
Soft Comput (2018) 22:2517–2526
https://doi.org/10.1007/s00500-017-2506-x

METHODOLOGIES AND APPLICATION

A privacy-preserving fuzzy interest matching protocol for friends
finding in social networks

Xu An Wang1,2 · Fatos Xhafa3 · Xiaoshuang Luo1 · Shuaiwei Zhang1 · Yong Ding2

Published online: 7 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Nowadays, it is very popular to make friends,
share photographs, and exchange news throughout social net-
works. Social networks widely expand the area of people’s
social connections andmake communicationmuch smoother
than ever before. In a social network, there are many social
groups established based on common interests among per-
sons, such as learning group, family group, and reading
group. People often describe their profiles when registering
as a user in a social network. Then social networks can orga-
nize these users into groups of friends according to their
profiles. However, an important issue must be considered,
namelymany users’ sensitive profiles could have been leaked
out during this process. Therefore, it is reasonable to design
a privacy-preserving friends-finding protocol in social net-
work. Toward this goal, we design a fuzzy interest matching
protocol based on private set intersection. Concretely, two
candidate users can first organize their profiles into sets, then
use Bloom filters to generate new data structures, and finally
find the intersection sets to decide whether being friends
or not in the social network. The protocol is shown to be

Communicated by V. Loia.

B Xu An Wang
wangxazjd@163.com

Fatos Xhafa
fatos@cs.upc.edu

1 Key Laboratory of Information and Network Security,
Engineering University of Chinese Armed Police Force,
Xi’an, People’s Republic of China

2 Guangxi Key Laboratory of Cryptography and Information
Security, Guilin University of Electronic Technology, Guilin,
People’s Republic of China

3 Department of Computer Science, Universitat Politècnica de
Catalunya, Barcelona, Spain

secure in the malicious model and can be useful for practical
purposes.

1 Introduction

Social network is a multi-function platform for members
to communicate with each other conveniently and establish
social relationship. There exist many kinds of social network
services, such as instant messaging, photograph sharing,
news discussion, and instant financial paying. At present,
Facebook, Twitter, Myspace, QQ, WeChat, and many other
social network platforms have all become extremely popular
around the world. It is estimated that the record number of
sharing contents everyday on Facebook is as high as 4 billion
and that number for twitter is about 340 million. Further-
more, due to the fast development of mobile social networks,
people could publish information about videos, photographs,
articles, and so on at any time and any place, which makes
communication and sharing with friends very convenient.

Usually social network users tend to build their online
social network from real social friends, such as relatives, col-
leagues, and classmates. (Chen et al. 2013; Hu et al. 2011).
But this might not fully satisfy the requirements of online
communication. For example, football fans would like to pay
attention to news and techniques around football. Thus they
would have more preferences on setting up a social group on
discussing about football. Therefore, social networks should
provide a platform for people to communicate and add some-
one as friends according to their will on purely on personal
knowledge or personal relations. However, some sensitive
information, such as personal attributes and locations, could
be abused, which can contribute to serious concerns. In order
to preserve the privacy of information sharing, we design a

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2506-x&domain=pdf

2518 X. A. Wang et al.

Fig. 1 Interest matching for
two social network users

Fuzzy
matching

basket
ball

progra
m

novel

novel

cartoon

movie

SNSP

Alice Bob

request

return

Vector
features

return

request

scenario and adapt some measures to deal with the related
security problems.

Let us consider the following scenario which is shown in
Fig. 1: Alice and Bob are strangers in a social network. Alice
finds that Bob’s interests are similar with her interests, so she
wants to be a friend to Bob. However, Alice would not like
to leak her privacy to other people when facing strangers.
Therefore, an access for them to enable interaction in the
social network is needed.

Let us consider additionally the following scenario: Alice
and Bob are strangers in a social network. Alice finds that
Bob’s interests are similar with himself, so she wants to be a
friend to Bob. In some cases, Alice would not like to leak his
privacy to other people when facing strangers. So, a secure
access for them to interact is a basic requirement.

A way to deal with this problem can be as follows: Actu-
ally, both parties cannot interact with each other directly in
social networks. They need to get the help of SNSP (social
network service provider) to transmit information. Alice and
Bob cannot communicate independently, while both of them
can communicate with SNSP, according to the following
steps.

1. Assume thatAlicewants to inquire friendship to someone
who has common interests with her and makes a request
to SNSP.

2. When SNSP obtains the request of Alice, it will select
some users in accordance with the conditions and make
a set of interest for Alice. If Alice likes reading nov-
els, watching cartoons and seeing movies, the set will be
VAlice = {novel, cartoon,movie}. Similarly, the inter-
est set for Bob will be VBob = {basketball, novel,
program}.

3. Alice and Bob will take a fuzzy matching, each with
its own set. If succeed, they will be friends. If not, their
friendship in the social networkwould not be established.

