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Abstract Intelligent optimization algorithms based on evo-
lutionary and swarm principles have been widely researched
in recent years. The artificial bee colony (ABC) algorithm is
an intelligent swarm algorithm for global optimization prob-
lems. Previous studies have shown that the ABC algorithm is
an efficient, effective, and robust optimization method. How-
ever, the solution search equation used inABC is insufficient,
and the strategy for generating candidate solutions results in
good exploration ability but poor exploitation performance.
Although some complex strategies for generating candidate
solutions have recently been developed, the universality and
robustness of these new algorithms are still insufficient. This
is mainly because only one strategy is adopted in the modi-
fiedABC algorithm. In this paper, we propose a self-adaptive
ABC algorithm based on the global best candidate (SABC-
GB) for global optimization. Experiments are conducted on
a set of 25 benchmark functions. To ensure a fair com-
parison with other algorithms, we employ the same initial
population for all algorithms on each benchmark function.
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Besides, to validate the feasibility of SABC-GB in real-world
application, we demonstrate its application to a real cluster-
ing problem based on the K-means technique. The results
demonstrate that SABC-GB is superior to the other algo-
rithms for solving complex optimization problems. It means
that it is a new technique to improve the ABC by introducing
self-adaptive mechanism.

Keywords Artificial bee colony (ABC) · Global
optimization · Search strategy · Self-adaptive

1 Introduction

Optimization problems are frequently encountered in numer-
ous science and engineering fields. Traditional problems
characterized by being continues, unimodal, differentiable,
and linear were widely researched prior to the 1960s. How-
ever, real-world optimization problems tend to be nonlinear,
discontinuous, non-differentiable, and multimodal. Hence,
traditional optimization methods, such as Newton’s method
(Roy and Sevick-Muraca 1999) and quasi-Newton (Setiono
and Hui 1995) methods, cannot be used. The need for effec-
tive optimization algorithmswith the ability to solve complex
real-world optimization problems led to the development of
many evolutionary algorithms (EAs), such as genetic algo-
rithm (GAs) (Holland 1975), particle swarm optimization
(PSO) (Kennedy andEberhart 1995), ant colonyoptimization
(ACO) (Dorigo and Gambardella 1997), differential evolu-
tion (DE) (Storn and Price 1997), artificial bee colony (ABC)
(Karaboga and Basturk 2007) algorithm. EAs can avoid
becoming trapped in local optima in solvingmany real-world
optimization problems, which traditional problems cannot
solve.However, EAs alsomay be poor at exploitation in some
complex andmulti-dimensional optimization problems. That
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is why we want to optimize EAs.These EAs have been used
to solve many practical problems (Li and Pan 2015; Yi et al.
2016).

EAs inspired by biogenetics, natural phenomena, physi-
cal phenomena, and social phenomena have been proposed.
These are known as global optimization algorithms, as they
avoid becoming trapped in local optima in order to find glob-
ally optimal solutions. Generally speaking, an EA starts with
an initial population of candidate solutions. New solutions
are then generated from solutions in the previous popula-
tion. Next, the quality of each new solution is evaluated by
a fitness function. Finally, a selection process is used to pro-
duce a new population of solutions. This iterative process
is repeated until the optimum or near-optimum solution is
reached.

The ABC algorithm is a relatively new approach that was
proposed byKaraboga in 2005 (Karaboga andBasturk 2007).
Since then, the interest in ABC algorithms has increased
rapidly. Experimental results show that the performance of
ABC is better than that of other EAs in many problems,
because it has fewer control parameters and is easier to apply
(Karaboga and Basturk 2007). ABC has been widely used to
solve many real-world problems. For example, ABC has
been applied to a loudspeaker design problem (Zhang et al.
2014), and for the design of two-channel quadrature mirror
filter banks (Agrawal and Sahu 2015). ABC was also used
to minimize the makespan for single machine batch process-
ing with nonidentical job sizes (Al-Salamah 2015). Horng
adopted ABC for a stochastic economic lot scheduling prob-
lem (Horng 2015), and Pan solved the large-scale hybrid flow
shop scheduling problemwith ABC (Li and Pan 2015). ABC
has also been employed to solve an interest-based forwarding
problem (Xia et al. 2015).

The ABC algorithm is a simple, efficient, effective, and
robust evolutionary optimization method. As a result, ABC
has emerged as a potential tool for solving local and global
optimizationproblems (GuandSheng2013;Wenet al. 2015).
An increasing number of numerical benchmark functions are
being employed to evaluate the performance of ABC. How-
ever, there is no specific algorithm that can achieve the best
solution for all optimization problems. The ABC algorithm
also has some disadvantages. For instance, it may occasion-
ally stop proceeding toward the global optimum even though
the population has not converged to a local optimum, it can
struggle with certain classes of optimization problems and
suffers from long computation times because of its stochas-
tic nature.

It is well known that EAs include both exploration
and exploitation strategies. However, as exploration and
exploitation are inherently contradictory, they should be well
balanced to ensure good performance. Thus, many new and
self-adaptiveABCalgorithmshavebeenproposed (Babaoglu
2015; Bansal et al. 2013; Gao et al. 2013, 2014; He et al.

2013;Kang et al. 2013; Li andYin 2014; Rajasekhar and Pant
2014; Liu et al. 2015). The variation equations were inspired
by DE/rand/1 and DE/current-to-rand/1 (Epitropakis et al.
2011). To further enhance the convergence rate of the pro-
posed algorithm, a self-adaptive modification rate (MR)
based on a successful update probability was also proposed
to generate suitable parameters. However, Liu has not con-
ducted further research on this issue. In order to use the
parameters of ABC during the evolutionary process, Bansal
et al. (2013) proposed an adaptive version of ABC where the
step size in solution modification and the ABC parameter
limit are determined adaptively based on the current fitness
values. These self-adaptive algorithms have mainly focused
on determining the self-adaptive parameters, whereas the
focus of this article is on the adaptive search strategies
themselves. Usually, there is only one candidate solution
generating strategy (CSGS) in each algorithm. The CSGS
tends to be either good at exploration or good at exploitation.
Thus, it is difficult to simultaneously achieve the two goals of
exploration and exploitation using one CSGS. Hence, there
is a need to search for an improved optimization method. In
this paper, we propose a self-adaptive artificial bee colony
algorithm based on the global best (SABC-GB) for global
optimization. In SABC-GB, several different CSGSs are
employed simultaneously. This modification allows us to
tune the balance between the convergence rate and the robust-
ness of the algorithm. As a result, it is expected that the
convergence speed of SABC-GBcan be accelerated to enable
better solutions to be obtained within an acceptable conver-
gence time.

The K-means algorithm, proposed by Macqueen (1967),
is an important clustering technique (Macqueen 1967). Its
goal is to divide data sets into several clusters, where the
data within the same cluster are similar and those in dif-
ferent clusters are as dissimilar as possible. Because of its
simple description and high efficiency, K-means has been
widely used since the 1970s. However, K-means also has
some shortcomings: It is difficult to determine the value of
K in advance, it can become stuck around local optimal, and
it is sensitive to the initial centers. Thus, SABC-GB is applied
to this real problem to overcome these shortcomings.

In this paper, the SABC-GB, which is based on self-
adaptive strategies, is proposed. We modify the employed
bee phase to improve the global optimal capability of the
SABC-GB algorithm and use a novel probabilistic method
to enhance the search ability of the onlooker bee phase.
Furthermore, we change the initialization phase to avoid
local minima, i.e., SABC-GB adopts chaotic systems and
opposition-based learning method to initialize the popula-
tion. The remainder of this paper is organized as follows.
Section 2 summarizes the conventional ABC algorithm and
K-means algorithms. The SABC-GB algorithm is present
and analyzed in Sect. 3. In Sect. 4, we present and discuss
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the results of a series of experiments. The paper concludes
with a discussion in Sect. 5.

