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Abstract Protein–protein interactions (PPIs) are the basis
to interpret biological mechanisms of life activity, and play
vital roles in the execution of various cellular processes. The
development of computer technology provides a new way
for the effective prediction of PPIs and greatly arouses peo-
ple’s interest. The challenge of this task is that PPIs data
is typically represented in high-dimensional and is likely
to contain noise, which will greatly affect the performance
of the classifier. In this paper, we propose a novel feature
weighted rotation forest algorithm (FWRF) to solve this
problem. We calculate the weight of the feature by the χ2

statistical method and remove the low weight value features
according to the selection rate. With this FWRF algorithm,
the proposed method can eliminate the interference of use-
less information and make full use of the useful features to
predict the interactions among proteins. In cross-validation
experiment, our method obtained excellent prediction per-
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formance with the average accuracy, precision, sensitivity,
MCC and AUC of 91.91, 92.51, 91.22, 83.84 and 91.60%
on the H. pylori data set. We compared our method with
other existing methods and the well-known classifiers, such
as SVM and original rotation forest on theH. pylori data set.
In addition, in order to demonstrate the ability of the FWRF
algorithm, we also verified on the Yeast data set. The exper-
imental results show that our method is more effective and
robust in predicting PPIs. As a web server, the source code,
H. pylori data sets and Yeast data sets used in this article are
freely available at http://202.119.201.126:8888/FWRF/.

Keywords Rotation forest · Ensemble learning ·
Bioinformatics · Support vector machine

1 Introduction

Proteins are the most crucial macromolecules of life and
participate in almost all process within the cell, including
signaling cascades, DNA transcription and replication, and
metabolic cycles (Yin et al. 2014). It has been confirmed
that proteins rarely perform their functions independently.
Instead, they cooperate with other macromolecules, and
especially other proteins perform their functions by form-
ing a huge network of protein–protein interactions (PPIs)
(Gavin et al. 2002). Therefore, the study of protein–protein
interactions has been the central issue in system biology
(Theofilatos et al. 2011; Tuncbag et al. 2009; Zhu et al. 2011;
You 2010).

In recent years, a variety of experimental techniques have
been developed for the detection of protein interactions, such
as Yeast two-hybrid screens (Ito et al. 2001; Ho et al. 2002;
Krogan et al. 2006), protein chip (Zhu et al. 2001), mass
spectrometric protein complex identification (Ho et al. 2002).
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These experimental methods revealed many unknown inter-
actions. However, due to the limitations of high false positive
rate, time-consuming, high cost and low coverage, the results
obtained by the experimental method are far from the expec-
tations of the researchers. Therefore, there is an urgent need
to develop reliable computational methods for predicting
protein–protein interactions as a complement of the experi-
mental methods to solve these problems in the post-genomic
era (Jin 2000; Guo et al. 2008; You et al. 2010, 2016; Shen
et al. 2007; Zhu 2015).

At the same time, a number of computational methods
have been proposed for the prediction of protein–protein
interactions (Ji et al. 2014; Zhu et al. 2013a, b; Lin et al.
2013; Jin et al. 2002). These methods can be divided into
the phylogenetic profile method (Pazos and Valencia 2001),
the information of gene neighboring (Ideker et al. 2002),
the interacting proteins coevolution method (Pazos et al.
1997), phylogenetic relationship (Pazos et al. 1997), the lit-
erature mining method (Marcotte et al. 2001), gene fusion
events (Enright et al. 1999), gene co-expression (Ideker et al.
2002) and so on (Zhu et al. 2015). However, the appli-
cation of these methods is limited (Yin et al. 2008; Mao
et al. 2007) because these methods depend on the prior
information of the protein pairs. Therefore, the method of
obtaining information directly from the protein amino acid
sequence has attracted more and more researchers’ interest
(Guo et al. 2008; Shen et al. 2007; Zhu et al. 2015; Bock
and Gough 2003; Martin et al. 2005; Zhang et al. 2012;
Nanni 2005;Nanni and Lumini 2006;Gao et al. 2016; Jin and
Sendhoff 2008). At present, many researchers are engaged
in the development of sequence-based methods to predict
protein interactions. For example, You et al. (2013) devel-
oped the principal component analysis–ensemble extreme
learning machine (PCA–EELM) method uses only pro-
tein sequence information to predict PPIs. This method
yields 87.00% prediction accuracy, 86.15% sensitivity and
87.59% precision when performed on the PPIs data of Sac-
charomyces cerevisiae. Shen et al. (2007) considered the
residues local environments and developed a SVM model
by combining a conjoint triad feature with S-kernel func-
tion of protein pairs to predict PPIs network. This model
has yielded a high prediction accuracy of 83.93% when per-
formed on human PPIs data set.Martin et al. (2005) proposed
a model which is a product of subsequences and an expan-
sion of the signature descriptor from chemical information
to detect PPIs. The accuracy obtained by this model was
80% when using tenfold cross-validation on the Yeast data
sets.

