
Soft Comput (2017) 21:4465–4480
DOI 10.1007/s00500-017-2500-3

METHODOLOGIES AND APPLICATION

Lyapunov stability-based control and identification of nonlinear
dynamical systems using adaptive dynamic programming

Rajesh Kumar1 · Smriti Srivastava1 · J. R. P. Gupta1

Published online: 1 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract This paper presents a novel control and identi-
fication scheme based on adaptive dynamic programming
for nonlinear dynamical systems. The aim of control in this
paper is to make output of the plant to follow the desired
reference trajectory. The dynamics of plants are assumed
to be unknown, and to tackle the problem of unknown
plant’s dynamics, parameter variations and disturbance sig-
nal effects, a separate neural network-based identification
model is set upwhichwill work in parallel to the plant and the
control scheme. Weights update equations of all neural net-
works present in the proposed scheme are derived using both
gradient descent (GD) and Lyapunov stability (LS) criterion
methods. Stability proof of LS-based algorithm is also given.
Weight update equations derived using LS criterion ensure
the global stability of the system, whereas those obtained
through GD principle do not. Further, adaptive learning rate
is employed in weight update equation instead of constant
one in order to have fast learning of weight vectors. Also, LS-
andGD-basedweight update equations are also tested against
parameter variation and disturbance signal. Three nonlin-
ear dynamical systems (of different complexity) including
the forced rigid pendulum trajectory control are used in this

Communicated by V. Loia.

B Rajesh Kumar
rajeshmahindru23@gmail.com

Smriti Srivastava
smriti.nsit@gmail.com

J. R. P. Gupta
jairamprasadgupta@gmail.com

1 Division of Instrumentation and Control Engineering, Netaji
Subhas Institute of Technology, Sector 3, Dwarka, New Delhi
110078, India

paper on which the proposed scheme is applied. The results
obtained with LSmethod are found more accurate than those
obtained with the GD-based method.

Keywords Adaptive dynamic programming · Nonlinear
dynamical systems · Lyapunov stability · Identification and
adaptive control · Gradient descent principle

1 Introduction

It is a well-known fact that humans while choosing their
control actions use their experience for dealing with variety
of situations. The quality of control action taken by them
significantly improves as they gain more knowledge and
experience. Then, a humanwho has been trained with a set of
control and identification-related tasks when presented with
a new task (belonging to same category) is found to generate
efficient actions (close to optimal) by utilizing the previously
acquired knowledge.

To have above kind of effectiveness and efficiency in a
machine, itmust be equippedwith the following components:

1. Collection of mathematical models representing the
plants, controller or identification.

2. To have best possible configuration involving these com-
ponents (along with sensors) so that the desired objective
is achieved.

3. Learning algorithm which can make the controller and
other components present in the configuration to generate
the desired responses.

Above three components are deemed fundamental in order to
make machine to behave like humans and learn from its own
experience. In any control setting, a designer (human) is pro-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-017-2500-3&domain=pdf

4466 R. Kumar et al.

vided with the plant, environment and the control objectives
and he is required to design and implement an appropriate
controller. If he has dealt with similar situation before, then
it will not be very difficult for him. But, most of the times
the knowledge about the dynamics of given plant is poorly
known or unknown which makes the job of designer more
difficult. In such scenarios, we require an intelligent tool
which can approximate the plant’s dynamics and then with
the help of this identification tool the control algorithm can
be formulated. Neural networks are found to be very useful
in performing both the identification and control tasks. In
this paper, they are used as a part of adaptive dynamic pro-
gramming scheme for identification and control of nonlinear
dynamical systems.

