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Abstract In this paper, a hybrid optimization technique
based on particle swarmoptimization (PSO) and artificial bee
colony (ABC) algorithm is presented for the optimal design
of infinite impulse response (IIR) filter with low quantization
effect. In this method, different variants of PSO have been
exhaustively tested, and the time varying coefficients-PSO
(TVC-PSO) is used to formulate a new hybrid technique for
better exploitation and exploration, which is further modi-
fied by sorting and replacement mechanism of Scout Bee
from ABC algorithm. For designing IIR filter, an objec-
tive function is constructed that satisfies the absolute error
including peak ripples in passband and stopband regions in
frequency domain, while stability of designed filter is con-
firmed by exploiting the lattice form structure during iterative
computation that also reduces computation complexity. Sev-
eral attributes such as passband error (ep), stopband error
(es), and stopband attenuation (As) are used to measure the
performance of proposed algorithm. The simulation results
presented in this paper evidence that this technique can be
effectively used for designing digital IIR filter with higher
filter taps, and low quantization effect for fixed number of
bits.
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1 Introduction

In recent decades, digital signal processing (DSP) has
gained considerable attention due to its wide applications
in numerous engineering fields of one-dimensional (1-D)
and multidimensional signals. Typical applications include
biomedical signal processing, adaptive filtering, harmonic
estimation, satellite image processing, communication net-
work, and power system (Kumar et al. 2012; Ahirwal et al.
2014a, b; Bhandari et al. 2015a). Digital filters are the fre-
quency selective elements extensively used in various signal
processing applications due to their reconfigurability and
simplified design. In addition, digital filters have a sharper
transient response, better stopband attenuation as compared
to analog filters (Nongpiur et al. 2013). There are several
applications such as system identification, adaptive filter-
ing, biomedical signal processing (Hartmann et al. 2014)
etc, where digital IIR filter is widely exploited. All such
applications rely on efficient design of IIR filter, which
can be designed either using a conventional method or by
computer-based method. In early stage of research, conven-
tional techniques based on analog filter designwere exploited
for the design of IIR filter due to their simplified design;
however, they suffer from approximation error, quantiza-
tion error due to truncation with a finite bit, poor efficiency,
and the requirement of higher order of filter taps for pre-
scribed behavior (Tang et al. 1998; Lang 2000). Therefore, a
computer-based method using gradient-based optimization
was presented in Kobayashi and Imai (1990), and subse-
quently, several algorithms were developed to explore the
solution by either minimizing or maximizing the objective
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function formulated using different filter design objectives
(Lang 2000; Kumar et al. 2010, 2013; Nongpiur et al. 2013).
However, the gradient-based techniques are suitable for prob-
lem having unimodal surface. Thus, these techniques are not
suitable for the design of IIR filter as its error surface is mul-
timode.

A new technique using genetic algorithm (GA) was
presented for the efficient design of IIR filter for system
identification, and this was further improved in (Weidong
and Fan; Etter et al. 1982). But, the limitation observed in all
such techniques was dependence on initial population. If the
diversity mechanism is not executed properly, GA converges
into local minima/maxima, and high variation in the output
parameters for each trial of execution is seen. Therefore, par-
ticle swarm optimization (PSO) inspired by fish schooling
and bird flocking was used for designing IIR filters due to
its fast convergence rate and better optimal solution as com-
pared to GA (Krusienski and Jenkins 2003; Saha et al. 2011)
and was further modified using different variants of PSO in
(Bansal et al. 2011; Ahirwal et al. 2013). However, problem
with PSO is still of getting trapped in local minima, and PSO
is not immune to handle higher dimensional problems, which
is order of filter in case of filter design.

Recently, artificial bee colony (ABC) algorithm inspired
by intellectual scavenging conduct of honey bee swarm has
emerged as a robust optimization for multimodal and uni-
modal error functions. Literature reviews reflects that this
technique has been used for solvingmany complex engineer-
ing problems such as adaptive filtering (Ahirwal et al. 2014a),
satellite image segmentation (Bhandari et al. 2015b), multi-
rate systemdesign (Kuldeep et al. 2015a, b).Karaboga (2009)
have used ABC techniques for designing digital IIR filter
using system identification, and this was further improved in
Agrawal et al. (2015a). But, somehinders have been observed
in ABC technique similar to PSO. As ABC technique adopts
probabilistic mechanism for sorting best solution from the
population and hence requires too many numbers of iterative
trials and execution as compared to PSO. In conventional
PSO, convergence is fast due to comparatively less func-
tion evaluation; however, it suffers to achieve global minima
in large-scale optimization problems. To resolve this issue,
an improved PSO based on scout mechanism of ABC algo-
rithm was proposed, and used for designing filter bank (Rafi
et al. 2013). Subsequently, several researchers have proposed
improved PSO based on hybridization with other optimiza-
tion techniques. Gong et al. (2010) and Zhang et al. (2014)
have introduced a new hybrid PSO technique by govern-
ing mutation operation of DE on search space (particles) of
improved bare-bones PSO (control parameter free) for power
system optimization. The GA was also merged to develop
another Hybrid PSO for determining design parameters for
a higher-order sliding model controller (Cao et al. 2016). A
new hybrid technique was also presented based on PSO and

DE with binary search algorithm for designing optimal IIR
filter (Sidhu et al. 2016). Thus, literature review on hybrid
techniques for designing digital IIR filters evidences that sev-
eral hybrid techniques discussed above, have been proposed.
In these algorithms, complexity was quite high as both local
and global search were conducted using two different opti-
mization techniques. It is also evident that extensivework has
been done toward design and development of IIR filter using
various swarm-based techniques. However, there is no tech-
nique available in literature, which is applicable for higher
filter taps, and has low quantization affect. Therefore, in this
paper, a new hybrid technique is proposed with better explo-
ration and exploitation abilities for designing improved IIR
filter with simple stability constraint. This technique is also
applicable for designing higher order filter with less quanti-
zation and truncation errors.

In above context, therefore, this paper presents an improved
hybrid method based on ABC and PSO with time varying
coefficients for solving nonlinear optimization constructed
using the prescribed ripple in passband and stopband region.
The presented technique gives a more stable design with less
quantization effect.

2 Overview of swarm-based techniques

Swarm-based techniques are the subset of evolutionary com-
putation and usually counted in artificial computation. The
widely recognized algorithms are as follows.

2.1 Particle swarm optimization (PSO)

PSO algorithm was developed by inspiring from phenomena
of communication behavior of birds, fish and insects, and suc-
cessfully applied in optimal design of digital filter (Kennedy
and Eberhart 1995; Sheng and Bing 2010; Shao et al. 2015;
Sharma et al. 2016). In PSO technique, the optimal solu-
tion is obtained by following a random path governed by
two variables: ‘Pbest’ (local best component), which is the
solution corresponding to current best solution of objective
function and ‘Gbest’ (global best component) which is the
another solution corresponding to final best solution achieved
in entire search. Infirst stage, initializingof populationmatrix
of particles/swarm is performed. Each set of particle vector
contains a possible solution of the given problem. In sec-
ond stage, this swarm matrix is updated using (Kennedy and
Eberhart 1995; Bansal et al. 2011):

v[i+1]
n = χ

(
w · v[i]

n + C1 · rand1 · (Pbest[i]n − pop[i]
n )

+C2 · rand2 · (Gbest[i] − pop[i]
n )

)
(1)

In above Eq. (1), vn represents the velocity matrix, whose
dimensionality is same as of the population/swarmmatrix,w
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is the inertia weight that controls the search space by putting
restriction on particles, χ is the constrained factor and i th
is the current iteration cycle. C1 and C2 are the cognitive
and social scaling parameters; rand1 and rand2 is the ran-
dom number vector. The velocity associated with particles of
swarm has to be in limit of certain range., now the population
matrix is updated as (Kennedy and Eberhart 1995):

pop[i+1]
n = pop[i]

n + v[i+1]
n (2)

In the end, greedy based selection procedure is conducted
for sorting and updating of Pbest and Gbest. PSO has been
formulated in CAD program by following the pseudocode
explained in Ahirwal et al. (2013).

