
Soft Comput (2018) 22:2683–2693
https://doi.org/10.1007/s00500-017-2523-9

METHODOLOGIES AND APPLICATION

B-spline collocation and self-adapting differential evolution (jDE)
algorithm for a singularly perturbed convection–diffusion problem

Xu-Qiong Luo1 · Li-Bin Liu2 · Aijia Ouyang3,4 · Guangqing Long2

Published online: 23 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Many numerical methods applied on a Shishkin
mesh are very popular in solving the singularly perturbed
problems. However, few approaches are used to obtain the
Shishkin mesh transition parameter. Thus, in this paper, we
first use the cubic B-spline collocation method on a Shishkin
mesh to solve the singularly perturbed convection–diffusion
problem with two small parameters. Then, we transform
the Shishkin mesh transition parameter selection problem
into a nonlinear unconstrained optimization problem which
is solved by using the self-adapting differential evolution
(jDE) algorithm. To verify the performance of our presented
method, a numerical example is employed. It is shown from
the experiment results that our approach is efficient. Com-
pared with other evolutionary algorithms, the jDE algorithm
performs better and with more stability.

Keywords B-spline collocation method · Self-adapting
differential evolution · Singularly perturbed · Optimization
problem · Shishkin mesh

Communicated by V. Loia.

B Li-Bin Liu
liulibin969@163.com

1 School of Mathematics and Computing Science, Changsha
University of Science and Technology, Changsha 410004,
Hunan, China

2 School of Mathematics and Statistics, Guangxi Teachers
Education University, Nanning 530001, China

3 Department of Information Engineering, Zunyi Normal
College, Zunyi 563002, Guizhou, China

4 Guangxi High School Key Laboratory of Complex System
and Computational Intelligence, Nanning 530006, China

1 Introduction

In this paper, we consider the following singularly perturbed
convection–diffusion problem with two small parameters

⎧
⎨

⎩

Lu = −εu′′(x) + μb(x)u′(x) + c(x)u(x) = f (x),
x ∈ Ω = (0, 1),

u(0) = A, u(1) = B,

(1)

where 0 < ε � 1 and 0 < μ � 1. The functions b(x), c(x)
and f (x) are assumed to be sufficiently smooth satisfying

0 < b∗ ≤ b(x), 0 < c∗ ≤ c(x), x ∈ [0, 1],

where b∗ and c∗ are two positive constants. When μ = 0 or
μ = 1, this problem encompasses reaction–diffusion prob-
lem or convection–diffusion problem, respectively. These
kinds of problems arise in transport phenomena in chem-
istry and biology (Bigge and Bohl 1985). The nature of
the two-parameter problem was asymptotically examined by
O’Malley (1967), where the ratio of μ to ε has significant
role in solution. For this problem, two boundary layers occur
at x = 0 and x = 1. Because of the presence of these lay-
ers, some standard numerical methods applied on a uniform
mesh fail to give a satisfactory numerical solution. Thus,
much attention has been focused on the use of a non-uniform
mesh that is adapted to the singularly perturbed problems.

Recently, Gracica et al. (2006) used a second-order
monotone numerical scheme which was combined with
a piecewise-uniform Shishkin mesh to solve problem (1).
Linß (2010) presented a streamline-diffusion finite element
method (SDFEM) on a Shishkin mesh. Furthermore, Linß
and Roos (2004) developed a first-order upwind difference
scheme on a piecewise-uniform Shishkin mesh. Roos and
Uzelac (2003) also proposed a SDFEMon aShishkinmesh to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2523-9&domain=pdf

2684 X.-Q. Luo et al.

solve problem (1).Herceg (2011) presented afinite difference
scheme for a class of linear singularly perturbed boundary
value problems with two small parameters which was dis-
cretized on a Bakhvalov-type mesh. Kadalbajoo and Yadaw
(2008) solved problem (1) by using the cubic B-spline col-
location method on a piecewise-Shishkin mesh.

In a word, it can be seen from the above literature that
the upwind finite difference scheme applied on a Shishkin
mesh is very popular in solving the singularly perturbed
convection–diffusion equation with two small parameters.
As far as we know, this mesh contains two grid transition
points λ1 and λ2 which have some different definitions in
some papers. In Miller et al. (1996), the authors defined λ1
and λ2 as

λ1 = min

(
1

4
,

σ1

μ1
ln N

)

, λ2 = min

(
1

4
,

σ2

μ2
ln N

)

,

where σ1, σ2 are two positive constants, μ1 and μ2 are
defined in Miller et al. (1996), and N , our discretization
parameter, is a positive even. Then, they divided the intervals
[0, λ1] and [1 − λ2, 1] into N/4 subintervals, respectively,
and [λ1, 1 − λ2] is dissected into N/2. In practical compu-
tation, the numerical results of problem (1) are related to the
choice of constants σ1, σ2. As far as we know, there is no any
method which is used to calculate the grid parameters σ1 and
σ2. Therefore, it is very important to study a clearly method
to get the best Shishkin mesh parameters.

In recent years, various improved intelligence algorithms
or hybrid intelligence algorithms have been designed to
solve optimization problems (Ouyang and Yang 2016),
such as PSO with neighborhood operator (Suganthan 1999),
distance-based locally informed PSO (Qu et al. 2013),
hybrid PSO algorithm (Ouyang et al. 2014), hybird genetic
algorithm (Xu et al. 2014), hybrid chemical reaction opti-
mization (Xu et al. 2015), parallel hybrid PSO (Ouyang et al.
2015), heterogeneous CLPSO algorithm (Lynn and Sugan-
than 2015), multi-population DE algorithm (Wu et al. 2016),
hybrid harmony search algorithm (Ouyang et al. 2016a),
hybrid cultural algorithm (Ali et al. 2016a, b), hybrid invasive
weed optimization algorithm (Ouyang et al. 2016b).

As we know, differential evolution (DE) algorithm (Srorn
and Price 1997) is a fast and simple method which performs
well on a wide variety of problems. It is a population-based
stochastic search technique, which is inherently parallel. DE
algorithm is a relatively new nonlinear search and optimiza-
tion approach, which is particularly well suited to solve some
complicate optimization problems. Due to its advantages
of simple structure, easy implementation and good com-
putational efficiency, DE algorithm has been successfully
used to solve many problems such as mechanical engi-
neering (Abderazek et al. 2015), Signal processing (Liu
and Lampinen 2005), pattern recognition (Das and Konar
2009), some problems of parameter estimation (Gong and

Cai 1976). Recently, some hybrid DE algorithms (Gong et al.
2011, 2015) were also presented for some global numerical
optimization.

