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Abstract Bayesian networks (BNs) are widely used as one
of themost effectivemodels in bioinformatics, artificial intel-
ligence, text analysis, medical diagnosis, etc. Learning the
structure of BNs from data can be viewed as an optimiza-
tion problem and is proved that this problem is NP-hard.
Therefore, heuristic methods can be used as powerful tools
to find high-quality networks. In this paper, an interesting
approach which is based on Breeding Swarm has been used
to learn BNs. Breeding Swarm is a hybrid GA/PSO which
enable us to benefits the strengths of particle swarmoptimiza-
tion with genetic algorithms. In order to assess the proposed
method, several real-world and benchmark applications are
used. Results show that our method is a clear improvement
on genetic algorithm and particle swarm optimization.
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1 Introduction

Nowadays, Bayesian networks (BNs) become a consider-
able probabilistic models in the field of artificial intelligence
and widely applied in many areas such as computational
biology, medical diagnosis, vision recognition, data min-
ing, information retrieval and so on (Ahmad et al. 2012;
Hill 2012; Ji 2011; Li 2011; Murphy and Mian 1999; Yang
et al. 2010; Zou and Conzen 2005). The BN is a graphical
modelwhich is represented as a directed acyclic graph (DAG)
where nodes correspond to variables and arcs denote depen-
dences among variables which encodes the joint probability
distribution. The capability of representing the uncertainty
of real problems, comprehensibility of graphical model, the
strong mathematical bases of formalism, inference the net-
work and calculating the value of unobserved variables based
on observed variables are some of the main advantages of
using BNs (Gámez et al. 2011; Ji 2011).

As the popularity of BNs increased, the building of BNs
has been considered by researchers. The creation of BNs
can be divided into two categories: Structure learning and
parameter learning. The former refers to earning the topology
of network based on the collected data, and the later refers to
calculating the conditional probabilities of a given structure.

The structure learning can be done as a manual task by
an expert but this is so complicated and time-consuming and
moreover sometimes it might be inaccessible. On the other
hand, it has been proved that structure learning is an NP-hard
problem (Chickering 1996). Therefore, the structure learning
based on the available data is increasingly becoming a vital
factor in using BNs.

Generally, there are two main approaches for structural
learning: dependency-based and score-based approaches
(Gámez et al. 2011). The first contains methods which esti-
mate dependencies among variables and the second refers
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to approaches which try to find a network structure that is
most fit with training data. The score-based method can be
seen as optimization problem because there is an evalua-
tion function which gives score to candid structures. The
goal is to finding the structure which maximizes the function
measure (Khanteymoori et al. 2011). Although dependency-
based approaches are relatively simple for implementations,
the assessment of dependencies is complicated andunreliable
when the number of variables is increased (Ji et al. 2013).
Therefore, score-based methods are attracting considerable
interest due to learning structure.

Since this problem is NP-hard, Several authors have
attempted to solve the problem based on heuristic methods
which can be refer to ant colony optimization (Ji 2011), asex-
ual reproduction optimization (ARO) (Khanteymoori et al.
2011), particle swarm optimization (Cowie et al. 2007), arti-
ficial bee colony algorithm (Ji et al. 2013),genetic algorithm
(You 2001; Larrañaga 1996; Wong et al. 1999) and so on
(Alonso-Barba and Puerta 2011; Gámez et al. 2011; Lar-
rañaga 2013; Ziegler 2008).

The aim of this study is to provide a suitable method
for structure learning by using a hybrid GA/PSO algo-
rithm called Breeding Swarm Particle Swarm Optimization
(BSPSO). In this method, a portion of population which is
called breeding rate is reproduced according to crossover
operator in genetic algorithm (Mattew and Terence 2006).
The combination of these algorithms allows to increase the
chance of reproducing particles with higher scores, while the
cost of computations is not changed significantly. Further-
more, by using mutation operator, the diversity of particles
will be saved andwill prevent fromearly convergence. There-
fore, the search strategywill bemore robustness against local
maxima.

This paper is organized as follows: In Sects. 2 and 3, some
preliminaries and basics concepts about BNs and structure
learning are reviewed. In Sect. 4, our method is described in
detail. Results are shown in Sect. 5, and our conclusions are
drawn in the final section.

