
Soft Comput (2018) 22:2695–2703
https://doi.org/10.1007/s00500-017-2525-7

METHODOLOGIES AND APPLICATION

Detecting and quantifying ambiguity: a neural network approach

Rui Ligeiro1 · R. Vilela Mendes2

Published online: 1 March 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract In general, it is not possible to have access to all
variables that determine the behavior of a system. Once a
number of measurable variables is identified, there might
still exist hidden variables which influence the behavior of
the system. The result is model ambiguity in the sense that,
for the same (or very similar) input values, distinct outputs
are obtained. In addition, the degree of ambiguity may vary
across the range of input values. Therefore, to evaluate the
accuracy of a model it is important to devise a method to
obtain the degree of reliability for each output result. In this
paper, we present such a scheme composed of two coupled
neural networks, the first one computing the average pre-
dicted value and the other the reliability of the output, which
is learned from the error values of the first one. As an illus-
tration, the scheme is applied to a model for tracking slopes
in a straw chamber and to a credit scoring model.

Keywords Uncertainty · Ambiguity · Neural networks

1 Introduction

When dealing with real-world problems, some degree of
uncertainty can rarely be avoided. Modeling physical or
social systems, either for further understanding or as a guide
for decision processes, dealing with uncertainty is a critical

Communicated by V. Loia.

B R. Vilela Mendes
rvilela.mendes@gmail.com; rvmendes@fc.ul.pt

1 INOV INESC – Instituto de Novas Tecnologias, Rua Alves
Redol 9, 1000-029 Lisbon, Portugal

2 CMAF - Faculdade de Ciências, Univ. Lisboa, Lisbon,
Portugal

issue.Uncertainty has been formalized in differentways lead-
ing to several uncertainty theories (Klir and Smith 2001; Klir
2006;Wong1993;Vigo 2013; IEEE1993;Zhang et al. 2014).
Ambiguity, that is, uncertainty with unknown probabilities,
is also a subject of concern on decision problems (Inukai and
Takahashi 2009; Christensen 2013), information retrieval
under queries (Roul and Sahay 2012; Clarke et al. 2009),
parameter identification (Reppa et al. 2014) and dynamical
systems reconstruction and control (Yan andWang2014;Hao
and Jagannathan 2013; Alfaro-Ponce et al. 2014). Here, we
are concerned with uncertainty in the construction of models
from observed data. In this context, uncertainty may arise
either from inaccuracies in the measurement of the observed
variables or from the fact that the variables that are measured
do not provide a complete specification of the behavior of the
system. Our main concern in this paper is the latter situation,
that is, the case of ambiguous data.

There are several models of distributed learning sys-
tems that can be used to reconstruct functional relationships
between variables. It has been shown that they all are basi-
cally equivalent (Doyne 1990), and among them, neural
networks, with or without adjustable node parameters (Dente
and Vilela 1996), are capable to learn deterministic relations
or extract the characteristic parameters of stochastic pro-
cesses (Dente and Vilela 1997). Their computational power
is also, at least, as wide as a large class of symbolic languages
(Martins and Mendes 2001). Here, to implement our ambi-
guity detection algorithm, feedforward networks are used,
but of course, other classifier modules might be used as well.
The claimed novelty of our approach is not the neural net-
works architecture, but their use in a global algorithm, which
in particular identifies and quantifies the degree of ambiguity
in each region of the input variable space.

In the context of construction of models of physical phe-
nomena by neural networks, the distinct problem of learning

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2525-7&domain=pdf
http://orcid.org/0000-0002-4920-9214

2696 R. Ligeiro, R. Vilela Mendes

from data with error bars has been addressed before by
several authors (see for example Gernoth and Clark 1995;
Gabrys and Bargiela 1999; Cawley et al. 2007; Huang et al.
2012; Alippi et al. 1995). Here, however, we will be con-
cerned notwith inaccuracies in the input data butwith the fact
that the observed variables might not completely specify the
output, that is, some essential variablesmay not be accessible
to be used as inputs. Of special interest is the characterization
of the ambiguity across the subregions of the input space,
to know in which regions the output is or is not reliable.
Being mostly concerned with ambiguous data, rather than
with smoothing out noisy data, that is, with “incomplete”
rather than “inaccurate” measurements, the system that is
developed might as well be used to estimate the degree of
noisiness in the data.