2.2 Artificial bee colony (ABC)

Artificial bee colony (ABC) algorithm is a global, meta-
heuristic search and optimization method inspired by intel-
ligent foraging behavior of honey bees (Karaboga and
Basturk 2007a; Karaboga 2010). This method consists three
segments: employed, onlooker, and scout bees with food
sources. In ABC, problem formulation for optimization is
constructed by searching the best parameter vector from pop-
ulation entitled as ‘Food’, which will minimize the objective
function. In the first stage, search space is formed by ini-
tializing food matrix, and each row represents set of values
(solution). Now, the employed bee phase starts with mod-
ification of search space, followed by evolution of fitness,
and sorting of solution with best fitness value is performed.
The second stage is onlooker bee phase, in which a solu-
tion is searched among the food particle left after employed
bee phase based on certain parameter selection. During these
phases, if a new solution has not been improved, then counter
associated with each solution is incremented by one. In third
phase (also known as scout bee phase), counter value is
scanned, and if any of the counter value is found equal
to permissible limit, then that corresponding solution (food
particle) is initialized with a new value. The detailed analy-
sis on ABC algorithm along with pseudocode can be found
in many literature (Karaboga and Basturk 2007a; Karaboga
2010; Ahirwal et al. 2013).

3 Proposed hybrid technique

From literature review, it is evident that several attempts have
been made to improve performance of conventional PSO for
various applications. Rafi et al. (2013) have proposed the
concept of hybridization of two optimization techniques for
exploring the optimal solution. Originally, Rafi et al. (2013)
have developed a hybrid technique for designing multirate
filter banks based on PSO and ABC algorithms. In this tech-

nique, mechanism for updating population, and sorting of
the best solution is governed by PSO, followed by replace-
mentmechanism for unimproved solution ofABCalgorithm.
Here, after updating the velocity matrix, population matrixes
are updated, and after executionof each steps, examinationon
velocity particles, and position matrix is carried out. If these
values exceed the limit, they are brought back within the
limits. After completion of evaluation of objective function
using updated population matrix, quality of each solution is
checked. This mechanism has been adopted from ABC algo-
rithm in which concept of three bees such as employed bee,
onlooker bee, and scout bee are used (Karaboga and Basturk
2007b; Karaboga 2010). During food search, if the employed
bee could not succeed in an exploration of food source with
improved quality in specified number of prescribed trails,
known as the limit then it leaves the current food source and
converts into a scout. Similarly, in hybrid PSO, if any vector
whose solution is not improved, then its value is replaced
by till known global best solution (Gbest) and the veloc-
ity vector corresponding to unimproved solution is replaced
by the improved velocity recorded for Gbest In this way,
swarm is updated in direction of an optimal solution that
confirms the optimal point exploration, and resists the trap-
ping in local minima. The proposed concept is a joint venture
of two distinguishes robust meta-heuristic techniques, and
thus, named as hybrid PSO. Later on, several researchers
have developed improved hybrid techniques using different
optimization techniques such GA and DE (Gong et al. 2010;
Zhang et al. 2014).

Literature review on PSO technique evidences that sev-
eral variant of conventional PSO such as constant weight
inertia (CWI)-PSO, linearly decay inertia-PSO (LDI-PSO),
dynamic inertia-PSO(DI-PSO) and timevarying coefficients-
PSO (TVC-PSO) have been proposed for different applica-
tions. A detailed discussion on these variants are given in
Ahirwal et al. (2013) and the references therein. Therefore,
in this work, a comparative study of performance of different
variants of PSO, hybridizing with ABC algorithm is carried
out. Based on performance, an improved hybrid technique
is proposed using the time varying coefficients-PSO (TVC-
PSO) and ABC algorithm for designing digital IIR filters.
Following step are executed during the course of proposed
hybrid PSO method, defined as:

Step 1: The initial parameters are defined such as: desired
solution value (D), dimension of solution (N), search
space size (M).
Step 2: The search space (particles) matrix is formulated
by assigning a uniformly distributed random number in
the range of lower limit (X l) andupper limit (Xu), defined
as:

pop[i=0]
n = X l + (Xu − X l) · randn [0, 1] (3)
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where n is the index of search space vector, ranging from
1 toM.
Step 3: Then, velocity matrix (v) associated with parti-
cles is formed within lower velocity limit (Vl) and upper
velocity limit (Vu) as:

v[i=0]
n = Vl + (Vu − Vl) · randn [0, 1] (4)

Step 4: Each solution of search space (pop) vector is used
for evaluation of fitness function, and the solution with
best fitness function values is considered asGbest, while
the initially formed search space is considered as Pbest.
Step 5: Now, algorithm enters into iterative computation
stage ranging as i = 1 to imax Firstly, inertia weight (w) or
coefficients (C1,C2) are computed for suitable variant,
then v is updated using Eq. (1), and at last, popis updated
using Eq. (2).
Step 6: Then, this updated pop is exploited for evaluation
of fitness function. If newly generated solution vectors
have gained better fitness value over previous vectors
then, old solution in Pbest will be replaced with new one,
and associated velocity is recorded correspondingly; else
counter trail is increased by one.
Step 7: Now check whether current fitness value of any
Pbest solution vector is better than current Gbes t value
or not. If yes, then, that Pbest solution will replace the
current Gbest, and corresponding velocity is recorded as
global best velocity (Best vel), otherwise old Gbest is
kept unchanged.
Step 8: Then, counter value corresponding to each indi-
vidual solution vector of pop is checked. If it is equal to
limit, then such solution is replaced by Gbest and v with
Best vel.
Step 9: Now, check whether fitness values achieve ‘Tol’
(tolerable fitness value) or iteration cycles are completed
or not, if yes, then Gbest holds the optimal solution, oth-
erwise, go back to step 5 and follow the next steps.

A flowchart for the proposed method is depicted in Fig. 1.
The proposed hybrid algorithm is very useful for non-convex
and non-differentiable design problem of IIR filter with
acceptable fidelity parameters using finest swarm size, while
the complexity remains same as for conventional PSO.

4 Design of IIR filter using proposed improved
hybrid technique

Digital IIR filter can be designed using transformation
method, but it suffers from inefficiency and quantiza-
tion effect. Therefore, a new state of art has been prac-
ticed in which modern meta-heuristic techniques have been
employed. In the design procedure using these techniques,

the coefficients of required filter is searched according to
required performance. IIR filter is characterized by a lin-
ear constant difference equation, defined as (Proakis and
Manolakis 2006; Saha et al. 2013):

K∑
i=0

bi y [n − i] =
L∑
j=0

a j x [n − j] (5)

where y(n) is the output sequence when excited by the input
sequence of x(n), a j and bi are the coefficients that decide
the nature of response. From Eq. (5), the output response
can also be stated in frequency domain using z transform as
(Proakis and Manolakis 2006):

Y (z)
[
1 + b1z

−1 + b2z
−2 + · · · + bK z

−K
]

= X (z)
[
a0 + a1z

−1 + a2z
−2 + · · · + aL z

−L
]
,

where b0 = 1 (6)

Y (z)

X (z)
= H (z) = a0 + a1z−1 + a2z−2 + · · · + aL z−L

1 + b1z−1 + b2z−2 + · · · + bK z−K
(7)

Hence, Eq. (7) characterizes the frequency response of
IIR filter, and governing parameters are the coefficients of
denominator and numerator polynomials.

