 −8.37 −18.16 4.69

0.75 Refer Table 2 Refer Table 2 −30.14 −9.22 −19.24 4.62

0.80 [1.1320 −0.4609 −0.7217] [0.9902 0.7911 0.0817] −28.86 −7.95 −18.49 4.63

0.90 [1.1350 −0.4494 −0.7264] [0.9922 0.8002 0.0849] −27.96 −7.11 −17.01 4.66

3 0.40 [0.9909 −0.0291 −0.7858 −0.1957] [0.8650 1.0050 0.2966 0.0179] −28.15 −6.59 −16.88 4.50

0.50 [1.0070 −0.0306 −0.7928 −0.1942] [0.8709 1.0010 0.2875 0.0160] −29.38 −7.15 −17.27 4.47

0.60 [0.9998 −0.0113 −0.7575 −0.1983] [0.8540 0.9801 0.2901 0.0185] −29.70 −7.64 −18.43 4.43

0.70 [1.0021 −0.0189 −0.7788 −0.2067] [0.8627 0.9970 0.2964 0.0178] −30.22 −8.56 −19.80 4.36

0.75 Refer Table 2 Refer Table 2 −32.18 −10.38 −20.69 4.41

0.80 [1.0070 −0.0067 −0.7724 −0.1819] [0.8679 1.0100 0.3014 0.0233] −31.34 −9.81 −20.04 4.39

0.90 [0.9838 −0.0261 −0.7566 −0.1923] [0.8442 0.9657 0.2817 0.0169] −30.45 −8.93 −19.14 4.45

Table 17 Performance of HFPA-based DIs based on different values of switch probability (p)

N p [c0 c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB)

Best Worst Mean SD

2 0.40 [0.0832 0.9199 0.5516] [1.0010 −0.4468 −0.5539] −29.64 −6.97 −17.14 5.16

0.50 [0.0833 0.9196 0.5397] [1.0020 −0.4609 −0.5409] −30.86 −7.19 −18.26 5.07

0.60 [0.0827 0.9214 0.5386] [1.0040 −0.4656 −0.5383] −31.70 −8.04 −18.95 5.14

0.70 [0.0863 0.9189 0.5367] [0.9998 −0.4573 −0.5423] −33.23 −9.76 −21.23 5.11

0.75 Refer Table 7 Refer Table 7 −36.52 −11.68 −23.38 5.10

0.80 [0.0834 0.9188 0.5393] [1.0010 −0.4614 −0.5399] −34.85 −10.42 −22.03 5.16

0.90 [0.0835 0.9173 0.5363] [0.9995 −0.4621 −0.5373] −34.33 −10.17 −21.79 5.04

3 0.40 [0.8864 0.6996 0.1437 0.0216] [1.0180 −0.3789 −0.5443 −0.0943] −32.47 −8.49 −21.52 5.72

0.50 [0.8803 0.7011 0.1389 0.0184] [1.0190 −0.3843 −0.5496 −0.0848] −36.08 −10.07 −23.94 5.84

0.60 [0.8834 0.7019 0.1418 0.0128] [1.0130 −0.3783 −0.5431 −0.0918] −38.42 −12.56 −26.48 5.77

0.70 [0.8805 0.6980 0.1437 0.0171] [1.0140 −0.3793 −0.5453 −0.0898] −38.96 −13.14 −26.90 5.86

0.75 Refer Table 7 Refer Table 7 −41.92 −16.25 −28.73 5.81

0.80 [0.8793 0.6938 0.1396 0.0147] [1.0160 −0.3885 −0.5434 −0.0840] −39.91 −15.34 −26.51 5.90

0.90 [0.8858 0.7057 0.1462 0.0164] [1.0240 −0.3860 −0.5455 −0.0924] −37.09 −14.09 −25.27 5.83

Table 18 Performance of HFPA-based DDs based on different values of Lévy distribution factor (λ)

N λ [a0 a1 . . . aN ] [b0 b1 . . . bN ] MAMED (dB)

Best Worst Mean SD

2 1.20 [1.1590 −0.4447 −0.7196] [1.0020 0.7984 0.0820] −27.32 −6.67 −16.82 4.56

1.50 Refer Table 2 Refer Table 2 −30.14 −9.22 −19.24 4.62

1.75 [1.1430 −0.4538 −0.7292] [0.9970 0.8024 0.0842] −28.60 −8.74 −18.09 4.60

3 1.20 [0.9778 −0.0510 −0.7820 −0.2062] [0.8605 1.0000 0.3106 0.0251] −28.91 −6.96 −17.16 4.35

1.50 Refer Table 2 Refer Table 2 −32.18 −10.38 −20.69 4.41

1.75 [1.0198 −0.0252 −0.7646 −0.1911] [0.8774 1.0060 0.3057 0.0253] −29.76 −7.45 −18.23 4.43
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Table 19 Performance of HFPA-based DIs based on different values of Lévy distribution factor (λ)