The ambiguity situation is a rather complex one because,
in general, the uncertainty is not uniform throughout the input
variable space. There might be regions where the input vari-
ables provide an unambiguous answer and others where they
are not sufficient to provide a precise answer. For example,
in credit scoring, which we will use here as an example, the
“no income, no job, no asset” situation is a clear sign of no
credit reliability, but most other situations are not so clear-
cut. Therefore, it is desirable to develop a method that, for
each region of the input variable space, provides the most
probable outcome and, at the same time, tells us how reliable
the result is.

The system consists of two coupled networks, one to
learn the most probable output value for each input and
the other to provide the expected error (or variance) of the
result for that particular input. The first network converges
to an average of the target values in each region of the input
space and the second to the expected uncertainty (or ambi-
guity) in that particular region of input space. One finds
in practice, and in our examples, that the ambiguity varies
greatly from region to region of input space. Therefore, it
would not make sense to just compute the sample variance
of the whole data. The second network does indeed com-
pute a sample variance, but does so for each region of the
input variable space and, because of the interpolating fea-
tures of the network, does it in a more accurate way than if,
for example, we were to divide arbitrarily the input space
into subregions to do a numerical computation. In short,
the main idea of our system is not to smooth out fluctua-
tions in the data to obtain an approximate output. Instead,
it is to characterize the ambiguity of the answer and in par-
ticular to quantify this ambiguity for each region of input
space.

The ambiguity problem in model reconstruction has been
addressed in the past by other authors. For example, in the
context of fuzzy models, ambiguity is dealt with by increas-
ing the number of fuzzy sets or changing the membership
function from bell-shaped to trapezoid-shaped surfaces (Cox

2005). The lattice basis reduction used by some authors
(Svendsen 2003) to assign an approximate output to ambigu-
ous inputs is similar to our average value output of the first
network, but lacks the quantitative estimate of ambiguity that
is provided by the second network. In other approaches, a
collection of classifiers and learning algorithms is used to
arbitrate between the results by using the most reliable clas-
sifier for each subdomain (Ortega et al. 2001; dos Santos
et al. 2007). This, of course, is useful if there is a domain-
specific adequacy of the classifiers but does not help if the
ambiguity is intrinsic to the data. In other cases, the most
ambiguous data subsets are gathered into clusters (Lin et al.
2006) and the classifiers retrained (Albalate et al. 2010) or
the input data resampled (Bailey-Kellogg and Ramakrishnan
2001) in these domains. Again, this helps only if some new
input variables are used in the ambiguity regions, which is
not always possible. For example, in a credit scoring model-
ing problem if all known socio-economic parameters are fed
into the system, what else can we use? And in this particular
case, at least, a great deal of ambiguity is known to exist. In
our system, we simply aim at detecting the ambiguity and
quantifying it in each region of the input space.

For definiteness, the system is formalized as the prob-
lem of learning random functions in the next section. Then,
we study two application examples, the first being the mea-
surement of track angles by straw chambers in high-energy
physics and the other a credit scoring model.

2 Learning the average and variance of random
functions

The general setting which is analyzed is the following.
The signal to be learned is a random function θ(�X) with

distribution F �X (θ). For simplicitywe consider θ to be a scalar
and the set { �X} to be vector-valued, �X ∈ R

i . Notice that we
allow for different distribution functions at different points.

In the straw chamber example, to be discussed later, �X
would be the set of delay times and θ the track angle. For the
credit score example, �X would be the set of client parameters
and θ the credit reliability.