2 Bayesian network

BNs or causal networks represent probability distribution,
correlations and relations between random variables in real-
world problems. We can suppose BN as a tuple BN(S, θ) in
which S is structure which demonstrates the random vari-
ables and the relations between them by a directed acyclic
graph (DAG). In a DAG, random variables and relations are
nodes and edges, respectively. θ is a set of local parame-
ters which denotes the conditional probability distributions
for the values of each variable according to the structure S.
These measures are saved as a table for each variable which
is called conditional probability table (CPT).

Fig. 1 An example of a simple Bayesian network structure

Figure 1 shows a simple BN with five variables and theirs
CPTs which all variables are binary. The set of variables
contains Cancer, Smoker, Pollution, X-ray and Dyspnea.

The information about the variables and the dependencies
between them can be gained easily from the topology of a
BN.

Suppose a BNwith a set of random variables X1, . . . , Xn .
The immediate predecessors of variable xi are referred to as
its parents, with values parents (xi ). The joint probability
distribution is factored as:

P (X1 = x1, . . . , Xn = xn)

=
n∏

i=1

p(Xi = xi |parents(xi )) (1)

As mentioned earlier, in order to design a BN, two phases
must be accomplished. First, search for suitable structure and
next, compute CPTs of variables based on the found structure
such that the output approximates distribution of the given
set of samples. The both of these phases are important and
are called structure learning and parameter learning, respec-
tively.

Themost popular parameter learningmethod is the expec-
tationmaximization (EM) algorithm (Chickering et al. 1995).
This paper concentrates on the structure learning andpresents
a new approach to find an appropriate BN structure which is
matched with the given dataset.
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Fig. 2 The diagram of the proposed method

3 Structure learning

The structure learning for a BN can be stated as follows: X is
a set of random variables X1, . . . , Xn . Each variable Xi has a
special domain which takes values val(Xi ). Given a training
set with M cases, D = {d[1], . . . , d[M]} where d[i] is an
instance of domain variables val (X1, . . . , Xn). The learning
goal is to find a network structure G that is a good predictor
for the data.

It has now been demonstrated that the number of possible
structures for BNwith n nodes can be given by the recurrence
relation as follows (Robinson 1977):

r (n) =
n∑

i=1

(−1)i+1 (n
i

)
2i(n−i)r (n − i) ∈ n2

o(n)

(2)

The above formula obviously shows that the size of search
space is exponential and it is impossible to use an exhaus-
tive search to find the best structure. As already mentioned,
dependency based and score based are two main structure
learning methods. In this article, we are only interested in
the score-based approach. Also, the reasons that why score-
based approach are more popular than dependency-based
approach have been declared.

Score-based approaches define structure learning as an
optimization problem. In order to find the best structure that
fits with training data, use a scoring criteria and a search algo-
rithm. several scoring criteria have been proposed so far that
can be denoted to Bayesian information criteria (BIC), mini-
mum description length (MDL) score and Bayesian Dirichlet
(BDe) score (Heckerman et al. 1995). Since the search space
is exponential and the search problem is NP-hard, using the
heuristic methods is popular.

Among the heuristic methods, genetic algorithm (GA) has
been widely noticed. However, one of the major drawbacks
to exploiting this algorithm is high computational complex-
ity especially when the number of random variables are
increased. Using PSO can resolve the challenge of computa-
tional complexity, but this method suffers from premature
convergence when diversity of the population is low. In
the proposed method, in order to exploit the advantages of
GA and PSO altogether, a hybrid algorithm called Breeding
Swarms PSO (BSPSO) algorithm is used.

4 Proposed method

The input is a dataset which is a m × n matrix M . m is
the number of records, and n is the number of variables.
The output is a BN with n nodes that is completely fittest
with data. In the first step, some information in matrix
M is modified with preprocessing. Next, through the use
of BS, we were able to find the best BN structure. Fig-
ure 2 shows the diagram of the proposed method. Moreover,
some important steps will be introduced in details as fol-
lows.

