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Abstract Many numerical methods applied on a Shishkin
mesh are very popular in solving the singularly perturbed
problems. However, few approaches are used to obtain the
Shishkin mesh transition parameter. Thus, in this paper, we
first use the cubic B-spline collocation method on a Shishkin
mesh to solve the singularly perturbed convection–diffusion
problem with two small parameters. Then, we transform
the Shishkin mesh transition parameter selection problem
into a nonlinear unconstrained optimization problem which
is solved by using the self-adapting differential evolution
(jDE) algorithm. To verify the performance of our presented
method, a numerical example is employed. It is shown from
the experiment results that our approach is efficient. Com-
pared with other evolutionary algorithms, the jDE algorithm
performs better and with more stability.
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1 Introduction

In this paper, we consider the following singularly perturbed
convection–diffusion problem with two small parameters

⎧
⎨

⎩

Lu = −εu′′(x) + μb(x)u′(x) + c(x)u(x) = f (x),
x ∈ Ω = (0, 1),

u(0) = A, u(1) = B,

(1)

where 0 < ε � 1 and 0 < μ � 1. The functions b(x), c(x)
and f (x) are assumed to be sufficiently smooth satisfying

0 < b∗ ≤ b(x), 0 < c∗ ≤ c(x), x ∈ [0, 1],

where b∗ and c∗ are two positive constants. When μ = 0 or
μ = 1, this problem encompasses reaction–diffusion prob-
lem or convection–diffusion problem, respectively. These
kinds of problems arise in transport phenomena in chem-
istry and biology (Bigge and Bohl 1985). The nature of
the two-parameter problem was asymptotically examined by
O’Malley (1967), where the ratio of μ to ε has significant
role in solution. For this problem, two boundary layers occur
at x = 0 and x = 1. Because of the presence of these lay-
ers, some standard numerical methods applied on a uniform
mesh fail to give a satisfactory numerical solution. Thus,
much attention has been focused on the use of a non-uniform
mesh that is adapted to the singularly perturbed problems.

Recently, Gracica et al. (2006) used a second-order
monotone numerical scheme which was combined with
a piecewise-uniform Shishkin mesh to solve problem (1).
Linß (2010) presented a streamline-diffusion finite element
method (SDFEM) on a Shishkin mesh. Furthermore, Linß
and Roos (2004) developed a first-order upwind difference
scheme on a piecewise-uniform Shishkin mesh. Roos and
Uzelac (2003) also proposed a SDFEMon aShishkinmesh to
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solve problem (1).Herceg (2011) presented afinite difference
scheme for a class of linear singularly perturbed boundary
value problems with two small parameters which was dis-
cretized on a Bakhvalov-type mesh. Kadalbajoo and Yadaw
(2008) solved problem (1) by using the cubic B-spline col-
location method on a piecewise-Shishkin mesh.

In a word, it can be seen from the above literature that
the upwind finite difference scheme applied on a Shishkin
mesh is very popular in solving the singularly perturbed
convection–diffusion equation with two small parameters.
As far as we know, this mesh contains two grid transition
points λ1 and λ2 which have some different definitions in
some papers. In Miller et al. (1996), the authors defined λ1
and λ2 as

λ1 = min

(
1

4
,

σ1

μ1
ln N

)

, λ2 = min

(
1

4
,

σ2

μ2
ln N

)

,

where σ1, σ2 are two positive constants, μ1 and μ2 are
defined in Miller et al. (1996), and N , our discretization
parameter, is a positive even. Then, they divided the intervals
[0, λ1] and [1 − λ2, 1] into N/4 subintervals, respectively,
and [λ1, 1 − λ2] is dissected into N/2. In practical compu-
tation, the numerical results of problem (1) are related to the
choice of constants σ1, σ2. As far as we know, there is no any
method which is used to calculate the grid parameters σ1 and
σ2. Therefore, it is very important to study a clearly method
to get the best Shishkin mesh parameters.

In recent years, various improved intelligence algorithms
or hybrid intelligence algorithms have been designed to
solve optimization problems (Ouyang and Yang 2016),
such as PSO with neighborhood operator (Suganthan 1999),
distance-based locally informed PSO (Qu et al. 2013),
hybrid PSO algorithm (Ouyang et al. 2014), hybird genetic
algorithm (Xu et al. 2014), hybrid chemical reaction opti-
mization (Xu et al. 2015), parallel hybrid PSO (Ouyang et al.
2015), heterogeneous CLPSO algorithm (Lynn and Sugan-
than 2015), multi-population DE algorithm (Wu et al. 2016),
hybrid harmony search algorithm (Ouyang et al. 2016a),
hybrid cultural algorithm (Ali et al. 2016a, b), hybrid invasive
weed optimization algorithm (Ouyang et al. 2016b).