1.1 Paper’s contribution

In this paper, we present a variant of Private Set Intersec-
tion (PSI) and design a secure protocol of fuzzy interest

matching for friends finding in social networks. This vari-
ant is shown secure in the malicious model based on Bloom
filter and homomorphic encryption. We then present an out-
sourced computation scheme in which the client outsources
his complex computation tasks to a trusted powerful service
provider P . This is each a commonplace in the cloud com-
puting where service providers can provide large number of
resources and powerful computation ability (Meriem et al.
2014; Wang et al. 2016; Zhu and Yang 2015; Guo and Xu
2015; Cristina et al. 2014; Xia et al. 2015; Fu et al. 2015,
2016; Ren et al. 2016a, b).

Compared with the state of the art, our protocol has some
advantages that are drawn by evaluating its security and per-
formance. Our protocol has the following properties:

• Being more secure

– The PSI variant and the outsourced scheme are provably
secure in the malicious model. Therefore, our protocols
based on PSI are against malicious adversary. The pre-
vious works presenting secure schemes in the malicious
model are Dachman-Soled et al. (2009), De Cristofaro
et al. (2010), Freedman et al. (2004), Hazay and Lin-
dell (2008), Hazay and Nissim (2010), Jarecki and Liu
(2009), and Kissner and Song (2005).

– Our scheme is secure in the standard model (without ran-
dom oracles). The only cryptographic assumption is the
decisional composite residuosity.

– Our scheme is client set-size-independent. Although we
set the upper bound on the size of the client set, this is
not related to client set size. We check the server for the
client set elements to get the intersection. Therefore, the
client does not need to meet the requirements of false
positive.

• Being more efficient

– The PSI variant has linear complexity O(m), where m
denotes the size of Bloom filter. The outsourced protocol
is very efficient and the only expensive cost is hash func-
tion, which can achieve linear complexity O(n), where

123

A privacy-preserving fuzzy interest matching protocol for friends finding in social networks 2519

n represents the number of set elements, whereas previ-
ous protocols can achieve linear complexity O(v + w)

(De Cristofaro and Tsudik 2010), where v and w also
represent the number of elements in the set.

– We encrypted Bloom filters by Paillier cryptosystem
with additive homomorphic property. The server only
performs modular multiplication rather than expensive
operations, such as modular exponentiations. In order to
reduce the computation task of the client, we outsource
complex computation load to the service provider P .

– We used Bloom filter that is based on hash function to
store elements of both sides. Note that the hash functions
are not full domain hash functions.

• Supporting homomorphic computation

Homomorphic encryption allows specific types of com-
putations to be carried out on ciphertexts and generates
an encrypted result. In this paper, we utilize an additive
homomorphic public-key cryptosystem—Paillier encryp-
tion. What the server operates are ciphertexts, which can
guarantee the security of the client. Practically, we want
the server to perform additive operation for plaintexts, but
it could not be likely to execute on plaintexts. To achieve our
goal, the server only performs modular multiplication that
can compute what we need to get the intersection. This is a
main advantage of our protocol.

1.2 Paper organization

The remainder of this paper is organized as follows: InSect. 2,
we refer to related work on this research topic. Some pre-
liminary concepts, definitions, and terminology are given in
Sect. 3. In Sect. 4, we present our proposal constructed by
Paillier cryptosystem and its additive homomorphic property,
where we also prove its security and analyze its efficiency,
and in Sect. 5 we present the protocol. Further in Sect. 6, we
present an outsourced computation scheme. We summarize
this paper’s contributions and give an outlook to future work
in Sect. 7.

2 Related work

In Eurocrypt’04, Freedman et al. (2004) firstly presented
protocols based on homomorphic encryption and balanced
hashing for both semi-honest and malicious environments.
Since then, there have been proposed a large number of
private set intersection protocols. These protocols can be
classified into four kinds.

1. Based on oblivious polynomial evaluation Oblivious
polynomial evaluation is an effective way to construct

private set intersection. It does not need to disclose the
coefficients of a polynomial. The main idea is consider-
ing the elements set as the roots of the polynomial. One
can evaluates it on the other party’s set elements oblivi-
ously. Theprotocol presented byFreedmanet al. (2004) is
based on oblivious polynomial evaluation. Cheielewski
and Hoepman (2008) considered that the construction
proposed by Freedman is incorrect and proved that a
client can obtain server’s elements on the condition that
they do not have the same elements. These protocols are
used by generic zero-knowledge proofs and secure in
the semi-honest model and malicious model. Dachman-
Soled et al. (2009) do not use generic zero-knowledge
proofs and presented an improved construction secure
against malicious adversaries. Hazay and Nissim (2010)
also put forward private set intersection protocols based
on random oracle model in secure and malicious envi-
ronments, respectively.

2. Based on oblivious pseudo-random functions The main
idea of oblivious pseudo-random functions is that the
client can evaluate a keyed and pseudo-random function
on its put. But the key is controlled by the server. The
goal is to compute the intersection on the pseudo-random
functions of the set elements. Then, the client gets the
result of the pseudo-random function obliviously. Hazay
and Lindell (2008) presented the first protocol, Jarecki
and Liu (2010) and De Cristofaro and Tsudik (2010)
improved these protocols later.