In this paper, we propose a sequence-basedmethod to pre-
dict protein–protein interactions, which based on the feature
weighted rotation forest algorithm (FWRF) (Rodriguez and
Kuncheva 2006; Nanni and Lumini 2009). In particular, we
convert the protein amino acid sequence into the Position-

Specific Scoring Matrix (PSSM) (Gribskov et al. 1987), and
then put the features which extracted by local phase quanti-
zation (LPQ) (Ojansivu and Heikkila 2008) into the feature
weighted rotation forest classifier to predict PPIs. In the
data set, the importance of features is inconsistent, some
features contain more information, some contain less infor-
mation, and even some contain interference information. If
the features containing the interference information can be
eliminated, the classifier will be easier to classify the sam-
ples. Based on this idea,we added the concept ofweight to the
feature and improved the original rotation forest algorithm.
After the feature is assigned a weight, the new algorithm can
remove the features of the low value, namely noise, so the
classifier can obtain more accurate information from the fea-
ture subset. In the experiment, we tested the improved algo-
rithm on different data sets, and compared with other excel-
lent methods. The experimental results show that our feature
weighted rotation forest algorithmdoes improve the accuracy
of the classification and the efficiency of calculation.

2 Materials and methodology

2.1 Data sources

We implement our method on H. pylori data set, which
introduced by Rain et al. (2001). The H. pylori data set
consists of 2916 protein pairs, of which 1458 pairs are
interacting and 1458 pairs are non-interacting. This data set
provides a platform for comparing our method with other
methods, and can be downloaded at http://www.cs.sandia.
gov/~smartin/software.html.The Yeast data were extracted
from S. cerevisiae core subset of database of interacting pro-
teins (DIP) (Xenarios et al. 2002), version DIP_20070219.
After removing the protein pairs with less than 50 residues
and greater than 40% sequence identity, the final Yeast
data set contains 5594 positive samples and 5594 negative
samples.

2.2 Position-Specific Scoring Matrix (PSSM)

Position-Specific Scoring Matrix (PSSM) was produced
from a set of sequences previously aligned by sequence
or structural similarity. It was used to detect distantly
related protein introduced by Gribskov et al. (1987). A
PSSM is a matrix of L × 20, where row represents
the total number of amino acids in a protein and col-
umn represents the 20 naive amino acids. Let PSSM ={
Pi, j : i = 1 . . . L and j = 1 . . . 20

}
and each matrix is rep-

resented as follows:
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PSSM =

⎡

⎢⎢⎢
⎣

P1,1 P1,2 · · · P1,20
P2,1 P2,2 · · · P2,20
...

...
...

...

PL ,1 PL ,2 · · · PL ,20

⎤

⎥⎥⎥
⎦

(1)

where Pi, j in the i row of PSSMmean that the probability of
the ith residue being mutated into type j of 20 native amino
acids during the procession of evolutionary in the protein
from multiple sequence alignments.

In our study, we used the Position-Specific Iterated
BLAST (PSI-BLAST) tool (Altschul et al. 1997) and Swis-
sProt database on a local machine to create PSSM for each
protein sequence. PSI-BLAST is a highly sensitive protein
sequence alignment program, particularly effective in the
discovery of new members of a protein family and simi-
lar protein of distantly related species. In order to obtain
broad and high homologous sequences, we set the value of
e-value is 0.001, the number of iterations is 3 and the value
of other parameters are default. Applications of PSI-BLAST
and SwissProt database can be downloaded at http://blast.
ncbi.nlm.nih.gov/Blast.cgi.