4.1 Problem formulation

In this paper, an efficient design of optimal IIR filters is car-
ried out using ABC technique, variants of PSO, and Hybrid
methods, in which coefficients of IIR filter are successively
explored until the error between outputs of proposed filter
and desired filter is minimized. The error function, which
is absolute error with ripple has been adopted as an objec-
tive function, computed in frequency domain andminimized,
given as (Saha et al. 2014):

J =
[∑

ω∈ωp
abs

(|H(ω)| − D (ω) − ap
)

+
∑

ω∈ωs
abs (|H(ω)| − D (ω) − as)

]
(8)

where |H(ω)| is themagnitude response of designed filter, ap
and as are the permissible ripples in passband and stopband,
respectively. D(ω) is the desired frequency response, defined
as:

D (ω) =
{
1, ω ∈ passband
0, ω ∈ stopband,

(9)

4.2 Stability constraint

IIR filters are potential toward instability and thus require
higher attention during their process of design. Stability of
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Start

Specification of filter taps, edge frequencies ωp, ωs,
passband (δp)and stopband (δs) ripples

Declaration of swarm/ search space size, limit,
rang of search space and velocity.

Initialization of search space and velocity with
random position and velocity vectors.

Evaluation of objective function for each particle of
search space and assigning of Pbest

Sorting of Gbest from Pbest upon greedy based
search.

Current objective
value < Pbest objective

value

Evaluation of new velocities and positions using Eq.
(1) and Eq. (2) for all particles of search space

Evaluation of objective function for new positions

Increase the trial count

Replace particle velocity and
position with till known

velocity of particle of Gbest

Iteration== maxit
Or

Tol<=ε

Pbest = present position
Trials==limit

Current objective
value of Pbest < Gbest

objective value
Gbest = present
Pbest position

No

Yes

No

Yes

No

Gbest contains the optimal possible solution

Stop

Fig. 1 A flowchart for the proposed Hybrid method (Rafi et al. 2013)

IIR filters are confirmed by ensuring the location of poles
(roots of denominator polynomial), which should be lied in
unity circle of z-plane. In early stage of research, researchers
have utilized the concept of breaking higher-order trans-
fer function into first and second order functions, in which
denominator coefficients values are restricted in certain range

for stability (Tang et al. 1998; Yu and Xinjie 2007). This
method was suitable for lower-order filter design and was not
computationally efficient. Moreover, the implemented filter
in direct form was not able to achieve better optimal point.
In this work, a different method is used in which instead of
denominator polynomial in direct form, equivalent values in
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lattice form are substituted as shown in Eq. (10) (Sheng and
Bing 2010):

pop[i]
n,m

= [
an,0 an,1 an,2 · · · an,L : gn,L+1 gn,L+2 · · · gn,L+K

][i]
(10)

where n corresponds to index of a solution vector from pop-
ulation matrix, m corresponds to a solution vector element.
Each solution consists of D elements (D = 2order+1). The
elementan,m are the numerator coefficients,whereas gn,m are
the lattice equivalents of denominator coefficients. The use of
lattice coefficients is adopted because it makes easy to handle
the stability as their values should be in limit of −1 to 1 for
stable design. The values of lattice coefficients are converted
back into direct formand substituted inEq. (7). The conversa-
tion is computed by recursive computation of the following
set of equations for each lattice coefficient (Agrawal et al.
2015b):

Um(z) = Um−1 + gm · z−1 · Vm−1,

m = 1, 2, . . . , N − 1. where U0(z) = V0 = 1

(11)

Vm(z) = z−m ·U (z−1) (12)

Now, the polynomial coefficients of Eq. (11) are the equiva-
lent direct form coefficients:

[
gi,L+1 gi,L+2 · · · gi,L+K

] → [
1 bi,1 · · · bi,K

]
(13)

Upon substitution in Eq. (7), N point frequency sample
response |H(ω)| is calculated and used for computation of
objective function using Eq. (8).

4.3 Designing of IIR filter using proposed hybrid
method

In this paper, a comprehensive experimental study has been
performed for designing an optimal digital IIR filter using
improved hybrid swarm-based techniques. For this purpose,
search space is formulated, in which m × n matrix is initial-
ized with some pseudo random vector, defined in Eq. (10),
where m is the total possible solutions considered, and
n (n = L + K ) is the coefficient length of each solution, and
a velocity matrix is also initialized with same dimension.
The search space is modified by first updating the veloc-
ity matrix using Eq. (1), where scaling of w is performed
in three distinguish ways, which result in constant weight
inertia-PSO (CWI-PSO), linearly decay inertia-PSO (LDI-
PSO), and dynamic inertia-PSO (DI-PSO), respectively. The
detailed analysis of these variants can also be found in Ahir-
wal et al. (2013). In all these techniques, the value of χ is

Table 1 Pseudocode for checking and re-initializing the out of bound
values

Pseudo code 1

Pseudo code 2

⇒ FOR m =1:n
⇒ IF(vm ≤ –1)

→vm = –1*rand
⇒ ELSE IF(vm ≥ 1)

→vm = rand
⇒ END OF IF
⇒ END OF FOR

⇒ FOR m = L+1:L+ K
→IF(gn,m ≤ –1)

– gn,m = –1*rand
→ELSE IF(gn,m ≥ 1 )
– gn,m = rand

→END OF IF
⇒ END OF FOR

kept fixed at 1, while another variant of PSO, known as con-
strained factor inertia-PSO (CFI-PSO), is also exist, in which
w is kept fixed to 1, and χ is initialized with 0.7213. Sim-
ilarly, another variant has also been tested known as time
varying coefficients-PSO (TVC-PSO), in which w and χ are
fixed and C1 and C2 are made to swing accordingly (Sheng
and Bing 2010):

C1 = C1initial −
[(∣∣C1initial − C1final

∣∣) · i
imax

]
(14)

C2 = C2initial +
[(∣∣C2initial − C2final

∣∣) · i
imax

]
(15)

After velocity updating, its value is checked and if veloc-
ity associated with any element has been moved beyond the
limit; then, it is enforced to stay back by initializing with
a new value as shown in pseudocode-1 in Table 1. Exper-
imentally the prescribed range of velocity matrix element
is considered to be −1 to 1. After the velocity update, the
position matrix (search space) is updated using Eq. (2), and
similarly the elements corresponding to coefficients of lattice
are checked. If the values of these coefficients moved beyond
|1|, then they are reinitialized as shown in pseudocode-2 of
Table 1. Now, the numerator and lattice coefficients fromnew
positions are extracted, and used for evaluation of objective
function using Eq. (8). The lattice coefficients are trans-
formed in to direct form using Eqs. (11) and (12), after
which the frequency response is computed by substituting
the coefficients in Eq. (7), and at last the objective function
is evaluated.

New solution (position) that has achieved better objective
function value (J )with respect to previous local best solution
(Pbest) is now accepted and copied over it. A similar analysis
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is carried out for the global solution, that is if the new any
of ‘Pbest’ solution has better objective function value than
current ‘Gbest’, then it replaces the previous global best solu-
tion (Gbest). Now in last stage the replacement mechanism is
carried out in which scout bee concept of ABC technique is
adopted. If any vector whose solution is not improved, then
its value is replaced by till known global best solution that
is Gbest. Also, the velocity vector corresponding to unim-
proved solution is also replaced by the velocity recorded for
Gbest. In this way, the swarm is updated in the direction
of an optimal solution. Thus, it confirms the optimal point
exploration and resists the trapping in local minima.