4.1 Preprocessing

In the initial stage of the preprocessing, continuous variables
will be discretized. For example, suppose age as a continuous
variable. It can be discretized to less than 20, between 20 and
45 and more than 45. Next, if there is a field with missing
values, the measure ‘U ’ will be added to it and its variable
too. Finally, all the variables have discrete domains without
missing values.

4.2 Breeding Swarms algorithm

Breeding Swarms or GA/PSO is a hybrid algorithm which
has beenproposedbySettles (MattewandTerence2006).This
algorithm combines the updating rules of PSO including par-
ticle velocity and particle position with the operators of GA.
The reproduction between the particles increases the prob-
ability of making more desirable particles in search space.
Since only the portion of population is constructed by GA,
the computational complexity is improved. Moreover, the
diversity of population prevents from the early convergence.
ψ is the only additional parameter that is called breed-
ing rate and determines the portion of combination . Its
measure depends on the problem criteria and is set experi-
mentally. The algorithm is summarized in Fig. 3. Suppose
N is size of the population. The position of (N − 1)ψ
particles is updated based on PSO algorithm and con-
struct (N − 1)ψ particles of next generation. The remains
are made by GA from all the particles of current popula-
tion.
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Fig. 3 The Breeding Swarm PSO algorithm

Fig. 4 The corresponding particle of a simple BN

4.2.1 Particle formation

Suppose there are N random variables. Since each BN struc-
ture is a directed acyclic graph, it can be represented by an
adjacency matrix, therefore, each particle can be considered
as a N × N matrix. Figure 4 is an example and displays the
corresponding particle of a BN.

4.2.2 Initial population

Apopulation is composed of N particles and can be randomly
generated. Each cyclic graph with n nodes can be a candidate
structure for BN.

4.2.3 Selection operator

Binary Tournament selection is used to generate Nψ parti-
cles of the next generation. For selection of each parent, two
particles are randomly selected from thewhole of population.
Then, the particle with better score is selected. By having this

strategy, weak particles have a considerable chance for sur-
vival.

4.2.4 Recombination operator (crossover)

In the proposed method each chromosome is coded in matrix
form. Therefore, single point crossover is adopted with
probability Pc to determine whether the operation will be
performed or not. The operator randomly selects a crossover
point, and the bit strings after that point are swapped between
the two parents.

This recombination may be lead to unjustified offspring
and make cycles in the corresponding graphs. Therefore,
checking the justifiability of the two produced offspring and
correcting them is indispensable.

As it is illustrated in Fig. 5, the cycles in graphs can be
classified in to three groups. Amending the unjustified off-
spring is done according to the type of cycles:

• Cycle with length one: when there is a cycle from one
node to itself. In this case, some entries of adjacency
matrix in the main diagonal are one. Since both of the
parents are justified and the main diagonal of both of
them is zero, after applying the crossover operator, there
is not any cycle with length one in new offspring.

• Cycle with length two: as it is shown in Fig. 5, there is
a bi-directed edge between two nodes. In this case, there
are two entries with measure one which are symmetric
with respect to the main diagonal. In this case, in order
to improve the efficiency of the proposed method, the
score of each edge is computed individually based on the
Bayesian criteria and the edge that has minimum score
against others will be deleted.
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Fig. 5 Type of graph cycles.
(1) length one, (2) length two
and (3) length three and more

Fig. 6 An example of computing the new position of a particle

• Cycle with length three or more: theWarshalls algorithm
with the order O(n3) is used to find cycles with length
more than two. Although this algorithm has been pro-
posed to find the shortest path between two nodes, it can
be used to find the shortest path between one node and
itself. In the proposed method, among the edges which
construct the cycle, the edges with least score will be
deleted.

4.2.5 Mutation operator

This operator randomly inserts or deletes an edge into the
structure (graph) or selects and edge and reverses its direc-
tion. The insertion of new edge may lead to creating cycle in
mutated chromosome. In this case, the inserted edge will be
deleted.