2 Related work

2.1 Artificial bee colony algorithm

In the ABC algorithm, the location of a food source repre-
sents a feasible solution of the optimization problem, and
the quality of solution is referred to as the fitness. There are
three kinds of bees in the ABC algorithm: employed bees,
onlooker bees, and scout bees. In the algorithmic model, the
number of employed bees is always equal to the number of
onlooker bees. It is important to note that the three types of
bees can transmute into each other. In the initial stage, the
population P is produced according to Eq. (1).

P = Lbound + rand1 ∗ (Ubound − Lbound) (1)

where Lbound andUbound are the lower and upper bounds,
respectively, and rand1 is a random number from 0 to 1.

Each solution of P is a D-dimensional vector. The
employed bees search for all the food sources for a maxi-
mum of MaxFES iterations. The search equation is shown as
(2).

Vi, j = Xi, j + rand2 ∗ (Xi, j − Xk, j ) (2)

where i represents the current individual, k, j ∈ {1, 2, . . . ,
SN }, k �= j �= i , rand2 ∈ (−1, 1), and Vi, j is the new solu-
tion in the next generation.

After gathering honey, the employed bees compare the
quality of the former food source with that of the new food.
If the quality of the new food is higher than that of the pre-
vious one, the bees will memorize the location of the new
food source; otherwise, the old one is remained. When the
search stage is finished, the employed bees go back to a dance
area and transmit information about the food sources to the
onlooker bees. According to this information, the onlooker
bees choose good food sources from which to gather honey.
The richer the source is, the higher the probability it will be
selected. The computational formula is shown as (3).

Pi = f i ti/
SN∑

k=1

f i tk (3)

where f i ti is the fitness value of solution I , SN is the num-
ber of individuals, and Pi is the selection probability of the
current solution.

Each individual corresponds to one trial counter. A food
source that could not be improved through s set number of
trials, referred to as the limit, is abandoned. If the trial counter

of a solution exceeds the limit, the scout bee will abandon it
and generate a new one.

2.2 Parameter optimization in using K-means algorithm

The K-means clustering algorithm has become one of the
most frequently used clustering algorithms (Ji et al. 2015;
Macqueen 1967). However, K-means is strongly affected by
the initial centers. Thus, we use the proposed algorithm to
determine the clustering centers.

The idea of the K-means algorithm is as follows: Data
are classified into clusters according to the Euclidean dis-
tance to the center of the cluster. Assume the number of
data objects is n. The sample set is a set of numeric objects
X = {x1, x2, . . . , xn}, and the number of clusters is k(< n).
The aim of the K-means algorithm is to search for a parti-
tion of X into k clusters such that objects belonging to the
same cluster are as similar to each other as possible, whereas
objects belonging to different clusters are as dissimilar as
possible. The process of the K-means algorithm is as fol-
lows:

Step 1 Choose k data objects randomly from the original
dataset X as initial cluster centers

C = {c1, c2, . . . , ck} (4)

Step 2According to the distance calculation Eq. (5), calculate
the distances between each data object x j ( j = 1, 2, . . . , n)

and the selected k cluster centers, defined as d
(
x j , ci

)

(i = 1, 2, . . . , k). Each data object is thus classified into a
cluster with the least Euclidean distance to the center of the
cluster;

Step 3 Recalculate the average value of the data objects in
each cluster as a new cluster center;

Step 4 Repeat Steps 2 and 3 until the center points can not
be changed or the objective function converges.

d ( j, i) =
√(

x j1 − xi1
)2 + (

x j2 − xi2
)2 + · · · + (

x js − xis
)2

(5)

where both j = (
x j1, x j2, . . . , x js

)
and

i = (xi1, xi2, . . . , xis) are s-dimensional data objects. The
aim of the K-means algorithm is to minimize the following
objective function:

J =
k∑

i=1

∑

x j∈ci

∥∥x j − ci
∥∥2 (6)

where J represents the sum of squares of the distances
between all objects in a cluster and the cluster center. ci rep-
resents the value of the i th cluster center, and x j represents
the j th data object belonging to ci .
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Table 1 Test functions

Num Problems Objection function Property

Fun1 Shifted sphere F1(X) =
D∑
i=1

Z2
i + f _bias1 Z = X − O

Unimodal, shifted
Separable, scalable
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −450

Fun2 Shifted Schwefels
Problem 1.2

F2(X) =
D∑
i=1

(
i∑

j=1
Z j

)2

+ f _bias2 Z = X − O
Unimodal, shifted
Non-separable, scalable
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −450

Fun3 Shifted rotated
High conditioned
Elliptic

F3(X) =
D∑
i=1

(106)
i−1
D−1 Z2

i + f _bias3 Z = (X − O) ∗ M
Unimodal, shifted
Rotated, non-separable,
Scalable
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −450

Fun4 Shifted
Schwefels
Problem 1.2 with
Noise in fitness

F4(X) =
⎛

⎝
D∑
i=1

(
i∑

j=1
Z j

)2
⎞

⎠ ∗ (1 + 0.4 |N (0, 1)|)

+ f _bias4

Z = (X − O) ∗ M
Unimodal, shifted
Rotated, non-separable,
Scalable
Noise in fitness
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −450

Fun5 Problem 2.6 with
Global optimum
on Bounds

F5(X) = max { |Ai x − Bi |} + f _bias5 Unimodal
Non-separable
Scalable
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −310

Fun6 Shifted
Rosenbrock

F6(X) =
D−1∑
i=1

(100(Z2
i − Zi+1)

2 + (Zi − 1)2) +
f _bias6

Z = X − O + 1
Basic multimodal
Shifted, non-separable
Scalable
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −390

Fun7 Shifted rotated
Griewanks
Function without
Bounds

F7(X) =
D−1∑
i=1

Z2
i

4000 −
D∏
i=1

cos
(

Zi√
i

)
+ 1 + f _bias7 Z = (X − O) ∗ M

Basic multimodal
Rotated shifted
Non-separable scalable
No bounds for variables x
Initialize population
in[0, 600]D
Global optimum:X∗ = O
is outside of
the initialization
F(X∗) = −180
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Table 1 continued

Num Problems Objection function Property

Fun8 Shifted rotated
Ackleys function
with
Global optimum
On bounds

F8(X) = −20 exp

(
−0.2

√
1
D

D∑
i=1

Z2
i

)

− exp

(
1
D

D∑
i=1

cos(2π Zi )

)
+20+e+ f _bias8

Z = (X − O) ∗ M
Basic multimodal
Shifted, rotated
Non-separable, scalable
Xi ∈ [−32, 32]D
Global optimum:X∗ = O
F(X∗) = −140

Fun9 Shifted rastrigin F9(X) =
D∑
i=1

(Z2
i − 10 cos(2π Zi ) + 10) + f _bias9 Z = X − O

Basic multimodal
Shifted, separable
Scalable
Xi ∈ [−5, 5]D
Global optimum:X∗ = O
F(X∗) = −330

Table 2 Test functions

Num Problems Objection function Property

Fun10 Shifted rotated
Rastrigin

F10(x) =
D∑
i=1

(Z2
i − 10 cos(2π Zi ) + 10) + f _bias10 Z = (X − O) ∗ M

Basic multimodal
Shifted, rotated
Non-separable, scalable
Xi ∈ [−5, 5]D
Global optimum:X∗ = O
F(X∗) = −330

Fun11 Shifted rotated
Weierstrass

F11(x) =
D∑
i=1

(
kmax∑
k=0

[ak cos(2πbk(Zi + 0.5))]
)

−D
kmax∑
k=0

[ak cos(2πbk · 0.5)] + f _bias11

Z = (X − O) ∗ M
Basic multimodal
Shifted, rotated
Non-separable, scalable
Xi ∈ [−0.5, 0.5]D
Global optimum:X∗ = O
F(X∗) = −90

Fun12 Schwefels
Problem 2.13

F12(x) =
D∑
i=1

(Ai − Bi (x))2 + f _bias12 Basic multimodal
Shifted, non-separable
Scalable
χi ∈ [−π, π ]D
Global optimum:X∗ = α

F(X∗) = −460

Fun13 Shifted expanded
Griewanksplus
Rosenbrocks
Function(F8F2)

F13(x) = F8(F2(Z1, Z2)) + F8(F2(Z2, Z3))