In view of the unique advantages of differential evolu-
tion algorithm for estimating parameter, the mainly work
of this paper is motivated by using jDE algorithm (Brest
et al. 2006) to obtain the best mesh transition points. More
specifically, we will first use the B-spline collocation tech-
nique developed in Kadalbajoo and Yadaw (2008) to study
the numerical solution of problem (1). Then, we may use
the double-mesh principle (Matthews et al. 2002) to estimate
the absolute errors. At last, we transform the choice of mesh
parameter problem into a nonlinear unconstrained optimiza-
tion problem. Furthermore, we utilize the jDE algorithm to
find two suitable mesh transition points and the correspond-
ing numerical results for the problem (1).

The remainder of this paper is organized in the following
way. Section 2 gives a simple introduction to the mesh selec-
tion strategy. Section 3 shows a detailed theoretical analysis
of B-spline collocation method. Section 4 introduces A dif-
ferential evolution algorithm to optimize the Shishkin mesh
parameters. Section 5 displays the numerical experimental
results and discussions in detail. Finally, the paper concludes
with Sect. 6.

2 Mesh selection strategy

At first, we use the piecewise-uniform grid to divide the inter-
val [0,1] into three subintervals:

Ω0 = [0, λ1], Ωc = [λ1, 1 − λ2] and Ω1 = [1 − λ2, 1],

where the transition parameters are given by

λ1 = min

(
1

4
, δ1μ ln N

)

, λ2 = min

(
1

4
, δ2ε ln N

)

,

where δ1 and δ2 are two positive parameters. Then, we place
N/4, N/2 and N/4 mesh points in three subregions [0, λ1],
[λ1, 1 − λ2] and [1 − λ2, 1], respectively. Finally, the mesh
widths can be obtained as follows:

h̃ =

⎧
⎪⎨

⎪⎩

4λ1
N , for the interval [0, λ1],
2(1−λ1−λ2)

N , for the interval [λ1, 1 − λ2],
4(1−λ2)

N , for the interval [1 − λ2, 1].

3 B-spline collocation method

Let Ω
N = {x0, x1, x2, . . . , xN } be a Shishkin mesh defined

in Sect. 2, and then, the cubic B-spline functions (Kadalbajoo
and Yadaw 2008) are given as follows:

123

B-spline collocation and self-adapting differential evolution (jDE) algorithm for a. . . 2685

Bi (x) = 1

h̃3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x − xi−2)
3, if xi−2 ≤ x ≤ xi−1,

h̃3 + 3h̃2(x − xi−1) + 3h̃(x − xi−1)
2 − 3(x − xi−1)

3, if xi−1 ≤ x ≤ xi ,
h̃3 + 3h̃2(xi+1 − x) + 3h̃(xi+1 − x)2 − 3(xi+1 − x)3, if xi ≤ x ≤ xi+1,

(xi+2 − x)3, if xi+1 ≤ x ≤ xi+2,

0, otherwise,

(2)

where i = 0, 1, 2, . . . , N . For the above functions (2), we
introduce four additional knots x−2 < x−1 < x0 and xN+2 >

xN+1 > xN . Obviously, each of the function Bi (x) is twice
continuously differentiable on the entire real line. In addition,
for each x j , j = 0, 1, . . . , N , we have

Bi (x j) =
⎧
⎨

⎩

4, if i = j,
1, if i − j = ±1,
0, if i − j = ±2.

(3)

Similarly, we can show that

B ′
i (x j) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i = j,

±3

h̃
, if i − j = ±1,

0, if i − j = ±2

(4)

and

B ′′
i (x j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−12

h̃2
, if i = j,

6

h̃2
, if i − j = ±1,

0, if i − j = ±2.

(5)

As far aswe know, the dimensional of cubicB-spline func-
tion space is N + 3. Similar to (2), we first define two extra
cubic B-spline functions B−1 and BN+1. Then, the cubic B-
spline function space can be given as follows

Φ3(Ω) = span{B−1, B0, B1, . . . , BN+1}.

Thus, for any cubic polynomial function S(x), we have

S(x) =
N+1∑

i=−1

ai Bi (x), (6)

where ai are unknown real coefficients.
Here, we use function S(x) defined in (6) to approximate

the exact solution of (1), yield

LS(xi) = f (xi), 0 ≤ i ≤ N , (7)

and

S(x0) = A, S(xN) = B. (8)

By using the values of B-spline functions Bi and of deriva-

tives at mesh points Ω
N
, we obtain the following system of

N + 1 linear equations with N + 3 unknown variables

(−6ε − 3μbi h̃ + ci h̃
2)ai−1 + (12ε + 4ci h̃

2)ai

+(−6ε + 3μbi h̃ + ci h̃
2)ai+1 = fi h̃

2, (9)

where 0 ≤ i ≤ N .
From the boundary conditions, we have

a−1 + 4a0 + a1 = A, (10)

and

aN−1 + 4aN + aN+1 = B. (11)

Next, eliminating a−1 from first equation (9) and (10), we
obtain

(36ε + 12μh̃b0)a0 + 6μb0h̃a1

= h̃2 f0 − A(−6ε − 3μb0h̃ + c0h̃
2). (12)

Similarly, we have

(−6μh̃bN)aN−1 + (36ε − 12μbN h̃)aN

= h̃2 fN − B(−6ε + 3μbN h̃ + cN h̃
2). (13)

Finally, we can get the following system of N + 1 linear
equations with N + 1 unknown variables

T xN = dN , (14)

where xN = (a0, a1, . . . , aN)T are the unknown real coeffi-
cients with right hand side

dN = (h̃2 f0−A(−6ε−3μb0h̃+c0h̃
2), h̃2 f1, . . . , h̃

2 fN−1,

h̃2 fN − B(−6ε + 3μbN h̃ + cN h̃
2))T

123

2686 X.-Q. Luo et al.

and

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t0,0 t0,1 0 0 · · · 0 0
t1 t2 t3 0 · · · 0 0
0 t1 t2 t3 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · t1 t2 t3 0
0 0 · · · 0 t1 t2 t3
0 0 · · · 0 0 tN ,N−1 tN ,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

t0,0 = 36ε + 12μh̃b0, t0,1 = 6μb0h̃,

t1 = −6ε − 3μbi h̃ + ci h̃
2,

t2 = 12ε + 4ci h̃
2, t3 = −6ε + 3μbi h̃ + ci h̃

2,

tN ,N−1 = −6μh̃bN , tN ,N = 36ε − 12μbN h̃.