2.3 Local phase quantization (LPQ)

Local phase quantization (LPQ) was originally described in
the article (Ojansivu and Heikkila 2008) for texture descrip-
tion by Ojansivu and Heikkila. The LPQ method is based on
the blur invariance property of the Fourier phase spectrum
(Wang et al. 2015; Li et al. 2011; Li and Olson 2010). The
discrete model for spatially invariant blurring of an origi-
nal image f (x) apparent in an observed image g(x) can be
expressed as a convolution, the formula is as follows:

g(x) = f (x) × h(x) (2)

where x is a vector of coordinates [x, y]T, × indicates
two-dimensional convolutions and h(x) represents the point
spread function (PSF) of the blur. In the Fourier domain, this
is equivalent to

G(u) = F(u) · H(u) (3)

where u represents a vector of coordinates [u, v]T, G(u),
F(u) and H(u) are the discrete Fourier transforms (DFT) of
the blurred image, the original images and the point spread
function (PSF), respectively. Consider only the phase of the
spectrum, the phase relations can be expressed as

� G(u) = � F(u) + � H(u) (4)

If the spread point function h(x) is centrally symmetric, H ∈
{0, π} as the Fourier transform H(u) is always real. So its
phase can only be represented as a two-valued function:

� H(u) =
{
0 if H(u) ≥ 0
π if H(u) < 0

(5)

This means that

� H(u) = � F(u) if H(u) ≥ 0 (6)

In local phase quantization, a short-term Fourier transform
(STFT) computed over a rectangularM-by-Mneighborhoods
Nx at each pixel position of an image f (x) is defined by:

F (u, x) =
∑

y∈Nx

f (x − y) e− j2πyuT = ωT
u fx (7)

where fx is another vector containing all M2 image samples
from Nx , ωu is the basis vector of the two-dimensional DFT
at frequency u.

The local Fourier coefficients are computed at four fre-
quency points: u1 = [a, 0]T, u2 = [0, a]T, u3 = [a, a]T,
and u4 = [a,−a]T, where a is a sufficiently small scalar to
satisfy H (ui ) > 0. So each pixel point can be expressed as
a vector, given by:

Fc
x = [F (u1, x) , F (u2, x) , F (u3, x) , F (u4, x)] ,

Fx = [
Re

{
Fc
x

}
, Im

{
Fc
x

}]T
. (8)

Using a simple scalar quantizer, the resulting vectors are
quantized:

q j (x) =
{
1, if g j (x) ≥ 0
0, otherwise

(9)

where g j (x) is the jth component of Fx . After quantization,
Fx becomes an eight-bit binary number vector, and each com-
ponent is assigned a weight of 2 j . The resulting eight binary
coefficients are represented as integer values between 0 and
255 using binary coding

fLPQ(x) =
7∑

0

q j (x)2
j (10)

From all these values, we obtain a histogram that can be rep-
resented as a 256-dimensional feature vector. In this article,
each PSSMmatrix from theH. pylori data set is converted to
256-dimensional feature vectors by using the LPQ method.

3 Feature weighted rotation forest algorithm

3.1 Original rotation forest classifier

Rotation forest (RF) is a popular ensemble classifier. In order
to generate the training samples of the base classifier, the
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feature set is randomly divided into K subsets. The linear
transformation method is applied in each subset, and retains
all the principal components tomaintain the precision of data.
The rotation formed the training sample of new features to
ensure the diversity of data. Hence the rotation forest can
enhance the accuracy for individual classifier and the diver-
sity in the ensemble at the same time. The framework of RF
is described as follows.

Let X is the training sample set, Y is the corresponding
labels and F is the feature set. Assuming {xi , yi } contains
D training samples, where in xi = (xi1, xi2, . . . , xin) be an
n-dimensional feature vector. Then X is D×n matrix, which
is composed of n observation feature vector composition.
The feature set is randomly divided into K equal subsets
by a suitable factor. Let the number of decision trees is L ,
then the decision trees in the forest can be represented as
T1, T2, . . . , TL . The implementation process of the algorithm
is as follows.

(1) Select the suitable parameter K which is a factor of
n,let F randomly divided into K parts of the disjoint
subsets, each subset contains a number of features is
N = n/k.

(2) From the training dataset X select the corresponding col-
umn of the feature in the subset Ti, j , form a new matrix
Xi, j . Followed by a bootstrap subset of objects extracted
3/4of X constituting a new training set X ′

i, j .
(3) Matrix X ′

i, j is used as the feature transform for produc-
ing the coefficients in a matrix Pi, j , which j th column
coefficient as the characteristic component j th.