+ · · · + F8(F2(ZD, Z1)) + f _bias13
Z = X − O + 1
Basic multimodal
X = [x1, x2, . . . , xD]
Multimodal, Shifted
Non-separable, scalable
Xi ∈ [−3, 1]D
Global optimum:X∗ = O
F(X∗) = −130

Fun14 Shifted rotated
Expanded Scaffer’s
F6 Function

F14(X) = EF(Z1, Z2, . . . , ZD)

= F(Z1, Z2) + F(Z2, Z3)

+ · · ·+F(ZD−1, ZD)+F(ZD, Z1)+ f _bias14

Z = (X − O) ∗ M
Basic multimodal
X = [x1, x2, . . . , xD]
Multimodal, shifted
Non-separable, scalable
Xi ∈ [−100, 100]D
Global optimum:X∗ = O
F(X∗) = −300
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Table 2 continued

Num Problems Objection function Property

Fun15 Hybrid
Composition

f1−2(x) : Rastrigin′sFunction
f3−4(x) : Weierstrassfunction
f5−6(x) : Griewank′sfunction
f7−8(x) : Ackley′sfunction
f9−10(x) : Spherefunction

Composition, multimodal
Separable nearthe
global optimum
(Rastrigin), scalable
A huge number of local optima
Different functions properties
are mixed together
Sphere functions give two
flat areas for the function
Xi ∈ [−5, 5]D
F(X∗) = 120

Fun16 Rotated version of
Hybrid composition
Function F15

Except Mi are different linear
transformation matrixes with
condition number of 2 all other settings are
the same as F15.

Composition, multimodal
Rotated, non-separable
Scalable
A huge number of local optima
Different functions
Properties are mixed together
Sphere functions give
Two flat areas for
The function
Xi ∈ [−5, 5]D
F(X∗) = 120

Fun17 F16 with Noise
in Fitness

F17(X) = G(x) ∗ (1 + 0.2|N (0, 1)|) + f _bias17 Composition, all settings
are the same as F16. Multimodal
Rotated, non-separable, scalable
A huge number of local optima
Different functions properties
are mixed together, sphere
Functions give two flat
areas for the function, with
Gaussian noise in fitness
Xi ∈ [−5, 5]D
F17(X∗) = f _bias17(17) = 120

3 Self-adaptive artificial bee colony algorithm

3.1 Population initialization

Population initialization is an essential phase, as it influences
the convergence of the final solution. To reduce the deviation
of different initial populations, this paper proposes an initial
fixed population. In the first iteration of the algorithm, we use
Eq. (7) to generate a population. This population is saved for
use in later operations.

population = Xmin + rand ∗ (Xmax − Xmin) (7)

where Xmin and Xmax are the upper and lower bounds of the
search space, respectively, and rand is a random number in
the range (−1, 1).

Inspired by Ref. Gao and Liu (2012), we also designed
a novel initialization algorithm that uses chaotic systems
(Alatas 2010) and opposition-based learning method (Rah-
namayan et al. 2008). Different from themethod proposed by
Gao and Liu (2012), cosine function is replaced by sine func-

tion and the range of values become a half of original values
in the novel algorithm. This is because it can avoid repeated
initialization and get better results. As shown in Algorithm
1, the detail steps are as follows. First, the chaotic method is
used to generate the initial population. Next, another popu-
lation is produced by the opposition-based learning method.
The size of the twopopulations is the same.Then,we evaluate
them and figure out the fitness values. We compare them and
the better one is reserved. Finally, the final initial population
is obtained.

3.2 Self-adaptive mechanism

During different stages of evolution, different CSGSs may
be more effective. We develop the SABC-GB algorithm by
introducing a self-adaptive mechanism into the ABC algo-
rithm. We maintain a candidate strategy pool that includes
several effective CSGSs with diverse characteristics. These
CSGSs are used adaptively according to their previous per-
formance in generating promising solutions. The core idea of
the self-adaptive mechanism is as follows: During the evolu-
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Table 3 Test functions

Num Problems Objection function Property

Fun18 Rotated Hybrid
Composition

f1−2(x) : Ackley′sFunction
f3−4(x) : Rastrigin′sFunction
f5−6(x) : SphereFunction
f7−8(x) : WeierstrassFunction
f9−10(x) : Griewank′sFunction

Composition, Multimodal
Rotated, non-separable, scalable
A huge number of local optima
Different functions properties are
mixed together, Sphere Functions
give two flat areas for the
function, A local optimum
is set on the origin
Xi ∈ [−5, 5]D
F(X∗) = 10

Fun19 Rotated Hybrid
Composition Function
with
narrow basin
global optimum

All settings are the same as F18 except σ and λ Composition
Multimodal
Non-separable
Scalable
Xi ∈ [−5, 5]D
X∗ = O1
F(X∗) = 10

Fun20 Rotated Hybrid
Composition Function
with Global Optimum
on the Bounds

All settings are the same as F18
except after load the data file

Composition
Multimodal
Non-separable
Scalable
Xi ∈ [−5, 5]D
X∗ = O1
F(X∗) = 10

Fun21 Rotated Hybrid
Composition Function

f1−2(x) : RotatedExpandedScaffer′sF6Function
f3−4(x) : Rastrigin′sFunction
f5−6(x) : F8F2Function
f7−8(x) : WeierstrassFunction
f9−10(x) : Griewank′sFunction

Composition, Multimodal
Rotated, Non-separable
Scalable
Xi ∈ [−5, 5]D
X∗ = O1
F(X∗) = 360

Fun22 Rotated Hybrid
Composition Function
with
High Condition Number
Matrix

All settings are the same as F21 except Mi Composition , Multimodal
Non-separable
Scalable
Xi ∈ [−5, 5]D
X∗ = O1
F(X∗) = 360

Fun23 Non-Continuous
Rotated Hybrid
Composition Function

All settings are the same as
F21 except x j and round

Composition ,Multimodal
Non-separable
Scalable
Xi ∈ [−5, 5]D
X∗ = O1
F(X∗) = 360

Fun24 Rotated Hybrid
Composition Function

f1(x) : WeierstrassFunction
f2(x) : RotatedExpandedScaffer′sF6Function
f3(x) : F8F2Function, f4(x) : Ackley′sFunction
f5(x) : Rastrigin′sFunction, f6(x) : Griewank′sFunction
f7(x) : Non − ContinuousExpandedScaffer′sF6Function
[ f8(x) : Non − ContinuousRastrigin′sFunction
f9(x) : HighConditionedEllipticFunction
f10(x) : SphereFunctionwithNoiseinFitness

Composition, Multimodal
Rotated, Non-separable
Scalable
Xi ∈ [−5, 5]D
X∗ = O1
F(X∗) = 260

Fun25 Rotated Hybrid
Composition Function
without bounds

All settings are the same as F24 except
no exact search range set for this test function

Composition, Multimodal
Non-separable
Scalable
Xi ∈ [2, 5]D
X∗ = O1
F(X∗) = 260
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Table 4 Statistical results
obtained by SABC-GB
algorithm on 25 independent
runs with 30-D