It is easy to see that thematrix T is strictly diagonally dom-
inant. Thus, we can solve the above system equations (14)
for a0, a1, . . . , aN . Furthermore, we obtain a−1 and aN+1 by
substitute a0, a1, . . . , aN into the boundary condition (10)
and (11). Hence the collocation method by using a basis of
cubic B-splines functions applied to problem (1) has a unique
solution.

4 A differential evolution algorithm to optimize the
Shishkin mesh parameters

4.1 The objective function

In general, the exact solution of problem (1) is not available,
especially for the nonlinear problem. Thus, in order to esti-
mate the absolute errors of numerical solution of problem (1),
we can use the double-mesh principle developed inMatthews
et al. (2002) to estimate the absolute errors. Obviously, for
each ε,μ and N , the solution of (7) is a binary function about
variables δ1 and δ2. So, we define SN

ε,μ(δ1, δ2) be the solution
of the approximate scheme on the original Shishkin mesh.
Similarly, on the mesh produced by uniformly bisecting the
origin mesh, we define S2N

ε,μ(δ1, δ2). Then we can use the fol-
lowing formula to estimate the maximum point-wise error

EN
ε,μ(δ1, δ2) = ‖SN

ε,μ(δ1, δ2) − S2N
ε,μ(δ1, δ2)‖∞. (15)

In practical computation, one may choose suitable param-
eters δ1 and δ2 to make the value of EN

ε,μ(δ1, δ2) as small
as possible. Therefore, in this paper, we may transform the
problem of mesh parameter calculation into the following
nonlinear unconstrained optimization problem

Fitness = min ‖SN
ε,μ(δ1, δ2) − S2N

ε,μ(δ1, δ2)‖∞. (16)

Obviously, the above objective function (16) is an implicit
function above variables δ1 and δ2, and is not differentiable.
So, some traditional optimization methods are not suitable
to solve it. In addition, once the above objective function
(16) has many local extreme points, the traditional optimiza-
tion methods may not find the global optimization solution,
efficiently.

4.2 A brief review of differential evolution algorithm

Differential evolution (DE) algorithmpresented by Srorn and
Price (1997) is an effective and practical intelligent optimiza-
tion algorithm. It aims at solving an optimization problem by
evolving a population of D-dimensional parameter vectors,
so-called individuals, which encode the candidate solutions,
i.e., xi,G = (x1i,G , . . . , xDi,G), i = 1, . . . ,NP toward the
global optimum. Here, NP be the number of individuals in
the population and xi,G be each target vector at the generation
G. First, the initial population should be chosen by uniformly
randomizing individualswith the search space constrained by
theminimumandmaximumbounds xmin and xmax . Then, the
DE algorithm can be concluded three operations: mutation,
crossover and selection.

4.2.1 Mutation

After initialization, for each target vector xi,G , a mutant vec-
tor vi,G = (v1i,G , v2i,G , . . . , vDi,G) is generated by

vi,G+1 = xr1,G + F(xr2,G − xr3,G), r1 	= r2 	= r3 	= i,

(17)

where r1, r2, r3 ∈ [1,NP] are mutually different random
indexes and F ∈ [0, 2] is a scaling constant that controls
the amplification of the difference vector (xr2,G − xr3,G).

4.2.2 Crossover

A trial vector ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1) is
obtained by the crossover operator, according to the follow-
ing scheme

u ji,G+1 =
{

v j i,G+1, if r(j) ≤ CR or j = rn(i),

x ji,G , if r(j) > CR and j 	= rn(i),
(18)

where j = 1, 2, . . . , D, r(j) ∈ [0, 1] is the j th evaluation
of uniform random generator number. CR ∈ [0, 1] is a user-
specified constant which controls the fraction of parameter
values copied from the mutant vector. rn(i) ∈ (1, 2, . . . , D)

is a randomly chosen index which ensures that ui,G+1 gets
at least one element from vi,G+1.

123

B-spline collocation and self-adapting differential evolution (jDE) algorithm for a. . . 2687

4.2.3 Selection

A greedy selection scheme is given by

xi,G+1 =
{

ui,G+1, if f (ui,G+1) < f (xi,G),

xi,G , otherwise,
(19)

where j = 1, 2, . . . , D. In other words, if, and only if, the
trial vector ui,G+1 has less or equal objective function value
than the corresponding target vector xi,G+1, the trial vector
ui,G+1 will replace the target vector xi,G+1 and enter the
population of the next generation. Otherwise, the old value
xi,G will remain in the population for the next generation.

DE algorithm can be used to solve multi-objective, non-
differentiable problems, and so on. It is very efficiently in a lot
of diverse engineering applications such as neural networks
(Piotrowski 2014), image processing (Ali et al. 2014), etc.

4.3 Previous work related to DE algorithm

The effectiveness of standard DE algorithm in solving a
complicated optimization problem highly depends on the
chosen mutation strategy and its associated parameter val-
ues. In the past few years, many DE researchers have some
techniques for choosing trial vector generation strategies
and their associated control parameter settings. According
to Srorn and Price (1997), DE algorithm is very sensitive to
the choice of parameters F and CR. The suggested choices
are F ∈ [0.5, 1], CR ∈ [0.8, 1] and NP = 10D. Liu and
Lampinen (2005) used control parameters set to F = 0.9,
CR = 0.9. Ali and Törn (2004) chose CR = 0.5 and used
the following scheme to calculate F

F =

⎧
⎪⎪⎨

⎪⎪⎩

max

(

lmin, 1 −
∣
∣
∣
∣
fmax

fmin

∣
∣
∣
∣

)

, if

∣
∣
∣
∣
fmax

fmin

∣
∣
∣
∣ < 1

max

(

lmin, 1 −
∣
∣
∣
∣
fmin

fmax

∣
∣
∣
∣

)

, otherwise,

(20)

where fmax and fmin are the maximum and minimum values
of vectors xi,G , respectively. Gämperle et al. (2002) consid-
ered different parameter settings for DE on Sphere, Rosen-
brock and Rastrigin functions. In their experiment results,
the scaling factor F is equal to 0.6, the crossover rate CR be
between [0.3, 0.9], and NP be between [3D, 8D]. Rönkkö-
nen et al. (2005) suggested using F values in [0.4, 0.95] and
CR values in [0, 0.2]. Recently, several researchers (Zaharie
2003; Zaharie and Petcu 2003; Abbass 2002) have devel-
oped some approaches to control parameters F and CR. Very
recently,more andmore researchers paid attention to the self-
adaptive DE algorithm, see, e.g., Qin and Suganthan (2005),
Omran et al. (2005) and Rahnamayan et al. (2008).