5 Simulation results and discussion for efficient
design of optimal IIR filter

In this section, the design of IIR filter using PSO, ABC and
various developed hybrid PSO techniques are conducted. The
comprehensive simulations have been carried out in order to
analyze and select the suitable variant of PSO and then to
develop the computationally improved hybrid version.

5.1 Design examples and parameter specifications

Various control parameters of different optimization tech-
niques required in the proposed methodology are summa-
rized in Table 2, which has been taken from the extensive
analysis of literature that reflects their practice in various
optimization problems such as filter designing and numerical
optimization testing (Karaboga and Basturk 2007b; Sheng
and Bing 2010). These values involve cognitive and social
scaling parameters, inertia weight, limit, and modulation
index. In Table 2, the value ofC1 andC2 are taken fromwork
proposed in Sheng and Bing (2010) and Bansal et al. (2011).
Value of linearly varying w for LDI-PSO and CWI-PSO has
been considered fromBansal et al. (2011). The suitable value
for limit, velocity element (v), and swarm size (population
size) are incorporated by experimental analysis. The iner-
tia weight strategy for DI-PSO is modified as it observed
from the analysis made in Agrawal et al. (2015b) that inertia
weight should be in between 0.1 and 0.7, as it make the algo-
rithm stable for IIR filter design. Previously, w in DI-PSO
was governed as:

w = 0.5 + rand (·)
2

(16)

whereas, in the new strategy is adopted, in which w is regen-
erated as:

w = ll + (ul − ll) · rand (·)
2
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Table 3 Design specification for the prototype IIR filter

S. No Type of filter Order of filter Passband ωp Stopband ωs Passband permissible
ripple

Stopband permissible
ripple

Eaxmple-1 LPF 3 [0, 0.4π ] [0.5π, π ] 0.01 0.001

Eaxmple-2 6 [0, 0.4π ] [0.5π, π ] 0.01 0.001

Eaxmple-3 9 [0, 0.4π ] [0.5π, π ] 0.01 0.001

Eaxmple-4 12 [0, 0.4π ] [0.5π, π ] 0.01 0.001

Eaxmple-5 (Saha et al.
2013)

8 [0, 0.45π ] [0.5π, π ] 0.001 0.0001

Eaxmple-6 HPF 3 [0.6π, π ] [0, 0.5π ] 0.01 0.001

Eaxmple-7 6 [0.6π, π ] [0, 0.5π ] 0.01 0.001

Eaxmple-8 9 [0.6π, π ] [0, 0.5π ] 0.01 0.001

Eaxmple-9 12 [0.6π, π ] [0, 0.5π ] 0.01 0.001

Eaxmple-10 8 [0.5π, π ] [0, 0.45π ] 0.001 0.0001

Example-11 (Saha et al.
2013)

8 [0.35π, π ] [0, 0.30π ] 0.001 0.0001

Table 4 mean, variance, standard deviation, best and worst values of J for each method for the 30 trials used to design the filter mentioned in
Table 3 with the population size of 20

Population size 20

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Example-1

Mean 3.6632 2.8835 2.9024 2.9008 3.9968 3.2131 2.9142 2.8828 2.8829

Variance 0.3281 0.0000 0.0006 0.0003 1.2460 0.1558 3.3594 0.0000 0.0000

Std. dev. 0.5728 0.0026 0.0252 0.0165 1.1163 0.3947 1.8329 0.0032 0.0047

Best 3.2734 2.8776 2.8792 2.8785 2.8848 2.8791 1.2195 2.8795 2.8773

Worst 5.3389 2.8863 2.9766 2.9456 7.3534 4.2650 4.5257 2.8921 2.8930

Example-2

Mean 3.6315 1.6420 1.8845 3.1329 3.1732 2.1642 2.5269 1.4354 1.3783

Variance 2.0103 0.4262 0.3948 1.9570 2.8109 0.4484 3.5219 0.2925 0.4666

Std. dev. 1.4179 0.6529 0.6283 1.3989 1.6766 0.6696 1.8767 0.5409 0.6831

Best 1.8459 0.5106 1.0264 1.7631 0.8219 1.1235 0.9569 0.5123 0.6765

Worst 7.6929 2.5951 3.6194 6.7847 6.6547 3.5721 10.5492 2.4053 2.7026

Example-3

Mean 8.3635 2.2147 2.3712 4.7173 6.2245 3.6202 2.3557 1.8079 1.3397

Variance 13.9417 1.8803 3.6636 10.3552 15.4050 7.7945 1.8433 1.3528 0.3145

Std. dev. 3.7339 1.3712 1.9140 3.2180 3.9249 2.7919 1.3577 1.1631 0.5608

Best 3.6045 1.0671 0.4157 1.2151 0.6558 0.9026 0.3616 0.4640 0.4343

Worst 18.3944 6.6774 8.3548 12.0299 17.0637 11.4848 3.7114 3.6488 2.1677

Example-4

Mean 13.3130 6.0239 3.8255 3.8255 4.2063 3.8255 3.8255 3.4156 2.5493

Variance 34.8286 16.6049 8.4398 8.4398 10.2615 8.4398 8.4398 5.8467 1.5612

Std. dev. 5.9016 4.0749 2.9051 2.9051 3.2034 2.9051 2.9051 2.4180 1.2495

Best 3.6695 1.0067 0.2391 0.2391 0.2586 0.2391 0.2391 0.9199 1.3438

Worst 25.4527 13.2549 8.1657 8.1657 11.2062 8.1657 8.1657 6.3375 4.6477

Example-5

Mean 5.6509 3.8271 3.2048 4.1567 6.1314 3.7982 2.9142 2.6292 2.5021

Variance 3.7727 9.6262 3.4045 2.7336 5.1021 1.8019 3.3594 1.1423 4.1587

Std. dev. 1.9423 3.1026 1.8451 1.6534 2.2588 1.3424 1.8329 1.0688 2.0393
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Table 4 continued

Population size 20

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Best 2.3203 1.7235 1.3012 1.7284 2.7025 2.0797 1.2195 1.0222 0.8734