3. Based on bloom filters In 2012, Many et al. (2012)
present a secure multiplication protocol based on Bloom
filters and each party obtains an intersection. But the
intersection Bloom filter leaks out information of other
parties. Kerschbaum Kerschbaum (2012) constructs an
outsourced private set intersection protocol using Gold
wasser–Micali homomorphic encryption. But the proto-
col has high communication overhead. Dong et al. (2013)
proposed two protocols based on the semi-honest and
malicious model, which are much faster. Debnath and
Dutta (2015) proposed two constructions of PSI-CA,
one is secure in the standard model and the other is
secure in the random oracle model under the decisional
Diffie–Hellman assumption against malicious adversary.
However, the ideas of their construction are differentwith
the prior work.

4. Based on blind signature The idea of these protocols
based on blind signature is to present or aggregate signa-
tures set elements, hash the result of the verification, and
compute the intersection on the hashes. The advantage
of using blind signatures is that the client could obtain
a signature without disclosing it. In 2009, Camenisch
and Zaverucha (2009) presented a private set intersec-
tion protocol that requires the input set must be signed
and certified by a trusted party. Dachman-Soled et al.

123

2520 X. A. Wang et al.

Fig. 2 Store the hashes of x by
Bloom filter

(2009), presented protocols secure against semi-honest
adversaries and have linear complexity, which is themost
efficient protocol at present. Along this line, De Cristo-
faro et al. (2010) extended the protocols to the malicious
model.

3 Preliminaries and notations

3.1 Fuzzy private matching

In Eurocrypt04, Freedman, Nissim, and Pinkas first intro-
duced the private fuzzy matching problem. The problem is
defined for two parties, and each of them owns a set, respec-
tively. Every set has T elements. The one party computes
the fuzzy set intersection of two sets. If there exist at least t
similar elements in the intersection, then the two sets match
successfully. The process to compute the intersection should
guarantee the security of the other party’s set and that would
not leak out any information. At the same time, the other
party would not learn anything about the content.

Let us suppose that the vectors of client’s set are C =
{a1, a2, . . . , aT } and the server’s set is S = {s1, s2, . . . , sT }.
When there are at least t common elements between C and
S, we denote C ≈t S.

3.2 Bloom filters

ABloom filter (Bloom 1970) is a compact data structure sup-
porting for data storage and membership querying, as shown
in Fig. 2. It is an array of m bits that can represent a set
S = {s1, s2, . . . , sn) with at most n elements. A Bloom filter
couples with a set of k independent uniform hash functions
H = (h0, h1, . . . , hk−1} such that each hi maps elements to
index numbers over the range [0,m−1] uniformly.We give a
Create Algorithm for client in Fig. 3. Further, we use BFs to
denote a Bloom filter that encodes the set S , and use BFs(i)
to denote the bit at index i in BFs . For example, in Fig. 2,
when initializing, all bits in the array are set to 0. To insert
an element x ∈ S into the filter, the element is hashed using
the k hash functions to get k index numbers. The bits at all
these indexes in the bit array are set to 1, set BFs[hi (x)] = 1
for 0 ≤ i ≤ k − 1. To check whether an element y is in S, y

Create Algorithm(n, m, C, BFC)

Input: n, m, a set C
Output: a Bloom filter BFC

1 for all x C
2 for i = 0 to m-1
3 BFC[i]=0
4 End for
5 for i =0 to k-1
6 j = hash(x)
7 if BFC [j]==0 then
8 BFC [j]=1
9 End if
10 End for
11 End for

∈

Fig. 3 Create Algorithm

is hashed by the k hash functions and all locations y hashes
are checked. If any of the bits at the locations is 0, y is not in
S; otherwise, y is probably in the set S.

However, a Bloom filter could have false positive in prac-
tice. It is possible that y is not in the set S, but all locations of
BFS[hi (y)] are all equal to 1.Aparticular bit in theBloomfil-
ter is set to 1, the probability ofwhich is p = 1−(1−1/m)kn .
Bose et al. (2008) proved theupper boundof the false-positive
probability is as follows:

ε = pk ·
(
1 + O

(
k

p

√
ln(m) − k ln(p)

m

))

which is negligible in k. Given T elements added into Bloom
filter and the maximum false-positive rate 2−k , the necessary
size of Bloom filter m can be set to T k

ln2 2
.

3.3 Paillier encryption scheme

In this section, we briefly introduce the Paillier encryption
scheme. The Paillier encryption scheme (Paillier 1999) is a
probabilistic public-key algorithm,which is composed of key
generation, encryption, and decryption as follows:

123

A privacy-preserving fuzzy interest matching protocol for friends finding in social networks 2521

1. Key generation:Choose two large prime numbers p and
q randomly such that

gcd(pq, (p − 1)(q − 1)) = 1

compute

n = pq, λ = lcm(p − 1, q − 1)

where lcm stands for the least common multiple. Select
random integer g by checking the existence of the fol-
lowing modular multiplicative inverse:

μ = (L(gλ(modn2)))−1(modn)

where function L is defined as L(u) = μ−1
n . Note that

the notation a/b denote the quotient of a divided by b.
Finally, the public (encryption) key is (n, g) and the pri-
vate (decryption) key is (λ, μ).

