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Abstract Identifying functional modules in PPI networks
contributes greatly to the understanding of cellular functions
and mechanisms. Recently, the swarm intelligence-based
approaches have become effective ways for detecting func-
tional modules in PPI networks. This paper presents a new
computational approach based on bacterial foraging opti-
mization for functional module detection in PPI networks
(called BFO-FMD). In BFO-FMD, each bacterium repre-
sents a candidate module partition encoded as a directed
graph, which is first initialized by a random-walk behav-
ior according to the topological and functional information
between protein nodes. Then, BFO-FMDutilizes four princi-
pal biological mechanisms, chemotaxis, conjugation, repro-
duction, and elimination and dispersal to search for better
proteinmodule partitions. To verify the performance ofBFO-
FMD, we compared it with several other typical methods
on three common yeast datasets. The experimental results
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demonstrate the excellent performances of BFO-FMD in
terms of various evaluationmetrics. BFO-FMDachieves out-
standing Recall, F-measure, and PPVwhile performing very
well in terms of other metrics. Thus, it can accurately pre-
dict protein modules and help biologists to find some novel
biological insights.

Keywords Computational biology · Protein–protein
interaction network · Functional module detection ·
Bacterial foraging optimization

1 Introduction

In the post-genomic era, proteomics research has become one
of themost important areas in the life science (Ji et al. 2014a),
where the analysis of protein–protein interactions (PPI) is
fundamental to the understanding of cellular organization,
processes, and functions (Zhang 2009). Indeed, biologists
also reveal that cellular functions and biochemical events are
coordinately carried out by groups of interacting proteins in
functional modules (Guimera and Amaral 2005). Thus, iden-
tifying functional modules in PPI data contributes greatly to
the understanding of cellular functions and mechanisms.

Nowadays, rapid advance in experimental technologies
has led to an explosive growth in binary PPI data (Chin
and Zhu 2013), but it is getting hard to detect functional
modules only using experimental approaches, which have
several limitations, such as too many processing steps and
too time-consuming (Li et al. 2010; Tarassov et al. 2008).
Fortunately, computational approaches based on machine
learning and data mining can overcome these shortcomings
to some extent and have become useful complements to the
experimental methods for detecting functional modules in
PPI data. In general, these computational approaches first
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model PPI data as a network (graph) G = (V, E), where
V is the set of nodes with each node represents a protein
and E is the set of edges with each edge represents an inter-
action (link). Then various clustering technologies are used
to divide the network and get corresponding protein module
partitions. So far, there have been many kinds of computa-
tional methods which adopt different ideas and schemes to
mine functional modules. All these methods can be system-
atically categorized into two main groups (Ji et al. 2014a, b):
traditional graph–theoretic approaches and non-traditional
graph–theoretic approaches. The traditional graph–theoretic
approaches mainly make an analysis on the topology struc-
ture of a PPI network and employ some traditional clustering
technologies to identify functional modules, such as density-
based clustering (Bader and Hogue 2003; Adamcsek et al.
2006; Altaf-Ul-Amin et al. 2006), hierarchy-based cluster-
ing (Ravasz et al. 2002;Arnau et al. 2005;Aldecoa andMarín
2010) and partition-based clustering (King et al. 2004; Frey
and Dueck 2007; Abdullah et al. 2009). The non-traditional
graph–theoretic approaches refer to the new emerging meth-
ods in recent years, which make use of novel computational
technologies to detect functional modules in a PPI network.
This type of approaches mainly includes flow simulation-
based methods (Dongen 2000; Cho et al. 2007; Feng et al.
2011), spectral clustering-based methods (Sen et al. 2006;
Qin and Gao 2010; Inoue et al. 2010), core attachment-
based approaches (Leung et al. 2009; Wu et al. 2009; Ma
and Gao 2012), swarm intelligence-based approaches and
so on. Among them, swarm intelligence technology is a
population-based metaheuristic approach, which has been
increasingly popular due to its ability in solving a variety
of complex scientific and engineering problems (Hinchey
et al. 2007). Such technology simulates the social behavior
of certain living creature and has been applied in functional
module detection in PPI networks. For example, Sallim et al.
(2008) for the first time introduced ant colony optimization
(ACO) into functional module detection by taking it as the
optimization problem of solving traveling salesman problem
(TSP). Ji et al. (2012a) proposed a new algorithm based on
ACO (called as NACO-FMD), which incorporates known
biological knowledge—Gene Ontology (GO), into the pro-
cess of detecting functional modules. To further overcome
the shortcoming of easily trapped into a local optima for
ACO algorithm, they combined ACO with multi-agent evo-
lutionary (MAE) to identify functional modules (Ji et al.
2012b, 2013). Subsequently, they again presented an algo-
rithm based on ant colony clustering (called as ACC-FMD)
for functional module detection in PPI networks (Ji et al.
2015). Moreover, by uniting with functional flow clustering,
artificial bee colony (ABC) algorithm was likewise used to
identify functionalmodules in PPI networks (Wu et al. 2011).

Bacterial foraging optimization (BFO) (Passino 2002) is
another famous swarm intelligence algorithm developed by

Passino in 2002, which simulates the foraging behavior of
Escherichia coli bacteria. The basic principle is that bacte-
ria move through either tumbling or swimming to maximize
the energy consumed by eating as many nutrients as they
can. As the smallest creatures on the earth, bacteria contain
many clever optimization mechanisms. Thus, BFO which is
inspired by bacterial biological behavior has unique good
performance and has been successful in a wide variety of
optimization tasks (Das et al. 2009), and also found its way
in the domain of protein functional module detection (Lei
et al. 2011, 2013). However, there are two basic issues
in Lei et al. (2011, 2013): (1) Each bacterium represents
one protein node, and this individual representation is unable
to realize information exchange among bacterial individu-
als, but information exchange among different individuals
is a crucial mechanism for a swarm intelligence optimiza-
tion algorithm. (2) Although three key operators including
chemotaxis, reproduction, and elimination and dispersal are
utilized, they are too simple to be in conformity with the
biological mechanisms simulated in the original BFO algo-
rithm. Thus, the above two basic issues make it difficult to
fully release the potential of BFO algorithm for functional
module detection in PPI networks. To explore the full poten-
tial of BFO algorithm in identifying functional modules, this
paper conducts a further and thorough investigation and pro-
poses a new bacterial foraging optimization algorithm for
functional module detection in PPI networks, called BFO-
FMD. In comparison with the previous work in Lei et al.
(2011, 2013), the main contributions of this paper are sum-
marized as follows:

– The proposed algorithm employs a completely different
representationof bacterial individual. Eachbacterial indi-
vidual represents a candidate module partition, which is
easy to exchange information among different bacterial
individuals.