4.2.6 Update the position of particle

This operator computes the new position for each particle by
applying its velocity (V ) to its current position. Each point
in search space is a Directed Acyclic Graph (DAG) and is
represented in matrix form. Hence, it is appropriate that its
velocity is denoted in the form of a matrix n × n which n is
the number of random variables. Let V be a set of velocities
V = {v1, v2, . . . , vm that each vmi j ∈ {0, 1,−1}.m is the size
of population. If vi j = 1, it means an edge is added from
i to j . If vi j = −1, it means the edge between i and j is

deleted, and vi j = 0 means that the edge between i and j is
not changed. vi is computed based on the current velocity,
position of the best particle and best position that the ith
particle has been seen up to now.

The insertion of an edge may lead to a cycle in corre-
sponding graph of particles. In this condition, in order to
decrease the computational complexity, the inserted edgewill
be removed. The Fig. 6 illustrates an example of applying
velocity to the current position of a particle.

The proposed method is summarized in Fig. 7.

5 Experimental results

In order to evaluate the proposed method, several real-world
problems are used and the validity of this method is demon-
strated through computer simulation.

(A) Datasets
In this experiment, seven benchmarks are used which are
described as bellows:

(1) ASIA network: This network has been represented by
Lauritzen and Spiegelhalter (Lauritzen and Spiegel-
halter 1988)which is used as a basic model for
analyzing the performance of structure learning algo-
rithms. This network composed of 8 nodes and 8
edges which is considered as a small network.

(2) Car diagnosis problems: This problemhas been intro-
duced by Norsys (NorsysSoftwareCorp) and is a
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Fig. 7 The pseudo-code of the BSPSO method

simple example of a belief network. The reasonwhy a
car does not move is presumed based on spark plugs,
headlights, main fuse, and so on. 15 nodes as well as
17 edges are used in this BN. Moreover, all nodes of
the network take discrete values. Some of them can
take on three discrete states, and the others can take
on two states. A database of two thousand cases is
utilized to train the BN. The database was generated
from Netica tool.

(3) Child network
This network represents a diagnosis model of heart
diseases for newborn babies which has composed of
20 nodes and 25 edges (Spiegelhalter and Cowell
1992).

(4) Mildew network
This network is designed for determining the amount
of fungicides against mildew of wheat (Jensen and
Jensen 1996)and consists of 35 nodes and 46 edges.

(5) Insurance network
Insurance is a medium network with 27 nodes and

52 edges which has been proposed for estimating the
risks of car insurance(Binder 1997).

(6) ALARM network: A logical alarm reduction mech-
anism (ALARM) is a medical diagnostic system for
patient monitoring. It is a complex belief network
with 37 nodes and 46 edges (Beinlich 1989). As in
the previous example, the database is generated from
Netica tool.

(7) Hailfinder network
The network has been represented for forecasting
stormy weather in Northeastern Colorado (Abram-
son 1996). Hailfinder composed of 56 nodes and 66
edges.
It is be noted that all of the introduced benchmark
networks are available in http://www.bnlearn.com/
bnrepository/. The goal of the structure learning for
BN is to obtain the structures which are close to the
desired networks.

(B) Evaluation criteria
Quantitative and Qualitative criteria are two main stan-
dards which are used to analyze the performance of the
output results. The former refers to Bayesian Dirchlet
metric which has been used in K2 algorithm (Cheng
et al. 1997; Cowell 1998) and its score is between 0 and
−∞. The later compares the output with desired struc-
ture and is based on the differences evaluates the output
structure. Structure learning factor (SLF) and topology
learning factor (TLF) (Colace et al. 2010) are two popu-
lar qualitative criteria which are defined as follows:

{
SLF = TC

TE
TLF = TC+IE

TE
(3)

In the above formula, TC is the number of edgeswhich are
correctly determined, TE is the number of edges in target
graph and IE is the number of edges which determined
correctly but with wrong direction.

(C) Simulation results
In order to set used parameters optimally in proposed
method, several experiments are done based on the seven
available databases described in Table 1.