Worst 9.2596 13.4935 8.6996 6.8375 9.9032 5.9939 4.5257 4.2876 8.4707

Example-6

Mean 3.7000 2.8744 2.8793 2.9104 2.9571 3.1628 3.2840 2.8716 2.8735

Variance 1.1381 0.0000 0.0002 0.0089 0.0485 0.2487 0.0000 0.0000 0.0000

Std. dev. 1.0668 0.0046 0.0146 0.0943 0.2202 0.4987 0.0000 0.0026 0.0051

Best 3.2523 2.8682 2.8691 2.8712 2.8692 2.8735 3.2839 2.8689 2.8701

Worst 7.5951 2.8829 2.9304 3.2611 3.6095 4.4999 3.2840 2.8785 2.8841

Example-7

Mean 3.6418 2.1331 2.5029 2.9883 4.3243 2.5075 2.2318 1.3805 1.9658

Variance 1.9001 3.4540 1.5220 2.7801 8.6727 0.6581 3.1129 2.6203 0.3454

Std. dev. 1.3784 1.8585 1.2337 1.6674 2.9449 0.8113 1.7643 1.6187 0.5877

Best 2.0373 0.8181 1.0205 1.2201 1.2303 1.3635 0.9114 0.6802 1.1166

Worst 7.0622 8.7365 6.3983 7.4951 12.2923 4.1583 7.9235 2.6270 3.2688

Example-8

Mean 6.7393 3.1555 2.0139 4.8904 7.1900 3.1026 2.5006 3.7199 1.5532

Variance 5.0451 6.1102 2.4207 20.9614 14.4708 1.9410 2.3766 22.9842 1.1337

Std. dev. 2.2461 2.4719 1.5559 4.5784 3.8041 1.3932 1.5416 4.7942 1.0647

Best 2.6090 0.3730 0.4106 0.6950 1.5728 1.4101 0.9053 0.5830 0.4862

Worst 10.6323 10.9342 5.8291 16.6708 12.8264 5.5780 4.2683 17.1780 4.3183

Example-9

Mean 11.1487 6.9155 3.7556 5.1346 13.8242 6.3036 3.6331 5.3625 1.5532

Variance 35.4883 34.9540 8.0010 21.3037 26.8441 10.2254 8.1255 13.1216 1.1337

Std. dev. 5.9572 5.9122 2.8286 4.6156 5.1811 3.1977 2.8505 3.6224 1.0647

Best 3.1494 1.2128 0.9896 0.8037 4.5915 2.1010 0.9003 0.5362 0.4862

Worst 27.3040 19.9974 12.4287 16.4703 21.4831 12.3827 9.2004 10.7815 4.3183

Example-10

Mean 7.3253 7.3253 4.0248 4.0295 2.8717 4.4070 4.0150 3.3729 2.8253

Variance 17.9151 17.9151 1.8680 5.9376 0.0000 2.9899 5.9499 3.0406 1.1815

Std. dev. 4.2326 4.2326 1.3668 2.4367 0.0034 1.7291 2.4392 1.7437 1.0870

Best 2.4437 2.4437 1.5918 0.7960 2.8681 1.1167 1.6204 1.2817 1.3894

Worst 17.4034 17.4034 6.3194 8.5725 2.8787 7.0223 12.8459 6.8739 4.7386

In above equation ll and ul are the suitable limits that are used
to improve the convergence of algorithm during exploration,
selected as 0.1 and 0.6, respectively (Kumar et al. 2012).

5.2 Comparison of Hybrid methods with swarm-based
techniques.

In this section, the several examples are considered for the
design of optimal IIR filter using PSO, ABC and various
developedhybridPSO techniques,which are listed inTable 3.
The first experiment is carried out for analyzing the effect of
search space matrix (swarm) on filter performance based on
the value of J for the swarm-based techniques. In this exper-

iment, all filters are designed using proposed methods for
thirty independent trials, with different swarm size of 20,
30, 40 and 50. The necessary parameters are evaluated and
summarized for respective swarm size in Tables 4, 5, 6 and
7. It is evident from Table 4 that, among CWI-PSO, LDI-
PSO, CFI-PSO, MDI-PSO TVC-PSO and ABC algorithm,
last three techniques of PSO family are able to achieve better
value of J . Moreover, the standard deviation and mean value
achieved by CFI-PSO is quite better than TVC-PSO and
MDI-PSO, for the population size of 20 in lower-order filter
examples. This leads to the development of three hybridized
method using the concept of scout bee ofABCalgorithmwith
these variant of PSO and entitled as Hybrid-1 (MDI-PSO

123



2962 N. Agrawal et al.

Table 5 mean, variance, standard deviation, best and worst values of J each method for the 30 trials used to design the filter mentioned in Table 3
with the population size of 30

Population size 30

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Example-1

Mean 3.0981 3.2730 2.8890 2.8939 2.8834 3.0566 3.2963 2.8804 2.8806

Variance 0.1165 0.0000 0.0002 0.0001 0.0000 0.1551 0.0000 0.0000 0.0000

Std. dev. 0.3413 0.0016 0.0123 0.0112 0.0034 0.3938 0.0000 0.0019 0.0026

Best 2.8847 3.2683 2.8769 2.8796 2.8802 2.8782 3.2963 2.8770 2.8774

Worst 4.0632 3.2751 2.9305 2.9169 2.8925 4.5275 3.2963 2.8836 2.8880

Example-2

Mean 3.3708 2.0608 2.0163 2.8598 2.5051 1.9591 1.9268 1.5525 1.6553

Variance 3.8950 2.3252 0.3331 3.4001 1.8703 1.2288 1.0645 0.6028 0.2017

Std. dev. 1.9736 1.5249 0.5771 1.8439 1.3676 1.1085 1.0317 0.7764 0.4491

Best 0.8826 0.5214 1.2789 0.9315 0.9245 1.0080 0.6485 0.4939 0.9344

Worst 7.2865 6.9765 3.5431 7.3122 6.1492 4.1868 2.7161 2.8514 2.2458

Example-3

Mean 4.7618 2.8500 2.4191 3.3970 4.5915 2.0153 2.1022 2.5024 0.9970

Variance 2.6138 9.4617 1.5861 5.9531 5.8167 0.5411 3.5102 5.6813 0.2122

Std. dev. 1.6167 3.0760 1.2594 2.4399 2.4118 0.7356 1.8735 2.3835 0.4607

Best 1.2280 0.3888 0.6366 1.1271 1.7274 0.7017 0.3754 0.4241 0.3391

Worst 7.1538 10.4422 5.6123 10.3421 10.8539 3.9373 5.4694 8.9930 1.8479

Example-4

Mean 10.5223 3.2730 4.7365 8.3322 8.1248 5.5378 3.1985 3.5467 1.9401

Variance 34.3584 0.0000 8.5586 30.8900 10.0041 8.8422 4.9790 8.1247 1.6984

Std. dev. 5.8616 0.0016 2.9255 5.5579 3.1629 2.9736 2.2314 2.8504 1.3032

Best 4.1803 0.4845 0.6709 0.7962 3.0920 0.6722 1.5585 0.6156 0.9053

Worst 26.5140 3.2751 9.6909 20.4203 13.9477 9.2483 10.0483 9.5462 5.6062

Example-5

Mean 5.9849 3.5904 3.2507 3.8419 4.4870 2.7688 3.6978 3.0105 1.9206

Variance 7.9014 18.7966 4.7658 5.4875 4.1067 0.6275 3.8498 3.4711 0.4949

Std. dev. 2.8109 4.3355 2.1831 2.3425 2.0265 0.7922 1.9621 1.8631 0.7035

Best 3.2047 1.2646 1.0496 1.6677 1.9925 1.5377 1.1158 0.7650 0.7229

Worst 14.5432 19.2665 10.5039 10.5913 9.7095 3.8050 7.9698 7.3630 2.8772

Example-6

Mean 2.9351 3.2611 2.8738 2.8829 2.9571 2.8942 3.2840 2.8708 2.8702

Variance 0.0232 0.0000 0.0000 0.0001 0.0485 0.0015 0.0000 0.0000 0.0000

Std. dev. 0.1524 0.0015 0.0060 0.0121 0.2202 0.0386 0.0000 0.0005 0.0005

Best 2.8703 3.2582 2.8681 2.8682 2.8692 2.8680 3.2839 2.8702 2.8689

Worst 3.4997 3.2639 2.8914 2.9223 3.6095 3.0024 3.2840 2.8721 2.8708

Example-7

Mean 3.0255 2.3320 1.6893 2.3812 1.6870 1.8255 2.1223 2.0111 1.6895

Variance 1.4577 3.0354 0.5402 1.3181 0.3062 0.1683 0.4350 0.5851 0.6695

Std. dev. 1.2073 1.7423 0.7350 1.1481 0.5533 0.4102 0.6595 0.7649 0.8182

Best 1.2968 0.6111 0.7998 0.7156 0.6445 1.1376 1.1065 0.7985 0.7392

Worst 6.7716 7.4095 3.2476 5.5866 2.4570 2.6002 3.0968 2.9436 3.6712

Example-8

Mean 5.9937 2.6814 2.6868 3.6083 4.3163 3.0126 2.8283 1.7536 1.4179

Variance 9.7077 1.8409 13.8507 5.7925 11.4469 1.8997 15.2523 1.1574 0.6786
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Table 5 continued