– In the proposed algorithm, the realization of four opti-
mization mechanisms more faithfully follows the bio-
logical mechanisms of bacteria.

– Systematic experiments have been conducted to compare
the proposed algorithm with different kinds of state-of-
the-art algorithms on three yeast PPI datasets using seven
evaluation metrics.

2 BFO-FMD algorithm

2.1 Basic idea

By considering functional module detection as an optimiza-
tion problem, this study uses BFO algorithm to solve the
optimization problem and proposes a new algorithm called
BFO-FMD. In BFO-FMD, each bacterial individual corre-
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sponds to a candidate module partition (i.e., a candidate
solution), and is evaluated using themodularitymetric,which
is commonly used in the partition of a network into mod-
ules (Guimera and Amaral 2005), and is given below:

J (θ) =
M∑

i=1

[
ei
|E | −

(
di

2|E |
)2

]
, (1)

where θ is a candidate module partition represented by a
bacterium, M is the number of modules for a bacterium θ , ei
is the number of links between nodes in the i th module, di is
the sum of the degrees of nodes in the i th module, and |E | is
the number of all the links in the PPI network. In general, the
modularity metric tends to favor the detected results which
comprise many within-module links and as few as possible
between-module links. The higher the modularity score, the
better the detected result (i.e., the better the corresponding
individual solution).

The procedure of BFO-FMD includes three stages:
solution initialization, solution optimization, and post-pro-
cessing. At first, BFO-FMD constructs each bacterial indi-
vidual solution using a random-walk behavior. Then, it
optimizes iteratively each individual solution using four bio-
logical mechanisms (chemotaxis, conjugation, reproduction,
and elimination and dispersal) to look for superior solutions
with higher modularity scores. At last, BFO-FMD carries
out two post-processing steps to further refine the prelim-
inary module partition detected. In the following, we will
explain key parts of this algorithm in detail.

2.2 Solution representation and initialization

For swarm intelligence-based algorithms, it is essential to
design appropriate solution representation and the initializa-
tion method for different problems. To address the problem
of detecting functional modules in PPI networks, BFO-FMD
makes each bacterial individual correspond to a candi-
date module partition and encodes it as a graph with N
directed edges: θ = { (1 → a1), (2 → a2), . . . , (i →
ai ), . . . , (N → aN )}, where i is a node label, ai denotes
the node label that the node i points to, and N is the number
of nodes in a PPI network, i.e., N = |V |. In the initializa-
tion process, a bacterium first randomly selects a starting
node and then continuously makes use of a random-walk
behavior to traverse other nodes in the PPI network. At each
step, the bacterium is on a node, tries to move to a similar
node which is functionally correlated or structurally similar
to the current node, and then builds a link. Clearly, the greater
the similarity between two nodes of a link, the stronger the
connection strength. When there is no any satisfied node, the
bacterium ends its current pathway by pointing to itself, picks
up another untraversed node in a PPI network, and begins to

a new traversal. This random-walk behavior continues until
all the N nodes in a PPI network are traversed. During the
initialization, each bacterium keeps on walking to a random
similarity node with its current node step-by-step. For node
i , its similarity node is selected randomly from the following
set:

Ωi =
{
j | (si j + fi j )

2
> ε

}
, (2)

where ε represents an overall similarity threshold, si j and
fi j denote the structural similarity and functional similarity
between nodes i and j , respectively.

Given two protein nodes i and j , the structural similarity
formula is given as follows (Mete et al. 2008):

si j = |Γ (i)
⋂

Γ ( j)|√|Γ (i)||Γ ( j)| , (3)

where Γ (i) is a set of the neighborhood nodes of node i plus
itself, and |Γ (i)| is the size of the set.

Based on the annotation information of Gene Ontology
(GO), the functional similarity formula is expressed as fol-
lows (Schlicker and Albrecht 2008):

fi j = |gi ⋂ g j |
|gi ⋃ g j | , (4)

where gi and g j are GO term sets of nodes i and j , respec-
tively.

To clearly show the solution representation and initial-
ization process, Fig. 1 illustrates an example in a simplified
PPI network with ten nodes. Figure 1a shows a PPI network
containing ten nodes marked from 0 to 9, Fig. 1b gives the
generation process of a bacterium denoting an individual
solution, where this bacterium first picks out node 3 ran-
domly, then it moves to node 4 which is selected out from
the set in Eq. (2) at random and builds a link 3 → 4. Next,
it moves to node 8 from node 4 and builds a link 4 → 8
in the same way. This process is repeated until it reaches
node 0 when there is not any node meeting the condition in
Eq. (2), and the bacterium has to end its current pathway
by pointing to itself 0 → 0. Afterward, this bacterium ran-
domly chooses another unvisited node 2 and restarts a new
pathway until all the ten nodes are traversed. Figure 1c gives
the solution presentation by adjusting the sequence in Fig. 1b
according to the node label, and Fig. 1d shows the detected
modules corresponding to the individual solution shown in
Fig. 1c. It is obvious, such initialization method does not
need a given number of modules in advance, and it automat-
ically makes decision according to the links of a bacterial
individual.
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(a)

(b)

(d)

(c)

Fig. 1 Bacterial individual representation and initialization process: a PPI network, b initialization process, c individual representation, and d an
initial solution represented by a bacterial individual

Operation function: Chemotaxis_Process(i)
————————————————————-
1 Compute the modularity score of solution θi according to
Eq. (1), noted as J (θi ), and let θlast = θi and Jlast = J (θi ).