• Breeding rate:
In this experiment, the goal is find the optimal breed-
ing rate for each problem. For this purpose, all other
parameters are fixed. In order to evaluate performance
of the algorithm, the Bayesian Dirichlet metric which
mentioned previously is used. The measures of bellow
table are according to the average of 10 times running
for each problem.
As it is shown in Fig. 8, the quality of scores when
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Table 1 The default parameters in experiments

Standard Bayesian
network

Size of
network

Size of
population

Number of
records

Asia 8 20 5000

Car 15 20 10,000

Child 20 15 1000

Insurance 27 15 1000

Mildew 35 10 1000

Alarm 37 10 3000

Hailfinder 56 10 10,000

the breeding rate is located in range [0.1, 0.5] is better
than second part, i.e. [0.5, 0.9]. Therefore, it can be said
that when GA is dominated to PSO, the performance of
method will be decreased. On the other hand, when the
breeding rate is less than 0.3, the performance has been
decreased that shows that the best range for breeding rate
is [0.3, 0.5]. The experimental results in Table 2 demon-
strate that the algorithm has different behavior against
other databases and the performance is more suitable
when the breeding rate is greater than 0.5. The experi-
ment reveals that the number of variables in databases has
direct impact such that when the BN is small, the diver-
sity of the population respect to its size is suitable but
when the size of BN is increased, it is necessary to have
more diversity in population and search space is explored
more accurately. The experimental results show that the
range [0.6, 0.8] is suitable in Alarm and Car problems.

• Size of the population
The other parameter which should optimally set is the
size of population. For this purpose, the breeding rate is
set based on the results of pervious experiment. In this
test, the size of population is changed from 5 to 40 and
in each phase, 5 particles are inserted to the population.
The algorithm is run 10 times and the average of gained
scores is computed.

Table 2 Experimental results of breeding rate setting in three test
Bayesian networks

Breeding rate (�) The average of structure scores

Asia Car Alarm

0.1 −2376.40 −5336.3 −10,389.2

0.2 −2376.29 −5334.3 −10,321.4

0.3 −2376.02 −5328.8 −10,258.4

0.4 −2375.86 −5326.6 −10,273.0

0.5 −2375.98 −5316.6 −10,182.2

0.6 −2376.40 −5312.5 −10,131.9

0.7 −2376.58 −5312.5 −10,103.7

0.8 −2376.68 −5316.7 −10,118.2

0.9 −2377.08 −5315.4 −10,111.9

The results are listed in Table 3. As it is shown, in Car
and Asia problem, when the size of population is 20,
the performance is suitable. But in Alarm network, with
increasing the size of population, the resulted scores are
improved. However, the growth of population leads to the
more computational complexities. Therefore, it is appro-
priate that the size is determined based on the available
resources.

• Performance evaluation
For further assessment, the proposed method is run 30
times with the optimal parameters.
The results are depicted in Figs. 9, 10 and 11 for Asia,
Car and Alarm networks, respectively.

The formulas 4–7 are used to compare the results with the
target networks.

Total number of TC edges

Total number of edges
(4)

Total number of IE edges

Total number of edges
(5)

Fig. 8 The diagram of breeding
rate for ASIA Bayesian network
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Table 3 Experimental results of population size setting in three test
Bayesian networks

Population size (N ) The average of structure scores

Asia Car Alarm

5 −2383.67 −5352.12 −10,298.6

10 −2378.28 −5332.56 −10,231.9

15 −2376.87 −5312.63 −10,183.6

20 −2375.40 −5312.55 −10,202.1

25 −2375.86 −5309.71 −10,161.5

30 −2375.42 −5307.30 −10,124.0

35 −2375.66 −5310.16 −10,087.8

40 −2375.57 −5309.88 −10,077.2

Total number of ME edges

Total number of edges
(6)

Total number of EE edges

Total number of edges
(7)

In the above relations, TC is the number of edges correctly
added between the same nodes as those in target network.
ME is the number of missed edges against target network. IE
is the number of edges that have been determined correctly
but are reverse and EE is the number of edges which are
wrongly added.

To assess more accurately, the proposed method is run for
each network 30 time individually and the average of above
relations are listed in Table 4.

These tests highlighted that the resulting networks are
close to the target networks and can conclude that the pro-
posed method has suitable performance.