In our learning system, the �X values are inputs to a mul-
tilayer (feedforward) network, {W } denoting the full set of
connection strengths, the output being Y (�X) = fW (�X). The
aim is to chose a set of connection strengths {W } that anni-
hilates the expectation value

E

⎧
⎪⎪⎨

⎪⎪⎩

∑

{ �X
}

(
fW

(�X
)

− θ
(�X

))2

⎫
⎪⎪⎬

⎪⎪⎭

= 0 (1)

123

Detecting and quantifying ambiguity: a neural network approach 2697

However, what, for example, the backpropagation algorithm
does is to minimize E(fW (�X) − θ(�X))2 for each realization
of the random variable �X . Hence, let us fix �X and consider
fW (�X) evolving in learning time. That is, we are considering,
in the learning process, the subprocess corresponding to the
sampling of a particular fixed region of the variables. Then,
the time evolution of the network output is framed as

fW
(�X , τ + 1

)

= fW
(�X , τ

)
− 2η

∂ fW
∂W

·
(
fW

(�X
)

− θ
(�X

)) ∂ fW
∂W

(2)

where �W = −η ∂e
∂W , η being the learning rate and e =

(fW (�X) − θ(�X))2 the error function. Let the input random
variable θ(�X) at learning step τ be modeled as

θ
(�X

)

τ
= θ

(�X
)

+ B
(�X , τ

)
(3)

θ(�X) being the expectation (average) value of the vari-
able and B(X, τ) a zero-mean Wiener process. Then, taking
expectation values in Eq. (2), and because the ∂ fW

∂W quantities
are deterministic functions, one obtains

E

[
fW

(�X , τ + 1
)]

= E

[
fW

(�X , τ
)]

− 2η
∂ fW
∂W

·
(
E

[
fW

(�X , τ
)]

− θ (�x)
) ∂ fW

∂W
(4)

Notice that we are now dealing with two time scales: the
time scale of the θ(�X) random variable and the time scale
of the leaning process, controlled by the learning rate η. If
the learning rate η is sufficiently small for the learning time
scale to be much smaller than the sampling rate of the θ(�X)

random variable, the last equality may be approximated by

fW
(�X , τ + 1

)

= fW
(�X , τ

)

− 2η
∂ f

∂W
·
(
fW

(�X , τ
)

− θ
(�X

)) ∂ fW
∂W

(5)

A fixed point is obtained at

fW
(�X

)
= −

θ
(�X

)
, (6)

the average value of the random variable θ at the argument �X .
In practice, the convergence to the average of the objective

variable is better achieved by making η converge slowly to
zero during the learning process.

Similarly, if a second network [with output gW ′(�X)] and
the same input �X is constructed according to the learning law

gW ′
(�X , τ ′ + 1

)
= gW ′

(�X , τ ′) + ∂gW ′

∂W ′ · �W ′ (7)

with error function

e′ =
(

gW ′
(�X

)
−

(
fW

(�X
)

− θ
(�X

))2
)2

(8)

and �W ′ = −η′ ∂e′
∂W ′ , then

gW ′
(�X , τ ′ + 1

)
= gW ′

(�X , τ ′)

− 2η′ ∂gW ′

∂W ′ · ∂gW ′

∂W ′
(
gW ′

(�X , τ ′)

−
(
fW

(�X
)

− θ
(�X

))2
)

and, under the same assumptions as before concerning the
smallness of the learning rates, gW ′(�X) has the fixed point

gW ′
(�X

)
=

(
θ

(�X
)

− θ
(�X

))2
(9)

In conclusion: The first network reproduces the average
value of the random function θ for each input �X and the sec-
ond one, receiving as data the errors of the first, reproduces
the variance of the function at �X . Instead of the variance,
the second network might as well be programed to learn the

expected value of the absolute error E|θ(�X) − −
θ (�X)|. Actu-

ally, for numerical convenience, we will use this alternative
in the examples of the next section. Figure 1 is a schematic
representation of the learning process.

In practice, the training of the second network should start
after the first one because, before the first one becomes to
converge, its errors are not representative of the fluctuations
of the random function. In general, it seems reasonable to
have η′(t) < η(t) with η(t) decreasing in time.

Implicit in the derivation sketched above is the assumption
thatwe are already in the basin of attraction of the globalmin-
imum of the cost functions. In practice, the existence of local
minima is an issue to be taken into account in all modeling
and optimization problems. To avoid convergence to local
minima, one may use occasional random perturbations. Our
approach however has been to run several times the algo-
rithm starting from different initial conditions for the neural
network parameters.