As we know, differential evolution (DE) algorithm (Srorn
and Price 1997) is a fast and simple method which performs
well on a wide variety of problems. It is a population-based
stochastic search technique, which is inherently parallel. DE
algorithm is a relatively new nonlinear search and optimiza-
tion approach, which is particularly well suited to solve some
complicate optimization problems. Due to its advantages
of simple structure, easy implementation and good com-
putational efficiency, DE algorithm has been successfully
used to solve many problems such as mechanical engi-
neering (Abderazek et al. 2015), Signal processing (Liu
and Lampinen 2005), pattern recognition (Das and Konar
2009), some problems of parameter estimation (Gong and

Cai 1976). Recently, some hybrid DE algorithms (Gong et al.
2011, 2015) were also presented for some global numerical
optimization.

In view of the unique advantages of differential evolu-
tion algorithm for estimating parameter, the mainly work
of this paper is motivated by using jDE algorithm (Brest
et al. 2006) to obtain the best mesh transition points. More
specifically, we will first use the B-spline collocation tech-
nique developed in Kadalbajoo and Yadaw (2008) to study
the numerical solution of problem (1). Then, we may use
the double-mesh principle (Matthews et al. 2002) to estimate
the absolute errors. At last, we transform the choice of mesh
parameter problem into a nonlinear unconstrained optimiza-
tion problem. Furthermore, we utilize the jDE algorithm to
find two suitable mesh transition points and the correspond-
ing numerical results for the problem (1).

The remainder of this paper is organized in the following
way. Section 2 gives a simple introduction to the mesh selec-
tion strategy. Section 3 shows a detailed theoretical analysis
of B-spline collocation method. Section 4 introduces A dif-
ferential evolution algorithm to optimize the Shishkin mesh
parameters. Section 5 displays the numerical experimental
results and discussions in detail. Finally, the paper concludes
with Sect. 6.

2 Mesh selection strategy

At first, we use the piecewise-uniform grid to divide the inter-
val [0,1] into three subintervals:

Ω0 = [0, λ1], Ωc = [λ1, 1 − λ2] and Ω1 = [1 − λ2, 1],

where the transition parameters are given by

λ1 = min

(
1

4
, δ1μ ln N

)

, λ2 = min

(
1

4
, δ2ε ln N

)

,

where δ1 and δ2 are two positive parameters. Then, we place
N/4, N/2 and N/4 mesh points in three subregions [0, λ1],
[λ1, 1 − λ2] and [1 − λ2, 1], respectively. Finally, the mesh
widths can be obtained as follows:

h̃ =

⎧
⎪⎨

⎪⎩

4λ1
N , for the interval [0, λ1],
2(1−λ1−λ2)

N , for the interval [λ1, 1 − λ2],
4(1−λ2)

N , for the interval [1 − λ2, 1].

3 B-spline collocation method

Let Ω
N = {x0, x1, x2, . . . , xN } be a Shishkin mesh defined

in Sect. 2, and then, the cubic B-spline functions (Kadalbajoo
and Yadaw 2008) are given as follows:
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Bi (x) = 1

h̃3

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x − xi−2)
3, if xi−2 ≤ x ≤ xi−1,

h̃3 + 3h̃2(x − xi−1) + 3h̃(x − xi−1)
2 − 3(x − xi−1)

3, if xi−1 ≤ x ≤ xi ,
h̃3 + 3h̃2(xi+1 − x) + 3h̃(xi+1 − x)2 − 3(xi+1 − x)3, if xi ≤ x ≤ xi+1,

(xi+2 − x)3, if xi+1 ≤ x ≤ xi+2,

0, otherwise,

(2)

where i = 0, 1, 2, . . . , N . For the above functions (2), we
introduce four additional knots x−2 < x−1 < x0 and xN+2 >

xN+1 > xN . Obviously, each of the function Bi (x) is twice
continuously differentiable on the entire real line. In addition,
for each x j , j = 0, 1, . . . , N , we have

Bi (x j ) =
⎧
⎨

⎩

4, if i = j,
1, if i − j = ±1,
0, if i − j = ±2.

(3)

Similarly, we can show that

B ′
i (x j ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if i = j,

±3

h̃
, if i − j = ±1,

0, if i − j = ±2

(4)

and

B ′′
i (x j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−12

h̃2
, if i = j,

6

h̃2
, if i − j = ±1,

0, if i − j = ±2.

(5)

As far aswe know, the dimensional of cubicB-spline func-
tion space is N + 3. Similar to (2), we first define two extra
cubic B-spline functions B−1 and BN+1. Then, the cubic B-
spline function space can be given as follows

Φ3(Ω) = span{B−1, B0, B1, . . . , BN+1}.