Various effective techniques have been applied for the
development of the learning systems (Bhuvaneswari et al.
2009; Castillo and Melin 2003; Aguilar-Leal et al. 2016;
Man et al. 2011; Tutunji 2016). Problems like optimiza-
tion and optimal control can be solved using a tool known
as dynamic programming (DP). But, it suffers from a well-
known problem of curse of dimensionality (Bellman 1957;
Dreyfus and Law 1977). The solution of Hamilton–Jacobi–
Bellman (HJB) equation is an optimal cost function only
when certain good number of analytic conditions is met.
However, it is very difficult to obtain HJB equation solu-
tion theoretically, excluding systems such as linear systems
which satisfy some very good conditions like quadratic util-
ity and zero targets. So much progress have been made for
dealingwith the problemof curse of dimensionality by devel-
oping a system, called as critic, in order to approximate the
cost function defined in the dynamic programming (Balakr-
ishnan and Biega 1996; Jin et al. 2007; Hendzel and Szuster
2011). The strategic utility function or cost-to-go function
(which in dynamic programming refers to the Bellman’s
equation function) is approximated by the critic neural net-
work (Xiao et al. 2015). Adaptive dynamic programming is
developed from the combination of dynamic programming
and artificial neural network (ANN) (Zhang et al. 2014; Song
et al. 2013). ANNs are characterized of having strong learn-
ing potential, ability to approximate any nonlinear function
and able to adapt according to situation (Srivastava et al.
2002, 2005; Singh et al. 2007). ADP has number of syn-
onyms including adaptive critic designs (Prokhorov et al.
1997), approximate dynamic programming (Al-Tamimi et al.
2008; Werbos 1992), neuro-dynamic programming (Bert-
sekas and Tsitsiklis 1995), neural-dynamic programming
(Si and Wang 2001) and reinforcement learning (Bertsekas
2011). Dynamic programming provides an optimal control
strategy usingBellman equation for nonlinear dynamical sys-
tems (Yang et al. 2014). Adaptive critic designs (ACDs) are
generally composed of neural networks and have the capa-
bility of doing optimization over time in the presence of
uncertainties like disturbances etc.

In the literature, a number of different types of crit-
ics have been proposed. For example, Q-learning system
was developed by Watkins and Dayan (1992). On the other
hand, Werbos have developed systems that are capable of
approximating the dynamic programming (Werbos 1992).
He proposed a family of ACDs by doing the fusion of rein-
forcement learning and an adaptive dynamic programming.
Using the idea ofADP,Abu-Khalaf andLewis (2005),Vrabie
and Lewis (2009) and Vamvoudakis and Lewis (2010) have
investigated the continuous-time nonlinear optimal control
problems. Traditional supervised learning neural networks
are unable to develop an optimal controller since the effects
of the series of sequential control actions taken can only
be seen at the end of the sequence (Lewis and Vrabie
2009).

In Liu et al. (2013), the authors have used ANN to
implement critic and action network. But in simulation,
they have not tested their algorithm under disturbance sig-
nal and parameter variation effects. In paper Ni and He
(2013), an internal goal structure was introduced in the ADP
scheme for providing the internal goal/reward representa-
tion. In Liu et al. (2014), decentralized control strategy using
online optimal learning approach was developed to ensure
the stability of interconnected nonlinear systems. Further in
Liu and Wei (2014), the solution of infinite horizon opti-
mal control problem of nonlinear systems was developed
using a new discrete-time policy iteration based on ADP.
In Jiang and Jiang (2014), authors have proposed a method
by combining techniques such as back stepping, small gain-
theorem for nonlinear systems with the ADP. In Gao and
Jiang (2015), authors have developed optimal controller by
converting the problem of output regulation into a global
robust optimal stabilization problem using the non-model
based ADP scheme. In Dong et al. (2016), a novel event-
triggered ADP scheme is developed for solving the optimal
control problem for nonlinear systems. Authors in Song et al.
(2016) developed a new off-policy action-critic structure for
compensating the effects of disturbances on the nonlinear
systems. In Yang et al. (2016), authors have developed a
guaranteed cost neural tracking control algorithm based on
ADP for the class of continuous-timematched uncertain non-
linear systems. In their algorithm, they have introduced a
discount factor and transformed the guaranteed cost tracking
control problem into an optimal tracking control problem.
In Gao et al. (2016), authors have used policy iteration
and value iteration methods to develop data-driven output-
feedback control policies based on ADP. In Zhu et al. (2016),
the authors have proposed an iterative ADP-based method
to solve the continuous-time, unknown nonlinear zero-sum
game with only online data. In Wang et al. (2016), the
authors have designed a data-based adaptive critic for the
optimal control of nonlinear continuous systems based on
ADP.