Because in both networks one wants convergence to aver-
age values of the target functions, a critical issue is also to
avoid overfitting in the design of the networks. Because for

123

2698 R. Ligeiro, R. Vilela Mendes

Fig. 1 A schematic representation of the learning process. The two-
network system, given inputs Xi and target values θk , learns the average
values Yk(Xi) and average errors |Yk − θk |for each set {Xi } of input
values

our examples we use networks with one hidden layer, the
number of neurons in the hidden layer is the parameter that
should be of our concern. In general for a learning machine,
the ideal situation is to have a Vapnik–Chervonenkis (VC)
dimension (Vapnik and Chervonenkis 1971; Vapnik 2000)
equal to the number of independent functions that one wants
to discriminate or, in a classification setting, the number of
points that one wants to shatter. Methods have been devel-
oped to estimate the VC dimension of a learning machine
(Vapnik et al. 1994; Bartlett and Maass 2003). In the spirit of
the final prediction error criterion (Alippi 1999), we use here
a simple approach to estimate the right number of neurons in
the hidden layer. In “Appendix”, we show the evolution of the
mean square error, after training of the networks in the two
examples, when the number of neurons in the hidden layer
changes. One sees that for the scoring case 14 hidden layer
neurons seem to be an appropriate number to obtain a good
fit without overfitting and similarly for the straw chamber a
number between 10 and 15 is adequate. Several other meth-
ods have been proposed in the literature to choose the number
of hidden layer neurons. A popular method is the clipping
method where during the learning process the synapses with
the smallest strengths are suppressed. As we have found out,
this method is not very effective when there is a high level
of ambiguity in the data. Therefore, the control of the mean
square error seems more appropriate in this case.

Finally, for the scoring example we have used 14 hidden
layer neurons and for the straw chamber both 14 and 25. The
test with 25 is included to reproduce the setting of Denby
et al. (1990) who use 25 hidden layer neurons.

3 Examples

3.1 Measuring track angles by straw chambers

One of the first applications of neural networks to the pro-
cessing of high-energy physics data (Denby 1999) was the
work by Denby et al. (1990) on the slopes of particle tracks

Fig. 2 A particle track through a straw chamber. The input values to
the neural networks are the delay times, proportional to the distances
of the particle to the wires

in straw tube drift chambers. In a straw chamber (Fig. 2),
each wire receives a signal delayed by a time proportional to
the distance of closest approach of the particle to the wire.

The neural network receives these times as inputs { �X},
with as many inputs as the number of wires and, for the
training, the track angle θ(�X) is the target function. The half
cell shift of alternate layers in the straw chamber solves some
of the left–right ambiguities, but this ambiguity still remains
for many directions (Fig. 3).

The authors of Denby et al. (1990) required the training
and test events to pass through at least four straws to avoid
edge effects. Nevertheless, they consistently find large non-
Gaussian error tails when testing the trained network. The
authors havenot separated the contribution to the tails coming
from the ambiguities from those arising from eventual inade-
quacies on training or network architecture.Wehave repeated
the simulations, and our results essentially reproduce those
of Denby et al. (1990), showing that the non-Gaussian tails
do indeed originate from the left–right ambiguities. If edge
effects are allowed for, including in the training set events
that pass through less than four straws, the degree of ambi-
guity and the tails increase even further. The important role
of persistent fat tails on the error response of a learned system
as a symptom of data ambiguity will be discussed later.

This example is therefore a typical example of the situ-
ation described in the introduction, where some regions of
the input data correspond to a unique event, but others have
an ambiguous identification. Also, it is a pure example of
ambiguous data in the sense that the signals fed to the net-
works have no noise component. As the example shows, it

123

Detecting and quantifying ambiguity: a neural network approach 2699

Fig. 3 An example with two different beam track angles generating
the same input signal

is not easy to separate the ambiguous regions from the non-
ambiguous ones because they are mixed all over parameter
space. It is therefore important to have a system that not only
provides an answer but also states how reliable that answer
is.