2 Tumble: generate randomly a direction vector D.
3 Move: select another bacterium a, when the component in D is 1,
bacterium i will replace the corresponding link having weaker
strength with that of bacterium a, then compute the new modularity
score of bacterium i , noted J (θi ).

4 Swim as follows:
i) Let m = 0 (the swimming counter).
ii) While m < Ns

• Let m = m + 1.
• If J (θi ) > Jlast , let θlast = θi and Jlast = J (θi ), and then keep
on the move according to step 3 and compute new J (θi ).

• Else, let m = Ns , θi = θlast and J (θi ) = Jlast .

2.3 Chemotaxis

This mechanism simulates the foraging movement of E.colis
through tumbling and swimming. To absorb more nutrients,
each bacterium tries to find food in two ways: tumbling and
swimming. A bacterium tumbles in a random direction to
exploratively search for food. If the food is rich in the selected
direction, the bacterium will swim along this direction, till
the food gets bad or the bacterium has swum the fixed steps.

From the above description, a proper random direc-
tion generated through tumbling and an reasonable way of
updating a solution are important for the realization of the
chemotaxis mechanism. In BFO-FMD, a random direction
is defined as a random masking vector with N dimensions,
and the value of each dimension is either 0 or 1 with a
certain probability Pch. That is, for each dimension of a
masking vector, if a uniform random number in the range
of (0,1) is smaller than Pch, its value will be 1, otherwise
it will be 0. Thus, when the bacterial population performs
a chemotaxis step, each bacterium first generates an afore-
said masking vector denoted by D (equivalent to tumbling).
Then, it updates its current solution according to the follow-
ing method: select randomly a different bacterium and check
the value of each dimension in D one by one.When the value

Fig. 2 Method of generating a new solution in chemotaxis operator

is 1, the bacterium will compare the connection strength of
the corresponding linkwith the selected bacterium. If its con-
nection strength isweaker than that of the selected bacterium,
the bacterium will replace its corresponding link with that
of the selected bacterium. After the bacterium checks each
component of D, it gets a new solution. The next step is to
compute the modularity score of the new solution accord-
ing to Eq. (1). If the modularity score of the new solution is
higher than that of the old one, the bacteriumwill continue to
optimize the new solution along the direction D in the same
way (equivalent to swimming), till themodularity score of the
new solution does not improve anymore or the bacterium has
carried out the maximum number of times Ns . We summa-
rize the chemotactic process of a bacterium described above
into a function Chemotaxis_Process(i), where i is a param-
eter showing that the i th bacterium performs the chemotactic
process. For such chemotaxis mechanism, tumbling controls
the direction of searching for bettermodule partitions. Swim-
ming is a driving force toward better module partitions when
a bacterial individual finds a right direction. The chemotaxis
mechanism is a complex and close combination of swimming
and tumbling that keeps bacteria in these places with higher
modularity scores for module partitions and plays a crucial
role in searching for the module partition with the highest
modularity scores.

For clarity, Fig. 2 illustrates the method of generating
a new solution in the chemotaxis operator, where θi is a
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candidate solution represented by bacterium i which per-
forms a chemotaxis operator, D = (0, 0, 1, 0, 0, 1, 0, 1, 0, 0)
denotes the chemotaxis direction, and θa is another different
solution represented by bacterium a. The 3rd, 6th, and 8th
components are 1 in D, so bacterium i compares its 3rd link
(2 → 3), 6th link (5 → 4), 8th link (7 → 6) with those
of bacterium a (2 → 5, 5 → 7 and 7 → 8), respectively.
Assume that the connection strength of 3rd link (2 → 3) and
8th link (7 → 6) in solution θi is weaker than those of θa
(2 → 5 and 7 → 8), bacterium i replaces its 3rd link 2 → 3
and 8th link 7 → 6 with 2 → 5 and 7 → 8, respectively.
Accordingly, bacterium i obtains a new solution.

2.4 Conjugation

Conjugation, as well as chemotaxis, is an important biolog-
ical characteristic of bacteria. A bacterial conjugation is the
transfer of part of plasmid (genetic material) from donor
bacteria to recipient bacteria by a directly physical contact
and is often regarded as the sexual reproduction or mating
between bacteria. Some researchers have taken the bacte-
rial conjugation as a message passaging mechanism in their
work (Perales-Graván andLahoz-Beltra 2008; Balasubrama-
niam and Lio 2013).

In this paper, we also simulate the bacterial conjugation
behavior to play a part of information exchange between
individuals in the proposed BFO-FMD algorithm. To model
this biological behavior, we define conjugation probability
Pco and conjugation length L (L < N ) which decides the
amount of changes to links of amodule partition.When a bac-
terium carries out a conjugation step with a given probability
Pco, it first randomly selects another different bacterium and
a conjugation point Bt (Bt < N − L), then the bacterium
replaces its links with those of the selected bacterium from
Bt th dimension to (Bt + L)th dimension. At last, the bac-
teriumgets a new solution andwill keep the superior one after
comparing the new solution and the old solution. We sum-
marize the conjugation process of a bacterium introduced
above into a function Conjugation_Process(i), where i is
a parameter showing that the i th bacterium performs the
conjugation process. With the new conjugation mechanism,
the bacterial population has a strong information exchange
channel. Each bacterium in the population no longer takes
action blindly but searches for the module partition with the
highest modularity score under the help of the other bac-
teria. At the same time, this new conjugation operator can
also be considered as a kind of local optimization operator
which is different from the chemotaxis operator. The operator
improves each individual solution by changing some con-
tinuous links, while the chemotaxis operator enhances each
solution by altering some discontinuous links. Although the
two operators work through different mechanisms, they are

Operation function: Conjugation_Process(i)
————————————————————-
1 Generate a random number r in (0,1)
2 If r < Pco

i) Randomly select a conjugation point Bt (Bt < N − L).
ii) Pick out another different bacterium b.
iii) Bacterium i acquires some information of bacterium b in the

following way:
• Let θold = θi and Jold = J (θi ),
• Bacterium i replaces the corresponding links with those of
bacterium b from Bt th dimension to (Bt + L − 1)th

dimension.
iv) Compute new modularity score J (θi ).
v) If J (θi ) < Jold , let θi = θold and J (θi ) = Jold .