Table 1 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−8, μ = 10−10, N = 32

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 1.3621e−02 4.8258e−03 1.0487e−02 1.4857e−05

δ1 1.2895e+04 1.3191e+06

δ2 2.3611e+04 1.5039e+04

CLPSO

EN
ε,μ 3.2075e−02 4.8949e−02 1.9257e−01 7.1309e−03

δ1 4.2223e+06 2.6597e+06

δ2 4.7928e+05 4.4887e+04

rcGA

EN
ε,μ 4.8680e−02 2.1879e−02 4.7722e−02 2.3836e−05

δ1 5.3115 5.3178

δ2 1.3844e−02 4.7633e−07

CMA-ES

EN
ε,μ 4.8683e−02 4.8258e−03 1.6750e−02 3.7048e−04

δ1 4.3176 1.3206e+06

δ2 4.8757 1.5039e+04

DE

EN
ε,μ 4.7561e−02 4.8258e−03 4.3273e−02 1.6990e−04

δ1 1.0000e+03 1.4267e+06

δ2 1.0000e+03 1.5039e+04

SaDE

EN
ε,μ 4.8626e−02 4.8257e−03 1.9426e−02 4.4101e−04

δ1 4.3906e+06 1.4424e+06

δ2 1.0000e−03 1.5039e+04

JADE

EN
ε,μ 4.6093e−02 4.8257e−03 1.8581e−02 3.9148e−04

δ1 4.2778e+06 1.4553e+06

δ2 1.0000e−05 1.5039e+04

jDE

EN
ε,μ 3.0783e−03 3.0695e−03 3.0709e−03 4.7627e−12

δ1 1.1465e+06 1.1485e+06

δ2 1.0000e−08 1.0000e−08

4.4 Self-adapting differential evolution (jDE) algorithm

Based on the above literature review, the effectiveness of
convectional DE algorithm in solving a numerical optimiza-
tion problem depends on the selected mutation strategy and
its associated parameter values. Therefore, choosing suitable
control parameter values for the convection DE algorithm is
a very important task. In Brest et al. (2006), by introducing
two new control parameters τ1 and τ2 to adjust the value of
F and CR, Brest et al. proposed a self-adapting differential
evolution (jDE) algorithm. The new parameters Fi,G+1 and
CRi,G+1 are calculated by

123

2688 X.-Q. Luo et al.

Table 2 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−8, μ = 10−10, N = 64

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 6.7296e−03 1.6417e−03 4.6211e−03 4.5420e−06

δ1 1.8477e+04 1.3188e+06

δ2 2.8946e+04 1.4531e+04

CLPSO

EN
ε,μ 3.2636e−01 5.9066e−03 1.3741e−01 9.9658e−03

δ1 6.9633e+06 9.5552e+05

δ2 9.6130e+05 2.7412e+04

rcGA

EN
ε,μ 2.4470e−02 2.2950e−02 2.4274e−02 1.7393e−07

δ1 6.0021 2.6613

δ2 6.8153e−03 2.7851e−05

CMA-ES

EN
ε,μ 2.4480e−02 1.6416e−03 9.3277e−03 1.1568e−04

δ1 2.2054 1.4256e+06

δ2 4.7918 1.4530e+04

DE

EN
ε,μ 2.4473e−02 1.6416e−03 6.9691e−03 9.6462e−05

δ1 5.1873e+06 1.4310e+06

δ2 1.0000 1.4530e+04

SaDE

EN
ε,μ 2.4430e−02 1.6416e−03 1.2276e−02 1.3371e−04

δ1 4.4962e+06 1.4121e+06

δ2 1.0000e−03 1.4530e+04

JADE

EN
ε,μ 2.2945e−02 1.6416e−03 1.7264e−02 9.1811e−05

δ1 4.9369e+06 1.4377e+06

δ2 1.0000e−05 1.4530e+04

jDE

EN
ε,μ 9.5269e−04 9.5166e−04 9.5176e−04 4.7049e−14

δ1 1.0901e+06 1.0894e+06

δ2 1.0000e−08 1.0000e−08

Fi,G+1 =
{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,G , otherwise,
(21)

CRi,G+1 =
{
rand3, if rand4 < τ2,

CRi,G , otherwise,
(22)

where rand j ∈ [0, 1], j = 1, 2, 3, 4 are uniform random
values, Fl = 0.1 and Fu = 0.9 are the lower and upper
bounds of the F , respectively. Obviously, from Equations
(21)–(22), the new F takes a value from [0.1, 1.0] in a random
manner and the new CR takes a value form [0, 1].

Table 3 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−8, μ = 10−10, N = 128

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 3.3296e−03 5.1592e−04 2.1671e−03 1.3033e−06

δ1 2.8535e+04 8.9882e+05

δ2 3.4955e+04 1.3967e+04

CLPSO

EN
ε,μ 2.7937e−01 1.3902e−04 7.5054e−02 6.1037e−03

δ1 2.5562e+06 8.4154e+05

δ2 7.0927e+05 2.2786e+04

rcGA

EN
ε,μ 1.2281e−02 1.1042e−02 1.2222e−02 5.0346e−08

δ1 0.1834 4.1875

δ2 0.1585 8.8955e−05

CMA-ES

EN
ε,μ 1.2278e−02 5.1577e−04 5.4701e−03 3.0022e−05

δ1 10.7326 1.3921e+06

δ2 7.8300e−02 1.3966e+04

DE

EN
ε,μ 1.2275e−02 5.1579e−04 2.8678e−03 2.2889e−05

δ1 6.4289e+06 1.3753e+06

δ2 1.0000 1.3966e+04

SaDE

EN
ε,μ 1.2238e−02 5.1579e−04 7.1588e−03 3.4910e−05

δ1 6.2371e+06 1.3459e+06

δ2 1.0000e−03 1.3966e+04

JADE

EN
ε,μ 3.3404e−03 2.9601e−04 3.1375e−03 5.9659e−07

δ1 1.0000e−08 1.0501e+06

δ2 1.0000e−08 1.0000e−08

jDE

EN
ε,μ 9.5269e−04 9.5166e−04 9.5176e−04 4.7049e−14

δ1 1.0901e+06 1.0894e+06

δ2 1.0000e−08 1.0000e−08

In our paper, in order to solve the above nonlinear opti-
mization problem (16), we will use the technique presented
in (21)–(22) to obtain the control parameters F and CR. For
the population size NP, we do not change it during the run.