We have applied to this example the two-network scheme
(Fig. 1) described before. Both networks have the same archi-
tecture and train using the same input data, the first one with
the target track angles and the second with the absolute value
of the errors of the first. To avoid big fluctuations in train-
ing convergence, the second network starts learning after the
first has stabilized and finished training. Both networks have
a feedforward network architecture with three neuron layers:
input, hidden and output. They both train using a supervised
backpropagation algorithm.Theneuron activation function is
the logistic sigmoid (tan-sigmoid). After some optimization,
our sigmoid-based backpropagation became rather efficient.
The use of radial basis functions (RBF)might, in some cases,
provide faster learning rates if the RBFs are tuned to partic-
ular applications.

For the results presented here, we use 14 input neurons
(representing the drift times in each straw), either 14 or 25
hidden neurons and an output neuron for the slope of each
track. We use Monte Carlo generated data coded as follows:
If the track does not meet the straw the input value is zero and
if the track crosses the straw, the input value is the difference
between the straw radius and the distance to the wire in the
center of the straw. The output is the angle of the track slope.
A training sample of 25,000 simulated tracks was generated.
After training, the performance of the network was tested
using a new set of 5000 independent tracks.

−10 −5 0 5 10
0

1

2

3

4

5

6

7

8

9

10

SC − Degrees (First network error)

SC
 −

 S
ec

on
d

ne
tw

or
k

ou
tp

ut

Fig. 4 Comparison of the actual error of the first network and the
estimated uncertainty predicted by the second network (straw chamber
data)

Figure 4 compares the actual error of the first network
with the uncertainty predicted by the second. One sees that
the largest errors do indeed correspond to large uncertainty
prediction by the second network. Of course in a few cases
large uncertainty is predicted when the actual error is small.
It only means that particular result is unreliable in the sense
that it was by chance that it fell in the middle of the error
bar interval. The results obtained with either 14 or 25 hidden
neurons are practically indistinguishable, meaning that the
networks are indeed characterizing the ambiguity of the data.

Now that we are equipped with a system that predicts both
an angle and its probable uncertainty, it makes sense to state
that the result of a measurement is θ ± �ann, θ being the
output of the first network and�ann the output of the second.
In this sense,wewill count an output as an error onlywhen the
objective value is outside the error bars. The effective error
will be the distance of the objective value to the boundary of
the error bars. Figure 5 plots the effective error for a sample
of 1000 tracks.

An important problem when attempting to model exper-
imental data is the detection of ambiguities or equivalently
to know whether the data set completely characterizes the
phenomenon. As mentioned before, clustering methods have
been proposed (Lin et al. 2006; Albalate et al. 2010; Bailey-
Kellogg and Ramakrishnan 2001) to isolate the ambiguity
regions and identify the origin of the ambiguities. This is
not always possible, nor reliable, if ambiguity regions exist
spread all over the input space and for which a subset of vari-
able values are shared by non-ambiguous regions. This is
the case in the straw chamber example. Therefore, the more
conservative way of looking for fat tails in the error distribu-
tion and reconstructing an ambiguity predictor as proposed
here is, in our opinion, more appropriate. As an illustration,

123

2700 R. Ligeiro, R. Vilela Mendes

−6 −4 −2 0 2 4 6
0

50

100

150

200

250

300

350

400

450

500

SC − Degrees (Effective error)

SC
 −

 #
En

tri
es

Fig. 5 Effective error (straw chamber data)

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

1

2

3

4

5

6 x 10
4

error

Fig. 6 Fat tails as a symptom of ambiguity

we have studied the error distribution of the first network
for successively higher sizes of the training set to find out
that indeed fat tails are persistent and their nature quite sta-
ble. Figure 6 shows the error distribution for a training set of
273,271 (4-hits) tracks, and as a clear symptom, the excess
kurtosis of the plot is 5.3.

3.2 A credit scoring model

Defaulting on loans has recently increased, promoting the
search for accurate techniques of credit evaluation by finan-
cial institutions. Credit scoring is a quantitative method,
based on credit report information that helps lenders in the
credit granting decision. The objective is to categorize credit
applicants into two separate classes: the “good credit” class,

that is, the one likely to repay loans on time and the “bad
credit” class to which credit should be denied, due to a high
probability of defaulting. For a more detailed understand-
ing of credit scoring models, we refer to Lando (2004), Van
Gestel and Baesens (2009) and Thomas et al. (2002).