Fig. 3 Method of generating a new solution in conjugation operator

supplement each other to look for the better partition with
higher modularity score.

To be more clear, Fig. 3 displays the way of generating
a new solution, where θi is a candidate solution represented
by bacterium i which performs a conjugation operator, θb
is another different candidate solution represented by bac-
terium b which is selected randomly from the population.
Bt = 2 is the conjugation point, and L = 3 is the conju-
gation length. Bacterium i , respectively, replaces three links
2 → 5, 3 → 1, and 4 → 4 in solution θi with 2 → 1, 3 → 4,
and 4 → 8 in solution θb. Accordingly, bacterium i obtains
a new solution.

2.5 Reproduction

The bacteria grow longer with the increase in absorption of
nutrients. The more nutrients a bacterium gets, the healthier
it is. Under appropriate conditions, some bacteria in a pop-
ulation which are healthy enough will asexually split into
two bacteria, and the other ones will die. In the simulation
of reproduction, the modularity score of a bacterium is used
to measure its health degree, the higher the modularity score
of a bacterium, the healthier it is. We define the number of
chemotactic steps Nc to be the length of the lifetime of each
bacterium, and Sr , that is half of the population size S, be
the number of bacteria who are healthy enough to make a
copy of themselves. After Nc chemotactic steps, a reproduc-
tion step is taken. First, sort the bacterial population in a
descending order on the basis of the modularity score. Each
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of the first Sr bacteria with higher modularity score split
into exactly two same bacteria, and the other Sr bacteria will
die, which maintains a constant size of the population. In
essence, this mechanism represents a fairly abstract model of
Darwinian evolution and biological genetics in genetic algo-
rithms, which can pass the elite information among swarm
individuals, and speed up the convergence.

2.6 Elimination and dispersal

When the local environment where a population of bacteria
live changes, all the bacteria in this region may be killed or a
group of bacteria may be dispersed into a new environment
to find good food sources. To simulate this phenomenon,
an elimination and dispersal step is evoked after Nre repro-
duction steps. Each bacterium in the population may be
eliminated and dispersed into a new location with a given
probability Ped. The rule is shown in the following:

θ =
{

θnew, if q < Ped
θ, otherwise

, (5)

where q is a random number uniformly distributed in [0, 1],
θ is the current solution associated with a bacterium, θnew is
a new random solution generated by re-initialization using
a random-walk behavior. That is, for each bacterium, if the
number generated randomly is smaller than Ped, it will move
to a new random solution; otherwise, it will keep the original
solution unchanged. This mechanism generates new random
solutions for some bacteria and makes these bacteria search
from new starting points. Essentially, this mechanism is quite
similar to macromutation in the classical evolutionary algo-
rithms, and is important in exploring new search regions over
the whole search space, which helps the bacterial population
to jump out of local optima.

2.7 Post-processing

When the iterative loops terminate, we obtain a bacterial
individual with the largest modularity score. The bacte-
rial individual can be decoded into a set of clusters, and
each cluster corresponds to a protein module. Therefore, the
preliminary modules are generated through the bacterial for-
aging optimization process. To further improve the detection
quality, two post-processing steps are adopted to refine the
preliminary modules.

The first step is to merge preliminary modules in light
of functional similarity based on the annotation informa-
tion of GO. A merging module comes from two preliminary
modules which are close in function. Specifically, iteratively
merge twomoduleswith the largest functional similarity until
there are no such two modules whose functional similarity is

larger than themerging threshold λ. The functional similarity
between two modules h1 and h2 is defined as:

S(h1, h2) =
∑

i∈h1, j∈h2 S(i, j)

min(|h1|, |h2|) , (6)

where

S(i, j) =
⎧
⎨

⎩

1 if i = j
fi j if i �= j, and (i, j) ∈ E
0 otherwise

. (7)

The second step is a simplefilteringoperator, and its goal is
to exclude some sparsely connected modules from the topo-
logical structure perspective. To do this, first compute the
density of each module and then remove the module whose
density is smaller than the predetermined filtering threshold
δ. The density of a module is given by (Li et al. 2010):

Dh = eh
nh · (nh − 1)/2

, (8)

where nh is the number of nodes and eh is the number of
interactions in module h.

By the above two post-processing strategies, the prelim-
inary modules are further refined in the view of functional
similarity and topological structure, and the final functional
modules are obtained.

2.8 Algorithm description

According to the previously detailed introduction, the pseu-
docode of the proposed BFO-FMD algorithm is given in
Algorithm 1. This algorithm first starts with an initial bacte-
rial population, each of which represents a candidate module
partition and is constructed by a random-walk behavior.
Then, it executes a triple loop: chemotaxis, reproduction, and
elimination and dispersal loops. At each chemotaxis loop,
each bacterium in a population finds a new solution through
successively carrying out two operators chemotaxis and con-
jugation and makes a choice between the current solution
and the new solution by a greedy selection strategy. In other
words, if the modularity score of the new solution is higher
than that of the current one, the bacterium will choose the
new solution; otherwise, it will keep the current one. After Nc

chemotaxis loops, the bacterial population performs a repro-
duction loop. This process selects Sr bacteria with higher
modularity scores and splits each of them into two bacteria
while rejecting the other Sr bacteria with lower modularity
scores. When Nre reproduction loops have been carried out,
the bacterial population starts an elimination and dispersal
loop. For each bacterium, if a number randomly generated
between 0 and 1 is less than the given probability Ped, it
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Algorithm 1: The proposed BFO-FMD algorithm
————————————————————-
Input: a PPI network G(V, E)

Output: the set of modules H
1 Initialization:

a) Set parameters: S, Ns , Nc, Nre, Ned , Ped , Pco, Pch , L , ε, λ, δ
S: population size of the bacterial colony,
Ns : maximum number of swimming,
Nc: maximum number of chemotaxis,
Nre: maximum number of reproduction,
Ned : maximum number of elimination and dispersal,
Ped : the probability of performing elimination and dispersal,
Pco: the probability of performing conjugation,
Pch : the probability used in generating a masking vector,
L: the conjugation length,
ε: the similarity threshold between nodes,
λ: the merging threshold,
δ: the filtering threshold.

b) Initialize the bacterial population:
For i = 1 to S:
do the initialization process as described in section Solution
representation and its initialization, and get i th candidate
solution represented by bacterium i .

c) Let j = k = l = 0 (three counters), and let the best solution
θbest = θ1, the corresponding modularity score Jbest = J (θ1).