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4467

In most of the literature available, no papers exist (to the
best of our knowledge) that have carried out the comparative
analysis between the algorithm they have developed in their
papers and the GD algorithm. This comparative analysis is
carried out in our present paper. Further, most papers have
not shown robustness in the simulations. Also, many papers
have not utilized the concept of adaptive learning rate which
actually helps in getting the faster convergence of weights to
their respective desired values. The contributions and novel-
ties of our paper are summarized below.

1.1 Novelties and contributions of the paper

1. Compared the performance of LS algorithm with that of
available gradient descent (GD) algorithm.

2. Dynamics of plants were assumed unknown in order to
have the control over effects like parameter variation,
disturbances and lack of knowledge about the dynamics
of the plant. This is achieved by using the NN-based
identifier.

3. Adaptive learning rate is used to ensure the faster learning
and convergence of weights to their desired values.

4. Robustness of LS algorithm is checked against both
parameter variation and disturbance signals effects.

The optimal control law is obtained by using an adaptive
criticmethod inwhich twoANNswhich are actionneural net-
work (whose output is a control signal to the plant) and critic
neural network (approximate action network cost function)
and their parameters (weights) undergo change during train-
ing. These two neural networks provide an approximation
to the Hamilton–Jacobi–Bellman equation which is associ-
ated with the theory of optimal control (Song et al. 2010).
The adaption process starts with a random non-optimal con-
trol action generated by the action neural network which
gets improved with the subsequent iterations. Critic neural
network guides the action neural network in adjusting its
parameters (weights). Nowcoming to the problemof identifi-
cation and control. If the system is linear time invariant (LTI),
then identification of its dynamics are straightforward using
conventional methods (Ljung 1998), but in reality almost
every system is nonlinear. So, intelligent tools like neural
network, which themselves are nonlinear, are used to approx-
imate their dynamics (Petrosian et al. 2000). They do not
require the information of the type of nonlinearity present
in the system. The type of control done in this paper is indi-
rect adaptive control. In this type of control, the parameters of
controller continue to change (update) in real time depending
upon the current mathematical model of the plant identified
by the neural-based identification model. In case of direct
control, parameters of controller are updated directly solely
on the basis of trajectory error without requiring the inter-
mediate step of identification (Lilly 2011).

Rest of the paper is organized as follows: Sect. 2 con-
tains themathematical formulation and structure of proposed
scheme. In Sect. 3, the weights update equations are derived
for all the three neural networks using gradient descent (GD)
principle. It is followed by Sect. 4 which contains Lyapunov
stability (LS) method-based derivation of weight update
equations. Section 5 contains the mathematical formula-
tion of adaptive learning rate. Section 6 contains simulation
results. It contains 3 numerical examples on which the pro-
posed scheme based on both LS and GD methods is applied.
Robustness against parameter variation and disturbance sig-
nal is also tested. Section 7 includes the contribution and
achievements of this paper. Section 8 contains the conclusion.

2 Preliminaries: structure of proposed scheme and
its mathematical formulation

The performance index (cost function) for adjusting weights
of action neural network is defined as

Ea(k) = 1

2
[J (k)]2 (1)

where J (k) represents critic neural network output at kth
instant, and it is defined as

J (k) =
∞∑

k=i

γ k−iU (k) (2)

Here U (k) is the output of utility function which is defined
as

U (k) = 1

2
[e(k)]2 (3)

γ represents the discount factor with its values lying in
0 < γ ≤ 1. The objective is to generate the control signal
sequence from the output of action neural network so as to
minimize J (k) value. This refers to the optimality principle
for the discrete-time systems. So, if by any strategy we are
able to generate control sequence which makes J (k) value
closer to or equal to zero, then it will also make value of
U (k) closer to or equal to zero. If that happens, then output
of plant will follow the desired trajectory. The structure of
the proposed scheme, which is based on adaptive dynamic
programming, is shown in Fig. 1. The components present
inside the broken red line box are action neural network,
utility function and the critic neural network. The dynamics
of the plant under consideration are assumed unknown, so
a separate artificial neural network (ANN)-based identifica-
tion model is set up in parallel to the plant. TDL denotes the
tapped delay lines and has delayed values of its input signal
as its output. The output of this ANN identification model