Functions Optimum Best Worst Mean Std

Fun1 5.68E−14 5.68E−14 5.68E−14 5.68E−14 0.00E+00

Fun2 9.37E+03 9.37E+03 1.09E+04 1.01E+04 6.19E+02

Fun3 1.04E+07 1.04E+07 1.11E+07 1.08E+07 3.23E+05

Fun4 3.13E+04 3.13E+04 3.24E+04 3.19E+04 4.67E+02

Fun5 6.49E+03 6.49E+03 8.43E+03 7.41E+03 7.94E+02

Fun6 1.31E−01 1.31E−01 3.83E−01 2.52E−01 1.03E−01

Fun7 4.70E+03 4.70E+03 4.70E+03 4.70E+03 0.00E+00

Fun8 2.08E+01 2.08E+01 2.09E+01 2.09E+01 5.40E−02

Fun9 5.68E−14 5.68E−14 5.68E−14 5.68E−14 0.00E+00

Fun10 1.27E+02 1.27E+02 1.38E+02 1.34E+02 5.34E+00

Fun11 2.47E+01 2.47E+01 2.52E+01 2.50E+01 2.66E−01

Fun12 8.60E+03 8.60E+03 1.34E+04 1.05E+04 2.05E+03

Fun13 4.64E−01 4.64E−01 8.69E−01 7.39E−01 1.94E−01

Fun14 1.26E+01 1.26E+01 1.27E+01 1.27E+01 4.65E−02

Fun15 2.74E−05 2.74E−05 4.43E−03 2.39E−03 1.81E−03

Fun16 1.23E+02 1.23E+02 1.76E+02 1.58E+02 2.51E+01

Fun17 2.31E+02 2.31E+02 2.39E+02 2.35E+02 3.37E+00

Fun18 9.08E+02 9.08E+02 9.11E+02 9.09E+02 1.32E+00

Fun19 9.08E+02 9.08E+02 9.11E+02 9.10E+02 1.13E+00

Fun20 9.08E+02 9.08E+02 9.11E+02 9.09E+02 1.47E+00

Fun21 4.93E+02 4.93E+02 5.05E+02 5.00E+02 0.00E+00

Fun22 9.35E+02 9.35E+02 9.41E+02 9.38E+02 2.68E+00

Fun23 5.34E+02 5.34E+02 5.34E+02 5.34E+02 0.00E+00

Fun24 2.00E+02 2.00E+02 9.62E+02 4.54E+02 3.59E+02

Fun25 1.64E+03 1.64E+03 1.64E+03 1.64E+03 0.00E+00

Mean and std denote the average and standard deviation of the corresponding function values obtained in 25
runs

tion process, eachCSGS is assigned a probability value. Each
CSGS is selected according to the probability for each solu-
tion through roulette wheel selection. The new individuals
are then generated by the selected CSGS.

In the initialization stage, each CSGS is given an equal
selection probability. The selection probability is the recip-
rocal of the number of CSGSs. Flag matrices for successful
and failed evolutions are denoted as nsFlagSABC and
n f FlagSABC , respectively. LP is defined as the fixed num-
ber of previous generations. The total success and total failure
flag matrices of each CSGS in LP are termed Skg and Fkg ,
respectively. These two matrices are initially null.
First, for each individual, one strategy is selected from the
CSGS pool through roulette wheel selection. Next, with the
selected CSGS, a new individual is generated and its fit-
ness value is calculated. If the new fitness value is better
than the previous one, the matrix nsFlagSABC is updated.
Otherwise, the matrix n f FlagSABC is updated. After the
evolution of all individuals, statistical information about the
flag matrices nsFlagSABC and n f FlagSABC is recorded
in Skg and Fkg . Once the iteration number reaches LP , new

Algorithm 1 : COL initialization algorithm
Step1) Initialization: iteration Iter = 300, population size

PS = 30 or 50, and dimension D = 60 or 100
Step2) For i = 1 to PS

For j = 1 to D
Randomly generate a variable R ∈ (0, 0.5)
R = COS(�R)

End
Pi, j = Xmin, j R(Xmax, j − Xmin, j )

End
End

Step3) For i = 1 to PS
For j = 1 to D
Qi, j = Xmin, j + Xmax, j − Pi, j
End

End
Step4) Selecting SN fittest individuals from set

the{P(SN ) ∪ Q(SN )}as initial population.

selection probabilities for all strategies, P ′
q , are calculated

through Skg and Fkg . This process is described in Eq. (8),
and the probabilities are normalized according to Eq. (9).
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Table 5 Statistical results
obtained by SABC-GB
algorithm on 25 independent
runs with 50-D

Functions Optimum Best Worst Mean Std

Fun1 1.71E−13 1.71E−13 2.84E−13 2.27E−13 4.64E−14

Fun2 5.67E+04 5.67E+04 6.55E+04 6.02E+04 3.79E+03

Fun3 4.45E+07 4.45E+07 6.70E+07 5.85E+07 9.96E+06

Fun4 1.25E+05 1.25E+05 1.38E+05 1.30E+05 6.23E+03

Fun5 2.20E+04 2.20E+04 2.48E+04 2.37E+04 1.26E+03

Fun6 1.18E+00 1.18E+00 5.74E+00 3.77E+00 1.91E+00

Fun7 6.20E+03 6.20E+03 6.20E+03 6.20E+03 0.00E+00

Fun8 2.10E+01 2.10E+01 2.10E+01 2.10E+01 0.00E+00

Fun9 1.71E−13 1.71E−13 1.71E−13 1.71E−13 0.00E+00

Fun10 3.70E+02 3.70E+02 4.64E+02 4.24E+02 3.92E+01

Fun11 5.38E+01 5.38E+01 5.77E+01 5.60E+01 1.61E+00

Fun12 4.56E+04 4.56E+04 7.55E+04 5.78E+04 1.28E+04

Fun13 1.23E+00 1.23E+00 1.85E+00 1.58E+00 2.61E−01

Fun14 2.23E+01 2.23E+01 2.28E+01 2.26E+01 1.98E−01

Fun15 1.24E+01 1.24E+01 3.58E+01 2.27E+01 9.77E+00

Fun16 3.21E+02 3.21E+02 3.47E+02 3.10E+02 3.58E+01

Fun17 4.07E+02 4.07E+02 4.52E+02 4.33E+02 1.93E+01

Fun18 9.35E+02 9.35E+02 9.44E+02 9.39E+02 4.18E+00

Fun19 9.29E+02 9.29E+02 9.45E+02 9.37E+02 6.34E+00

Fun20 9.32E+02 9.32E+02 9.40E+02 9.35E+02 3.88E+00

Fun21 1.02E+03 1.02E+03 1.02E+03 1.02E+03 5.59E−01

Fun22 9.46E+02 9.46E+02 1.03E+03 9.91E+02 3.46E+01

Fun23 1.02E+03 1.02E+03 1.02E+03 1.02E+03 0.00E+00

Fun24 1.06E+03 1.06E+03 1.09E+03 1.08E+03 1.37E+01

Fun25 1.68E+03 1.68E+03 1.68E+03 1.69E+03 5.95E+00

Mean and std denote the average and standard deviation of the corresponding function values obtained in 25
runs

Fig. 1 Convergence characteristics of SABC-GB and SABC-GB2 on
fun1 and fun2. Note: because we do not know the range of the possible
fitness value (y-axis) in advance, in this paper, we suppose the fitness

value range is big enough, in order to make the figure seems clearly, we
convert the fitness to the correspond fitness
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Table 6 Optimization results of GABC, ABC/best/1, ABC/best/2 and SABC-GB on 25 test functions with 30-D