2 Elimination and dispersal loop: l = l + 1
3 Reproduction loop: k = k + 1
4 Chemotaxis loop: j = j + 1
5 a) For bacterium i = 1, 2, . . . , S, perform the following two

operators:
6 b) Bacterium i takes a chemotaxis operator according to

Chemotaxis_Process(i),
7 c) Bacterium i takes a conjugation operator according to

Conjugation_Process(i).
8 d) If J (θi ) > Jbest , then let θbest = θi and Jbest = J (θi ).
9 e) If i < S, go to step 5.
10 If j < Nc, go to step 4.
11 Reproduction:

a) Sort bacteria based on J (θ) in descending order,
b) Abandon Sr bacteria with lower J (θ) and split each of

another Sr bacteria into two ones.
12 If k < Nre, go to step 3.
13 Elimination and dispersal:

For each bacterium i = 1, 2, . . . , S may eliminate and disperse
with a probability Ped according to Eq. (5).

14 If l < Ned , go to step 2.
15 Take two post-processing steps on θbest .
16 Return the the set of modules H .

will be eliminated and re-initialized. After the triple loop,
two post-processing operators are performed to further refine

the obtained best solution. In essence, chemotaxis, conju-
gation, and elimination and dispersal have responsibilities
to keep the balance between exploitation and exploration.
BFO-FMD performs exploitation processes on each candi-
date solution using chemotaxis and conjugationmechanisms,
and exploration processes using the elimination and disper-
sal mechanism. Reproduction picks the elite individuals with
higher modularity scores, which can help to accelerate the
convergence speed.

3 Experimental evaluation

In this section, we will present our extensive experimental
results to show the performance of the proposed BFO-
FMD algorithm. The experimental platform is a PC with
Inter(R) Core(TM) i5-3470 CPU 3.20GHz, 4GB RAM, and
Windows 7, and BFO-FMD is implemented using the Java
language.

3.1 Datasets

Three new publicly available yeast PPI datasets includ-
ing DIP ScereCR20150101, DIP Scere20150101, and MIPS
datasets are used in the experiments. Table 1 shows a sum-
mary of the datasets, where the 2nd column provides the web
links, the 3rd and 4th columns are the number of proteins
(P) and interactions (I) in source data, and the 5th and 6th
columns give the number of proteins and interactions after
deleting all the self-connected and repeated interactions. To
evaluate the functional modules discovered by a computa-
tionalmethod, the set of real functionalmodules fromFriedel
et al. (2008) is selected as the benchmark. This benchmark
contains 428 gold standard functional modules and is con-
structed from three main sources: MIPS (Mewes et al. 2004;
Aloy et al. 2004) and the SGD database (Dwight et al. 2002)
based on the GO notations.

3.2 Evaluation metrics

Three types of popular evaluation metrics are employed to
evaluate the quality of the detected modules (Li et al. 2010).

Table 1 Datasets used in experiments

Datasets Http address Source data Processed data

Size of P. Size of I. Size of P. Size of I.

ScereCR20150101 http://dip.doe-mbi.ucla.edu/dip/
Download.cgi?SM=7&TX=4932

2460 5325 2391 5031

Scere20150101 http://dip.doe-mbi.ucla.edu/dip/
Download.cgi?SM=7&TX=4932

5144 22,838 5087 22,424

MIPS http://mips.helmholtz-muenchen.de 4554 15,456 4545 12,318
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3.2.1 Precision, Recall, and F-measure

Precision, Recall, and F-measure are three common evalu-
ation metrics in information retrieval and machine learning.
Using this type of metric method, it is necessary to define
how well a detected module h = (Vh, Eh) matches a bench-
mark standard module s = (Vs, Es). Many researches use
a neighborhood affinity score (NA) to assess the matching
degree, which is given as follows:

NA(h, s) = |Vh ⋂
Vs |2

|Vh | × |Vs | . (9)

If NA(h, s) ≥ ω, two modules h and s are consid-
ered to be matched (generally, ω = 0.2). Let H be the
set of detected modules and S be the set of gold standard
functional modules. The number of the detected modules
in H which at least matches one standard module in S is
denoted by Nch = |{h|h ∈ H, ∃s ∈ S,NA(h, s) ≥ ω}|,
while the number of the standard modules in S which at
least matches one detected module in H is indicated by
Ncs = |{s|s ∈ S, ∃h ∈ H,NA(h, s) ≥ ω}|. Thus, Preci-
sion and Recall are given below:

Precision = Nch

|H | , (10)

and

Recall = Ncs

|S| . (11)

F-measure is a harmonic mean of Precision and Recall.
So it can be used to evaluate the overall performance and is
expressed as:

F-measure = 2 × Precision × Recall

Precision + Recall
. (12)

According to the above definitions, the values of Precision
and Recall are actually ratios and range from 0 to 1. For
Precision, the closer it is to 1, the more the detected modules
which successfully match at least one standard module, and
the better the algorithm. When the value of Precision is 1, all
the detectedmodules canmatch at least one standardmodule.
For Recall, the closer it is to 1, themore the standardmodules
which successfully match at least one detected module, and
the better the algorithm.When the value of Recall is 1, all the
standardmodules canmatch at least one detectedmodule. As
an overall indicator of Precision and Recall, F-measure also
takes values in the range of 0–1, and the closer it is to 1, the
better the algorithm.