Thus, for any cubic polynomial function S(x), we have

S(x) =
N+1∑

i=−1

ai Bi (x), (6)

where ai are unknown real coefficients.
Here, we use function S(x) defined in (6) to approximate

the exact solution of (1), yield

LS(xi ) = f (xi ), 0 ≤ i ≤ N , (7)

and

S(x0) = A, S(xN ) = B. (8)

By using the values of B-spline functions Bi and of deriva-

tives at mesh points Ω
N
, we obtain the following system of

N + 1 linear equations with N + 3 unknown variables

(−6ε − 3μbi h̃ + ci h̃
2)ai−1 + (12ε + 4ci h̃

2)ai

+(−6ε + 3μbi h̃ + ci h̃
2)ai+1 = fi h̃

2, (9)

where 0 ≤ i ≤ N .
From the boundary conditions, we have

a−1 + 4a0 + a1 = A, (10)

and

aN−1 + 4aN + aN+1 = B. (11)

Next, eliminating a−1 from first equation (9) and (10), we
obtain

(36ε + 12μh̃b0)a0 + 6μb0h̃a1

= h̃2 f0 − A(−6ε − 3μb0h̃ + c0h̃
2). (12)

Similarly, we have

(−6μh̃bN )aN−1 + (36ε − 12μbN h̃)aN

= h̃2 fN − B(−6ε + 3μbN h̃ + cN h̃
2). (13)

Finally, we can get the following system of N + 1 linear
equations with N + 1 unknown variables

T xN = dN , (14)

where xN = (a0, a1, . . . , aN )T are the unknown real coeffi-
cients with right hand side

dN = (h̃2 f0−A(−6ε−3μb0h̃+c0h̃
2), h̃2 f1, . . . , h̃

2 fN−1,

h̃2 fN − B(−6ε + 3μbN h̃ + cN h̃
2))T
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and

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

t0,0 t0,1 0 0 · · · 0 0
t1 t2 t3 0 · · · 0 0
0 t1 t2 t3 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · t1 t2 t3 0
0 0 · · · 0 t1 t2 t3
0 0 · · · 0 0 tN ,N−1 tN ,N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

t0,0 = 36ε + 12μh̃b0, t0,1 = 6μb0h̃,

t1 = −6ε − 3μbi h̃ + ci h̃
2,

t2 = 12ε + 4ci h̃
2, t3 = −6ε + 3μbi h̃ + ci h̃

2,

tN ,N−1 = −6μh̃bN , tN ,N = 36ε − 12μbN h̃.

It is easy to see that thematrix T is strictly diagonally dom-
inant. Thus, we can solve the above system equations (14)
for a0, a1, . . . , aN . Furthermore, we obtain a−1 and aN+1 by
substitute a0, a1, . . . , aN into the boundary condition (10)
and (11). Hence the collocation method by using a basis of
cubic B-splines functions applied to problem (1) has a unique
solution.

4 A differential evolution algorithm to optimize the
Shishkin mesh parameters

4.1 The objective function

In general, the exact solution of problem (1) is not available,
especially for the nonlinear problem. Thus, in order to esti-
mate the absolute errors of numerical solution of problem (1),
we can use the double-mesh principle developed inMatthews
et al. (2002) to estimate the absolute errors. Obviously, for
each ε,μ and N , the solution of (7) is a binary function about
variables δ1 and δ2. So, we define SN

ε,μ(δ1, δ2) be the solution
of the approximate scheme on the original Shishkin mesh.
Similarly, on the mesh produced by uniformly bisecting the
origin mesh, we define S2N

ε,μ(δ1, δ2). Then we can use the fol-
lowing formula to estimate the maximum point-wise error

EN
ε,μ(δ1, δ2) = ‖SN

ε,μ(δ1, δ2) − S2N
ε,μ(δ1, δ2)‖∞. (15)

In practical computation, one may choose suitable param-
eters δ1 and δ2 to make the value of EN

ε,μ(δ1, δ2) as small
as possible. Therefore, in this paper, we may transform the
problem of mesh parameter calculation into the following
nonlinear unconstrained optimization problem

Fitness = min ‖SN
ε,μ(δ1, δ2) − S2N

ε,μ(δ1, δ2)‖∞. (16)

Obviously, the above objective function (16) is an implicit
function above variables δ1 and δ2, and is not differentiable.
So, some traditional optimization methods are not suitable
to solve it. In addition, once the above objective function
(16) has many local extreme points, the traditional optimiza-
tion methods may not find the global optimization solution,
efficiently.

4.2 A brief review of differential evolution algorithm

Differential evolution (DE) algorithmpresented by Srorn and
Price (1997) is an effective and practical intelligent optimiza-
tion algorithm. It aims at solving an optimization problem by
evolving a population of D-dimensional parameter vectors,
so-called individuals, which encode the candidate solutions,
i.e., xi,G = (x1i,G , . . . , xDi,G), i = 1, . . . ,NP toward the
global optimum. Here, NP be the number of individuals in
the population and xi,G be each target vector at the generation
G. First, the initial population should be chosen by uniformly
randomizing individualswith the search space constrained by
theminimumandmaximumbounds xmin and xmax . Then, the
DE algorithm can be concluded three operations: mutation,
crossover and selection.

4.2.1 Mutation

After initialization, for each target vector xi,G , a mutant vec-
tor vi,G = (v1i,G , v2i,G , . . . , vDi,G) is generated by

vi,G+1 = xr1,G + F(xr2,G − xr3,G), r1 	= r2 	= r3 	= i,

(17)

where r1, r2, r3 ∈ [1,NP] are mutually different random
indexes and F ∈ [0, 2] is a scaling constant that controls
the amplification of the difference vector (xr2,G − xr3,G).