2. Encryption: Let m be a message to be encrypted and
m ∈ Zn . Select random r where r ∈ Z∗

n , compute the
ciphertext c = gm · rn(modn2).

3. Decryption: Let c be the ciphertext to decrypt, where
c ∈ Z∗

n2
. Compute the plaintext messages as m =

L(cλ(modn2)) · μ mod n.

Homomorphic properties:Given two ciphertexts E(m1,

PK) = gm1rn1 (modn2) and E(m2, PK) = gm2rn1 (mod
n2), where r1 and r2 are randomly chosen from Z∗

n , we have

E(m1, pk) · E(m2, pk)

= (gm1rn1)(gm2rn2)(modn2) = gm1+m2(r1r2)
n(modn2)

= E(m1 + m2, pk)

Paillier security: The Paillier encryption scheme was
proved semantic secure against chosen-plaintext attacks
(IND-CPA) under the decisional composite residuosity
(DCR) assumption. In our scheme, we mainly encrypt using
0 or 1. For the same 0 or 1, choosing different random r
could be encrypted into different numbers, which benefit our
construction to some extent.

4 Security model

Before introducing our new protocols, we briefly discuss the
security models of adversaries for two-party protocols (Oded
2009). Security of protocols in the real model is evaluated
by comparison to an ideal model. In the ideal model, client
and server submit their input to a trusted third party that can
execute PSI protocols and returns the final result to the client.
Goldreich gives definitions of the semi-honest model and the
malicious model.

In the malicious model, a malicious adversary can behave
arbitrary feasible deviated from the specified program. We
consider the real model in which a real protocol is executed.
A malicious party may follow an arbitrary feasible strat-
egy which gets an auxiliary input. Particularly, the malicious
party may refuse to participate or abort the execution at any
point in time, which is different from the semi-honest party.
But we can simulate the same behavior of every adversary in
the ideal model.

5 Fuzzy matching protocol based on PSI

We exploit the properties of Paillier encryption to construct
our scheme, which includes five stages. Our fuzzy matching
protocol based onPSI is introduced in the following.The sim-
ilar elements between two sets are obtained by PSI protocol
and then the result of fuzzy matching would be achieved.

5.1 Proposed scheme based on the malicious model

1. Encryption: First, the client will generate private key
and public key of Paillier encryption scheme. The client
encrypts BFC with public key.

E(BFC) = [E(BFC (0)), . . . , E(BFC (m − 1))]

The client will transfer E(BFC) to the server directly.
2. Computation: The server receives E(BFC) from client

and computes the following formulas according to Pail-
lier encryption’s homomorphic properties, that is:

E(BFC) · gBFs
= E([BFC [0] + BFS[0], . . . ,
BFC [m − 1] + BFS[m − 1])
= E(BFC + BFS) = E(BFC∪S)

Therefore, we can find that the client and the server’s two
Bloom filters are added together (see Fig. 4). Then, the server
generates r = [r0, . . . , rm−1] ∈ Zm

q randomly and computes
E(r(BFC∪S/2)). That is:

E(r(BFC∪S/2))

= E[(r0[BFC [0] + BFS[0] − 2], . . . ,
rm−1[BFC [m − 1] + BFS[m − 1] − 2])]

= E[BFC∪S] · E(−2)r

= E(BFC) · gBFS · E(−2)r

Next, the serverwill transfer E(r(BFC∪S/2)) to the client.
In the real execution, the server could compute the final result
of E(r(BFC∪S/2)) rather than store the intermediate results,
such as E(BFC∪S) or E(BFC) · gBFs .

123

2522 X. A. Wang et al.

Fig. 4 Two Bloom filters added
together and subtracted by 2 0 1 1 BFC01

1 1 111 BFS

1 2 22 1

–1 0 00 –1

3. Recover: From the outcome of E(r(BFC∪S/2)), the
client will decrypt E(r(BFC∪S/2)) with private keys.
The client can calculate the value of r(BFC [i]+BFS[i]−
2). If r(BFC [i] + BFS[i] − 2) equals 0, we can know
BFC [i] = BFS[i] = 1 and then BFC∪S[i] = 1. Other-
wise, BFC [i] �= BFS[i] and then BFC∪S[i] = 0.

4. Check:For any x ∈ C , if the locations in BFC∪S mapped
by hash(x) are all 1, then x ∈ C ∪ S as can be seen from
Alg. 1. In our algorithm, we can compute the elements
of C ∪ S and thus get the number of similar elements of
C and S. We record this number as t .

Algorithm 1 Check Algorithm (BFC∪S , a set C and a set
C ∪ S.
Require: A bloom filter BFC∪S , a set C and a set C ∪ S.
Ensure: True if x ∈ C , false else.
1: for all x ∈ C ,
2: for i = 0 to k − 1.
3: i = hash(x)
4: End For
5: If all BFC∪S[i] = 1 then
6: x ∈ C ∪ S
7: End if
8: End For

5. Match: The client computes η = t
n . If η meets the

requirements of system, they would be friends. Else, the
client would reject the request of the server.