5 Numerical experiments

In this section, the following numerical example is given to
illustrate the effectiveness of the presented method

−εu′′(x) + μu′(x) + u(x) = cosπx, x ∈ (0, 1), (23)

123

B-spline collocation and self-adapting differential evolution (jDE) algorithm for a. . . 2689

Table 4 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−10, μ = 10−12, N = 32

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 4.2568e−02 9.7638e−03 2.3332e−02 1.3939e−04

δ1 73.9763 4.3472e+06

δ2 7.6470e−05 1.0419e+05

CLPSO

EN
ε,μ 1.5780e−01 5.9745e−03 3.1958e−02 1.2731e−03

δ1 9.6733e+06 8.7047e+06

δ2 1.0384e+06 1.6548e+05

rcGA

EN
ε,μ 4.8376e−02 3.8362e−02 4.5806e−02 6.6619e−06

δ1 4.7877 4.2843

δ2 1.2620e−02 3.7088e−04

CMA-ES

EN
ε,μ 4.8683e−02 2.6562e−02 4.6874e−02 1.9014e−05

δ1 4.6996 8.4693

δ2 7.3234 1.7047e−04

DE

EN
ε,μ 4.8024e−03 4.8022e−03 4.8023e−03 1.9435e−15

δ1 1.0000e+07 1.0000e+07

δ2 1.4999e+05 1.4990e+05

SaDE

EN
ε,μ 4.8026e−03 4.8022e−03 4.8023e−03 9.2254e−15

δ1 9.0371e+06 1.4714e+07

δ2 1.5000e+05 1.4999e+05

JADE

EN
ε,μ 4.2431e−02 4.8022e−03 1.2328e−02 2.3436e−04

δ1 4.1239e+07 1.4450e+07

δ2 1.0000e−05 1.4999e+05

jDE

EN
ε,μ 3.0618e−03 3.0605e−03 3.0606e−03 7.4143e−14

δ1 1.1471e+07 1.1468e+07

δ2 1.0000e−08 1.0000e−08

u(0) = 0, u(1) = 0. (24)

For two given parameters δ1 and δ2, let SN and S2N be
the numerical solutions which are calculated on N and 2N
mesh intervals, respectively. Then, the following formula is
defined:

EN
ε,μ = ‖SN − S2N‖∞.

Here, to solve the above problem (23)-(24), we first use
jDE algorithm to optimize the problem (16), and obtain
the optimal parameters δ1 and δ2 and the corresponding

Table 5 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−10, μ = 10−12, N = 64

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 2.0990e−02 6.7257e−03 9.2508e−03 1.7309e−05

δ1 1.1589e+02 2.2809e+05

δ2 6.1899e−04 2.8940e+05

CLPSO

EN
ε,μ 1.0749e−02 3.2125e−03 1.5806e−02 5.5454e−04

δ1 4.0912e+06 6.8682e+06

δ2 1.2466e+06 1.0518e+05

rcGA

EN
ε,μ 2.3951e−02 8.9394e−03 2.1479e−02 9.4205e−06

δ1 2.9716 4.2900

δ2 1.2167e−02 4.0508e−04

CMA-ES

EN
ε,μ 2.4480e−02 1.7836e−02 2.3766e−02 2.4997e−06

δ1 3.9754 1.5812

δ2 2.1553 9.6043e−04

DE

EN
ε,μ 2.4480e−02 1.6208e−03 5.4308e−03 7.5076e−05

δ1 5.1579e+07 1.3971e+07

δ2 10.0000 1.4434e+05

SaDE

EN
ε,μ 2.2951e−02 1.6208e−03 3.7539e−03 4.2362e−05

δ1 5.0214e+07 1.4348e+07

δ2 1.0000e−03 1.4435e+05

JADE

EN
ε,μ 2.4278e−02 1.6208e−03 3.1314e−03 3.3044e−05

δ1 5.1520e+07 1.4036e+07

δ2 1.0000e−05 1.4435e+05

jDE

EN
ε,μ 9.4684e−04 9.4674e−04 9.4676e−04 5.2722e−16

δ1 1.0862e+07 1.0863e+07

δ2 1.0000e−08 1.0000e−08

numerical solution. To facilitate the experiments, we use the
softwareMATLAB2012a to programaM-file for implement-
ing the algorithms on a PCwith a 32-bit windows 7 operating
system, a 4GBRAMand a 3.10GHz-core(TM) i5-based pro-
cessor.

In the experiment, in order to illustrate the advantages
of the jDE algorithm to solve above optimize problem (16),
we also calculate the numerical results by using (original)
DE, particle swarm optimization (PSO) algorithm (Kennedy
and Eberhart 1995), comprehensive learning particle swarm
optimization(CLPSO) (Liang et al. 2006), real-coded genetic
algorithm (rcGA) (Ono and Kobayashi 1997), covariance

123

2690 X.-Q. Luo et al.

Table 6 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−10, μ = 10−12, N = 128

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 7.4395e−03 3.3383e−03 3.9973e−03 1.5204e−06

δ1 1.0026e+02 1.5903e+02

δ2 2.2606e−03 1.1923e−03

CLPSO

EN
ε,μ 8.7927e−03 6.0044e−04 2.3998e−03 2.9078e−06

δ1 9.8319e+06 8.9285e+06

δ2 5.5601e+05 15063e+05

rcGA

EN
ε,μ 1.2235e−02 3.3384e−03 1.1159e−02 5.0300e−06

δ1 0.7578 5.6655

δ2 2.1813e−02 8.5448e−04

CMA-ES

EN
ε,μ 1.2279e−02 8.2464e−03 1.1907e−02 6.7323e−07

δ1 4.4150 8.3150

δ2 8.3962 2.7153e−03

DE

EN
ε,μ 1.2279e−02 5.0164e−04 4.8202e−03 3.3324e−05

δ1 6.2969e+07 1.2899e+07

δ2 10.0000 1.3771e+05

SaDE

EN
ε,μ 5.0319e−04 5.0165e−04 5.0184e−04 9.6571e−14

δ1 1.3305e+07 1.2174e+07

δ2 13792e+05 1.3771e+05

JADE

EN
ε,μ 4.2431e−02 4.8022e−03 1.2328e−02 2.3436e−04

δ1 4.1239e+07 1.4450e+07

δ2 1.0000e−05 1.4999e+05

jDE

EN
ε,μ 2.9318e−04 2.9313e−04 2.9314e−04 2.9318e−16

δ1 1.0451e+07 1.0450e+07

δ2 1.0000e−08 1.0000e−08

matrix adaptation evolution strategy (CMA-ES) (Hansen
et al. 2003), self-adaptive DE (SaDE) algorithm (Qin et al.
2009), JADE (Zhang and Sanderson 2009) and self-adapting
differential evolution (jDE) (Brest et al. 2006).