4.2.2 Crossover

A trial vector ui,G+1 = (u1i,G+1, u2i,G+1, . . . , uDi,G+1) is
obtained by the crossover operator, according to the follow-
ing scheme

u ji,G+1 =
{

v j i,G+1, if r( j) ≤ CR or j = rn(i),

x ji,G , if r( j) > CR and j 	= rn(i),
(18)

where j = 1, 2, . . . , D, r( j) ∈ [0, 1] is the j th evaluation
of uniform random generator number. CR ∈ [0, 1] is a user-
specified constant which controls the fraction of parameter
values copied from the mutant vector. rn(i) ∈ (1, 2, . . . , D)

is a randomly chosen index which ensures that ui,G+1 gets
at least one element from vi,G+1.
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4.2.3 Selection

A greedy selection scheme is given by

xi,G+1 =
{

ui,G+1, if f (ui,G+1) < f (xi,G),

xi,G , otherwise,
(19)

where j = 1, 2, . . . , D. In other words, if, and only if, the
trial vector ui,G+1 has less or equal objective function value
than the corresponding target vector xi,G+1, the trial vector
ui,G+1 will replace the target vector xi,G+1 and enter the
population of the next generation. Otherwise, the old value
xi,G will remain in the population for the next generation.

DE algorithm can be used to solve multi-objective, non-
differentiable problems, and so on. It is very efficiently in a lot
of diverse engineering applications such as neural networks
(Piotrowski 2014), image processing (Ali et al. 2014), etc.

4.3 Previous work related to DE algorithm

The effectiveness of standard DE algorithm in solving a
complicated optimization problem highly depends on the
chosen mutation strategy and its associated parameter val-
ues. In the past few years, many DE researchers have some
techniques for choosing trial vector generation strategies
and their associated control parameter settings. According
to Srorn and Price (1997), DE algorithm is very sensitive to
the choice of parameters F and CR. The suggested choices
are F ∈ [0.5, 1], CR ∈ [0.8, 1] and NP = 10D. Liu and
Lampinen (2005) used control parameters set to F = 0.9,
CR = 0.9. Ali and Törn (2004) chose CR = 0.5 and used
the following scheme to calculate F

F =

⎧
⎪⎪⎨

⎪⎪⎩

max

(

lmin, 1 −
∣
∣
∣
∣
fmax

fmin

∣
∣
∣
∣

)

, if

∣
∣
∣
∣
fmax

fmin

∣
∣
∣
∣ < 1

max

(

lmin, 1 −
∣
∣
∣
∣
fmin

fmax

∣
∣
∣
∣

)

, otherwise,

(20)

where fmax and fmin are the maximum and minimum values
of vectors xi,G , respectively. Gämperle et al. (2002) consid-
ered different parameter settings for DE on Sphere, Rosen-
brock and Rastrigin functions. In their experiment results,
the scaling factor F is equal to 0.6, the crossover rate CR be
between [0.3, 0.9], and NP be between [3D, 8D]. Rönkkö-
nen et al. (2005) suggested using F values in [0.4, 0.95] and
CR values in [0, 0.2]. Recently, several researchers (Zaharie
2003; Zaharie and Petcu 2003; Abbass 2002) have devel-
oped some approaches to control parameters F and CR. Very
recently,more andmore researchers paid attention to the self-
adaptive DE algorithm, see, e.g., Qin and Suganthan (2005),
Omran et al. (2005) and Rahnamayan et al. (2008).

Table 1 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−8, μ = 10−10, N = 32

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 1.3621e−02 4.8258e−03 1.0487e−02 1.4857e−05

δ1 1.2895e+04 1.3191e+06

δ2 2.3611e+04 1.5039e+04

CLPSO

EN
ε,μ 3.2075e−02 4.8949e−02 1.9257e−01 7.1309e−03

δ1 4.2223e+06 2.6597e+06

δ2 4.7928e+05 4.4887e+04

rcGA

EN
ε,μ 4.8680e−02 2.1879e−02 4.7722e−02 2.3836e−05

δ1 5.3115 5.3178

δ2 1.3844e−02 4.7633e−07

CMA-ES

EN
ε,μ 4.8683e−02 4.8258e−03 1.6750e−02 3.7048e−04

δ1 4.3176 1.3206e+06

δ2 4.8757 1.5039e+04

DE

EN
ε,μ 4.7561e−02 4.8258e−03 4.3273e−02 1.6990e−04

δ1 1.0000e+03 1.4267e+06

δ2 1.0000e+03 1.5039e+04

SaDE

EN
ε,μ 4.8626e−02 4.8257e−03 1.9426e−02 4.4101e−04

δ1 4.3906e+06 1.4424e+06

δ2 1.0000e−03 1.5039e+04

JADE

EN
ε,μ 4.6093e−02 4.8257e−03 1.8581e−02 3.9148e−04

δ1 4.2778e+06 1.4553e+06

δ2 1.0000e−05 1.5039e+04

jDE

EN
ε,μ 3.0783e−03 3.0695e−03 3.0709e−03 4.7627e−12

δ1 1.1465e+06 1.1485e+06

δ2 1.0000e−08 1.0000e−08

4.4 Self-adapting differential evolution (jDE) algorithm

Based on the above literature review, the effectiveness of
convectional DE algorithm in solving a numerical optimiza-
tion problem depends on the selected mutation strategy and
its associated parameter values. Therefore, choosing suitable
control parameter values for the convection DE algorithm is
a very important task. In Brest et al. (2006), by introducing
two new control parameters τ1 and τ2 to adjust the value of
F and CR, Brest et al. proposed a self-adapting differential
evolution (jDE) algorithm. The new parameters Fi,G+1 and
CRi,G+1 are calculated by
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Table 2 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−8, μ = 10−10, N = 64