Here, we have developed a credit scoring model based on
the two-network scheme discussed before. Because complete
information on the credit applicants is impossible to obtain
and human behavior is dependent on so many factors, credit
scoring is also a typical example of a situation where one is
trying to predict an outcome based on incomplete informa-
tion. Credit scoring models with neural networks had been
proposed in the past (see, for example, West 2000; Pacelli
and Azzollini 2011). The novelty of our system lies in that
not only we provide a scoring result but we also obtain an
estimate of how reliable the result is. A similar system has
been successfully developed by the authors for a credit com-
pany where scoring ambiguities are of utmost importance for
risk evaluation. For privacy restrictions, however, the data we
use in our second example are from an open source.

We use here a publicly available credit data of anony-
mous clients, downloaded from UCI Irvine Machine (http://
archive.ics.uci.edu/ml/). It is composed of 1000 cases, one
per applicant, of which 700 cases correspond to creditwor-
thy applicants and 300 cases correspond to applicants which
were later found to be in the bad credit class. Each instance
corresponds to 24 attributes (e.g., loan amount, credit his-
tory, employment status, personal information, etc.) with the
corresponding credit status of each applicant coded as good
(1) or bad (0). Inspecting the database, it is clear that some
apparently good attributes correspond, in the end, to bad
credit performance and conversely putting into evidence the
incomplete information nature of the problem.

For our system, the attributes are numerically coded and
we use a neural network architecture with 24 input neurons
(representing the 24 numerical attributes), 14 hidden neu-
rons and an output neuron indicating good or bad credit. To
ensure that the network learns evenly, we randomly alternate
between good and bad applicants instances. After training,
the performance of the network was tested. Figure 7 shows a
plot of the errors of the first network after training. Although,
in general, the network provides good estimations, there are
several customers classified as good when they are bad and
vice-versa. In fact, there are some extremely incorrect net-
work predictions, as can easily been perceived by the bins at
the two ends of the histogram. These bins clearly reveal lack
of information in the data set.

As in the previous example, Fig. 8 shows the comparison
of the errors in the first network with the estimated uncer-
tainty obtained by the second network and Fig. 9 shows the
effective error distribution. Similarly to the previous straw
chamber example, one obtains good uncertainty predictions
by the second network. The second network wrongly clas-

123

http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/

Detecting and quantifying ambiguity: a neural network approach 2701

−1 −0.5 0 0.5 1
0

100

200

300

400

500

600

700

800

900

Scoring (Error of the network)

Sc
or

in
g

−
#E

nt
rie

s

Fig. 7 Error distribution in the first network (credit scoring)

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Scoring (Error of the first network)

Sc
or

in
g

−
O

ut
pu

t o
f t

he
 s

ec
on

d
ne

tw
or

k

Fig. 8 Comparison of the actual error of the first network and the
estimated uncertainty predicted by the second network (credit scoring)

sified very few cases: Only two occurrences with no actual
errors were predicted havingmaximum uncertainty, and only
three critical errors were unsuccessfully predicted without
uncertainty.

Looking at the effective error distribution plot, it is easy to
confirm the refinement in the degree of certainty in each esti-
mation. Nevertheless, there still are a very few occurrences
of estimations outside the error bar interval.

3.3 Conclusions

1. The goal of this research was to develop a computational
scheme with the ability to evaluate the degree of reli-
ability of predictive models. Two application examples
were studied, the first one being themeasurement of track

−1 −0.5 0 0.5 1
0

100

200

300

400

500

600

700

800

900

1000

Scoring (Effective error.)

Sc
or

in
g

−
#E

nt
rie

s

Fig. 9 Effective error (credit scoring)

angles by straw chambers in high-energy physics and the
other a credit scoring model. Both examples use data
with incomplete information. A two-network system is
used which, although not perfect, greatly improves the
reliability check of the predicted results.

2. That the estimate of the reliability of the data modeling
is sensitive to situations where uncertainty is not uniform
throughout the parameter spaces, is an asset of the system.
A weakness is of course the assumption that uncertainty
is well modeled by the second momentum of the input
data. Skewness, power-law distributions and rare events
fall outside the scope of the system. In any case, to model
such features with neural networks might not be appro-
priate andmore complex systems involving, for example,
estimates of characteristic functions (Dente and Vilela
1997) might have to be brought into play.