Functions GABC ABC/best/1 ABC/best/2 SABC-GB

Mean Std Mean Std Mean Std Mean Std

Fun1 1.09E−02 6.33E−03 1.97E−12 1.93E−13 3.00E+00 1.12E−01 5.68E–14 0.00E+00

Fun2 2.99E+04 6.02E+03 3.55E+04 1.96E+03 4.04E+04 1.09E+03 1.01E+04 6.19E+02

Fun3 4.88E+07 7.10E+06 5.28E+07 9.41E+06 9.14E+07 9.41E+06 1.08E+07 3.23E+05

Fun4 4.60E+04 1.95E+03 5.06E+04 5.02E+03 4.74E+04 3.49E+03 3.19E+04 4.67E+02

Fun5 1.09E+04 2.90E+02 9.34E+03 5.34E+02 1.09E+04 6.53E+02 7.41E+03 7.94E+02

Fun6 1.44E+03 7.37E+02 1.86E+02 4.11E+01 4.74E+04 4.06E+04 2.52E–01 1.03E–01

Fun7 4.70E+03 8.97E−01 4.70E+03 5.15E−02 4.70E+03 4.89E−01 4.70E+03 0.00E+00

Fun8 2.09E+01 9.03E−02 2.09E+01 1.10E−02 2.09E+01 2.28E–03 2.09E+01 5.40E−02

Fun9 3.64E+01 4.88E+00 2.03E−12 2.02E−12 4.69E+01 3.96E+00 5.68E–14 0.00E+00

Fun10 3.11E+02 9.17E+00 2.82E+02 1.14E+01 3.08E+02 1.21E+01 1.34E+02 5.34E+00

Fun11 3.36E+01 3.98E−01 3.32E+01 1.45E+00 3.46E+01 4.65E−01 2.50E+01 2.66E–01

Fun12 8.10E+04 2.49E+04 8.82E+04 1.61E+04 1.64E+05 2.07E+04 1.05E+04 2.05E+03

Fun13 7.58E+00 4.75E−01 7.59E+00 7.45E−01 1.03E+01 5.58E−01 7.39E–01 1.94E–01

Fun14 1.32E+01 1.04E−01 1.33E+01 3.39E–02 1.33E+01 3.55E−02 1.27E+01 4.65E−02

Fun15 3.36E+02 1.19E+02 3.29E+02 1.45E+02 4.87E+02 2.94E+00 2.39E–03 1.81E–03

Fun16 3.66E+02 4.10E+01 3.17E+02 1.11E+01 3.72E+02 2.98E+01 1.58E+02 2.51E+01

Fun17 4.65E+02 2.36E+01 4.25E+02 8.83E+00 4.33E+02 6.07E+00 2.35E+02 3.37E+00

Fun18 9.24E+02 2.32E+00 9.21E+02 2.16E+00 9.29E+02 1.93E+00 9.09E+02 1.32E+00

Fun19 9.32E+02 1.76E+00 9.21E+02 1.73E+00 9.25E+02 4.28E+00 9.10E+02 1.13E+00

Fun20 9.27E+02 9.21E–01 9.23E+02 3.07E+00 9.32E+02 1.86E+00 9.09E+02 1.47E+00

Fun21 5.14E+02 1.62E+00 5.07E+02 5.87E−01 7.49E+02 3.81E+01 5.00E+02 0.00E+00

Fun22 1.07E+03 1.04E+01 1.04E+03 1.60E+01 1.05E+03 1.19E+01 9.38E+02 2.68E+00

Fun23 6.99E+02 1.49E+00 6.12E+02 2.13E+01 8.78E+02 3.53E+01 5.34E+02 0.00E+00

Fun24 1.18E+03 1.79E+01 1.07E+03 3.25E+01 1.10E+03 8.10E+00 4.54E+02 3.59E+02

Fun25 1.71E+03 3.65E+00 1.68E+03 5.07E+00 1.68E+03 1.54E+01 1.64E+03 0.00E+00

Mean and std denote the average and standard deviation of the corresponding function values obtained in 25 runs, and the best results in terms of
mean values are in bold

P ′
q =

⎧
⎪⎪⎨

⎪⎪⎩

LP∑
k=1

Skg/

(
LP∑
k=1

Skg +
LP∑
k=1

Fkg

)
,

LP∑
k=1

Skg �= 0

LP∑
k=1

Skg/

(
ε +

LP∑
k=1

Fkg

)
, Otherwise

(8)

Pq = P ′
q/

Q∑

q=1

P ′
q (9)

where LP is a fixed integer. In this paper, LP is set to 10.
Pq represents the success rate of candidate solutions gener-
ated by one strategy successfully entering the next generation
within the previous LP generations. The small constant value
ε is used to avoid division by zero.

3.3 Self-adaptive candidate strategies

We now investigate several effective CSGSs from the rele-
vant literature and choose from among them to construct the
strategy candidate pool. Theoretical studies of the optimal

pool size and the selection of strategies used in the pool are
attractive research issues and deserve further investigation.

The best solutions in the current population are very useful
sources that can be used to improve the convergence per-
formance. Gao proposed the ABC/best/1 and ABC/best/2
strategies (Gao et al. 2012), whereby the best solutionswhich
have been explored are used to direct the movement of the
current population. The corresponding strategies are devised
as follows:

Vi, j = Xbest, j + φi, j (Xr1, j − Xr2, j ) (10)

Vi, j = Xbest, j + φi, j (Xr1, j − Xr2, j ) + φi, j (Xr3, j − Xr4, j ) (11)

where the indices i , r1, r2, r3, and r4 are different integers
chosen at random from {1, 2, . . . , SN }. Xbest is the individ-
ual vector with the best fitness in the current population, and
j is a random integer chosen from {1, 2, . . . , D}.φi, j is a
random number in the range [−1, 1].
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Table 7 Optimization results of GABC, ABC/best/1, ABC/best/2 and SABC-GB on 25 test functions with 50-D

Functions GABC ABC/best/1 ABC/best/2 SABC-GB

Mean Std Mean Std Mean Std Mean Std

Fun1 1.08E+00 7.42E−01 6.33E−11 1.10E−11 5.77E+02 1.09E+02 2.27E–13 4.64E–14

Fun2 9.92E+04 3.74E+03 1.06E+05 1.22E+04 1.13E+05 3.76E+03 6.02E+04 3.79E+03

Fun3 2.20E+08 1.68E+07 1.84E+08 4.77E+07 2.81E+08 1.64E+07 5.85E+07 9.96E+06

Fun4 1.48E+05 1.68E+04 1.31E+05 7.70E+03 1.44E+05 7.06E+03 1.30E+05 6.23E+03

Fun5 2.64E+04 6.50E+02 2.47E+04 1.20E+03 2.82E+04 1.17E+03 2.37E+04 1.26E+03

Fun6 2.19E+04 2.09E+03 3.24E+03 1.33E+03 3.53E+06 1.84E+06 3.77E+00 1.91E+00

Fun7 6.24E+03 1.39E+01 6.22E+03 1.85E+00 6.23E+03 1.19E+01 6.20E+03 0.00E+00

Fun8 2.11E+01 9.00E-03 2.11E+01 1.82E−02 2.11E+01 4.27E−02 2.10E+01 0.00E+00

Fun9 1.10E+02 9.04E+00 2.97E−12 6.18E−13 1.58E+02 7.00E+00 1.71E–13 0.00E+00

Fun10 8.28E+02 1.14E+01 6.61E+02 1.17E+01 7.68E+02 2.39E+01 4.24E+02 3.92E+01

Fun11 6.39E+01 6.58E–01 6.46E+01 6.63E−01 6.61E+01 6.76E−01 5.60E+01 1.61E+00

Fun12 4.65E+05 8.09E+04 4.69E+05 4.79E+03 6.87E+05 1.19E+05 5.78E+04 1.28E+04

Fun13 2.12E+01 1.75E+00 1.82E+01 1.90E+00 2.86E+01 1.11E+00 1.58E+00 2.61E–01

Fun14 2.30E+01 2.00E−01 2.31E+01 2.34E−01 2.32E+01 7.20E–02 2.26E+01 1.98E−01

Fun15 3.93E+02 6.88E+01 3.17E+02 8.96E+01 4.74E+02 3.22E+00 2.27E+01 9.77E+00

Fun16 4.26E+02 3.91E–01 4.27E+02 1.37E+00 4.58E+02 4.60E+00 3.10E+02 3.58E+01

Fun17 8.52E+02 3.51E+01 7.56E+02 3.98E+01 7.75E+02 1.26E+01 4.33E+02 1.93E+01

Fun18 9.89E+02 2.07E+01 9.71E+02 9.33E+00 1.00E+03 8.80E+00 9.39E+02 4.18E+00

Fun19 9.91E+02 8.55E+00 9.68E+02 1.30E+00 1.00E+03 1.04E+01 9.37E+02 6.34E+00

Fun20 9.91E+02 7.74E+00 9.75E+02 3.36E+00 9.94E+02 6.69E+00 9.35E+02 3.88E+00

Fun21 1.04E+03 1.86E+00 1.04E+03 1.16E+00 1.04E+03 2.88E+00 1.02E+03 5.59E–01

Fun22 1.20E+03 5.75E+00 1.13E+03 2.46E+01 1.15E+03 1.92E+01 9.91E+02 3.46E+01

Fun23 1.06E+03 3.30E+00 1.04E+03 3.69E+00 1.05E+03 3.43E+00 1.02E+03 0.00E+00

Fun24 1.40E+03 1.46E+01 1.36E+03 5.29E+00 1.38E+03 1.36E+01 1.08E+03 1.37E+01

Fun25 1.90E+03 4.63E+00 1.85E+03 9.93E+00 1.85E+03 1.59E+01 1.69E+03 5.95E+00

Mean and std denote the average and standard deviation of the corresponding function values obtained in 25 runs, and the best results in terms of
mean values are in bold

Besides, Zhu proposed the GABC algorithm (Zhu and
Kwong 2010), which can be written as follows:

Vi, j = X i, j + φi, j (Xi, j − Xk, j ) + ϕi, j (xbest, j − xi, j ) (12)

where Xk, j is a random individual in the population and
Xbest, j is the individual with the best fitness in the current
population. The indices i , r1, r2, r3, and r4 aremutually exclu-
sive integers chosen at random from {1, 2, . . . , SN } , and j is
a random integer chosen from {1, 2, . . . , D}. φi, j is a random
number in the range [−1, 1], and φi, j is a uniform random
number in the range [0,C], where C is a nonnegative con-
stant. In this paper, C is set to 1.5.