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 6.7296e−03 1.6417e−03 4.6211e−03 4.5420e−06

δ1 1.8477e+04 1.3188e+06

δ2 2.8946e+04 1.4531e+04

CLPSO

EN
ε,μ 3.2636e−01 5.9066e−03 1.3741e−01 9.9658e−03

δ1 6.9633e+06 9.5552e+05

δ2 9.6130e+05 2.7412e+04

rcGA

EN
ε,μ 2.4470e−02 2.2950e−02 2.4274e−02 1.7393e−07

δ1 6.0021 2.6613

δ2 6.8153e−03 2.7851e−05

CMA-ES

EN
ε,μ 2.4480e−02 1.6416e−03 9.3277e−03 1.1568e−04

δ1 2.2054 1.4256e+06

δ2 4.7918 1.4530e+04

DE

EN
ε,μ 2.4473e−02 1.6416e−03 6.9691e−03 9.6462e−05

δ1 5.1873e+06 1.4310e+06

δ2 1.0000 1.4530e+04

SaDE

EN
ε,μ 2.4430e−02 1.6416e−03 1.2276e−02 1.3371e−04

δ1 4.4962e+06 1.4121e+06

δ2 1.0000e−03 1.4530e+04

JADE

EN
ε,μ 2.2945e−02 1.6416e−03 1.7264e−02 9.1811e−05

δ1 4.9369e+06 1.4377e+06

δ2 1.0000e−05 1.4530e+04

jDE

EN
ε,μ 9.5269e−04 9.5166e−04 9.5176e−04 4.7049e−14

δ1 1.0901e+06 1.0894e+06

δ2 1.0000e−08 1.0000e−08

Fi,G+1 =
{
Fl + rand1 ∗ Fu, if rand2 < τ1,

Fi,G , otherwise,
(21)

CRi,G+1 =
{
rand3, if rand4 < τ2,

CRi,G , otherwise,
(22)

where rand j ∈ [0, 1], j = 1, 2, 3, 4 are uniform random
values, Fl = 0.1 and Fu = 0.9 are the lower and upper
bounds of the F , respectively. Obviously, from Equations
(21)–(22), the new F takes a value from [0.1, 1.0] in a random
manner and the new CR takes a value form [0, 1].

Table 3 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−8, μ = 10−10, N = 128

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 3.3296e−03 5.1592e−04 2.1671e−03 1.3033e−06

δ1 2.8535e+04 8.9882e+05

δ2 3.4955e+04 1.3967e+04

CLPSO

EN
ε,μ 2.7937e−01 1.3902e−04 7.5054e−02 6.1037e−03

δ1 2.5562e+06 8.4154e+05

δ2 7.0927e+05 2.2786e+04

rcGA

EN
ε,μ 1.2281e−02 1.1042e−02 1.2222e−02 5.0346e−08

δ1 0.1834 4.1875

δ2 0.1585 8.8955e−05

CMA-ES

EN
ε,μ 1.2278e−02 5.1577e−04 5.4701e−03 3.0022e−05

δ1 10.7326 1.3921e+06

δ2 7.8300e−02 1.3966e+04

DE

EN
ε,μ 1.2275e−02 5.1579e−04 2.8678e−03 2.2889e−05

δ1 6.4289e+06 1.3753e+06

δ2 1.0000 1.3966e+04

SaDE

EN
ε,μ 1.2238e−02 5.1579e−04 7.1588e−03 3.4910e−05

δ1 6.2371e+06 1.3459e+06

δ2 1.0000e−03 1.3966e+04

JADE

EN
ε,μ 3.3404e−03 2.9601e−04 3.1375e−03 5.9659e−07

δ1 1.0000e−08 1.0501e+06

δ2 1.0000e−08 1.0000e−08

jDE

EN
ε,μ 9.5269e−04 9.5166e−04 9.5176e−04 4.7049e−14

δ1 1.0901e+06 1.0894e+06

δ2 1.0000e−08 1.0000e−08

In our paper, in order to solve the above nonlinear opti-
mization problem (16), we will use the technique presented
in (21)–(22) to obtain the control parameters F and CR. For
the population size NP, we do not change it during the run.