3.2.2 Sensitivity, positive predictive value, and accuracy

Sensitivity (Sn), positive predictive Value (PPV), and accu-
racy (Acc) are three usual measures to evaluate the perfor-
mance of a detection method. Let Ti j be the number of the
common proteins in i th standard module and j th detected
module, then Sn and PPV are defined as:

Sn =
∑|S|

i=1 max j {Ti j }
∑|S|

i=1 Ni

, (13)

and

PPV =
∑|H |

j=1 maxi {Ti j }
∑|H |

j=1 T· j
, (14)

where Ni is the number of the proteins in the i th standard
module, and T· j = ∑|S|

i Ti j .
Acc is a comprehensive metric and is defined as the geo-

metric mean of Sn and PPV:

Acc = (Sn × PPV)1/2. (15)

From the above definitions, the values of Sn and PPV
are also ratios and range from 0 to 1. For Sn, the closer
it is to 1, the detected modules give the better coverage of
the standard modules, and the better the algorithm. When
the value of Sn is 1, the detected modules can completely
cover the standard modules. For PPV, the closer it is to 1, the
detected modules are more likely to be the standard modules,
and the better the algorithm. When the value of PPV is 1, the
detected modules are the same as the standard modules, and
the better the algorithm. As an overall indicator of Sn and
PPV, Acc also takes values in the range of 0–1, and the closer
it is to 1, the better the algorithm.

3.2.3 P value measure

P value, known as a metric of functional homogeneity, is
usually used to substantiate the biological significance of the
detected modules. It is the probability of co-occurrence of
proteins in a detected module with a common function and
is expressed as follows:

p = 1 −
k−1∑

i=0

( |F |
i

) ( |V | − |F |
|h| − i

)

( |V |
|h|

) , (16)

where |V | is the number of all the proteins in a PPI network,
|h| is the number of proteins in a detectedmodule h, |F | is the
number of proteins in a reference function F , and k represents
the number of common proteins in the reference function F
and the detected module h. Low p value of a detected module
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Table 2 Results of various algorithms on different datasets

Datasets Results Algorithms

BFO-FMD NACO-FMD ACC-FMD COACH Jerarca CFinder MCODE

ScereCR20150101 Number of modules 324 310 382 363 318 178 102

Average size of modules 5.18 4.27 11.56 5.73 7.16 7.76 5.71

Nch > 0.2 158 110 230 179 118 90 59

Ncs > 0.2 244 161 148 202 184 130 95

Scere20150101 Number of modules 348 479 270 916 588 204 60

Average size of modules 5.83 4.48 31.46 8.81 8.23 13.13 13.83

Nch > 0.2 172 50 93 223 92 50 22

Ncs > 0.2 263 80 81 213 140 67 38

MIPS Number of modules 397 472 259 489 536 178 65

Average size of modules 4.28 4.11 47.48 9.22 7.98 9.29 7.65

Nch > 0.2 155 74 63 144 66 55 29

Ncs > 0.2 236 104 60 149 94 85 52

generally means that this module is not merely enriched by
proteins from the same function by chance, and thus, this
module has high statistical significance and is likely to be a
real protein module. In general, a detected module with p
value <0.01 is considered to be statistically significant.

3.3 Comparative evaluations

To demonstrate the performance of the proposed BFO-FMD
algorithm, we compared it with six competitive methods:
NACO-FMD (Ji et al. 2012a), ACC-FMD (Ji et al. 2015),
COACH (Wu et al. 2009), Jerarca (Aldecoa and Marín
2010), CFinder (Adamcsek et al. 2006), andMCODE (Bader
and Hogue 2003) on three yeast datasets in Table 1.
Among them, NACO-FMD and ACC-FMD are two swarm
intelligence-based algorithms introduced before. COACH is
a core attachment-based algorithm, which first detects pro-
tein cores and then includes attachments into these cores to
form biologically meaningful structures. Jerarca belongs to
hierarchy-based algorithm, and it can provide optimal par-
titions of the trees using statistical criteria based on the
distribution of intra-cluster and inter-cluster connections.
CFinder and MCODE are two density-based algorithms.
CFinder first identifies the k-cliques using clique percola-
tion and then combines the adjacent k-cliques to get the
functional modules. According to the node’s neighbor local
density, MCODE fist picks out seed nodes for initial clusters
and then further augments these clusters to form the final
clusters. In the experiments, NACO-FMD adopted the same
parameters as Ji et al. (2012a), and ACC-FMD employed the
same parameters as Ji et al. (2015). For methods COACH,
Jerarca, CFinder, and MCODE, we obtained their software
implementations and used the default values for their param-
eters in the experiments.

As for our BFO-FMD algorithm, there are several param-
eters. In the following, we will describe their roles. S is
the size of bacterial population and determines number of
individuals to search better module partitions. Nc is the max-
imum number of chemotaxis and determines the number of
times searching around a candidate solution. Ns is the max-
imum number of swimming during each chemotaxis and
determines the number of steps that an individual swims
toward a specific direction. Nre is the maximum number
of reproduction and determines the number of times that
the algorithm selects superior solutions. Ned is the maxi-
mum number of elimination and dispersal, which determines
the number of times that the bacterial population explores
some other regions of the search space. Ped is the probabil-
ity of elimination and dispersal and determines the number
of individuals dispersed into some other regions to search
better module partitions. Pco is the probability of conjuga-
tion and determines the number of individuals searching for
better module partitions under the help of other individuals.
Pch is the probability used in generating a masking vector
and determines the strength of local search around a candi-
date solution in the chemotaxis process. L is the conjugation
length and determines the strength of local search around a
candidate solution in the conjugation process. ε is the sim-
ilarity threshold between nodes and determines the quality
of initial solutions. λ is the merging threshold, and δ is the
filtering threshold, and they determine the strength of post-
processing operators. For these parameters, too big or too
small values have serious effects on the solution quality and
the runtime efficiency. To select a set of relatively good val-
ues, we have done a series of hand-tuning experiments and
took S = 100, Nc = 100, Ns = 4, Nre = 4, Ned = 2,
Ped = Pco = 0.2, Pch = 0.05, L = 0.05 ∗ |V |, ε = 0.4,
λ = 0.2, and δ = 0.05.
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Fig. 4 Comparative results of seven methods in terms of various eval-
uation metrics on ScereCR20150101 dataset