5.2 Analysis of our scheme

Correctness. As we know, all locations of Bloom filters
are 0 or 1. Figure 4 shows the details of two Bloom filters
added together and subtracted by 2. If we do not consider the
encryption of them, both Bloom filters added together will

be BFC∪S that each location is 0, 1, and 2. When the client
receives E(r(BFC∪S/2)) from the server, what we encrypt
is -1, 0, and -2. Let us consider BF[i] + BF[i] − 2, namely
E(r(BFC [i]+BFS[i]−2)) = E(r ·0) = E(0). We can find
that the outcome decrypted by the client is 0, the result will be
BFC [i] = BFS[i] = 1. Therefore, the intersection of both
Bloomfilters BFC∪S can be achieved, and the client executes
the Check Algorithm to compute the similar elements with
server.

Security proof. The security of our scheme is based on
the security of private set intersection protocol. In order to
prove the security of our scheme, we only need to prove the
security of PSI protocol. We give security proof by compar-
ison between the real model and an ideal model. The real
model is the execution of our PSI protocol. The ideal model
is the execution of the set intersection protocol implemented
by a trusted server. Furthermore, the client and the servermay
behave arbitrarily during protocol execution except protocol
abortion.

Theorem 1 If the decisional composite residuosity (DCR)
assumption holds, then the protocol PSI implements private
set intersection in the malicious model securely.

Proof 1. Confidentiality of the client: All inputs of the
client are encrypted by Paillier encryption. Although
what we encrypt is 0 or 1, the results of encryption
are different numbers. In other words, the server cannot
identify the distribution of 0s and 1s. Besides, security
in PSI is based on IND-CPA secure encryption that can
guarantee the security of client.

2. Confidentiality of the server: The server only com-
putes the final results according to the algorithm and
cannot decrypt it to get BFC without private keys.
To prove the security of our scheme against malicious
adversary, it must be shown that for any possible client
(server) behavior in the real model, there is an input

123

A privacy-preserving fuzzy interest matching protocol for friends finding in social networks 2523

that the client (server) provides to the trusted third party
(TTP) in the ideal model, such that his view in the real
protocol is efficiently distinguishable from his view in
the ideal model. Therefore, we give two constructions
of simulator SI MS and SI MC from a malicious real
world. We first give the simulator SI MS .

(a) Constructions of a simulator SI MS from a malicious
real-world server S′:

(i) The simulator SI MS encodes server’s all elements by
BFS .

(ii) The simulator SI MS receives E(BFC) from the client
and simulates E(r(BFC∪S/2)).

(iii) The simulator SI MS now plays the role of the ideal
server interacting with the ideal client.
Since Paillier encryption scheme is IND-CPA secure
under the decisional composite residuosity (DCR)
assumption, the view of the malicious server S′ in the
simulation by SI MS and in the real protocol is indistin-
guishable.

(b) Constructions of a simulator SI MC from a malicious
real-world client C ′:

(i) The simulator SI MC encodes the client’s all elements
by BFC and receives the encrypted results E(BFC)

from malicious client C ′.
(ii) The simulator SI MC receives the input E(r(BFC∪S/2))

from the ideal server and records it.
(iii) The simulator SI MC plays the role of the ideal client

and simulates r(BFC∪S/2).
Since the server cannot modify the computing results

without private key in the real model, what the client receives
could be secure and confidential. Therefore, the view of the
malicious client C ′ in the simulation by SI MC and in the
real protocol is indistinguishable. 	

5.3 Complexity analysis

The complexity of our protocol is O(m),m represents the
size of Bloom filter. We used hash function, Paillier encryp-
tion, and modular multiplication. We analyze the efficiency
of our protocol in terms of computation, communication, and
storage.

• Computational complexity: To build BFC or BFS , each
party needs n · k hash operations. For the client, it needs
to encrypt BFC by Paillier encryption with pubic keys
and decrypt m ciphertexts. For the server, it only needs
to compute m times modular multiplication.

• Memory complexity: The client needs to keep a copy of
two Bloom filters, one is BFC and the other is BFC∪S .
Meanwhile, it also needs to store m ciphertexts. The
server needs to keep a copy of one Bloom filter and m
ciphertexts.

Table 1 Efficiency analysis

Complexity Client Server

Computation nkth + mtp nkth + mtm

Communication m group elements m group elements

Storage 2mbit+m group elements mbit+m group elements

Table 2 Cost of Paillier cryptosystem

Algorithm (Liu et al. 2016) Enc Dec

PC run time 7.660ms 8.221ms

Smart phone run time 44.727ms 45.904ms

• Communication complexity: The data transferred in this
protocol are m ciphertexts.

In Table 1, tp , th , and tm represent the computational cost
of one-time Paillier encryption, hash function, and modular
multiplication.