Throughout this paper, the parameter settings of each
stochastic algorithm are as follows:

(1) the maximum number of generations D = 50, the popu-
lation size NP = 50.

(2) For the PSO and CLPSO algorithms, two accelerating
factors are set to 0.5 and 0.5, respectively. Inertia weight
factor is set to 0.45.

Table 7 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−12, μ = 10−14, N = 32

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 1.8868e−02 1.3627e−02 1.3935e−02 1.3984e−06

δ1 99.6925 46.9624

δ2 1.2474e−02 1.2107e−04

CLPSO

EN
ε,μ 1.5240e−01 6.0107e−03 2.4290e−02 8.0278e−04

δ1 1.6092e+07 7.2459e+07

δ2 1.0041e+07 1.6032e+06

rcGA

EN
ε,μ 4.1422e−02 1.3627e−02 1.9134e−02 5.7299e−05

δ1 6.1492e−01 7.7349e−01

δ2 5.2965e−02 7.3448e−03

CMA-ES

EN
ε,μ 4.8657e−02 1.3628e−02 4.3933e−02 6.6550e−05

δ1 8.9376 4.9242

δ2 4.9833 9.8798e−03

DE

EN
ε,μ 4.7998e−03 4.7999e−03 4.7998e−03 3.7287e−21

δ1 1.0000e+08 9.9975e+07

δ2 1.4995e+06 1.4995e+06

SaDE

EN
ε,μ 3.0645e−03 3.0596e−03 3.0599e−03 7.7248e−13

δ1 1.1477e+08 1.1466e+08

δ2 1.0000e−06 1.0000e−06

JADE

EN
ε,μ 4.2431e−02 4.8022e−03 1.2328e−02 2.3436e−04

δ1 4.1239e+07 1.4450e+07

δ2 1.0000e−05 1.4999e+05

jDE

EN
ε,μ 1.1535e−03 2.9313e−04 2.9314e−04 2.9318e−16

δ1 1.0000e+08 1.0450e+07

δ2 1.0000e−08 1.0000e−08

(3) For the (original) DE, SaDE and JADE algorithms,
crossover factor F = 0.5, crossover probability CR =
0.1.

In our experiment, for different values of ε, μ and N , the
numerical results of 30 independent runs are summarized in
Tables 1, 2, 3, 4,5, 6, 7, 8 and 9. The maximum values, mini-
mum values of EN

ε,μ and the corresponding parameters δ1, δ2
are also listed in Tables 1, 2, 3, 4,5, 6, 7, 8 and 9. Meanwhile,
in order to compare the robustness of the each algorithm, the
average computed values of EN

ε,μ and variance are also given.
It can be seen fromTables 1-9 that the computing precision of

123

B-spline collocation and self-adapting differential evolution (jDE) algorithm for a. . . 2691

Table 8 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−12, μ = 10−14, N = 64

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 6.7360e−03 6.7361e−03 6.7360e−03 3.9809e−17

δ1 55.0790 85.2487

δ2 3.2810e−02 2.6866e−02

CLPSO

EN
ε,μ 1.5763e−02 1.7155e−03 5.5820e−03 1.1675e−05

δ1 8.1072e+07 8.5427e+07

δ2 4.2066e+06 1.3976e+06

rcGA

EN
ε,μ 4.8679e−02 4.7310e−02 4.8535e−02 1.0092e−07

δ1 3.4948 4.5891

δ2 6.8112e−03 2.8259e−05

CMA-ES

EN
ε,μ 2.4431e−02 6.7360e−03 2.2385e−02 2.0074e−05

δ1 1.6628 5.2934

δ2 4.3707 3.0277e−02

DE

EN
ε,μ 6.7340e−03 3.6146e−03 6.4221e−03 9.0600e−07

δ1 1.0000e+06 2.1256e+08

δ2 1.0000e+06 1.0000e+06

SaDE

EN
ε,μ 9.4708e−04 9.4625e−04 9.4634e−04 3.6731e−14

δ1 1.0866e+08 1.0860e+08

δ2 1.0000e−06 1.0000e−06

JADE

EN
ε,μ 1.1535e−02 3.0596e−03 3.3422e−03 2.3945e−06

δ1 1.0000e−05 1.1466e+08

δ2 2.0265e+06 1.0000e−08

jDE

EN
ε,μ 3.0601e−03 3.0596e−03 3.0597e−03 8.1887e−15

δ1 1.1466e+08 1.1466e+08

δ2 1.0000e−08 1.0000e−08

jDE is slightly higher than the other seven algorithms (PSO,
CLPSO, rcGA, CMA-ES, DE, SaDE, JADE) by compar-
ing the maximum, minimum and mean values. In addition,
the algorithm stabilization of jDE is slightly stronger than
the other seven algorithms (PSO, CLPSO, rcGA, CMA-ES,
DE, SaDE and JADE) by comparing the variance values.
The experimental results show that the jDE algorithm has
certain competition advantages in computing precision and
algorithm stabilization than the other seven algorithms (PSO,
CLPSO, rcGA, CMA-ES, DE, SaDE and JADE).

The comparison of statistical data shows that the jDE
algorithms give better results than rcGA, PSO, CLSPO and

Table 9 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−12, μ = 10−14, N = 128

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 3.3384e−03 3.3383e−03 3.3383e−03 2.4850e−17