(4) The coefficients obtained in the matrix Pi, j are con-
structed a sparse rotation matrix Si , which is expressed
as follows:

Si =

⎡

⎢⎢⎢⎢⎢
⎣

f (1)
i,1 , . . . , f

(N1)
i,1 0 · · · 0

0 f (1)
i,2 , · · · , f

(N2)
i,2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · f (1)
i,k , . . . , f

(Nk )
i,k

⎤

⎥⎥⎥⎥⎥
⎦

(11)

In the prediction period, provided the test sample x , gener-

ated by the classifier Ti of di, j
(
XS f

i

)
to determine x belongs

to class yi . Next, the class of confidence is calculated by
means of the average combination, and the formula is as fol-
lows:

α j (x) = 1

L

L∑

i=1

di, j
(
XS f

i

)
(12)

Then assign the category with the largest α j (x) value to x .

3.2 Improved rotation forest with weighted feature
selection

With the rapid development of technology, we get more
and more features, the feature dimension is also more and
more high. The high-dimensional data contain more infor-
mation and reflect the fact more comprehensive. However,
with the increase in dimensions, redundant information is
also increasing. In view of how to effectively analyze and
integrate information, extract useful information from a large
amount of noise data, combined with feature selection tech-
nology, we improved the rotation forest algorithm. We use
χ2 statistical method to calculate the weight of the features.
A feature F against the class feature is computed using the
following formula:

χ2 =
n∑

i=1

2∑

j=1

(
ui j − vi j

)2

vi, j
(13)

where n is the number of values in feature F , ui j is the count
of the value λi in feature F and belong to class c j , defined
as:

ui j = count
(
F = λi and C = c j

)
(14)

vi, j is the expected value of λi and c j , defined as:

vi, j = count (F = λi ) × count
(
C = c j

)

N
(15)

where count (F = λi ) is the number of samples in the feature
F value is λi , count

(
C = c j

)
is the number of samples in

the class C value is c j , and N is the total number of samples
in the training set.

In order to make full use of the useful information, we
perform the following steps. Firstly, calculate the weight of
each feature by the formula 13; secondly, sorts the features
in descending order according to the weight value; finally,
select new features from the full feature set in accordance
with a given feature selection rate r . After these steps, we
construct a new data set for the algorithm. Using the new data
set can not only effectively eliminate the noise, especially the
high-dimensional data, but also can reduce the computation
time.

4 Results and discussion

4.1 Selection of the number of features

In the experiment, fivefold cross-validation is used to eval-
uate the performance of our method. The whole data set is
randomly split into 5 equal-sized subsets. In order to ensure
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Fig. 1 Influence of feature selection on classifier performance in H.
pylori data set
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Fig. 2 Influence of the value of feature selection rates on time cost in
H. pylori data set

the independence of the data in the experiment, we select
one subset as the test set, and the other four subsets as the
training set. Loop 5 times in this way, such that each subset
is used for testing exactly once. In our method, the number
of features is controlled by the feature selection rate r . Dif-
ferent feature selection rates will lead to different accuracy
and computation time. We take one subset as the test set, and
the rest for the training set to experiment when selecting the
parameters. The range of value r is from 0 to 1. In order to
prevent the loss of too much information, in the experiment
we test the value of r = 0.2, 0.3, . . . , 1.0. Figure 1 plots the
influence of feature selection on classifier performance and
Fig. 2 plots the influence of feature selection on time cost.

Figure 1 shows that the accuracy increases slowly as r
increaseswhen the feature selection rate r is less than 0.3. The
reason is that the number of features increaseswith increasing
r , and more information is provided to the classifier. The
accuracy reaches its peakwhen the rate is 0.4. Thismeans that
the feature set has contained themost useful information. The
accuracy gradually decreases with increasing rates when the
rate is greater than 0.4. This proves that the high-dimensional
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Fig. 3 Accuracy surface obtained of the feature weighted rotation for-
est for optimizing regularization parameters K and L

data are likely to contain noise. It can be seen from the figure
that r = 0.4 is the best setting of this experiment.

Figure 2 shows the influence of feature selection on time
cost. It is obvious from the figure that with the increase in the
feature select rate, namely the increase in the number of fea-
tures, the computation time continues to rise. This indicates
that the dimension of the data on the impact of computing
time is very large.