We use GABC, ABC/best/1, and ABC/best/2 as the
CSGSs of the SABC-GB algorithm. For a certain optimiza-
tion problem, the selection probability of a good CSGS
should be higher than that of the others. As the generation
number increases, the probabilities will evolve until the best

CSGS for the problem has been determined. A description
of this framework is present in Algorithm 2.

4 Experiments

4.1 Benchmark functions and parameter settings

We employed 25 benchmark functions to test the perfor-
mance of the SABC-GB algorithm. A detailed description of
these test functions can be found in Suganthan et al. (2005).
The functions are numbered from f1 to f25. The specific
functions are listed in Tables 1, 2 and 3.

The number of food sources is equal to the number of
employed or onlooker bees (SN ). In the experiments, we
considered solution dimensions of 30 and 50. To ensure a
fair comparison, the populations for these dimensions were
initialized using the same random seeds, and the number of
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Fig. 2 Convergence performance of SABC-GB, GABC, ABC/best/1 and ABC/best/2. a Fun2 with D=30. b Fun2 with D=50. c (c) Fun13 with
D=30. d Fun13 with D=50

employed bees was set to half the population size, respec-
tively. The maximum number of cycles for the algorithm is
related to the dimension D and number of individuals ps,
lim it = 0.6 ∗ (ps/2) ∗ D. The fixed number of previous
generations LP = 10. The number of decision variables

was set to the same for all 25 test functions. For each algo-
rithm on each function, 25 independent runs were conducted
with 500,000 number of function evaluations (FEs) as the
termination criterion.
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Algorithm 2 : SABC-GB algorithm
Step1) Initialization
Step1.1) Use Algorithm 1 to produce the initial popu-
lation P (P = {x1, x2, . . . , xSN })

Step1.2) Initialize strategy selection probability
Pq (q = 1, 2, . . . , Q), Q is the number of available s-
trategies, LP , nsFlagSABC , n f FlagSABC , Skg
and Fkg

Step1.3) Calculate the fitness values of P
Step2) Employed Bee Phase
Step2.1) For (fitCount<MaxFES fitCounti++),
SN,CONTINUE
Step2.1.1) The current strategy can be selected by
selection algorithm, such as roulette wheel method

Step2.1.2) Using the current strategy from the can-
didate pool to generate a new solution and calcu-
late fitness value of the new solution

Step2.2) If find the better value, update the solution,
else tr ial = tr ial + 1

Step2.3) Update the memory flag matrixes
nsFlagSABC and n f FlagSABC

Step3) Calculate probability values
Step4) Onlooker Bee Phase
Step4.1) Compare probability values
Step4.1.1) Using the current strategy from the can-
didate pool to generate a new solution and calcu-
late fitness value of the new solution

Step4.1.2) If find the better value, update the solu-
tion, else trial=trial+1

Step4.1.3) Update the memory flag matrixes
nsFlagSABC and n f FlagSABC

Step4.2) If circulation achieve LP, update Skg and Fkg
End for

Step5) Scout Bee Phase
If max(trial)>limit, produce one individual randomly

Step6) If FES>= MaxFES, output the optimal solution,
else go to step2

4.2 Experimental results

We compared the SABC-GB algorithm to GABC (Zhu and
Kwong 2010), ABC/best (Gao et al. 2012), ABC1 (Gao et al.
2012), and ABC2 (Gao et al. 2012). The experimental results
are present in the following tables. Through the experiment,
we found that the performance of SABC-GB, which consists
of three self-adaptive candidate strategies, is better than that
of the other algorithms. This section examines the perfor-
mance of each of the three strategies employed in SABC-GB
in comparison with a number of previous algorithms. The
statistical results of SABC-GB are listed in Tables 4 and 5,
which present the optimum, best, worst, mean, and standard
deviation of each benchmark function. As shown in Tables 4
and 5, SABC-GB found the optimum solution with both 30
and 50 dimensions. From Table 4, it is apparent that SABC-
GB reached the same values for Fun1, Fun7, Fun9, Fun21,
Fun23, and Fun25 in the 30-D case, and similarly for Fun7,
Fun8, Fun9, and Fun23 in the 50-D case. SABC-GB can dis-
cover close results in most functions. Overall, the efficiency

of SABC-GB became lower when the number of dimensions
increased.

4.2.1 Performance comparison between SABC-GB and
SABC-GB2

As all of the test functions are minimization problems,
smaller fitness values correspond to better solutions. For
example, Fig. 1 illustrates the convergence characteristics of
Fun1 and Fun2 in the 25 independent runs using SABC-GB
and SABC-GB2 (SABC-GB2 is SABC-GB without Algo-
rithm 1). It can be seen that, in the later stages of evolution,
SABC-GB2 became trapped earlier than SABC-GB. More-
over, the convergence rate of SABC-GB2 was slower. The
primary reason is that the distribution of the initial popula-
tion has a significant influence on the exploitation ability of
this algorithm, and good exploration directly affects the con-
vergence rate and quality of the solution, especially in the
later phases of evolution. Obviously, the novel initialization
approach employing chaotic systems and opposition-based
learning reduces the effects of these deficiencies.We research
the conclusion that initialization with Algorithm 1 is better
than the random initialization for almost all of the test func-
tions.

4.2.2 Performance comparison between different strategies

The performance of SABC-GB was compared with that of
GABC (Zhu and Kwong 2010), ABC/best/1 (Gao et al.
2012), and ABC/best/2 (Gao et al. 2012). The results present
in Tables 6 and 7 in terms of the mean and standard deviation
of solutions are obtained in the 25 independent runs by each
algorithm. Figure 2 presents a comparison in terms of the
convergence characteristics of the evolutionary processes in
solving the three different kinds of problems.

Interestingly, SABC-GB found the exact minimum of
Fun1 and Fun9 in all dimensions. We can also observe that
GABC and ABC/best/2 do not find the precise solutions.
Hence, these kinds of problems are not easy, but can gener-
ally be solved by SABC-GB with a high degree of accuracy.
The solutions and the convergence rates of the different algo-
rithms are shown in Tables 6, 7 and Fig. 2. From these
results, it is clear that SABC-GB finds the most accurate
solutions for most test functions and has the fastest conver-
gence rate. In particular, SABC-GB gives highly accurate
results for most test functions except Fun5 withD=30, Fun7
withD=30, Fun24withD=50 andFun25withD=50.More-
over, the experimental results demonstrate that the efficiency
of the four algorithms is similar on Fun8. The standard
deviation of the solutions given by SABC-GB is worse
in the 50-D case than for 30-D. Nonetheless, SABC-GB
outperforms GABC, ABC/best/1, and ABC/best-/2 signifi-
cantly, with better mean values in all dimensions. In short,
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Table 8 Optimization results of SABC-GB, SACABC, ISABC, QAABC and SSABC on 25 test functions with 30-D