δ1 56.4370 62.9639

δ2 1.8024e−04 11634e−01

CLPSO

EN
ε,μ 2.4479e−02 5.2292e−04 3.2197e−03 2.3353e−05

δ1 2.6718e+07 9.5955e+07

δ2 8.8945e+06 1.4062e+06

rcGA

EN
ε,μ 9.9484e−03 3.3383e−03 4.7536e−03 4.1418e−06

δ1 3.7910 9.8654e−01

δ2 4.7079e−01 9.9984e−02

CMA-ES

EN
ε,μ 1.2271e−02 4.4606e−03 1.1225e−02 3.4866e−06

δ1 6.6554 1.4656

δ2 8.4283 1.3948e−01

DE

EN
ε,μ 3.3370e−03 1.1339e−03 2.8964e−03 8.0333e−07

δ1 1.0000e+06 2.0614e+08

δ2 1.0000e+06 1.0000e+06

SaDE

EN
ε,μ 2.9305e−04 2.9285e−04 2.9288e−04 1.6218e−15

δ1 1.0442e+08 1.0445e+08

δ2 1.0000e−06 1.0000e−06

JADE

EN
ε,μ 3.3035e−04 3.3018e−04 3.3020e−04 1.0801e−15

δ1 9.9980e+07 9.9999e+07

δ2 1.0000e−05 1.0000e−05

jDE

EN
ε,μ 3.3028e−04 3.3017e−04 3.3020e−04 5.9715e−16

δ1 9.9987e+07 9.9999e+07

δ2 1.0000e−05 1.0000e−05

CMA-ES algorithm. Furthermore, jDE algorithm performs
better than original DE, while original DE algorithm does not
always perform better than PSO. Thus, to further illustrate
the advantages of jDE algorithm, the convergence speed of
the jDE, DE, SaDE, JADE and PSO algorithms are plot-
ted in Figs. 1, 2 and 3 with ε = 10−8, μ = 10−10,
ε = 10−10, μ = 10−12, ε = 10−12, μ = 10−14 and N = 32,
respectively.Obviously, from thesefigures, one can easily see
that jDE algorithm is certainly better than PSO, DE, SaDE,
JADE. It is shown from Figs. 1, 2 and 3 that the jDE algo-
rithm has certain superiority in convergence velocity than the
other four algorithms.

123

2692 X.-Q. Luo et al.

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Generation

F
it
n
es

s

PSO

DE

SaDE

JADE

jDE

Fig. 1 Fitness of different algorithms for generation with ε = 10−8,
μ = 10−10 and N = 32

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Generation

F
it
n
es

s

PSO

DE

SaDE

JADE

jDE

Fig. 2 Fitness of different algorithms for generation with ε = 10−10,
μ = 10−12 and N = 32

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Generation

F
it
n
es

s

PSO

DE

SaDE

JADE

jDE

Fig. 3 Fitness of different algorithms for generation with ε = 10−12,
μ = 10−14 and N = 32

6 Conclusions

In most of the cases, the Shishkin mesh method is fre-
quently used to solve the singularly perturbed problem.
However, for the Shishkin mesh transition points, almost
all of authors are arbitrary selection parameters. Thus, this
work can be viewed as a preliminary step-up in finding
a challenging numerical method to obtain the Shishkin
mesh transition points. Specially, we transform the Shishkin
mesh transition parameter selection problem into a nonlin-
ear unconstrained optimization problem which is solved by
using the self-adapting differential evolution (jDE) algo-
rithm. The experimental results show that the jDE algorithm
has certain competition advantages in computing precision,
algorithm stabilization and convergence speed than the state-
of-art algorithms. It is noted that the method presented in
this paper can be extend to other type of singularly perturbed
problems.

Acknowledgements This work was supported by the National Nat-
ural Science Foundation of China (11301044, 11401054, 61662090,
11461011), the general Project of Hunan provincial education depart-
ment (14C0047), theNatural Science Foundation ofGuizhou Provincial
Education Department (No. KY[2016]018), the Scientific Research
Fund of Hunan Provincial Education Department (No. 13C333), the
Doctoral Foundation of Zunyi Normal College (No. BS[2015]13), the
open fund of Key Laboratory of Guangxi High Schools for Complex
System and Computational Intelligence (No. 15CI03D), Natural Sci-
ence Foundation of Guangxi Education Department (No. ZD2014080).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Abbass HA (2002) The self-adaptive Pareto differential evolution algo-
rithm. In: Proceedings of the congress evolutionary computation,
Honolulu, HI, pp 831–836

Abderazek H, Ferhat D, Atanasovska I (2015) A differential evolution
algorithm for tooth profile optimization with respect to balancing
specific sliding coefficients of involute cylindrical spur and helical
gears. Adv Mech Eng 7(9):1–11

Ali MM, Törn A (2004) Population set-based global optimization algo-
rithms: some modifications and numerical studies. Comput Oper
Res 31(10):1703–1725

Ali M, Ahn CW, Pant M (2014) Multi-level image thresholding by
synergetic differential evolution. App Soft Comput 17:1–11

Ali MZ, Awad NH, Suganthan PN, Duwairi RM, Reynolds RG
(2016a) A novel hybrid Cultural Algorithms framework with
trajectory-based search for global numerical optimization. Inf Sci
334–335(C):219–249

Ali MZ, Suganthan PN, Reynolds RG, Al-Badarneh AF (2016b) Lever-
aged neighborhood restructuring in cultural algorithms for solving
real-world numerical optimization problems. IEEE Trans Evol
Comput 20(2):218–231

Bigge J, Bohl E (1985) Deformations of the bifurcation diagram due to
discretization. Math Comput 45(172):393–403

123

B-spline collocation and self-adapting differential evolution (jDE) algorithm for a. . . 2693

Brest J, Greiner S, Boskovic B et al (2006) Self-adapting control param-
eters in differential evolution: a comparative study on numerical
benchmark problems. IEEE Trans Evolut Comput 10(6):646–657

Das S, Konar A (2009) Automatic imageg pixel clustering with an
improved differential evolution. Appl Soft Comput 9(1):226–236

Gämperle R, Müller SD, Koumoutsakos P (2002) A parameter study
for differential evolution. In: Grmela A, Mastorakis NE (eds)
Advances in intelligent systems, fuzzy systems, evolutionary com-
putation. WSEAS Press, Interlaken, pp 293–298

Gong W, Cai Z (1976) Parameter optimization of PEMFC model with
improved multi-strategy adaptive differential evolution. Eng Appl
Artif Intel 27(C):28–40

Gong W, Cai Z, Ling CX (2011) DE/BBO: a hybrid differential evolu-
tion with biogeography-based optimization for global numerical
optimization. Soft Comput 15(4):645–665

Gong W, Zhou A, Cai Z (2015) A multioperator search strategy based
on cheap surrogate models for evolutionary optimization. IEEE
Trans Evolut Comput 19(5):746–758

Gracica JL, O’Riordan E, PickettML (2006) A parameter robust second
order numerical method for a singularly perturbed two-parameter
problem. Appl Numer Math 56(7):962–980

Hansen N,Muller SD, Koumoutsakos P (2003) Reducing the time com-
plexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evol Comput 11(1):1–18

Herceg D (2011) Fourth-order finite-difference method for boundary
value problems with two small parameters. Appl Math Comput
218(2):616–627

Kadalbajoo MK, Yadaw AS (2008) B-spline collocation mehod for a
two-parameter singularly pertubed convection-diffusion boundary
value problems. Appl Math Comput 201(1–2):504–513