4.2 Select the parameters of the FWRF classifier

Another problem affecting the performance of our model is
the number of decision trees L and the number of feature sub-
set K in the feature weighted rotation forest. Since a large
number of trees and feature subsets will lead to consider-
able computational cost and will affect the accuracy of the
improved,we need to find themost suitable parameters by the
grid search method. Figure 3 shows the predicted results of
different parameters. We can see that with the increase of L ,
the accuracy rate increases rapidly at the beginning, and then
tends to be gentle. However, there is no significant change in
accuracy as K increased. Considering the time cost and accu-
racy of the algorithm, we finally select the most appropriate
parameters K = 3 and L = 53.

4.3 Assessment of prediction ability

In the experiment, the evaluation criteria are reflected by
the prediction accuracy (Accu.), sensitivity (Sen.), precision
(Prec.), and Matthews correlation coefficient (MCC). The
calculation formulas are listed below:

Accu. = TP + TN

TP + TN + FP + FN
(16)

Sen. = TP

TP + FN
(17)
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Table 1 Fivefold
cross-validation results obtained
by using proposed method on H.
pylori data set

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)

1 90.22 91.10 89.56 80.46 90.97

2 92.45 91.03 93.62 84.94 92.47

3 93.48 95.47 91.64 87.04 91.46

4 91.42 92.96 89.01 82.88 91.46

5 91.95 91.97 92.28 83.90 91.65

Average 91.91 ± 1.21 92.51 ± 1.83 91.22 ± 1.92 83.84 ± 2.44 91.60 ± 0.55

1 - Specificity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
ns

iti
vi

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1th fold
2th fold
3th fold
4th fold
5th fold

0.05 0.1 0.15

0.85

0.9

0.95

Average AUC = 0.9160

Fig. 4 ROC curves performed by proposed method on H. pylori data
set

Prec. = TP

TP + FP
(18)

MCC = TP × TN − FP × FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(19)

where TP, TN, FP, FN represent the number of true positives,
true negatives, false positives and false negatives, respec-
tively. Besides, the receiver operating characteristic (ROC)
curve (Zweig and Campbell 1993) and the area of the ROC
curve (AUC) are employed to visually show the performance
of classifier.

Our prediction results are shown in Table 1. We can see
that the average accuracy, precision, sensitivity, MCC and
AUC of 91.91, 92.51, 91.22, 83.84 and 91.60%, respectively.
The standard deviations of them are 1.21, 1.83, 1.92, 2.44 and

0.55%, respectively. The ROC curves performed onH. pylori
data set was shown in Fig. 4. In this figure, X-ray depicts
false positive rate (FPR) while Y-ray depicts true positive
rate (TPR).

4.4 Comparison with original RF and SVM

To evaluate the performance of our method, we compared
with the original rotation forest classifier and the state-of-
the-art SVM classifier. In the comparison, we use the same
feature extraction method and implement on the same data
set. After optimization of the grid search method, the param-
eters K and L of the original rotation forest are set to 2 and
3, the parameters c and g of the SVM are set to 0.08 and 22.
Table 2 lists the experimental results of the original rotation
forest classifier. From the table we can see that the average
accuracy, precision, sensitivity, MCC, AUC and their stan-
dard deviations of 85.36±1.61, 85.29±2.00, 85.37±3.01,
70.72 ± 3.26 and 85.61 ± 2.67%, respectively. Table 3 lists
the experimental results of the SVMclassifier. From the table
we can see that the average accuracy, precision, sensitivity,
MCC, AUC and their standard deviations of 81.82 ± 2.19,
82.82±4.15, 80.29±1.03, 63.71±4.48 and 88.83±1.94%,
respectively.

From the table it can be seen that the performance of
our FWRF showed significant improvement over the other
two classifiers. The average accuracy is 6.55% higher than
original RF, and 10.09% higher than SVM. This was due
to the fact that there may contain a lot of noise informa-
tion in the feature set, which will affect the accuracy of the
classifier, so the original RF and SVM did not perform well
on this kind of feature set. In addition, the processed fea-

Table 2 Fivefold
cross-validation results obtained
by using the original rotation
forest classifier on H. pylori data
set

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)

1 86.45 85.16 88.89 72.94 88.37

2 86.96 85.62 88.03 73.96 88.48

3 82.85 82.31 81.72 65.62 83.95

4 84.91 85.46 83.68 69.81 82.66

5 85.62 87.92 84.52 71.26 84.58

Average 85.36 ± 1.61 85.29 ± 2.00 85.37 ± 3.01 70.72 ± 3.26 85.61 ± 2.67
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Table 3 Fivefold
cross-validation results obtained
by using SVM classifier on H.
pylori data set