Population size 30

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Std. dev. 3.1157 1.3568 3.7217 2.4068 3.3833 1.3783 3.9054 1.0758 0.8238

Best 0.9589 0.7289 0.7728 0.8349 0.8287 1.2869 0.9242 0.5018 0.5876

Worst 10.9898 5.0594 16.3366 9.6586 12.1608 5.4081 21.7762 4.2927 3.1323

Example-9

Mean 9.4560 6.7035 3.2497 3.4103 7.6161 3.7402 4.7413 4.9074 3.9741

Variance 12.3711 52.8611 5.7110 3.5072 27.174 7.6041 16.5436 18.6410 5.9491

Std. dev. 3.5173 7.2706 2.3898 1.8727 5.2129 2.7576 4.0674 4.3175 2.4391

Best 5.3650 1.0944 0.3129 1.0319 1.7905 0.6975 1.0900 0.9550 0.5714

Worst 18.5403 26.3869 9.4322 7.3939 21.611 8.7326 11.3481 14.6229 9.2104

Example-10

Mean 5.2151 2.8832 2.5805 3.5911 2.9571 2.7977 3.3534 3.4362 2.4659

Variance 3.7247 1.3422 1.4214 5.0962 0.0485 0.8003 5.3234 10.3287 1.2136

Std. dev. 1.9299 1.1585 1.1922 2.2575 0.2202 0.8946 2.3073 3.2138 1.1017

Best 2.5475 1.3950 0.6368 1.2837 2.8692 1.2579 1.0940 1.1427 1.2198

Worst 9.5995 6.1501 5.3918 8.6769 3.6095 4.7216 9.3086 11.1038 4.5934

Table 6 mean, variance, standard deviation, best and worst values of J for each method for the 30 trials used to design the filter mentioned in
Table 3 with the population size of 40

Population size 40

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Example-1

Mean 2.9670 2.8811 2.8862 2.8881 3.2720 2.9625 3.2963 2.8819 3.2685

Variance 0.0386 0.0000 0.0000 0.0000 0.0000 0.0185 0.0000 0.0000 0.0000

Std. dev. 0.1966 0.0012 0.0048 0.0065 0.0024 0.1360 0.0000 0.0031 0.0016

Best 2.8778 2.8796 2.8790 2.8770 3.2644 2.8777 3.2963 2.8786 3.2653

Worst 3.6624 2.8835 2.8965 2.9020 3.2748 3.4182 3.2963 2.8882 3.2706

Example-2

Mean 2.3795 2.2322 1.7910 1.8439 2.0566 1.6542 2.6219 1.5276 1.4659

Variance 1.2000 2.0888 0.1271 0.4910 0.7893 0.1744 5.2132 0.3786 0.5289

Std. dev. 1.0954 1.4453 0.3565 0.7007 0.8884 0.4176 2.2832 0.6153 0.7273

Best 0.9622 0.4957 1.3794 0.5717 0.6188 0.8535 0.8223 0.6716 0.4577

Worst 3.8453 6.1490 2.6700 2.9410 4.0694 2.5280 6.2845 2.4681 3.1500

Example-3

Mean 5.0823 1.1452 2.4587 3.4710 2.7706 1.9745 2.8517 2.2212 1.9549

Variance 4.7464 0.2974 2.7799 7.6757 0.9942 1.2518 11.4507 2.0001 2.5881

Std. dev. 2.1786 0.5453 1.6673 2.7705 0.9971 1.1188 3.3839 1.4142 1.6088

Best 2.5485 0.4201 0.4379 0.4792 1.3885 0.6072 0.6526 0.8500 0.3888

Worst 11.1369 2.1782 5.6041 11.1230 5.3532 4.5960 3.7135 5.9462 6.4312

Example-4

Mean 10.1212 2.2595 4.3421 6.7550 5.2280 3.5645 3.7587 3.5440 0.9975

Variance 21.5142 1.4884 11.0184 17.7442 7.1729 5.2003 13.7345 14.1789 0.3126

Std. dev. 4.6383 1.2200 3.3194 4.2124 2.6782 2.2804 3.7060 3.7655 0.5591

Best 3.9132 0.6616 0.9983 1.3479 1.6549 0.6442 0.7196 0.6259 0.2163

Worst 18.7743 5.3694 14.0458 18.7860 10.1141 7.9430 15.5797 11.8430 2.2269
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Table 6 continued

Population size 40

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Example-5

Mean 5.9578 2.5934 2.9559 5.1952 3.6673 2.8081 4.3442 2.8546 1.6738

Variance 9.9223 0.7036 2.4751 17.3171 1.2519 0.7361 4.3895 2.1280 0.5963

Std. dev. 3.1500 0.8388 1.5732 4.1614 1.1189 0.8580 2.0951 1.4588 0.7722

Best 1.7026 1.3908 0.6242 1.7629 2.2165 1.6043 5.3473 1.1723 0.6499

Worst 14.0124 4.2253 6.0513 18.2264 6.6400 4.5138 5.3473 6.4812 3.5823

Example-6

Mean 2.9267 2.8721 2.8739 2.8796 3.2587 3.0451 3.2840 2.8713 3.2561

Variance 0.0070 0.0000 0.0000 0.0000 0.0000 0.1407 0.0000 0.0000 0.0000

Std. dev. 0.0839 0.0033 0.0045 0.0066 0.0031 0.3751 0.0000 0.0022 0.0023

Best 2.8703 2.8686 2.8677 2.8711 3.2514 2.8680 3.2840 2.8703 3.2507

Worst 3.1436 2.8791 2.8828 2.8971 3.2635 4.3694 3.2840 2.8780 3.2592

Example-7

Mean 3.1042 1.4272 1.8679 2.1205 2.7499 1.6360 1.9400 1.9617 1.3697

Variance 1.2868 0.3612 0.3758 1.8773 16.0513 0.3853 0.4874 0.2195 0.0958

Std. dev. 1.1344 0.6010 0.6130 1.3701 4.0064 0.6207 0.6981 0.4685 0.3095

Best 1.8607 0.6843 0.9107 0.7240 0.5771 0.7240 0.6421 0.8913 0.6669

Worst 6.4785 2.4231 2.9797 6.4446 17.4258 2.9931 2.9418 2.6945 1.6807

Example-8

Mean 4.4822 4.1151 2.1381 2.8446 3.7404 2.5028 1.4687 2.7357 1.5358

Variance 6.6777 31.9514 2.6339 4.1511 21.4462 2.5378 0.4984 8.4143 0.5413

Std. dev. 2.5841 5.6526 1.6229 2.0374 4.6310 1.5930 0.7060 2.9007 0.7357

Best 0.9355 0.3142 0.3873 0.4916 0.6944 0.3258 0.7379 0.3489 0.7706

Worst 10.8034 23.8783 6.1082 8.6126 17.3041 5.4414 2.6424 10.9052 3.1461

Example-9

Mean 9.3474 3.5525 3.8889 5.9701 6.4683 4.7419 3.3965 4.0239 1.7382

Variance 18.5027 10.5908 4.4270 17.3540 7.1341 8.5769 6.9855 5.4782 1.7422

Std. dev. 4.3015 3.2544 2.1040 4.1658 2.6710 2.9286 2.6430 2.3406 1.3199

Best 4.4619 0.4803 1.5671 0.4452 2.2104 0.9405 0.4880 1.2484 0.5676

Worst 17.5570 9.7283 9.4273 12.9099 10.7099 10.8772 6.4121 8.3254 4.5836

Example-10

Mean 5.2936 2.9372 3.9806 5.2843 3.2587 3.0013 3.5788 2.5542 2.3159

Variance 3.6868 2.5426 6.5332 16.7323 0.0000 0.6703 5.4082 0.8607 0.9094

Std. dev. 1.9201 1.5945 2.5560 4.0905 0.0031 0.8187 2.3255 0.9277 0.9536

Best 2.2789 0.8743 1.7786 1.1377 3.2514 0.9498 2.3278 1.2737 1.0667

Worst 9.2932 6.3128 12.1111 16.1955 3.2635 4.3677 2.3278 4.1715 3.8592

with ABC), Hybrid-2 (CFI-PSO with ABC) and Hybrid-3
(TVC-PSO with ABC), respectively. The hybridization has
resulted in significant improvement in preformation of the
proposed techniques tabularized in Table 4. Similar analysis
has been performed for other swarm sizes, and performances
are summarized in Tables 5, 6 and 7, respectively. It is evident
from theseTables that the proposedHybrid-3 performsbetter,
when compared with above discussed techniques due to their
time varying strategy of the control coefficients, which not