5 Numerical experiments

In this section, the following numerical example is given to
illustrate the effectiveness of the presented method

−εu′′(x) + μu′(x) + u(x) = cosπx, x ∈ (0, 1), (23)
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Table 4 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−10, μ = 10−12, N = 32

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 4.2568e−02 9.7638e−03 2.3332e−02 1.3939e−04

δ1 73.9763 4.3472e+06

δ2 7.6470e−05 1.0419e+05

CLPSO

EN
ε,μ 1.5780e−01 5.9745e−03 3.1958e−02 1.2731e−03

δ1 9.6733e+06 8.7047e+06

δ2 1.0384e+06 1.6548e+05

rcGA

EN
ε,μ 4.8376e−02 3.8362e−02 4.5806e−02 6.6619e−06

δ1 4.7877 4.2843

δ2 1.2620e−02 3.7088e−04

CMA-ES

EN
ε,μ 4.8683e−02 2.6562e−02 4.6874e−02 1.9014e−05

δ1 4.6996 8.4693

δ2 7.3234 1.7047e−04

DE

EN
ε,μ 4.8024e−03 4.8022e−03 4.8023e−03 1.9435e−15

δ1 1.0000e+07 1.0000e+07

δ2 1.4999e+05 1.4990e+05

SaDE

EN
ε,μ 4.8026e−03 4.8022e−03 4.8023e−03 9.2254e−15

δ1 9.0371e+06 1.4714e+07

δ2 1.5000e+05 1.4999e+05

JADE

EN
ε,μ 4.2431e−02 4.8022e−03 1.2328e−02 2.3436e−04

δ1 4.1239e+07 1.4450e+07

δ2 1.0000e−05 1.4999e+05

jDE

EN
ε,μ 3.0618e−03 3.0605e−03 3.0606e−03 7.4143e−14

δ1 1.1471e+07 1.1468e+07

δ2 1.0000e−08 1.0000e−08

u(0) = 0, u(1) = 0. (24)

For two given parameters δ1 and δ2, let SN and S2N be
the numerical solutions which are calculated on N and 2N
mesh intervals, respectively. Then, the following formula is
defined:

EN
ε,μ = ‖SN − S2N‖∞.

Here, to solve the above problem (23)-(24), we first use
jDE algorithm to optimize the problem (16), and obtain
the optimal parameters δ1 and δ2 and the corresponding

Table 5 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−10, μ = 10−12, N = 64

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 2.0990e−02 6.7257e−03 9.2508e−03 1.7309e−05

δ1 1.1589e+02 2.2809e+05

δ2 6.1899e−04 2.8940e+05

CLPSO

EN
ε,μ 1.0749e−02 3.2125e−03 1.5806e−02 5.5454e−04

δ1 4.0912e+06 6.8682e+06

δ2 1.2466e+06 1.0518e+05

rcGA

EN
ε,μ 2.3951e−02 8.9394e−03 2.1479e−02 9.4205e−06

δ1 2.9716 4.2900

δ2 1.2167e−02 4.0508e−04

CMA-ES

EN
ε,μ 2.4480e−02 1.7836e−02 2.3766e−02 2.4997e−06

δ1 3.9754 1.5812

δ2 2.1553 9.6043e−04

DE

EN
ε,μ 2.4480e−02 1.6208e−03 5.4308e−03 7.5076e−05

δ1 5.1579e+07 1.3971e+07

δ2 10.0000 1.4434e+05

SaDE

EN
ε,μ 2.2951e−02 1.6208e−03 3.7539e−03 4.2362e−05

δ1 5.0214e+07 1.4348e+07

δ2 1.0000e−03 1.4435e+05

JADE

EN
ε,μ 2.4278e−02 1.6208e−03 3.1314e−03 3.3044e−05

δ1 5.1520e+07 1.4036e+07

δ2 1.0000e−05 1.4435e+05

jDE

EN
ε,μ 9.4684e−04 9.4674e−04 9.4676e−04 5.2722e−16

δ1 1.0862e+07 1.0863e+07

δ2 1.0000e−08 1.0000e−08

numerical solution. To facilitate the experiments, we use the
softwareMATLAB2012a to programaM-file for implement-
ing the algorithms on a PCwith a 32-bit windows 7 operating
system, a 4GBRAMand a 3.10GHz-core(TM) i5-based pro-
cessor.

In the experiment, in order to illustrate the advantages
of the jDE algorithm to solve above optimize problem (16),
we also calculate the numerical results by using (original)
DE, particle swarm optimization (PSO) algorithm (Kennedy
and Eberhart 1995), comprehensive learning particle swarm
optimization(CLPSO) (Liang et al. 2006), real-coded genetic
algorithm (rcGA) (Ono and Kobayashi 1997), covariance
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Table 6 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−10, μ = 10−12, N = 128

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 7.4395e−03 3.3383e−03 3.9973e−03 1.5204e−06