123

4468 R. Kumar et al.

Fig. 1 Structure of proposed scheme (color figure online)

is represented by N (k). The desired trajectory is denoted by
r(k). The input to the utility function is the error between the
desired trajectory value and plant’s output. Thus, trajectory
error is

e(k) = r(k) − y(k) (4)

The output of utility function acts as an input to the critic
neural network, which implements Eq. 2. The performance
index for critic neural network is defined as

Ec(k) = 1

2
[ec(k)]2 (5)

where

ec(k) = J (k − 1) −U (k) − γ J (k) (6)

If ec(k) is zero, then Eq. 6 implies

J (k − 1) = U (k) + γ J (k) (7)

or it can be written as

J (k − 1) = U (k) − γ [U (k + 1) + γ J (k + 1)]

=
∞∑

m=k

γm−kU (k)
(8)

The important thing to note in Eq. 8 is that if we are able
to minimize the error defined in Eq. 6 by doing training of
the critic neural network, then estimate of the cost function
defined in Eq. 2 will be given by critic neural network output.

Basically, in the proposed scheme, all three neural networks
undergo online training simultaneously. The critic neural
network output gets minimized by adjusting the weights of
action neural network. This adjustment will happen during
the online training. If this happens, then e(k) becomes closer
to zero. Since output of utility function depends upon e(k)
so if value of U (k) approaches zero, then value of J (k) will
also approach to zero. In general, the output of a good critic
network should not be negative if U (k) is nonnegative. This
will be possible when U (k) is defined equal to the square of
error in tracking control problems (Visnevski 1997).

2.1 How the proposed scheme works?

The performance index for updating the action neural net-
workweights is actually the function of output of critic neural
network as Ea(k) = 1

2 [J (k)]2. Thus, if we are able to reduce
the output of critic neural network to zero, then there will
not be any need to update the weights of action network.
Now it is interesting to see when the output of critic neu-
ral network becomes zero? From the Fig. 1, we can see
that the input of critic neural network is actually the out-
put of utility function, U (k), where U (k) is the function of
its own input signal e(k) asU (k) = 1

2 [e(k)]2. The error, e(k),
represents the difference between the desired external input
r(k) and the output of the plant y(k), and our objective is
to have y(k) follows r(k). Now if the weights of the action
neural network are updated in the correct direction, then a
correct control signal will be generated by the action neural
network (as its output) and will make the plant to produce
output equal to that of external input r(k). When this hap-

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4469

pens, e(k) becomes zero which makes the output of utility
function and the critic neural network zero. This is the desired
objective. Now to have the weights to be updated in the right
direction, we need a learning algorithm (weight adjustment
method). In this paper, LS-based weight updating algorithm
is developedwhich is implemented and comparedwith that of
GD-based algorithm. Action, critic and utility functions are
the components of the ADP scheme which are being utilized
to implement the adaptive control. Also, the other important
component in the control scheme is the NN-based identifica-
tionmodel (identifier). As the training progress, the identifier
learns the dynamics of the plant in the form of its own weight
values. The identifier is needed as we need the value of jaco-
bian (which is ∂y(k)

∂uc(k)
≈ ∂N (k)

∂uc(k)
). The value of this derivative is

obtained with the help of the NN-based identifier mathemat-
ical model (which is the mathematical equation of NN-based
identifier).

3 Weights adjustment algorithm for ADP using
gradient descent (GD) principle

In this section, recursive update equations are derived using
gradient descent principle for adjusting the weights of action
and critic neural networks and ANN identification model
(identifier). Single hidden layer is taken in all these three
neural networks with single neuron in the output layer and
20 neurons in the hidden layer. A general artificial neural
network is shown in Fig. 2. Though the structure of ANN is
available in the literature, it is drawn again in an expanded
form in order to show the various signals present in it, how
they are processed and to show the various symbols used for
denoting these signals. It will provide the clarity on how the

chain rule is to be applied while back propagating the output
error to the hidden layers during the derivation of update
equations for the input–output weight vectors.