In order to demonstrate our scheme’s efficiency, we eval-
uate its performance. The computation cost of the proposed
scheme is roughly evaluated on a personal computer with
3.6GHz eight-core and 12GB RAM memory (Liu et al.
2016). We currently use SHA-1 to build Bloom filters, and
let N be 1024 bits to achieve 80-bits security. The reference
running time of Paillier encryption and decryption is shown
in Table 2. Compared with Paillier encryption, the computa-
tion cost of hash function and modular multiplication can be
neglected. Therefore, the computation cost of client depends
on the cost of Paillier encryption. Furthermore, the compu-
tation cost depends on the size of Bloom filter. Now, we
let k = 80 and give different values of m and n to acquire
the implementation. When we compute the cost of client,
we neglect the cost of hash function and only take Paillier
encryption and decryption into consideration.

As Table 1 and Fig. 5 show, the computation cost of our
protocol has linear complexity O(m). In other words, the
performance of our protocol depends on the size of Bloom
filter. However, it is different fromDeCristofaro et al. (2010);
De Cristofaro and Tsudik (2010), whose complexity is O(n).
Compared with the server, the client has large computational
overhead. If this protocol is implemented in the smart phone,
the overhead of the client would be much larger. Therefore,
an outsourced fuzzy matching protocol is presented to solve
this problem.

6 Outsourced fuzzy matching protocol

In our scheme, the Paillier encryption is the most expen-
sive operation executed by the client. In many cases, the

123

2524 X. A. Wang et al.

Fig. 5 Computation cost of the client

client maybe mobile phones, PDA, and other small devices,
with limited computation resources. Outsourcing computa-
tion allows resource-constrained clients to outsource their
complex computation workloads to a server which has pow-
erful computation ability and larger computation resources.

6.1 Outsourced Paillier cryptosystem

Now, we give an efficient and secure outsourced algorithm
for Paillier cryptosystem.

• The protocol for encryption algorithm is as follows:

1. The client runs Rand algorithm (Rand can be easily
implemented in mobile devices) to generate random
pairs (α, gα

0 mod N 2) and (β, gβ
0 mod N 2), which can

be completed during the off-line phase such as charging
for mobile devices.

2. The client computes ggα
0 , rgβ

0 ,mα + Nβ, g, g0 and out-
sources them to the cloud.

3. The cloud computes P = (ggα
0)m mod N 2, Q =

(rgβ
0)N mod N 2, R = gmα+Nβ

0 mod N 2 and returns
them to the client.

4. The client computes PQ
R mod N 2.

• The protocol for decryption algorithm is as follows:

1. The client runs Rand algorithm to generate random pairs

(α′, gα′
0 mod N 2) and (β ′, gβ ′

0 mod N 2).
2. Suppose the ciphertext is c, the client computes cgα′

0 , λα′
− β ′, g0, g and outsources them to the cloud.

3. The cloud computes P = (cgα′
0)λ mod N 2, Q =

gλα′−β ′
0 mod N 2 and returns them to the client.

4. The client computes L(P

Qgβ′
0

mod N 2)μ mod N , which

is the outcome of decryption.

6.2 Outsourced protocol

This outsourced protocol mainly aims at reducing the cost of
public key encryption for client computation. The difference
from the above protocol can be seen in the following.

1. Outsourced encryption:Theclient outsources the encryp-
tion of BFC to the cloud and returns the encrypted
E(BFC) to the server.

2. Homomorphic computation: The server also computes
the result of E(r(BFC∪S/2)) and returns it to the client.

3. Outsourced decryption: The client outsources E(r
(BFC∪S/2)) to the cloud and decrypts it for the result
of r(BFC∪S/2).

4. Recover, check, and match: This step is the same as the
Sect. 5. Finally, the client obtains the intersection and
judges whether the two sets match successfully or not.

6.3 Security analysis

The security of this protocol depends on the security of
public-key encryption.

Theorem 2 If the decisional composite residuosity (DCR)
assumptionanddiscrete logarithmholds, then the outsourced
protocol PSI implements private set intersection in the mali-
cious model.

Proof The client outsources its input to the cloud and com-
putes ciphertexts. The cloud receives inputs from the client
and the cloud cannot decrypt it to get the plaintexts or key
data. Therefore, the client can obtain the true output from
the cloud. In the protocol execution, the server only receives
encrypted messages. These are all secure due to IND-CPA
security of our encryption scheme. 	

6.4 Performance analysis

Throughout outsourcing, the client reduces the heavy com-
putation task. From Table 3, the client only needs to do hash
functions and does not need to execute complex public-key
encryption. In Sect. 3, the notion of m has been explained
in detail. For the security of our constructions, m is at least
of nk/ ln22 ≈ 0.48nk. Therefore, the computation time of
Sect. 5 will be nk(th + 0.48tp). As shown in Tables 3 and 4
(see also DAI 2009), and from the Paillier encryption, it has
much more expensive cost than hash function even though
they are in the different platforms. From the perspective of
the order of magnitude, the time cost of hash function can be

123

A privacy-preserving fuzzy interest matching protocol for friends finding in social networks 2525

Table 3 Comparison of client computation

Protocol Client Computation

Our non-outsourced proposal nkth + mtp

Our outsourced proposal nkth

Table 4 Cost for running SHA-1 one-time

Windows Vista Intel Core2 1.83
GHZ 32-bit mode setting

Time cycles=1/1.83GHZ

Algorithm cycles/Byte

SHA-1 11.4

Fig. 6 Cost of the client in space diagram form

neglected, whereas in the outsourced protocol, the only oper-
ation is hash function and the efficiency is improved greatly.
In conclusion, this outsourced protocol is much more effi-
cient than the former version of the protocol.