Acknowledgements This study was funded by Fundação para a Ciên-
cia e Tecnologia, Portugal.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants performed by any of the authors.

Appendix: Evolution of themean square errorwhen
the number of neurons in the hidden layer changes

In twofigures (Figs. 10, 11),we display themean square error
after training, of the networks in the two examples, when the
number of neurons in the hidden layer changes

123

2702 R. Ligeiro, R. Vilela Mendes

0 2 4 6 8 10 12 14 16 18 20
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Number of neurons in the hidden layer

M
SE

Fig. 10 Mean square error after training when the number of neurons
in the hidden layer changes (straw chamber)

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of neurons in the hidden layer

M
SE

Fig. 11 Mean square error after training when the number of neurons
in the hidden layer changes (credit scoring)

References

Albalate A, Suchindranath A, Soenmez MM, Suendermann D (2010)
On ambiguity detection and postprocessing schemes using cluster
ensembles, ICAART 2010. In: Proceedings of the international
conference on agents and artificial intelligence. INSTICC Press,
pp 623–630

Alfaro-Ponce M, Cruz AA, Chairez I (2014) Adaptive identifier for
uncertain complex nonlinear systems based on continuous neural
networks. IEEE Trans Neural Netw Learn Syst 25:483–494

Alippi C (1999) FPE-based criteria to dimension feedforward neural
topologies. IEEE Trans Circuits Syst I 46:962–973

Alippi C, Piuri V, Sami M (1995) Sensitivity to errors in artificial neu-
ral networks: a behavioural approach. IEEE Trans Circuits Syst I
42:358–361

Bailey-Kellogg C, Ramakrishnan N (2001) Ambiguity-directed sam-
pling for qualitative analysis of sparse data from spatially-
distributed physical systems. In: Proceedings of the IJCAI

Bartlett PL,MaassW(2003)Vapnik–Chervonenkis dimension of neural
nets. In: Arbib MA (ed) The handbook of brain theory and neural
networks. MIT Press, Cambridge, pp 1188–1192

Cawley GC, Janacek GJ, Haylock MR, Dorling SR (2007) Predictive
uncertainty in environmental modelling. Neural Netw 20:537–549

Christensen S (2013) Optimal decision under ambiguity for diffusion
processes. Math Meth Oper Res 77:207–226

Clarke CLA, Kolla M, Vechtomova O (2009) An effectiveness mea-
sure for ambiguous and underspecified queries. In: Advances in
information retrieval theory, lecture notes in computer science,
vol 5766, pp 188–199

Cox E (2005) Fuzzy modeling and genetic algorithms for data mining
and exploration. Elsevier, Amsterdam

dos Santos E, Sabourin R,Maupin P (2007)Ambiguity-guided dynamic
selection of ensemble of classifiers. In: 10th international confer-
ence on information fusion

Denby B (1999) Neural networks in high energy physics: a ten year
perspective. Comput Phys Commun 119:219–231

Denby B, Lessner E, Lindsey CS (1990) Test of track segment and
vertex finding with neural networks. In: Proceedings of the 1990
conference on computing in high energy physics, Sante Fe, NM.
AIP conference proceedings, vol 209, p 211

Dente JA, Vilela Mendes R (1996) Unsupervised learning in general
connectionist systems. Netw Comput Neural Syst 7:123–139

Dente JA, Vilela Mendes R (1997) Characteristic functions and process
identification from neural networks. Neural Netw 10:1465–1471

Doyne J (1990) Farmer. A Rosetta stone for connectionism. Phys D
42:153–187

Gabrys B, Bargiela A (1999) Neural network based decision support
in presence of uncertainties. ASCE J Water Resour Plan Manag
125:272–280

Gernoth KA, Clark JW (1995) A modified backpropagation algorithm
for training neural networks on data with error bars. Comput Phys
Commun 88:1–22

Hao Xu, Jagannathan S (2013) Stochastic optimal controller design for
uncertain nonlinear networked control system via neuro dynamic
programming. IEEE Trans Neural Netw Learn Syst 24:471–484

HuangG, Song S,WuC,YouK (2012)Robust support vector regression
for uncertain input and output data. IEEETransNeural NetwLearn
Syst 23:1690–1700