Table 2 provides the basic information of the detection
results for the seven algorithms on the three datasets. For
each algorithm, we have listed the number of detected mod-
ules (Number of modules), the average number of proteins
in each module (Average size of modules), the number of
detected modules which match at least one gold standard
module (Nch) and the number of gold standard modules that
match at least one detected module (Ncs). Taking BFO-FMD
on ScereCR20150101 dataset as an example, it has detected
324 modules, of which 158 match 244 gold standard mod-
ules, and the average size of the 324 detected modules is
about five proteins. From the table, MCODE always obtains
the least number of modules (number of modules), ACC-
FMD gets the biggest module (average size of modules), and
BFO-FMD usually generates more and smaller modules and
the number of gold standard modules that match at least one
detectedmodule (Ncs) is alwaysmuchmore than all the other
algorithms on the three datasets.

Figures 4, 5, and 6 show the overall comparison results
of seven algorithms on the three datasets in terms of various
evaluation metrics including Precision, Recall, F-measure,
Sensitivity, PPV, and Accuracy. On the core dateset of yeast
(ScereCR20150101) in Fig. 4, one easily see that our BFO-
FMD algorithm achieves the best performance on five out of
six metrics except Precision statistic. In detail, ACC-FMD
and MCODE take the first and second places in term of
Precision, respectively. However, ACC-FMD usually mines
high overlapping modules and many of which are very sim-
ilar, and MCODE detects very few protein modules (only
102 in Table 2), which leads to higher Precision values.
The Precision of our algorithm is 0.487, which is almost the
same as those of COACH (0.493) and CFinder (0.506), and
higher than those of the remaining twomethodsNACO-FMD

Fig. 5 Comparative results of seven methods in terms of various eval-
uation metrics on Scere20150101 dataset

Fig. 6 Comparative results of seven methods in terms of various eval-
uation metrics on MIPS dataset

(0.355) and Jerarca (0.371). BFO-FMD algorithm matches
the most real protein modules and obtains the highest Recall
(0.57), which is much better than all the other six algo-
rithms. On the whole, due to the balance of Precision and
Recall, BFO-FMD algorithm also attains the highest F-
measure (0.526). As for another three metrics of Sensitivity,
PPV, and Accuracy, our algorithm still plays the best among
the seven algorithms. Its corresponding values are 0.381,
0.357, 0.359 in terms of Sensitivity, PPV, Accuracy, respec-
tively, which are a little better than those of NACO-FMD
(0.378, 0.341, and 0.359) and much better than the other five
algorithms.

Figure 5 shows that our BFO-FMD algorithm performs
extremely well on larger Scere20150101 dataset, while other
algorithms suffer performance degradation compared to their
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Table 3 Distribution comparisons of the p values of protein modules obtained by different algorithms on ScereCR20150101

p values Algorithms Distribution ranges Ratio

(0, 1.0e−30] (1.0e−30, 1.0e−20] (1.0e−20, 1.0e−10] (1.0e−10, 0.01]

Biological process BFO-FMD 6 8 37 201 0.778

NACO-FMD 0 4 16 178 0.639

ACC-FMD 1 33 122 205 0.945

COACH 0 3 53 256 0.860

Jerarca 0 13 36 181 0.534

CFinder 4 9 23 109 0.815

MCODE 0 0 15 79 0.922

Cellular component BFO-FMD 9 12 33 155 0.645

NACO-FMD 0 5 18 153 0.568

ACC-FMD 9 49 119 153 0.864

COACH 0 10 63 213 0.788

Jerarca 3 8 40 143 0.610

CFinder 4 7 27 92 0.730

MCODE 0 0 23 69 0.902

Molecular function BFO-FMD 1 7 25 123 0.481

NACO-FMD 0 2 11 104 0.377

ACC-FMD 0 16 60 197 0.715

COACH 0 4 27 176 0.570

Jerarca 0 3 24 120 0.462

CFinder 0 2 20 76 0.551

MCODE 0 0 8 57 0.637

results on smaller cereCR20150101 dataset. More specif-
ically, BFO-FMD algorithm has overwhelming superiority
in terms of five metrics: Precision, Recall, F-measure, PPV,
andAccuracy. Only on Sensitivity statistic, CFinder achieves
better than our BFO-FMD algorithm. It is actually because
this algorithmobtained an impossibly hugemodule including
1858 proteins, so the great majority of proteins in benchmark
set are covered by this very big module, which results in a
high Sensitivity value for CFinder according to the calcula-
tion formula in Eq. (13).

For another larger MIPS dataset shown in Fig. 6, the
proposed BFO-FMD algorithm still yields good results,
even though it does not achieve as well as it does on
Scere20150101. BFO-FMD attains the best performance in
terms of Recall, F-measure, and PPV. On Precision statistic,
BFO-FMD is only worse thanMCODE. However, we do not
thinkwe should giveMCODEahighest ranking on this statis-
tic, since it predicted very few modules (65 in Table 2). The
sensitivity value of our algorithm is 0.285, which is in third
place out of the seven algorithms and is slightly lower than
that of the second place CFinder (0.31). There is a relatively
large gap between BFO-FMD and the first place NACO-
FMD on this statistic. So BFO-FMD obtains the next best
performance after NACO-FMD in term of Accuracy which
is a comprehensive metric of Sensitivity and PPV, despite

the fact that our algorithm achieves the best performance on
PPV statistic.

The above outstanding experimental results of BFO-FMD
on the three datasets fully demonstrate that BFO-FMD not
only performs perfectly on smaller dataset (ScereCR2015
0101), but also plays very well on some relatively larger
datasets (Scere20-150101 and MIPS). Therefore, the pro-
posed BFO-FMD algorithm is a robust algorithm whose
superior performance is not dependent on the underlying
data.