We also roughly evaluate its performance using the soft-
ware Crypto++ 5.6.0 running on Windows Vista Intel Core2
1.83GHZ 32-bit mode (DAI 2009). SHA-1 is used for
hash functions. Given a number k of different hash func-
tions and set size n, such that k = 80, 128, 192, 256 and
n = 210, 212, 214, 216, 218, 220, the time cost of the client
is shown in Fig. 6 and Fig. 7. It can be seen from the fig-
ures that the computation time of the client has the relation
to the multiplication of nk and the hash operation. When
the values of n is fixed, the computation time increases
linearly with the increase in k. When the values of k are
fixed, the same characteristic is presented. Therefore, this
protocol is very efficient and can support large-scale data
sets.

Fig. 7 Cost of the client in histogram form

7 Conclusion

This paper presented two fuzzy matching protocols based on
private set intersection protocol. They are all against mali-
cious adversaries in the standard model and can be used in
social network formany applications like finding friends. The
overhead of the existing protocol in the literature is very high
due to the large computation of the client. To solve this prob-
lem, we proposed an outsourced protocol that can reduce the
computation overhead of the client significantly. Compared
with the prior work, the securities of two protocols can be
achieved in malicious model. The efficiency of the former
protocol can achieve linear complexity and the latter proto-
col is much more efficient than the former and can support
friends finding in large social networks. However, we also
note our work can only deal with fixed sets, it is better to
support fuzzy matching on the sets with variable size. This
will result in expanding the user base from which the related
sets of interests can be formed, which is very interesting and
our future work.

Acknowledgements This work was supported by the National Nat-
ural Science Foundation of China (61272492, 61572521), the Nat-
ural Science Foundation of Shaanxi Province (2014JM8300), and
Guangxi Key Laboratory of Cryptography and Information Security
(No. GCIS201610).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Bloom B (1970) Space/time trade-offs in hash coding with allowable
errors. Commun ACM 13(7):422–426

123

2526 X. A. Wang et al.

Bose P, Guo H, Kranakis E, Maheshwari A, Morin P, Morrison J, Smid
MHM, Tang Y (2008) On the false-positive rate of bloom filters.
Inf Process Lett 108(4):210–213

Camenisch J, Zaverucha GM (2009) Private intersection of certified
sets. In: Dingledine R, Golle P (eds) FC 2009. LNCS, vol 5628.
Springer, Berlin, pp 108–127

Cheielewski L, Hoepman J (2008) Fuzzy private matching (extended
abstract). In: Third international conference on IEEE availability,
reliability and security

Chen C, Pai P, Hung W (2013) A new decision making process for
selecting project leader based on social network and knowledge
map. Int J Fuzzy Syst 15(1):36–46

Cristina D, Elena A, Catalin L, Valentin C (2014) A solution for the
management of multimedia sessions in hybrid clouds. Int J Space-
Based Situated Comput 4(2):77–87

Dachman-Soled D, Malkin T, Raykova M, Yung M (2009) Effi-
cient robust private set intersection. In: Abdalla M, Pointcheval
D, Fouque PA, Vergnaud D (eds) ACNS 09. LNCS, vol 5536.
Springer, Berlin, pp 125–142

Dai W (2009) Crypto++ library: 5.6.0 benchmarks. http://www.
cryptopp.com

De Cristofaro E, Kim J, Tsudik G (2010) Linear-complexity private
set intersection protocols secure in malicious model. In: Abe M
(ed) ASIACRYPT 2010. LNCS, vol 6477. Springer, Berlin, pp
213–231 (2010)

De Cristofaro E, Tsudik G (2010) Practical private set intersection pro-
tocols with linear complexity. In: Sion R (ed) FC 2010. LNCS, vol
6052. Springer, Berlin, pp 143–159

Debnath SK, Dutta R (2015) Secure and efficient private set intersec-
tion cardinality using bloom filter. In: ISC 2015. LNCS, Springer,
Berlin, pp 209–226

Dong C, Chen L,Wen Z (2013)When private set intersection meets big
data: an efficient and scalable protocol. In: Sadeghi AR, Gligor
VD, Yung M (eds) ACM CCS 13. ACM Press, pp 789–800

Freedman MJ, Nissim K, Pinkas B (2004) Efficient private matching
and set intersection. In: Cachin C, Camenisch J (eds) EURO-
CRYPT 2004. LNCS, vol 3027. Springer, Berlin, pp 1–19