δ1 1.0026e+02 1.5903e+02

δ2 2.2606e−03 1.1923e−03

CLPSO

EN
ε,μ 8.7927e−03 6.0044e−04 2.3998e−03 2.9078e−06

δ1 9.8319e+06 8.9285e+06

δ2 5.5601e+05 15063e+05

rcGA

EN
ε,μ 1.2235e−02 3.3384e−03 1.1159e−02 5.0300e−06

δ1 0.7578 5.6655

δ2 2.1813e−02 8.5448e−04

CMA-ES

EN
ε,μ 1.2279e−02 8.2464e−03 1.1907e−02 6.7323e−07

δ1 4.4150 8.3150

δ2 8.3962 2.7153e−03

DE

EN
ε,μ 1.2279e−02 5.0164e−04 4.8202e−03 3.3324e−05

δ1 6.2969e+07 1.2899e+07

δ2 10.0000 1.3771e+05

SaDE

EN
ε,μ 5.0319e−04 5.0165e−04 5.0184e−04 9.6571e−14

δ1 1.3305e+07 1.2174e+07

δ2 13792e+05 1.3771e+05

JADE

EN
ε,μ 4.2431e−02 4.8022e−03 1.2328e−02 2.3436e−04

δ1 4.1239e+07 1.4450e+07

δ2 1.0000e−05 1.4999e+05

jDE

EN
ε,μ 2.9318e−04 2.9313e−04 2.9314e−04 2.9318e−16

δ1 1.0451e+07 1.0450e+07

δ2 1.0000e−08 1.0000e−08

matrix adaptation evolution strategy (CMA-ES) (Hansen
et al. 2003), self-adaptive DE (SaDE) algorithm (Qin et al.
2009), JADE (Zhang and Sanderson 2009) and self-adapting
differential evolution (jDE) (Brest et al. 2006).

Throughout this paper, the parameter settings of each
stochastic algorithm are as follows:

(1) the maximum number of generations D = 50, the popu-
lation size NP = 50.

(2) For the PSO and CLPSO algorithms, two accelerating
factors are set to 0.5 and 0.5, respectively. Inertia weight
factor is set to 0.45.

Table 7 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−12, μ = 10−14, N = 32

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 1.8868e−02 1.3627e−02 1.3935e−02 1.3984e−06

δ1 99.6925 46.9624

δ2 1.2474e−02 1.2107e−04

CLPSO

EN
ε,μ 1.5240e−01 6.0107e−03 2.4290e−02 8.0278e−04

δ1 1.6092e+07 7.2459e+07

δ2 1.0041e+07 1.6032e+06

rcGA

EN
ε,μ 4.1422e−02 1.3627e−02 1.9134e−02 5.7299e−05

δ1 6.1492e−01 7.7349e−01

δ2 5.2965e−02 7.3448e−03

CMA-ES

EN
ε,μ 4.8657e−02 1.3628e−02 4.3933e−02 6.6550e−05

δ1 8.9376 4.9242

δ2 4.9833 9.8798e−03

DE

EN
ε,μ 4.7998e−03 4.7999e−03 4.7998e−03 3.7287e−21

δ1 1.0000e+08 9.9975e+07

δ2 1.4995e+06 1.4995e+06

SaDE

EN
ε,μ 3.0645e−03 3.0596e−03 3.0599e−03 7.7248e−13

δ1 1.1477e+08 1.1466e+08

δ2 1.0000e−06 1.0000e−06

JADE

EN
ε,μ 4.2431e−02 4.8022e−03 1.2328e−02 2.3436e−04

δ1 4.1239e+07 1.4450e+07

δ2 1.0000e−05 1.4999e+05

jDE

EN
ε,μ 1.1535e−03 2.9313e−04 2.9314e−04 2.9318e−16

δ1 1.0000e+08 1.0450e+07

δ2 1.0000e−08 1.0000e−08

(3) For the (original) DE, SaDE and JADE algorithms,
crossover factor F = 0.5, crossover probability CR =
0.1.

In our experiment, for different values of ε, μ and N , the
numerical results of 30 independent runs are summarized in
Tables 1, 2, 3, 4,5, 6, 7, 8 and 9. The maximum values, mini-
mum values of EN

ε,μ and the corresponding parameters δ1, δ2
are also listed in Tables 1, 2, 3, 4,5, 6, 7, 8 and 9. Meanwhile,
in order to compare the robustness of the each algorithm, the
average computed values of EN

ε,μ and variance are also given.
It can be seen fromTables 1-9 that the computing precision of
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Table 8 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−12, μ = 10−14, N = 64

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 6.7360e−03 6.7361e−03 6.7360e−03 3.9809e−17