N λ [c0 c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB)

Best Worst Mean SD

2 1.20 [0.0818 0.9149 0.5401] [0.9993 −0.4614 −0.5378] −33.06 −9.39 −20.47 5.07

1.50 Refer Table 7 Refer Table 7 −36.52 −11.68 −23.38 5.10

1.75 [0.0825 0.9197 0.5367] [0.9996 −0.4606 −0.5388] −31.55 −7.85 −18.25 5.14

3 1.20 [0.8861 0.6958 0.1482 0.0233] [1.0200 −0.3813 −0.5453 −0.0938] −35.61 −11.44 −23.19 5.89

1.50 Refer Table 7 Refer Table 7 −41.92 −16.25 −28.73 5.81

1.75 [0.8776 0.7004 0.1463 0.0165] [1.0130 −0.3766 −0.5446 −0.0913] −38.18 −14.37 −25.40 5.86

Table 20 Performance of HFPA-based DDs based on different values of scaling factor (γ )

N γ [a0 a1 . . . aN ] [b0 b1 . . . bN ] MAMED(dB)

Best Worst Mean SD

2 0.05 [1.1670 −0.4264 −0.7683] [1.0210 0.8536 0.0987] −28.43 −7.94 −17.97 4.65

0.10 [1.1470 −0.4524 −0.7420] [1.0040 0.8155 0.0877] −29.28 −8.37 −18.39 4.57

0.12 Refer Table 2 Refer Table 2 −30.14 −9.22 −19.24 4.62

0.15 [1.1490 −0.4440 −0.7302] [0.9998 0.8071 0.0857] −28.08 −7.80 −17.04 4.66

3 0.05 [1.0090 −0.0109 −0.7843 −0.1955] [0.8647 0.9961 0.2854 0.0151] −29.13 −8.66 −17.73 4.45

0.10 [0.9788 −0.02637 −0.7858 −0.1871] [0.8463 0.9782 0.2761 0.0136] −31.60 −9.73 −19.42 4.47

0.12 Refer Table 2 Refer Table 2 −32.18 −10.38 −20.69 4.41

0.15 [1.0160 −0.0521 −0.7823 −0.2006] [0.8816 1.0010 0.2966 0.0204] −28.74 −8.51 −18.67 4.43

Table 21 Performance of HFPA-based DIs based on different values of scaling factor (γ )

N γ [c0c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB)

Best Worst Mean SD

2 0.05 [0.0819 0.9176 0.5400] [1.0010 −0.4621 −0.5387] −33.22 −9.05 −21.01 5.02

0.10 [0.0784 0.9143 0.5438] [0.9973 −0.4587 −0.5388] −36.24 −11.27 −23.12 5.16

0.12 Refer Table 7 Refer Table 7 −36.52 −11.68 −23.38 5.10

0.15 [0.0821 0.9199 0.5365] [1.0023 −0.4658 −0.5366] −31.15 −7.93 −19.15 4.99

3 0.05 [0.8795 0.7007 0.1495 0.0289] [1.0200 −0.3810 −0.5411 −0.0984] −33.71 −8.75 −21.17 5.76

0.10 [0.8783 0.7022 0.1447 0.0195] [1.0170 −0.3804 −0.5456 −0.0910] −38.36 −13.42 −25.35 5.74

0.12 Refer Table 7 Refer Table 7 −41.92 −16.25 −28.73 5.81

0.15 [0.8845 0.7023 0.1529 0.0169] [1.0280 −0.3876 −0.5517 −0.0885] −36.04 −12.68 −24.04 5.95

4.4.5 Effect due to the variation in the scaling factor (γ )

Tables 20 and 21 show the optimal coefficients and the values
of different statistical performance indices yielded byHFPA-
based DDs and DIs, respectively, with different values of
scaling factor. Since the HFPA-based designs achieve the
best performance with γ of 0.12, hence, the best control of
step size during the global search process of FPA phase in
HFPA is achieved with γ = 0.12.

4.4.6 Effect due to the variation in the population size (n)

The optimal values of coefficients and the statistical perfor-
mance indicators for the MAMED and the MAMEI metrics
for the DDs and DIs designed using FPA and HFPA with n
of 20, 50, and 100 particles are presented in Tables 22 and
23, respectively. It is found that choosing n = 20 yields the
designs with lower accuracy, while the designs obtained for
n = 100 yield only a slightly better performance at the cost
of increased execution time as compared with those achieved
with n = 50. Hence, considering the trade-off between accu-
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Table 22 Performance of FPA- and HFPA-based DDs based on different values of population size (n)

N Algorithm n [a0 a1 . . . aN ] [b0 b1 . . . bN ] MAMED (dB)