only helps it for better exploration and exploitation, but also
leads it to possess less computation time with superior abil-
ity of handling a higher order design problem efficiently than
others. It has observed that the proposed Hybrid-3 method
provides sustainable performance for all population sizes,
which is also reflected from the evaluation ofmean, obtained
for various methods as depicted in Fig. 2.

In second experiment, the effects of population size on fil-
ter performance for different orders are studied specifically
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Table 7 mean, variance, standard deviation, best and worst values of J for each method for the 30 trials used to design the filter mentioned in
Table 3 with the population size of 50

Population size 50

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Example-1

Mean 2.9282 2.8809 2.8879 2.8908 2.8806 3.003 3.2963 2.8802 3.2683

Variance 0.0121 0.0000 0.0003 0.0001 0.0000 0.123 0.0000 8.2953 0.0000

Std. dev. 0.1099 0.0025 0.0163 0.0087 0.0023 0.351 0.0000 2.8802 0.0008

Best 2.8770 2.8774 2.8770 2.8850 2.8780 2.878 3.2963 2.8796 3.2671

Worst 3.2770 2.8874 2.9476 2.9146 2.8889 4.304 3.2963 2.8812 3.2697

Example-2

Mean 3.4042 1.8491 1.7786 2.4942 1.4726 1.555 1.6142 1.6210 1.4020

Variance 2.7524 2.3042 0.7436 3.6071 0.3576 0.206 0.5232 2.8742 0.1384

Std. dev. 1.6590 1.5180 0.8624 1.8992 0.5980 0.454 0.7233 1.6953 0.3720

Best 1.1480 0.5681 0.6598 0.7102 0.6168 0.886 0.6188 0.8352 0.9438

Worst 7.0717 6.7217 4.2990 7.8292 2.4748 2.747 3.5874 2.3365 1.9733

Example-3

Mean 3.9128 1.5867 2.3836 3.4601 1.5965 2.296 1.7533 2.4112 0.9524

Variance 2.7067 0.6803 1.7339 7.9661 0.5223 1.295 0.7120 8.4331 0.1780

Std. dev. 1.6452 0.8248 1.3168 2.8224 0.7227 1.138 0.8438 2.9040 0.4219

Best 1.8710 0.6105 0.7038 0.6377 0.5409 0.433 0.3792 0.3886 0.4943

Worst 6.9595 3.3739 5.0163 9.4157 3.1062 5.090 3.2083 5.5537 1.7830

Example-4

Mean 10.9129 2.3085 3.5459 5.5100 4.2063 3.685 3.5956 4.1119 1.6990

Variance 48.0181 2.8985 6.9239 15.3170 10.2615 3.323 10.0448 33.9887 2.0406

Std. dev. 6.9295 1.7025 2.6313 3.9137 3.2034 1.823 3.1694 5.8300 1.4285

Best 3.5698 0.5398 0.7225 1.1233 0.2586 0.686 0.9478 0.5106 0.1275

Worst 32.0263 5.3062 10.3104 14.0958 11.2062 7.224 10.4747 13.4171 5.3439

Example-5

Mean 5.6848 2.3149 3.4512 2.1653 3.2616 2.455 2.8038 3.2235 2.1804

Variance 15.4906 1.1384 3.9532 0.6626 2.3009 0.305 1.4373 17.5163 0.2185

Std. dev. 3.9358 1.0670 1.9883 0.8140 1.5169 0.552 1.1989 4.1853 0.4674

Best 1.6418 1.0218 1.1782 1.1525 1.7584 1.380 1.3463 0.8853 1.5755

Worst 17.6268 5.5975 7.8362 4.0317 7.9048 3.428 5.0625 10.7227 2.8752

Example-6

Mean 2.9570 2.8716 2.8738 2.8776 2.8717 2.940 3.2840 2.8712 2.8735

Variance 0.0273 0.0000 0.0000 0.0000 0.0000 0.014 0.0000 0.0000 0.0000

Std. dev. 0.1653 0.0032 0.0050 0.0043 0.0034 0.118 0.0000 0.0024 0.0051

Best 2.8705 2.8679 2.8682 2.8723 2.8681 2.868 3.2840 2.8695 2.8701

Worst 3.4565 2.8784 2.8873 2.8858 2.8787 3.330 3.2840 2.8784 2.8841

Example-7

Mean 2.3308 1.9320 2.0706 2.2202 1.9582 1.490 1.9472 1.2244 1.4561

Variance 0.9405 0.7536 0.7644 0.6636 4.6978 0.336 1.0949 0.2387 0.3122

Std. dev. 0.9698 0.8681 0.8743 0.8146 2.1674 0.580 1.0464 0.4886 0.5587

Best 0.7184 0.4773 0.9141 0.8758 0.3840 0.470 0.7483 0.4860 0.8057

Worst 4.3524 3.9058 3.6303 3.6947 9.5572 2.667 2.7737 1.8572 2.4960

Example-8

Mean 5.1996 2.0809 2.2231 3.4917 3.1228 1.986 2.3429 1.9937 1.1003

Variance 6.1056 2.2142 2.3894 13.6616 7.6695 2.025 9.8523 2.3627 0.3300
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Table 7 continued

Population size 50

Parameters CWI-PSO CFI-PSO LDI-PSO MDI-PSO TVC-PSO ABC Hybrid-1 Hybrid-2 Hybrid-3

Std. dev. 2.4710 1.4880 1.5458 3.6962 2.7694 1.423 3.1388 1.5371 0.5744

Best 1.7170 0.6752 0.5366 0.6864 0.3884 0.586 0.5387 0.3546 0.3171

Worst 11.0128 6.3002 6.0132 12.3704 10.6884 5.556 7.8174 4.4325 2.1012

Example-9

Mean 10.6608 3.9063 4.1266 7.9172 5.3044 3.817 3.6368 2.2113 1.7785

Variance 8.1126 11.0866 6.3310 25.3977 21.5281 4.834 7.8957 1.1180 2.5197

Std. dev. 2.8483 3.3297 2.5161 5.0396 4.6398 2.199 2.8099 1.0574 1.5873

Best 5.4915 0.9912 0.7434 3.7434 1.0067 0.572 0.7774 0.5833 0.4567

Worst 14.5663 12.7645 9.4509 17.4400 16.3518 9.109 6.9354 4.0694 5.1375

Example-10

Mean 6.1286 3.4577 3.5769 3.1804 2.8717 2.840 3.0012 2.3359 1.8970

Variance 10.0535 6.3476 6.8257 2.9566 0.0000 1.624 2.1605 1.0031 0.4368

Std. dev. 3.1707 2.5194 2.6126 1.7195 0.0034 1.274 1.4699 1.0015 0.6609

Best 2.2743 1.4542 1.0734 1.4218 2.8681 0.666 1.4936 1.0074 1.0996

Worst 15.8034 11.3490 11.7951 7.2154 2.8787 5.194 7.8424 3.7673 3.6048

Fig. 2 a mean of J for quoted techniques for 10 used examples for
the population size of 20. b mean of J for quoted techniques for 10
used examples for the population size of 30. c mean of J for quoted