δ1 55.0790 85.2487

δ2 3.2810e−02 2.6866e−02

CLPSO

EN
ε,μ 1.5763e−02 1.7155e−03 5.5820e−03 1.1675e−05

δ1 8.1072e+07 8.5427e+07

δ2 4.2066e+06 1.3976e+06

rcGA

EN
ε,μ 4.8679e−02 4.7310e−02 4.8535e−02 1.0092e−07

δ1 3.4948 4.5891

δ2 6.8112e−03 2.8259e−05

CMA-ES

EN
ε,μ 2.4431e−02 6.7360e−03 2.2385e−02 2.0074e−05

δ1 1.6628 5.2934

δ2 4.3707 3.0277e−02

DE

EN
ε,μ 6.7340e−03 3.6146e−03 6.4221e−03 9.0600e−07

δ1 1.0000e+06 2.1256e+08

δ2 1.0000e+06 1.0000e+06

SaDE

EN
ε,μ 9.4708e−04 9.4625e−04 9.4634e−04 3.6731e−14

δ1 1.0866e+08 1.0860e+08

δ2 1.0000e−06 1.0000e−06

JADE

EN
ε,μ 1.1535e−02 3.0596e−03 3.3422e−03 2.3945e−06

δ1 1.0000e−05 1.1466e+08

δ2 2.0265e+06 1.0000e−08

jDE

EN
ε,μ 3.0601e−03 3.0596e−03 3.0597e−03 8.1887e−15

δ1 1.1466e+08 1.1466e+08

δ2 1.0000e−08 1.0000e−08

jDE is slightly higher than the other seven algorithms (PSO,
CLPSO, rcGA, CMA-ES, DE, SaDE, JADE) by compar-
ing the maximum, minimum and mean values. In addition,
the algorithm stabilization of jDE is slightly stronger than
the other seven algorithms (PSO, CLPSO, rcGA, CMA-ES,
DE, SaDE and JADE) by comparing the variance values.
The experimental results show that the jDE algorithm has
certain competition advantages in computing precision and
algorithm stabilization than the other seven algorithms (PSO,
CLPSO, rcGA, CMA-ES, DE, SaDE and JADE).

The comparison of statistical data shows that the jDE
algorithms give better results than rcGA, PSO, CLSPO and

Table 9 Numerical results calculatedbyusingdifferent algorithmswith
ε = 10−12, μ = 10−14, N = 128

Method Maximum
error

Minimum
error

Mean value Variance

PSO

EN
ε,μ 3.3384e−03 3.3383e−03 3.3383e−03 2.4850e−17

δ1 56.4370 62.9639

δ2 1.8024e−04 11634e−01

CLPSO

EN
ε,μ 2.4479e−02 5.2292e−04 3.2197e−03 2.3353e−05

δ1 2.6718e+07 9.5955e+07

δ2 8.8945e+06 1.4062e+06

rcGA

EN
ε,μ 9.9484e−03 3.3383e−03 4.7536e−03 4.1418e−06

δ1 3.7910 9.8654e−01

δ2 4.7079e−01 9.9984e−02

CMA-ES

EN
ε,μ 1.2271e−02 4.4606e−03 1.1225e−02 3.4866e−06

δ1 6.6554 1.4656

δ2 8.4283 1.3948e−01

DE

EN
ε,μ 3.3370e−03 1.1339e−03 2.8964e−03 8.0333e−07

δ1 1.0000e+06 2.0614e+08

δ2 1.0000e+06 1.0000e+06

SaDE

EN
ε,μ 2.9305e−04 2.9285e−04 2.9288e−04 1.6218e−15

δ1 1.0442e+08 1.0445e+08

δ2 1.0000e−06 1.0000e−06

JADE

EN
ε,μ 3.3035e−04 3.3018e−04 3.3020e−04 1.0801e−15

δ1 9.9980e+07 9.9999e+07

δ2 1.0000e−05 1.0000e−05

jDE

EN
ε,μ 3.3028e−04 3.3017e−04 3.3020e−04 5.9715e−16

δ1 9.9987e+07 9.9999e+07

δ2 1.0000e−05 1.0000e−05

CMA-ES algorithm. Furthermore, jDE algorithm performs
better than original DE, while original DE algorithm does not
always perform better than PSO. Thus, to further illustrate
the advantages of jDE algorithm, the convergence speed of
the jDE, DE, SaDE, JADE and PSO algorithms are plot-
ted in Figs. 1, 2 and 3 with ε = 10−8, μ = 10−10,
ε = 10−10, μ = 10−12, ε = 10−12, μ = 10−14 and N = 32,
respectively.Obviously, from thesefigures, one can easily see
that jDE algorithm is certainly better than PSO, DE, SaDE,
JADE. It is shown from Figs. 1, 2 and 3 that the jDE algo-
rithm has certain superiority in convergence velocity than the
other four algorithms.
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Fig. 1 Fitness of different algorithms for generation with ε = 10−8,
μ = 10−10 and N = 32
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Fig. 2 Fitness of different algorithms for generation with ε = 10−10,
μ = 10−12 and N = 32
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Fig. 3 Fitness of different algorithms for generation with ε = 10−12,
μ = 10−14 and N = 32

6 Conclusions

In most of the cases, the Shishkin mesh method is fre-
quently used to solve the singularly perturbed problem.
However, for the Shishkin mesh transition points, almost
all of authors are arbitrary selection parameters. Thus, this
work can be viewed as a preliminary step-up in finding
a challenging numerical method to obtain the Shishkin
mesh transition points. Specially, we transform the Shishkin
mesh transition parameter selection problem into a nonlin-
ear unconstrained optimization problem which is solved by
using the self-adapting differential evolution (jDE) algo-
rithm. The experimental results show that the jDE algorithm
has certain competition advantages in computing precision,
algorithm stabilization and convergence speed than the state-
of-art algorithms. It is noted that the method presented in
this paper can be extend to other type of singularly perturbed
problems.
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