Functions SACABC ISABC QAABC SSABC SABC-GB

Mean Std Mean Std Mean Std Mean Std Mean Std

Fun1 1.33E−13 2.68E−14 2.40E+04 1.35E+03 1.14E−13 0.00E+00 1.67E+00 2.08E−01 5.68E−14 0.00E+00

Fun2 2.50E+04 3.53E+03 3.80E+04 2.00E+03 1.80E+04 9.60E+02 1.04E+04 1.25E+03 1.01E+04 6.19E+02

Fun3 3.71E+07 5.08E+06 5.16E+07 7.68E+06 1.72E+07 1.21E+06 1.10E+07 2.33E+06 1.08E+07 3.23E+05

Fun4 4.56E+04 2.13E+03 6.47E+04 8.59E+03 4.06E+04 5.56E+03 2.68E+04 7.80E+03 3.19E+04 4.67E+02

Fun5 6.74E+03 7.52E+02 1.70E+04 1.25E+03 8.91E+03 9.53E+02 6.77E+03 1.17E+03 7.41E+03 7.94E+02

Fun6 1.06E+01 1.28E+00 2.46E+10 3.21E+09 2.27E+00 2.17E+00 8.24E+02 7.71E+01 2.52E−01 1.03E−01

Fun7 4.70E+03 6.14E−05 5.28E+03 1.97E+02 3.07E+03 5.74E+01 4.70E+03 6.14E−05 4.70E+03 0.00E+00

Fun8 2.10E+01 4.79E−02 2.09E+01 7.28E−02 2.09E+01 1.83E−02 2.08E+01 6.94E−02 2.09E+01 5.40E−02

Fun9 1.14E−13 0.00E+00 1.77E+02 6.93E+00 1.52E−13 2.68E−14 1.17E+00 1.23E−01 5.68E−14 0.00E+00

Fun10 2.30E+02 1.02E+01 5.77E+02 7.90E+01 1.97E+02 5.48E+00 2.43E+02 6.32E+00 1.34E+02 5.34E+00

Fun11 3.24E+01 3.71E−01 2.95E+01 5.74E−01 2.62E+01 1.18E+00 2.65E+01 1.04E+00 2.50E+01 2.66E−01

Fun12 2.84E+04 3.01E+03 1.90E+05 2.27E+04 1.58E+04 3.26E+03 1.75E+04 4.23E+03 1.05E+04 2.05E+03

Fun13 2.08E+00 1.86E−01 1.69E+02 4.40E+01 1.33E+00 7.91E−02 1.46E+00 1.13E−01 7.39E−01 1.94E−01

Fun14 1.35E+01 1.25E−01 1.33E+01 1.24E−01 1.28E+01 1.57E−01 1.27E+01 1.56E−01 1.27E+01 4.65E−02

Fun15 6.69E+01 6.54E+00 4.92E+02 4.38E+01 3.30E+01 1.47E+00 1.85E+01 4.66E+00 2.39E−03 1.81E−03

Fun16 2.44E+02 1.19E+01 4.71E+02 7.58E+01 2.07E+02 1.66E+01 2.23E+02 2.25E+01 1.58E+02 2.51E+01

Fun17 3.61E+02 1.60E+01 5.67E+02 3.53E+01 3.27E+02 4.74E+01 2.74E+02 1.48E+01 2.35E+02 3.37E+00

Fun18 9.12E+02 4.88E−01 9.92E+02 3.46E+01 8.80E+02 5.29E+01 8.82E+02 4.80E+01 9.09E+02 1.32E+00

Fun19 9.12E+02 1.51E+00 9.87E+02 8.38E+00 9.19E+02 2.42E+00 8.79E+02 4.40E+01 9.10E+02 1.13E+00

Fun20 9.14E+02 1.56E+00 9.92E+02 1.11E+01 9.18E+02 2.04E+00 9.92E+02 4.71E+01 9.09E+02 1.47E+00

Fun21 5.00E+02 4.68E−13 1.23E+03 3.79E+01 5.00E+02 6.92E−11 5.00E+02 1.55E−01 5.00E+02 0.00E+00

Fun22 9.97E+02 6.21E+00 1.18E+03 3.54E+01 1.02E+03 1.18E+01 1.03E+03 2.54E+01 9.38E+02 2.68E+00

Fun23 5.34E+02 9.18E−04 1.17E+03 1.56E+01 5.34E+02 7.32E−01 5.34E+02 9.01E−04 5.34E+02 0.00E+00

Fun24 2.61E+02 5.40E+00 1.16E+03 5.75E+01 2.10E+02 4.27E+00 2.07E+02 2.79E+00 4.54E+02 3.59E+02

Fun25 1.65E+03 2.75E+00 1.76E+03 1.97E+01 1.63E+03 1.17E+01 1.64E+03 1.95E+00 1.64E+03 0.00E+00

Mean and std denote the average and standard deviation of the corresponding function values obtained in 25 runs

SABC-GB has better exploration and exploitation abili-
ties.

It can also be seen from these results that the proposed
algorithm finds better solutions for most functions. Fig-
ure 2 shows the change in fitness of SABC-GB, GABC,
ABC/best/1, and ABC/best/2 for Fun2, Fun13, and Fun25,
respectively. These functions are from different classes.
Obviously, the convergence speed of SABC-GB is faster
than that of the other algorithms. Although the optimization
process is similar in the intermediate phase of some prob-
lems, SABC-GB eventually gives better solutions than the
other algorithms. From these tables, we can conclude that
the SABC-GB algorithm is better for global optimization
problems than the other algorithms. The proposed SABC-GB
avoids becoming trapped in local optimawhile improving the
global search ability.

4.2.3 Performance comparisons between the proposed
algorithm with other self-adaptive algorithms

To further verify the efficiency and superiority of SAB
C-GB, its performance was compared with that of some

recent excellent self-adaptive algorithms, namely SACABC
(Li and Yin 2014), ISABC (Rajasekhar and Pant 2014),
QAABC (He et al. 2013), and SSABC (Liu et al. 2015).
These algorithmswere applied to unimodal, multimodal, and
composite benchmark functions. The optimization results of
SABC-GB, SA

CABC, ISABC, QAABC, and SSABC on 25 test func-
tions with different dimensions are shown in Tables 8 and 9.
Overall, the final solutions generated by SABC-GB are better
than those given by the other self-adaptive algorithms for all
benchmark functions. This is because SABC-GB employs a
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Table 9 Optimization results of SABC-GB, SACABC, ISABC, QAABC and SSABC on 25 test functions with 50-D