Best Worst Mean SD

2 FPA 20 [1.2010 −0.4664 −0.6717] [1.0240 0.7693 0.0668] −27.43 −3.07 −14.51 5.36

50 Refer Table 2 Refer Table 2 −28.03 −5.66 −16.67 5.33

100 [1.2300 −0.5165 −0.6465] [1.0270 0.7146 0.0420] −28.35 −5.49 −16.69 5.41

HFPA 20 [1.1480 −0.4536 −0.7300] [0.9935 0.7852 0.0717] −29.79 −8.94 −18.87 4.67

50 Refer Table 2 Refer Table 2 −30.14 −9.22 −19.24 4.62

100 [1.1460 −0.4445 −0.7343] [0.9922 0.7918 0.0749] −30.23 −9.29 −19.25 4.65

3 FPA 20 [1.2030 −0.3767 −0.7181 −0.0403] [1.0100 0.8157 0.0906 −0.0051] −28.26 −6.58 −16.42 4.59

50 Refer Table 2 Refer Table 2 −30.16 −7.79 −18.19 4.52

100 [1.1924 −0.3751 −0.7206 −0.0342] [1.0029 0.8145 0.0936 −0.0014] −29.43 −7.64 −18.21 4.53

HFPA 20 [1.0755 0.2904 −0.9883 −0.3762] [0.9298 1.348 0.5111 0.0373] −31.32 −10.17 −20.04 4.40

50 Refer Table 2 Refer Table 2 −32.18 −10.38 −20.69 4.41

100 [1.0680 0.2908 −0.9867 −0.3721] [0.9233 1.3420 0.5075 0.0366] −32.49 −10.31 −20.71 4.46

Table 23 Performance of FPA- and HFPA-based DIs based on different values of population size (n)

N Algorithm n [c0 c1 . . . cN ] [d0 d1 . . . dN ] MAMEI (dB)

Best Worst Mean SD

2 FPA 20 [0.1006 0.9220 0.5399] [1.0000 −0.4378 −0.5621] −31.82 −2.04 −15.96 5.92

50 Refer Table 7 Refer Table 7 −32.03 −2.68 −16.45 5.94

100 [0.0964 0.9238 0.5386] [0.9973 −0.4356 −0.5618] −32.41 −3.92 −16.84 5.99

HFPA 20 [0.0997 0.9258 0.5457] [1.0037 −0.4366−0.5674] −34.94 −11.23 −22.86 5.17

50 Refer Table 7 Refer Table 7 −36.52 −11.68 −23.38 5.10

100 [0.0944 0.9194 0.5409] [0.9962 −0.4375 −0.5587] −37.26 −11.75 −23.42 5.14

3 FPA 20 [0.8508 0.6886 0.1458 0.0112] [0.9835 −0.3626 −0.5289 −0.0918] −35.40 −1.98 −17.53 7.29

50 Refer Table 7 Refer Table 7 −36.79 −1.30 −18.08 7.57

100 [0.8504 0.6883 0.1464 0.0114] [0.9836 −0.3629 −0.5280 −0.0925] −36.90 −2.04 −18.39 7.62

HFPA 20 [0.8506 0.6886 0.1464 0.0112] [0.9834 −0.3624−0.5285 −0.0925] −41.86 −15.99 −28.21 5.80

50 Refer Table 7 Refer Table 7 −41.92 −16.25 −28.73 5.81

100 [0.8503 0.6885 0.1462 0.0113] [0.9833 −0.3625 −0.5284 −0.0923] −42.43 −16.21 −28.74 5.86

racy and computational time, the best performance for both
the algorithms is obtained with n = 50.

5 Conclusions

In this paper, a nature-inspired metaheuristic optimization
technique obtained by hybridizing PSO and FPA, called
hybrid flower pollination algorithm, has been efficiently used
to design wideband IIR digital differentiators and digital
integrators. The lower orders of the proposed designs are
suitable for real-time signal processing applications due to
their lower computational complexity and smaller memory
requirements. The efficiency of the proposed designs has
been extensively investigated with respect to the designs
based on six other metaheuristics in terms of solution qual-

ity, reliability, convergence rate, and computational time.
Hypothesis tests confirm the consistently superior perfor-
mance of the proposed designs as comparedwith RGA, PSO,
DE, L-SHADE, and jDE. HFPA achieves the fastest conver-
gence to the global optimal solution in terms of the function
evaluations. With respect to the computational time, it is
observed that HFPA is faster than RGA, DE, L-SHADE,
and jDE, but is outperformed by PSO and FPA. Exhaustive
simulation studies are also conducted to determine the best
parameter values of HFPA for this optimization problem.
The proposed designs outperform all the reported designs
based on both classical and nature-inspired optimization
approaches with respect to magnitude response. This paper
confirms that HFPA can be considered as a potential tool for
the design of stable, and wideband IIR-type DDs and DIs.
In future, it will be interesting to employ HFPA to design
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one-dimensional and two-dimensional DDs and DIs using a
constrained pole–zero optimization approach.
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