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Pro-
ceeding of the IEEE international conference on neural networks
(Perth, Australia). IEEE Service Ceter, Piscataway, NJ, pp 1942–
1948

Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive
learning particle swarm optimizer for global optimization of mul-
timodal functions. IEEE Trans Evolut Comput 10(3):281–295

Linß T (2010) A posteriori error estimation for a singularly perturbed
problem with two small parameters. Int J Numer Anal Model
7(3):491–506

Linß T, Roos HG (2004) Analysis of a finite-difference scheme for a
singularly perturbed problem with two small parameters. J Math
Anal Appl 289(2):355–366

Liu W, Wang P, Qiao H (2012) Part-based adaptive detection of work-
pieces using differential evolution. Signal Process 92(2):301–307

Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algo-
rithm. Soft Comput 9(6):448–462

Lynn N, Suganthan PN (2015) Heterogeneous comprehensive learn-
ing particle swarm optimization with enhanced exploration and
exploitation. Swarm Evol Comput 24:11–24

Matthews S, O’Riordan E, Shishkin GI (2002) A numerical method for
a system of singularly perturbed reaction–diffusion equations. J
Comput Appl Math 145:151–166

Miller JJH, O’Riordan E, Shishkin GI (1996) Fitted numerical methods
for singular perturbation problems. Error estimates in the maxi-
mum norm for linear problems in one and two dimensions. World
Scientific, Singapore

O’Malley RE Jr (1967) Two-parameter singular perturbation problems
for second order equations. J Math Mech 16:1143–1164

OmranMGH,SalmanA,EngelbrechtAP (2005) Self-adaptive differen-
tial evolution. In: Lecture notes in artificial intelligence. Springer,
Berlin, pp 192–199

Ono I, Kobayashi S (1997) A real coded genetic algorithm for func-
tion optimization using unimodal normal distributed crossover. In:
International conference on genetic algorithms, East Lansing, MI,
USA, pp 246–253

Ouyang A, Yang Z (2016) An efficient hybrid algorithm based on
harmony search and invasive weed optimization. In: 2016 12th
international conference on natural computation, fuzzy systems
and knowledge discovery (ICNC-FSKD), Changsha, pp 167–172.
doi:10.1109/FSKD.2016.7603169

Ouyang A, Li K, Truong TK, Sallam A, Sha EHM (2014) Hybrid par-
ticle swarm optimization for parameter estimation of Muskingum
model. Neural Comput Appl 25(7–8):1785–1799

Ouyang A, Tang Z, Zhou X, Xu Y, Pan G, Li K (2015) Parallel hybrid
PSO with CUDA for lD heat conduction equation. Comput Fluids
110:198–210

Ouyang A, Peng X, Liu Y, Fan L, Li K (2016a) An efficient hybrid
algorithm based on HS and SFLA. Int J Pattern Recognit Artif
Intell 30(5):1659012 (1–25)

Ouyang A, Peng X, Wang Q, Wang Y, Truong TK (2016b) A paral-
lel improved iwo algorithm on gpu for solving large scale global
optimization problems. J Intell Fuzzy Syst 31(2):1041–1051

Piotrowski AP (2014) Diiferential Evolution algorithms applied to neu-
ral network training suffer from stagnation. Appl Soft Comput
21:382–406

Qin AK, Suganthan PN (2005) Self-adaptive differential evolution
algorithm for numerical optimization. In: Proceedings of the
IEEE congress evolutionary computation, Edinburgh, Scotland,
pp 1785–1791

Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algo-
rithm with strategy adaptation for global numerical optimization.
IEEE Trans Evolut Comput 13(2):398–417

Qu BY, Suganthan PN, Das S (2013) A distance-based locally informed
particle swarm model for multimodal optimization. IEEE Trans
Evol Comput 17(3):387–402

Rahnamayan S, Tizhoosh HR, Salama MMA (2008) Oppositionbased
differential evolution. IEEE Trans Evolut Comput 12(1):64–79

Rönkkönen J, Kukkonen S, Price KV (2005) Real-parameter opti-
mization with differential evolution. In: Proceedings of the IEEE
congress evolutionary computation, Edinburgh, Scotland, pp 506–
513

Roos HG, Uzelac Z (2003) The SDFEM for a convection–diffusion
problem with two small parameters. Comput Methods Appl Math
3(3):443–458

Srorn R, Price K (1997) Differential evolution: a simple and efficient
adaptive scheme for global optimization over continuous spaces.
J Global Optim 11(4):341–359

Suganthan PN (1999) Particle swarm optimiser with neighbourhood
operator. In: Proceedings of the 1999 congress on evolutionary
computation, 1999 (CEC 99), Washington, DC

Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H (2016) Differen-
tial evolution with multi-population based ensemble of mutation
strategies. Inf Sci 329:329–345

XuY, LiK,Hu J, LiK (2014)A genetic algorithm for task scheduling on
heterogeneous computing systems using multiple priority queues.
Inf Sci 270:255–287

Xu Y, Li K, He L, Zhang L (2015) A hybrid chemical reaction opti-
mization scheme for task scheduling on heterogeneous computing
systems. IEEE Trans Parallel Distrib Syst 26(12):3208–3222

Zaharie D (2003) Control of population diversity and adaptation in dif-
ferential evolution algorithms. In: Matousek R, Osmera P (eds)
Proceeding of the mendel 9th international conference soft com-
puting, Brno, Czech Republic, pp 41–46

Zaharie D, Petcu D (2003) Adaptive pareto differential evolution and its
parallelization. In: Proceedings of the 5th international conference
on parallel process appliedmathematics, Czestochowa, Poland, pp
261–268

Zhang J, SandersonAC (2009) Jade: adaptive differential evolutionwith
optional external archive. IEEE Trans Evolut Comput 13(5):945–
958

123

http://dx.doi.org/10.1109/FSKD.2016.7603169

	B-spline collocation and self-adapting differential evolution (jDE) algorithm for a singularly perturbed convection–diffusion problem
	Abstract
	1 Introduction
	2 Mesh selection strategy
	3 B-spline collocation method
	4 A differential evolution algorithm to optimize the Shishkin mesh parameters
	4.1 The objective function
	4.2 A brief review of differential evolution algorithm
	4.2.1 Mutation
	4.2.2 Crossover
	4.2.3 Selection

	4.3 Previous work related to DE algorithm
	4.4 Self-adapting differential evolution (jDE) algorithm

	5 Numerical experiments
	6 Conclusions
	Acknowledgements
	References