Fu Z, Ren K, Shu J, Sun X, Huang F (2015) Enabling personalized
search over encrypted outsourced data with efficiency improve-
ment. IEEE Trans Parallel Distrib Syst. doi:10.1109/TPDS.2015.
2506573

Fu Z, Wu X, Guan C, Sun X, Ren K (2016) Towards efficient
multi-keyword fuzzy search over encrypted outsourced data with
accuracy improvement. IEEE Trans Inf Forensics Secur. doi:10.
1109/TIFS.2016.2596138

Guo S, Xu H (2015) A secure delegation scheme of large polynomial
computation in multi-party cloud. Int J Grid Util Comput 6(2):1–7

Hazay C, Lindell Y (2008) Efficient protocols for set intersection and
pattern matching with security against malicious and covert adver-
saries. In: Canetti R (ed) TCC 2008. LNCS, vol 4948. Springer,
Berlin, pp 155–175

Hazay C, Nissim K (2010) Efficient set operations in the presence
of malicious adversaries. In: Nguyen PQ, Pointcheval D (eds)
PKC 2010. LNCS, vol 6056. Springer, Berlin, pp 312–331

Hu J,HuY,BeinH (2011)Constructing a corporate social responsibility
fundusing fuzzymultiple criteria decisionmaking. Int J FuzzySyst
13(3):195–205

Jarecki S, Liu X (2009) Efficient oblivious pseudorandom functionwith
applications to adaptive OT and secure computation of set inter-
section. In: Reingold O (ed) TCC 2009. LNCS, vol 5444. Springer,
Berlin, pp 577–594

Jarecki S, Liu X (2010) Fast secure computation of set intersection. In:
Garay JA, Prisco RD (eds) SCN 10. LNCS, vol 6280. Springer,
Berlin, pp 418–435

Kerschbaum F (2012) Outsourced private set intersection using homo-
morphic encryption. In: Youm HY, Won Y (eds) ASIACCS 12.
ACM Press, pp 85–86

KissnerL, SongDX(2005)Privacy-preserving set operations. In: Shoup
V (ed) CRYPTO 2005. LNCS, vol 3621. Springer, Berlin, pp 241–
257

Liu X, Deng R, Ding W, Lu R, Qin B (2016) Privacy-preserving out-
sourced calculation of floating point numbers. IEEE Trans Inf
Forensics Secur 11(11):2513–2527

Many D, Burkhart M, Dimitropoulos X (2012) Fast private set opera-
tions with sepia. Technical Report 345

Meriem T, Mahmoud B, Fabrice K (2014) An approach for develop-
ing an interoperability mechanism between cloud providers. Int J
Space-Based Situated Comput 4(2):88–99

Oded G (2009) The foundations of cryptography-vol 2, basic applica-
tions. Cambridge University Press, Cambridge

Paillier P (1999) Public-key cryptosystems based on composite degree
residuosity classes. In: Stern J (ed) EUROCRYPT’99. LNCS, vol
1592. Springer, Berlin, pp 223–238

Ren W, Huang S, Ren Y, Choo KR (2016a) LiPISC: a lightweight
and flexible method for privacy-aware intersection set compu-
tation. PLOS One. http://journals.plos.org/plosone/article?id=10.
1371/journal.pone.0157752

Ren W, Liu R, Lei M, Choo KR (2016b) SeGoAC: a tree-based model
for self-defined and group-oriented access control in mobile cloud
computing. Comput Stand Interfaces. doi:10.1016/j.csi.2016.09.
001

WangY,Du J,ChengX,LiuZ,LinK (2016)Degradation and encryption
for outsourced png images in cloud storage. Int J Grid Util Comput
7(1):22–28

Xia Z, Wang X, Sun X, Wang Q (2015) A secure and dynamic multi-
keyword ranked search scheme over encrypted cloud data. IEEE
Trans Parallel Distrib Syst 27(2):340–352

Zhu S, Yang X (2015) Protecting data in cloud environment with
attribute-based encryption. Int J Grid Util Comput 6(2):91–97

123

http://www.cryptopp.com
http://www.cryptopp.com
http://dx.doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1109/TIFS.2016.2596138
http://dx.doi.org/10.1109/TIFS.2016.2596138
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157752
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0157752
http://dx.doi.org/10.1016/j.csi.2016.09.001
http://dx.doi.org/10.1016/j.csi.2016.09.001

	A privacy-preserving fuzzy interest matching protocol for friends finding in social networks
	Abstract
	1 Introduction
	1.1 Paper's contribution
	1.2 Paper organization

	2 Related work
	3 Preliminaries and notations
	3.1 Fuzzy private matching
	3.2 Bloom filters
	3.3 Paillier encryption scheme

	4 Security model
	5 Fuzzy matching protocol based on PSI
	5.1 Proposed scheme based on the malicious model
	5.2 Analysis of our scheme
	5.3 Complexity analysis

	6 Outsourced fuzzy matching protocol
	6.1 Outsourced Paillier cryptosystem
	6.2 Outsourced protocol
	6.3 Security analysis
	6.4 Performance analysis

	7 Conclusion
	Acknowledgements
	References