• Comparison with other methods
The proposed method has been compared with totally
thirteen well-known methods. It has been tried to select
the methods which are applicable and cover all dif-
ferent classes for Bayesian structure learning based on

Fig. 9 Analysis the efficiency of the proposed method for ASIA Bayesian network

Fig. 10 Analysis the efficiency of the proposed method for Car Bayesian network
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Fig. 11 Analysis the efficiency
of the proposed method for
Alarm Bayesian network

Table 4 The average of correct, missed, reverse and wrong edges over
30 times executions

Standard Bayesian network TC% IE% ME% EE%

Asia 80 20 0 0

Car 60 18 6 15

Child 57 8 5 30

Mildew 37 19 4 40

Insurance 44 12 2 42

Alarm 52 15 3 30

Hailfinder 50 2 5 43

data. These methods are REST (Cowie et al. 2007),
CONAR (Cowie et al. 2007), CGA (Larrañaga 1996),
SGA (You2001), FGS (Chickering 2002), FCI (Colombo
and Maathuis 2014), PC (Spirtes et al. 2000), MMHC
(Tsamardinos et al. 2006), TPDA (Cheng et al. 1997),

SCA (Friedman et al. 1999), Minimum spanning tree
(MST) (BayesiaLab 6.0.2), EQ (Munteanu and Bendou
2001)and Taboo (BayesiaLab 6.0.2).
Three evaluationmetricswhich are structure learning fac-
tor (SLF), topology learning factor (TLF) and graph error
criteria have been used inwhich the first twometrics have
been declared in relation 3.
Furthermore, graph error is the number of all errors such
as reversing, missing and extra edges.
As mentioned above, among the comparing methods,
REST and CONAR are based on the particle swarm opti-
mization and CGA and SGA use the genetic algorithm.
Since the proposedmethod has a hybrid strategy combin-
ing GA and PSO, for more assessment, the comparison
of these four methods has been represented individually.
The diagram in Fig. 12 shows the results for Asia, Car
diagnosis and Alarm networks. Because of the stochastic
behaviors of GA and PSO, the evaluating metrics have

Fig. 12 Comparison the efficiency of the proposed method with REST and CONAR methods
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Fig. 13 Comparison the
normalized graph errors of our
method with CGA and SGA
methods

Table 5 Comparison of SLF measure among the proposed method and other nine algorithms on seven datasets

FGS FCI PC MMHC TPDA SCA MST EQ Taboo BSPSO

Asia 0.500 0.500 0.500 0.375 0.125 0.125 0.200 0.700 0.700 0.800

Car 0.529 0.176 0.183 0.059 0.059 0.471 0.294 0.647 0.647 0.605

Child 0.120 0.240 0.080 0.400 0.080 0.320 0.560 0.680 0.680 0.800

Alarm 0.804 0.217 0.565 0.652 0.629 0.435 0.261 0.674 0.717 0.956

Mildew 0.282 0.043 0.522 0.130 0.044 0.423 0.130 0.217 0.217 0.609

Insurance 0.462 0.211 0.115 0.327 0.135 0.192 0.250 0.500 0.423 0.769

Hailfinder 0.655 0.112 0.046 0.530 0.030 0.303 0.363 0.803 0.803 0.765

been calculated based on average over 30 runs.
The results of SLFs and TLFs show that performance
of the proposed method is higher than the other two
methods. Also, in Alarm Bayesian network which is a
challenging problem, the results of presented method
are acceptable. This result has further strengthened
our hypothesis that the combination of GA with PSO
increases the chance of gaining optimal solution and pre-
vents from early convergence to local optima.

In order to compare the proposed method with GA-based
approaches (CGA and SGA), graph error criteria is used.

The diagram of comparing normalized graph errors of GA
based and the proposed method are represented in Fig. 13.

The first three datasets which are related to ASIA network
include 2000, 3000 and 5000 records, respectively. The sec-
ond group of datasets, i.e., the fourth to sixth are related to
Alarm network and include 3000, 5000 and 10,000 records,
respectively. As expected, this experiment demonstrates that
the graph errors of the proposed method are less than GA-
based methods.