Functions SACABC ISABC QAABC SSABC SABC-GB

Mean Std Mean Std Mean Std Mean Std Mean Std

Fun1 3.39E−12 1.00E−12 8.72E+04 3.00E+04 5.03E−10 1.62E−10 1.17E+01 2.94E+00 2.27E−13 4.64E−14

Fun2 8.20E+04 2.69E+03 1.15E+05 4.36E+03 5.87E+04 3.66E+03 4.14E+04 1.81E+03 6.02E+04 3.79E+03

Fun3 9.74E+07 1.77E+07 3.38E+08 6.30E+07 6.24E+07 6.69E+06 3.77E+07 3.79E+06 5.85E+07 9.96E+06

Fun4 1.20E+05 7.15E+04 1.63E+05 1.95E+04 1.21E+05 1.29E+04 8.31E+04 6.43E+03 1.30E+04 6.23E+03

Fun5 2.16E+04 7.52E+02 3.05E+04 2.25E+03 2.20E+04 1.70E+03 2.65E+04 6.57E+02 2.37E+04 1.26E+03

Fun6 8.99E+01 2.03E+01 1.00E+11 2.14E+10 3.52E+01 1.01E+01 5.00E+03 9.29E+02 3.77E+00 1.91E+00

Fun7 6.20E+03 7.65E−06 9.56E+03 6.80E+02 7.23E+03 1.13E+02 6.20E+03 2.44E−03 6.20E+03 0.00E+00

Fun8 2.12E+01 3.07E−02 2.11E+01 4.19E−03 2.11E+01 7.09E−03 2.11E+01 4.03E−02 2.10E+01 0.00E+00

Fun9 6.88E−08 5.94E−09 4.68E+02 9.20E+00 6.39E−02 7.79E−02 8.40E+00 1.16E−02 1.71E−13 0.00E+00

Fun10 5.51E+02 3.39E+01 1.17E+03 7.42E+01 5.52E+02 3.65E+01 7.56E+02 4.21E+01 4.24E+02 3.92E+01

Fun11 6.15E+01 5.17E−01 5.59E+01 1.51E+00 5.69E+01 1.68E+00 5.53E+01 1.33E+00 5.60E+01 1.61E+00

Fun12 1.35E+05 4.22E+04 1.40E+06 6.97E+04 1.11E+05 3.81E+04 1.18E+05 1.59E+04 5.78E+04 1.28E+04

Fun13 4.94E+00 3.00E−01 1.19E+03 2.24E+02 3.85E+00 6.50E−02 3.30E+00 1.66E−01 1.58E+00 2.61E−01

Fun14 2.31E+01 2.07E−01 2.29E+01 2.01E−01 2.27E+01 9.81E−01 2.28E+01 3.21E−01 2.26E+01 1.98E−01

Fun15 8.54E+01 1.12E+01 6.15E+02 4.31E+01 5.21E+01 9.86E+00 4.55E+01 1.66E+01 2.27E+01 9.77E+00

Fun16 3.71E+02 2.94E+01 7.01E+02 6.47E+01 3.46E+02 1.14E+01 3.51E+02 4.29E+01 3.10E+02 3.58E+01

Fun17 5.81E+02 1.95E+01 8.88E+02 7.27E+01 5.48E+02 3.29E+01 4.90E+02 2.79E+01 4.33E+02 1.93E+01

Fun18 9.43E+02 4.56E+00 1.14E+03 2.14E+01 9.69E+02 8.91E+00 9.65E+02 1.36E+01 9.39E+02 4.18E+00

Fun19 9.37E+02 5.60E+01 1.13E+03 5.32E+01 9.75E+02 7.31E+00 9.66E+02 1.49E+01 9.37E+02 6.34E+00

Fun20 9.43E+02 4.80E+00 1.16E+03 2.90E+01 9.69E+02 1.37E+01 9.54E+02 7.76E+00 9.35E+02 3.88E+00

Fun21 5.25E+02 2.16E+00 1.31E+03 4.18E+01 5.00E+02 1.20E−01 5.02E+02 6.31E−01 1.02E+03 5.59E−01

Fun22 1.03E+03 5.19E+01 1.37E+03 5.06E+01 1.11E+03 5.21E+01 1.10E+03 4.61E+01 9.91E+02 3.46E+01

Fun23 5.69E+03 1.31E+01 1.15E+03 5.33E+01 5.39E+03 5.17E−02 5.39E+03 1.64E−02 1.02E+03 0.00E+00

Fun24 1.21E+03 4.04E+00 1.47E+03 4.31E+01 1.29E+03 6.57E+00 1.31E+03 5.27E+00 1.08E+03 1.37E+01

Fun25 1.78E+03 6.20E+00 1.94E+03 2.49E+01 1.85E+03 1.09E+01 1.73E+03 7.15E+00 1.69E+03 5.95E+00

Mean and std denote the average and standard deviation of the corresponding function values obtained in 25 runs

self-adaptive strategy selection mechanism and solves each
function using the best strategy. Additionally, SABC-GB
finds the most accurate solutions for Fun1 and Fun9 in
all dimensions, whereas SACABC, ISABC, QAABC, and
SSABC cannot find precise solutions for Fun1 and Fun9
in all dimensions. This implies that these two problems are
not easy to solve, but can be handled by SABC-GB. It is
interesting to note that SABC-GB, SACABC, QAABC, and
SSABC found the best solution for Fun21. The optima given
by SABC-GB for Fun7, Fun9, and Fun23 are very stable for
all dimensions. As shown in Tables 8 and 9, the solutions of
f15–f25, which are composite functions, are relatively poor.
However, SABC-GB outperformed the other algorithms in
terms of accuracy.

Figure 3 shows the convergence performance of SABC-
GB, SACABC, ISABC, QAABC and SSABC in solving
three different types of functions. The convergence perfor-
mance of SABC-GB is similar to that of SACABC, QAABC,
and SSABC on Fun12 and Fun25withD=30, but SABC-GB
outperforms these self-adaptive algorithms significantly on

Fun12 and Fun25 with D=50. The efficiency of SABC-GB
is analogous to that of the other algorithms at the begin-
ning of Fun6 and Fun12. However, the other approaches fall
into local optima, and so the performance of SABC-GB is
superior at the end of the evolution process. Thus, the con-
vergence performance of SABC-GB is better than that of the
other algorithms in general, and the results demonstrate that
the modified self-adaptive strategies are very effective.

4.2.4 Application of SABC-GB in a real-world problem

To validate the feasibility of SABC-GB,we concluded exper-
iments using real-life problems. This paper employs two
standard datasets: Wine and Ionosphere (Frank and Asunc-
tion 2010). The information of datasets is shown in Table 10,
and the fitness comparisons between K-means and SABC-
GB are shown in Table 11. In Table 11, the best results are
in bold.

First, the initial centers were generated randomly. K-
means was used to calculate the distance from each point to
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Fig. 3 Convergence performance of SABC-GB, SACABC, ISABC, QAABC and SSABC. a Fun6 withD=30. b Fun6 withD=50. c Fun12 with
D=30. d Fun12 with D=50. e Fun25 with D=30. f Fun25 with D=50

Table 10 Datasets involved in experiments

Datasets Sample size Classes Dimension

Wine 178 3 17

Ionosphere 351 2 34

the clustering centers. SABC-GB was then used to generate
better centers according to previous experience in the evolu-
tionary process. Previous experimental results show that the
fitness is greatly influenced by the centers, and better centers
would produce better results.
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Table 11 Fitness comparisons
between K-means and
SABC-GB

Datasets Algorithms Minimum Maximum Mean Std

Wine K-means 1.6550E+04 1.9320E+04 1.7288E+04 1.0521E+03

SABC-GB 1.6531E+04 1.6550E+04 1.6545E+04 8.0829E+00

Ionosphere K-means 7.9633E+02 7.9647E+02 7.9640E+02 7.2089E−01

SABC-GB 7.4538E+02 7.4575E+02 7.4560E+02 1.1831E-02

It can be seen fromTable 11 that the variation in the fitness
values of SABC-GB is small, and that the standard deviation
of the SABC-GB results is less than that of K-means on
each dataset. SABC-GB can generate better fitness values
and find better centers. This is mainly thanks to the self-
adaptive candidate strategies, which adjust the search step
length adaptively and find optimal solutions. Obviously, the
standard deviation of SABC-GB is relatively small, because
K-means find better solutions with better initial centers. The
initialization and self-adaptive divisor of SABC-GB improve
the clustering accuracy. From the above results, we conclude
that the clustering precision and problem-solving efficiency
are greatly improved by the proposed SABC-GB algorithm.

5 Conclusion

In this paper, we have proposed a novel algorithm called
SABC-GB to solve global optimization problems. The ini-
tial populations of SABC-GB are generated by a dedicated
algorithm, and the solution search strategy is self-adaptively
selected. Experimental results using 25 benchmark func-
tions show that theSABC-GBalgorithmoutperformsGABC,
ABC/best/1, and ABC/best/2. The SABC-GB algorithm has
excellent optimization ability, and it is a very strong algo-
rithm. It avoids falling into local optima and is worthy of
further research. The application of SABC-GB also indicates
K-means clustering could be improved using SABC-GB.

However, the proposed approach also has some shortcom-
ings. SABC-GB exhibited worse performance than previous
algorithms with a few test functions. There are many other
problems with this algorithm at present, but it should be
pointed out that it is still a very good probabilistic algorithm.

The present study can be extended in various directions.
To accelerate the search process and find better solutions
to global optimization problems, an optimal means of com-
bining local search with global search would clearly be
beneficial. As the integration of self-adaptive candidate
strategies outperformed previous algorithms, we intend to
analyze candidate strategies and include the best strategies
for each problem. We will also research the candidate solu-
tion pool size and the selection of strategies for this pool.
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