Table 3 illustrates the relative performanceof various algo-
rithms in terms of p values, where the first column gives three
types of p values, the second column lists seven algorithms,
the third to sixth columns present the number of statisti-
cally significant modules located in the corresponding range.
The last column is the proportion of significant modules
(p value <0.01). In this table, we notice that MCODE and
ACC-FMD get higher ratio than other methods. It is mainly
because MCODE obtains the minimum amount of modules,
and ACC-FMD is designed to search high overlapping mod-
ules from the PPI networks, which leads to their high ratios.
As for other five algorithms, there is no major difference on
the ratio, and our BFO-FMD method ranks in the middle. It
is worth noting that most modules detected by various algo-
rithms stand in ranges (1.0e−20, 1.0e−10] and (1.0e−10,
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Fig. 7 Anaphase-promoting module detected by various algorithms: a Benchmark, b BFO-FMD, c ACC-FMD, d COACH, e Jerarca, f MCODE

0.01], while only a few modules fall into the intervals (0,
1.0e−30] and (1.0e−30, 1.0e−20], where BFO-FMD has
obvious advantages comparing with other algorithms except
ACC-FMD. This result illustrates that the proposed BFO-
FMD method is able to detect more modules with very high
statistical significance.

To further investigate the computational results, 10 mod-
ules with low p values and high matching degree mined
by different methods on ScereCR20150101 dataset are pre-
sented in Tables 4, 5, 6, 7, 8, 9, and 10. In these tables, the first
column is a module identifier. The second and third columns
give the number of proteins, and the proteins contained
in each module, respectively. The fourth column provides
the corresponding gold standard protein module. The fifth
column refers to the matching degree measured by the neigh-
borhood affinity score (NA) between a predicted module and
a gold standard module. The last three columns list three
types of p values of predicted modules from the view of
biological process, cellular component, and molecular func-
tion. According to the NA metric in the fifth column, it is
known that many modules detected by the seven methods
match well with the benchmark modules. All the p values in
these tables are very low, which perfectly demonstrates the
modules detected by these computational methods have high
statistical significance from three different GO categories.

To explicitly reveal the results obtained by our BFO-FMD
algorithm, we take the anaphase-promoting module as an
example to explain. Tables 4, 5, 6, 7, 8, 9 and 10 show

that five algorithms BFO-FMD, ACC-FMD, COACH, Jer-
arca, and MCODE have detected the anaphase-promoting
module (the 3rd module in Tables 4, 5, 6, 7, 8, 9, and
10). Moreover, according to the NA statistic, BFO-FMD
obtains the highest matching degree between the predicted
anaphase-promoting module and the standard one among the
five algorithms. Figure 7 illustrates the module structures
for the gold standard anaphase-promoting module and the
detected ones for the five algorithms. Figure 7a shows the
gold standard anaphase module, which contains 16 proteins,
and one of them (ygl116w) is isolated by other proteins in
the same module. The anaphase-promoting module detected
by our BFO-FMD algorithm is given in Fig. 7b. This mod-
ule consists of 14 proteins and succeeds in matching all the
14 proteins, which are more than those of other algorithms,
and only one protein is missing in contrast with the standard
one except the isolated protein (ygl116w). The other four
algorithms ACC-FMD, COACH, Jerarca, and MCODE only
cover 13, 11, 13, 10 proteins in standard anaphase-promoting
module, as shown in Fig. 7c–f, respectively. This example
intuitively demonstrates that the proposed BFO-FMD algo-
rithm is able to more accurately detect functional modules.

In addition, the proposed BFO-FMD algorithm has the
potential to discover some new modules with biological
significance from the statistical point of view. Table 11
lists five new modules with very low p values on the
ScereCR20150101 dataset. These five modules can be
inquired on the Web site, but are not described in the set
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of benchmark modules, and the 1st, 3rd, and 5th modules
are not found by any of other six algorithms. This result sug-
gests that BFO-FMD has more powerful exploratory ability
to detect functional modules from a PPI network and can
help biologists predict some new protein modules to a cer-
tain extent.

In short, the above experimental results and analysis have
justified the effectiveness of the proposed BFO-FMD algo-
rithm. Specifically, BFO-FMD is not only better than some
famous non-swarm intelligence-based algorithms (COACH,
Jerarca, CFinder, and MCODE), but is also superior to
some new developed swarm intelligence-based algorithms
(NACO-FMD and ACC-FMD). It is because that BFO-FMD
has four biological mechanisms (chemotaxis, conjugation,
reproduction, and elimination and dispersal) designed appro-
priately and obtains good ability of balancing global search
and local search.

4 Conclusions

The identification of functional modules in a PPI network is
important for biological knowledge discovery since many
important biological processes in the cell are carried out
through the formation of protein modules. Nowadays, the
computational approaches based on swarm intelligence have
been a kind of effective ways for functional module detec-
tion due to their good robustness performance. In this paper,
a new swarm intelligence algorithm based on bacterial forag-
ing optimization was proposed for detecting protein modules
in aPPI network (called asBFO-FMD).BFO-FMDfirst com-
bines the topology and function information between protein
nodes to construct a candidate solution for each bacterial
individual according to a random-walk behavior. Then, it
accomplishes information exchange and optimizes each can-
didate solution by four biological mechanisms: chemotaxis,
conjugation, reproduction, and elimination and dispersal. At
last, two post-processing operators are performed to refine
the detected result in light of function similarity and topologi-
cal structure. To demonstrate the performance of BFO-FMD,
we have carried out a series of experiments on three common
yeast datasets in terms of various evaluation metrics. The
empirical results illustrate that BFO-FMD achieves promi-
nent Recall, F-measure, and PPV while performing very
well in terms of other metrics, such as Precision, Sensitiv-
ity, Accuracy, and P values. These results indicate that the
proposed BFO-FMD algorithm is able to detect effectively
protein modules and can be considered as a complement to
help biologists to get some novel biological insights.
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