Testing set Accu. (%) Prec. (%) Sen. (%) MCC (%) AUC (%)

1 83.53 86.02 80.81 67.22 89.14

2 78.73 77.78 78.87 57.45 85.86

3 80.96 80.00 80.29 61.86 88.93

4 81.65 82.44 79.86 63.30 88.93

5 84.25 87.85 81.61 68.71 91.30

Average 81.82 ± 2.19 82.82 ± 4.15 80.29 ± 1.03 63.71 ± 4.48 88.83 ± 1.94
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Fig. 5 ROC curves performed by the original rotation forest classifier
on H. pylori data set

1-Specificity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
ns

iti
vi

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average AUC =0.8883

1th fold
2th fold
3th fold
4th fold
5th fold

0.05 0.1 0.15 0.2 0.25
0.65

0.7

0.75

0.8

0.85

Fig. 6 ROC curves performed by the SVM classifier on H. pylori data
set

ture set is likely to be smaller than the original feature set,
which reduces the dimension of the data, so it can reduce
the running time of the classifier and improve efficiency
(Figs. 5, 6).

4.5 Comparison of the proposed method with other
existing methods

Many methods have been proposed for predicting protein
interactions, and good results have been obtained. In this
section, we focused on the H. pylori data set to compare the
FWRFwith other algorithms. Table 4 lists the average predic-
tion results of the other six different methods on theH. pylori
data set. We can see that the accuracy values obtained by
these methods are between 75.8 and 87.50%. Their average
accuracy rate is 82.80, 9.11% lower than ours. The aver-
age precision, sensitivity and MCC values of these methods
are lower than our method, which are 83.79, 81.95, 74.38%,
respectively.

4.6 Performance of the feature weighted rotation forest
on Yeast data set

In order to further evaluate the performance of the feature
weighted rotation forest classifier, we verified it on Yeast
data set. In the experiment, the features of the Yeast data
set are also extracted by the LPQ algorithm. Figure 7 shows
the experimental results for the different selection ratios of
the feature weighted rotation forest classifier. From the fig-
ure we can see that the feature weighted rotation forest

Table 4 Performance
comparison of different methods
on H. pylori data set

Model Acc. (%) Pre. (%) Sen. (%) MCC (%)

Phylogentic bootstrap (Bock and Gough 2003) 75.80 80.20 69.80 N/A

HKNN (Nanni 2005) 84.00 84.00 86.00 N/A

Signature products (Martin et al. 2005) 83.40 85.70 79.90 N/A

Ensemble of HKNN (Nanni and Lumini 2006) 86.60 85.00 86.70 N/A

Boosting (Liu et al. 2013) 79.52 81.69 80.37 70.64

Ensemble ELM (You et al. 2013) 87.50 86.15 88.95 78.13

Our method 91.91 92.51 91.22 85.13
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Fig. 7 Influence of feature selection on classifier performance in Yeast
data set

classifier performs well. The accuracy, precision specificity
and MCC would be increased along with the increasing of
the selection ratio when the selection ratio less than 90%;
the peak is reached when the selection ratio is 90%; and
decreased when the selection ratio more than 90%. This
experiment demonstrates that our improved algorithm is
equally applicable to Yeast data set. In addition, we can
see that the features extracted by the LPQ algorithm in the
Yeast data set contain less noise than in the H. pylori data
set.

5 Conclusion

In this paper, we propose a novel improved rotation forest
algorithmbased onweighted feature selection strategy to pre-
dict the interactions among proteins. The improved algorithm
considers that the high-dimensional data of PPIsmay contain
noise. To solve this problem, we distinguish the importance
of different features by weight, and delete the features with
small weight according to the selection ratio, that is, the noise
features. This strategy can improve the accuracy of the clas-
sifier while reducing the dimension of the data and saving
the execution time. In the experiment, we verify its capa-
bility on H. pylori and Yeast data set, and compare it with
original rotation forest classifier, SVM classifier and other
existing methods. Excellent experimental results show that
our method is effective and efficient. In future research, we
intend to apply the feature weighted rotation forest algorithm
in more areas and look forward to goodperformance.
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