techniques for 10 used examples for the population size of 40. d mean
of J for quoted techniques for 10 used examples for the population size
of 50

for Hybrid-3 method. For this purpose, same filter specifica-
tions of example-5 and example-11 are utilized for different
orders ranges from 2 to 15 with increment of 1, and in swarm
sizes from 5 to 50 with linear increment of 5. It can be
observed from Fig. 3 that the proposed technique works con-
sistently efficient, for the entire range of filter orders and

swarm sizes. On the basis of above discussed experiments,
it is evident that the better performance in term of J can
be achieved irrespective of filter order, which can be further
utilized for designing the both LPF and HPF with less com-
putation cost. In addition to this, the designed filter using
proposed technique shows better fidelity parameter values
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Fig. 3 a Population size effect on LPF filter for different order. b Population size effect on HPF filter for different order

Table 8 Comparative analysis of best fidelity parameters obtained for proposed algorithm with different techniques

S. No. Technique J (Eq. 8) Passband error (ep) Stopband error (es) Stopband edge
fr. attenuation (dB)

CPU time elapsed in sec

LPF HPF LPF HPF LPF HPF LPF HPF LPF HPF

1 Algorithm in (Saha et al.
2012b)

2.7808 0.4735 – 0.0628 – 25.2503 – – –

2 Algorithm in(Saha et al.
2011, 2012a, 2013)

2.7692 1.2453 0.5439 0.0303 0.0223 0.0148 34.5323 46.4287 – –

3 PSO (Saha et al. 2011,
2012b, a, 2013)

2.1310 1.2453 0.2680 0.0303 0.0633 0.0148 25.1561 46.4287 – –

4 CWI-PSO 3.9165 2.8108 0.1322 0.46216 1.06828 0.5029 14.2782 19.8948 97.0170 75.6916

CFI-PSO 1.0218 1.1852 0.2988 0.1117 0.4696 0.4439 15.1558 15.1400 94.1934 94.6302

5 LDI-PSO 1.1365 1.400 0.2418 0.1798 0.2128 0.4580 24.7402 15.4859 74.5685 92.4150

6 MDI-PSO 1.3927 2.5807 0.2122 0.0355 0.3724 1.1033 18.1137 8.2184 72.7745 97.6410

TVC-PSO 1.7584 0.9987 0.2395 0.1885 0.5043 0.3770 15.5230 16.2906 70.7153 70.3253

7 ABC 1.3804 1.0982 0.1358 0.1411 0.2722 0.1940 14.8225 17.2296 10263.73 69053.5290

8 Hybrid 1 1.1158 3.5446 0.1355 0.5140 0.2783 0.9121 21.1556 13.7253 65.4736 76.1285

9 Hybrid 2 0.7650 1.8818 0.2807 0.1943 0.3042 0.5240 17.8353 18.9843 51.1371 79.3889

10 Hybrid 3 0.7229 1.1942 0.0256 0.2115 0.2975 0.3628 17.0690 16.9325 47.2059 52.9779

than conventionalABC, PSOand its variant technique,which
is summarized in Table 8.

5.3 Complexity of the algorithm

Computation complexity of the proposed method is mea-
sured in term of ‘O-notation’. It is evident from Table 9
that computation complexity of proposed hybrid method is
O(n2), as only additional search and replacement of unim-
proved solution is executed. However, search mechanism of
the proposed technique is improved as compared to other
hybrid algorithm with less complexity. Computation time
and total number of function evaluation (NFE) involved has
been slightly increased compared to non-hybrid PSO.

5.4 Comparison with other existing methods

For the justification and significance of proposed technique in
optimal design of IIR filter with other existing techniques, a
numerical example has been taken and mentioned as exam-
ple 6 and example 11 in Table 3 (Saha et al. 2013). The
best performances corresponding to all developed methods
are compared and tabularized in Table 8, which clearly indi-
cates that the performance of proposed method is better than
previously quoted versions of PSO and ABC algorithms.
Moreover, the performance of the proposed technique is also
evaluated by calculating the filter fidelity parameters such
as: passband error, stopband error, and maximum stopband
attenuation defined as (Rafi et al. 2013):
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Table 9 Computational complexity measured in terms of O-notation

S. No. Algorithm Computational complexity
in term of ‘O-notation’

1 Hybrid PSO (Bare-bone PSO
with directionally chaotic
search)(Zhang et al. 2014)

O(n3)

2 Hybrid PSO (TVC-PSO with
DE) (Gong et al. 2010)

O(n3)

3 Improved PSO (Rafi et al.
2013)

O(n2)

4 CWI-PSO O(n2)

5 MDI-PSO O(n2)

6 TVC-PSO O(n2)

7 Proposed
Hybrid-PSO(TVC-PSO with
ABC Algo.)

O n2

ep =
∑

ω∈ωp

[D (ω) − H (ω)]2 (18)

es =
∑
ω∈ωs

[D (ω) − H (ω)]2 (19)

SE = ep + es (20)

Astop = −20 · log10 (|H(ω)|) , at ω = ωs (21)

In previous techniques, the obtained solution for opti-
mal IIR often suffers from quantization and truncation effect
(Saha et al. 2011, 2012b, a, 2013), in which filter response
is degraded during the truncating and quantizing the coeffi-
cients of numerator and denominator polynomials, as shown
in Fig. 4a, b; therefore; computation cost would be a little
bit higher for this system. However, the solution explored by
proposedmethod has shown immunity to quantization effect,
and sustained performance has recorded with lesser number
of bits, as shown in Fig. 4c, d, respectively. These figures
clearly indicate the better passband and stopband response
with stability, where the poles lied inside the unity circle
confirms the sustainable execution of stability mechanism,
as depicted in Fig. 5. The power of exploring ability of pro-
posed method is depicted in Fig. 6.

6 Conclusion

In this paper, an improved hybrid method is exploited for
the design of optimal digital IIR filter based on minimiza-
tion of nonlinear objective function constructed in frequency
domain using prescribed passband and stopband ripples. The
experiments based on statistical analysis evidence that the
proposed hybridmethod shows less deviation of fitness/ error
function between best and worst values, when compared to
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Fig. 4 Effect of truncation and quantization of filter tap coefficients obtained by a, b for algorithm proposed in (Saha et al. 2013) c Hybrid-3 for
LPF, d Hybrid-3 for HPF
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Fig. 5 a Poles and zero location for LPF designed using Hybrid-3. b Poles and zeros for HPF designed using Hybrid-3

Fig. 6 Convergence profile of
various swarm-based methods. a
HPF, b LPF
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other optimization methods. The proposed algorithm also
helps for non-convex and non-differentiable design problem
of IIR filter with acceptable fidelity parameters using finest
swarm size, while the complexity remains same as for con-
ventional PSO. Several design examples have been included

to demonstrate the effect of swarm sizes and efficiency of pro-
posed method to handle large-scale optimization problem.
The simulation results illustrate that the proposed technique
is efficient in term of stability, and designed filter does not
suffer from degradation due to quantization effect. There-
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fore, the designed filter can be realized by quantizing using
six bits only, hence helps in fast realization of filters. The
incorporation of sorting scheme enables the system to be self-
intelligent for selecting the best solution out of the executed
trials. The proposed technique can be extended for fractional
delay IIR filter design and also for reconfigurable IIR filter
design.
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