Inukai K, Takahashi T (2009) Decision under ambiguity: effects of sign
and magnitude. Int J Neurosci 119:1170–1178

Klir GJ (2006) Uncertainty and information: foundations of generalized
information theory. Wiley, Hoboken

Klir GJ, Smith RM (2001) On measuring uncertainty and uncertainty-
based information: recent developments. Ann Math Artif Intell
32:5–33

Lando D (2004) Credit risk modeling. Princeton University Press,
Princeton

Lin Y-M, Wang X, Ng WWY, Chang Q, Yeung DS, Wang X-L (2006)
Sphere classification for ambiguous data. In: 2006 International
conference onmachine learning and cybernetics, IEEE conference
publications, pp 2571–2574

Martins J, Vilela Mendes R (2001) Neural networks and logical reason-
ing systems. A translation table. Int J Neural Syst 11:179–186

Ortega J, Koppel M, Argamon S (2001) Arbitrating among competing
classifiers using learned referees. Knowl Inf Syst 3:470–490

Pacelli V, Azzollini M (2011) An artificial neural network approach for
credit risk management. J Intell Learn Syst Appl 3:103–112

ReppaV, PolycarpouMM, PanayiotouCG (2014) Adaptive approxima-
tion for multiple sensor fault detection and isolation of nonlinear
uncertain systems. IEEE Trans Neural Netw Learn Syst 25:137–
153

Roul RK, Sahay SK (2012) An effective information retrieval for
ambiguous query. Asian J Comput Sci Inf Technol 2:26–30

123

Detecting and quantifying ambiguity: a neural network approach 2703

Svendsen JGG (2003) A SearchFree approach to ambiguity resolution.
In: Proceedings of the 16th international technical meeting of the
satellite Division of the Institute of Navigation. Portland, pp 769–
774

Thomas LC, Edelman DB, Crook JN (2002) Credit scoring and its
applications. SIAM, Philadelphia

UCI Machine Learning Repository. http://archive.ics.uci.edu/ml/
Van Gestel T, Baesens B (2009) Credit risk management: basic

concepts: financial risk components. Rating analysis, models, eco-
nomic and regulatory capital. Oxford University Press, Oxford

VapnikV (2000) The nature of statistical learning theory. Springer, New
York

Vapnik V, Chervonenkis A (1971) On the uniform convergence of rel-
ative frequencies of events to their probabilities. Theory Probab
Appl 16:264–280

Vapnik V, Levin E, Le Cun Y (1994) Measuring the VC-dimension of
a learning machine. Neural Comput 6:851–876

Vigo R (2013) Complexity over uncertainty in generalized representa-
tional information theory: a structure-sensitive general theory of
information. Information 4:1–30

West D (2000) Neural network credit scoring models. Comput Oper
Res 27:1131–1152

Wong SKM, Wang ZW (1993) Qualitative measures of ambiguity. In:
Proceedings of the 9th conference on uncertainty in artificial intel-
ligence, pp 443–450

IEEE (1993) Proceedings of second international symposium on uncer-
tainty modeling and analysis. In: IEEE conference publications.
doi:10.1109/ISUMA.1993.366801

Yan Z,Wang J (2014) Robust model predictive control of nonlinear sys-
tems with unmodeled dynamics and bounded uncertainties based
on neural networks. IEEE Trans Neural Netw Learn Syst 25:457–
469

Zhang Q, Dong C, Cui Y, Yang Z (2014) Dynamic uncertain causality
graph for knowledge representation and probabilistic reasoning:
statistics base, matrix and application. IEEE Trans Neural Netw
Learn Syst 25:645–663

123

http://archive.ics.uci.edu/ml/
http://dx.doi.org/10.1109/ISUMA.1993.366801

	Detecting and quantifying ambiguity: a neural network approach
	Abstract
	1 Introduction
	2 Learning the average and variance of random functions
	3 Examples
	3.1 Measuring track angles by straw chambers
	3.2 A credit scoring model
	3.3 Conclusions

	Acknowledgements
	Appendix: Evolution of the mean square error when the number of neurons in the hidden layer changes
	References