Next, the other nine methods have been compared accord-
ing to the pervious assessment metrics and the results have
been demonstrated separately in Tables 5, 6 and 7. In order
to have a complete report, seven datasets are generated from
the introduced benchmark networks. PC, SCA, MMHC and

TPDA has been run by using Causal Explorer system (Stat-
nikov 2010). For FCI and FGS algorithms TETRAD project
(Scheines 1998) has been used. Finally, BayesiaLab software
(BayesiaLab 6.0.2) has been used for running Taboo, Min-
imum Spanning Tree and EQ methods. It is be noted that
parameters of all the algorithms have been set based on their
default values. In each row of Tables, the best value for each
metric is shown in bold. Finally, we have reported the best
results of proposed method over 30 runs.

SLF and TLF measures in Tables 5 and 6 demonstrate
that the proposed method almost outperforms the other
approaches and achieves the highest SLF on five datasets
(asia, child, alarm, mildew and insurance) and obtains the
highest TLF measures on five datasets (asia, car, child,
mildew and insurance).

However, there are no major differences among BSPSO
method and other approaches in other cases.

By analyzing the graph error measures in Table 7, it can be
obtained that EQ and Taboo have smaller graph error mea-
sures than the other approaches in most cases. Maybe the
main reasons for obtaining their efficient performance are
that thefirst switches fromgreedy strategy toTaboo for avoid-
ing from local minima and the second reduces the search
space by searching for the equivalence classes of Bayesian
networks. BSPSO achieves the best graph error score on four
datasets (Asia, Car, Alarm and Hailfinder). Also its results
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Table 6 Comparison of TLF
measure among the proposed
method and other nine
algorithms on seven datasets

FGS FCI PC MMHC TPDA SCA MST EQ Taboo BSPSO

Asia 0.500 0.625 0.500 0.625 0.375 0.500 0.700 0.800 0.800 1

Car 0.529 0.294 0.235 0.059 0.118 0.588 0.647 0.647 0.647 0.772

Child 0.120 0.280 0.640 0.560 0.480 0.56 0.720 0.840 0.840 0.920

Alarm 0.891 0.217 0.565 1 0.629 0.674 0.674 0.891 0.891 0.956

Mildew 0.369 0.043 0.826 0.457 0.044 0.478 0.413 0.413 0.413 0.935

Insurance 0.558 0.211 0.558 0.557 0.519 0.346 0.442 0.615 0.577 0.962

Hailfinder 0.697 0.136 0.121 0.561 0.121 0.409 0.712 0.848 0.833 0.833

Table 7 Comparison of graph
error among the proposed
method and other nine
algorithms on seven datasets

FGS FCI PC MMHC TPDA SCA MST EQ Taboo BSPSO

Asia 5 7 8 11 24 19 12 6 6 2

Car 8 19 17 18 35 35 8 3 3 9

Child 22 22 25 32 39 40 38 23 22 15

Alarm 19 36 60 50 60 65 38 12 9 2

Mildew 23 46 53 86 66 61 44 40 40 25

Insurance 39 42 58 64 61 79 12 9 9 18

Hailfinder 47 85 96 77 90 109 50 18 20 18

are affordable in other cases. Some methods such as PC,
MMHC and SCA have poor outcomes. Maybe setting their
parameters more accurately for more complex networks and
increasing the number of samples in datasets improve their
performances.

6 Conclusion

In this paper, Breeding SwarmPSO (BSPSO) algorithm as an
efficient swarm intelligence-based approach has been used to
solve the BN structure learning problem. BSPSO combines
PSO and GA which provides a synergy between their capa-
bilities and help to search more effectively the solution space
and avoid from early convergence.

In order to set some parameters such as breeding rate,
the method is run several times with different conditions. So
as to assess the performance of the proposed method, seven
datasets have been generated based on seven real-world net-
works. Several experiments have been done to evaluate the
performance of the proposed method. Moreover, it has been
compared with thirteen representative algorithms which four
of them are GA based and PSO based, respectively. The
experimental results demonstrate that BSPSO completely
outperforms the four population-based approaches and also
has promising performance against the other nine methods
in finding the desirable networks.

Future work will concentrate on more complex problems
in learning BNs, e.g., hidden variables and multi-relational
data.
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