3.1 Update equations for action neural network weights

The performance index for action neural network is already
defined in Eq. 1. Let W2a(k) and W1a(k) denote output and
input weight vectors, respectively, in action neural network
at any kth instant and let W1c(k) and W2c(k) denote input
and output weight vectors, respectively, in critic neural net-
work. Let V1c(k) and V2c(k) denote induced fields for hidden
neurons and output neuron, respectively, in the critic neural
network and S1c(k) and S1a(k) denote output of hidden neu-
rons in critic and action neural network, respectively. The
induced fields of hidden and output neurons in action neu-
ron network are denoted by V1a(k) and V2a(k), respectively.
The activation functions used for hidden and output neu-
ron in action, critic neural network and ANN identifier are
hyperbolic tangent and purelin (linear with slope equal to 1),
respectively. To obtain the update equations for the weights
in action neural network, the performance index is differ-
entiated with respect to respective weights of action neural
network. Let y(k) denote output of the plant. On differentiat-
ing Ea(k) with respect to output weight vector, we will have
the following weight update equation:

W2a(k + 1) = W2a(k) + ηJ (k)W2c(k)
(
1 − (S21c(k))

)

× W1c(k)e(k)
∂N (k)

∂uc(k)
S1a(k)

(9)

Fig. 2 General structure of artificial neural network

123

4470 R. Kumar et al.

where η denotes a learning rate and its value lies between
(0, 1]. Since the dynamics (mathematical model) of the plant
are assumed to be unknown, the value of the jacobian will be
given by ANN identifier as it captures the dynamics of the
plant during the online training. The identification procedure
requires knowledge of the structure of unknown plant and
its order because structure of identification model is chosen
same as that of plant. Let N (k) denote output of ANN iden-
tification model. Then, the value of jacobian is calculated as

∂y(k)

∂uc(k)
≈ ∂N (k)

∂uc(k)
(10)

Similarly, update equation for input weight vector of
action neural network is:

W1a(k + 1) = W1a(k) + ηJ (k)W2c(k)
(
1 − (S1c(k))

2
)

×W1c(k)e(k)
∂N (k)

∂uc(k)
W2a(k)

×
(
1 −

(
S21a(k)

))
r(k) (11)

3.2 Update equations for critic neural network weights

The performance index for critic neural network is already
defined in Eq. 5. Differentiating it with respect to output
weights of critic neural network, we will get the following
input weights update equation

W2c(k + 1) = W2c(k) + ηec(k)[−γ]S1c(k) (12)

Following the same procedure, the update equation for input
weight vector of critic neural network can be written as

W1c(k + 1) = W1c(k)

+ ηec(k)[−γ]W2c(k)
(
1 − (S1c(k))

2
)
U (k)

(13)

3.3 Update equations for ANN identification model
weights

Theperformance index defined forANN identificationmodel
is

Ei(k) = 1

2
[ei(k)]2 (14)

where

ei(k) = y(k) − N (k) (15)

LetW21(k) andW1i(k) denotes output and input weight vec-
tors of ANN identifier. Using chain rule, the update equation
for the adjustments of output weight vector of ANN identifier
is

W2i(k + 1) = W2i(k) + η
∂Ei(k)

∂y(k)

∂y(k)

∂uc(k)

∂uc(k)

∂W2i(k) (16)

and update equation for input weight vector is

W1i(k + 1) = W1i(k) + η
∂Ei(k)

∂y(k)

∂y(k)

∂uc(k)

∂uc(k)

∂S1i(k)

× ∂S1i(k)

∂V1i(k)

∂V1i(k)

∂W1i(k)

(17)

4 Lyapunov stability (LS) criterion-based weight
learning algorithm

To remove the shortcomings of the GD-based update equa-
tions like instability or stucking in local minima (Denaï et al.
2007), Lyapunov stability criterion is now used to derive the
weights update equations. In Lyapunov stability method, we
initially choose a scalar function VrmL(X), where X denotes
its argument vector, which is a positive definite function
(Chen 2011) for all initial conditions of its arguments except
when all of them are simultaneously equals to zero. Now,
system is said to be asymptotic stable if both conditions
described by Eqs. 18 and 19 are met

VL(X) > 0 for all X except X = 0 (18)

and

dVL(X)

dt
= negative definite for all X (19)

If both these conditions are met, then system is asymptotic
stable. To lay the foundation for the weight learning algo-
rithm, let us express the generalized form of weight update
equation as:

Wg(k + 1) = Wg(k) − η�Wg(k) (20)

where Wg(k) represents a generalized weight vector (which
denotes input–output weights of all three neural networks in
the scheme). Let Eg(k) be a generalized performance/cost
function which denotes (Ea(k), Ec(k) and Ei(k)) and is a
function of generalized error, ê(k), that represents (ec(k),
ea(k) and ei(k)). This generalized performance function is
defined as

Eg(k) = 1

2
(ê(k))2 (21)

then �Wg(k) according to GD principle is given as

�Wg(k) = ∂Eg(k)

∂Wg(k)
(22)

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4471

or

�Wg(k) = ∂Eg(k)

∂ ê(k)

∂ ê(k)

∂Wg(k)
(23)

As Eq. 23 may get into the problem of local minima, we
choose Lyapunov function as

VL(k) = 1

2
[(ê(k))2 + (Wg(k))

2] (24)

This is a positive definite function. Since we are working in
discrete domain, the second condition for asymptotic stability
can be written as:

�VL(k) = VL(k + 1) − VL(k) ≤ 0 (25)

Now, we will try to prove Eq. 25 which in turn gives us the
condition on �Wg(k). It is obvious that �k → 1 as we are
working in discrete environment. So, Eq. 25 can be written
as

�VL(k) = 1

2
[(ê(k + 1))2 + (Wg(k + 1))2]

− 1

2
[(ê(k))2 + (Wg(k))

2]
(26)

On writing similar nature terms together, we will get

�VL(k) = 1

2
[ê(k + 1)2 − ê(k))2]

+ 1

2
[(Wg(k + 1))2 − (Wg(k))

2]
(27)

or

�VL(k) = 1

2
[ê(k + 1) + ê(k)][ê(k + 1) − ê(k)]

+ 1

2
[Wg(k+1)+Wg(k)][Wg(k+1)−Wg(k)]

(28)

Let �ê(k) = ê(k + 1) − ê(k) and �Wg(k) = {
Wg(k + 1)

− Wg(k)
}
so using them in Eq. 28 we will get

�VL(k) = 1

2
�ê(k)[�ê(k) + 2ê(k)]

+ 1

2
�Wg(k)[�Wg(k) + 2Wg(k)]

(29)

On rearrangement of terms, Eq. 29 can be written as

�VL(k) = 1

2
[�Wg(k)]2

[
1 +

[
�ê(k)

�Wg(k)

]2]

+ �Wg(k)

[
Wg(k) + ê(k)

[
�ê(k)

�Wg(k)

]] (30)

For a very small change, Eq. 30 can be written as

�VL(k) = 1

2
[�Wg(k)]2

[
1 +

[
∂ ê(k)

∂Wg(k)

]2]

+�Wg(k)

[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]
(31)

Theorem For Lyapunov function, VL(k) = 1
2 [(ê(k))2 +

(Wg(k))2] > 0, the condition �VL(k) ≤ 0 is satisfied if
and only if

�Wg(k) = −
{
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]}

1 +
[

∂ ê(k)
∂Wg(k)

]2 (32)

Stability Proof From Eq. 31 , let

�VL(k) = 1

2
[�Wg(k)]2

[
1 +

[
∂ ê(k)

∂Wg(k)

]2]

+�Wg(k)

[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]
= −1

2
z

(33)

where z must have a positive or zero value in order for con-
dition, �VL(k) ≤ 0, to hold. So Eq. 33 becomes

�VL(k) = 1

2
[�Wg(k)]2

[
1+

[
∂ ê(k)

∂Wg(k)

]2]

+�Wg(k)

[
Wg(k)+ê(k)

[
∂ ê(k)

∂Wg(k)

]]
+1

2
z=0

(34)

Consider a general quadratic equation

ax2 + bx + c = 0 (35)

The roots of the quadratic equation are given by

d1 = −b + √
b2 − 4ac

2a
and d2 = −b − √

b2 − 4ac

2a
(36)

Comparing Eq. 34 with Eq. 35, it can be easily seen that
�Wg(k) acts as x in Eq. 35 and values of a, b and c in Eq. 34

are : a = 1
2

[
1 +

[
∂ ê(k)

∂Wg(k)

]2]
, the value of b is equal to b =

[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]
and c = 1

2 z. To have single unique

solution of quadratic equation, the term
√
b2 − 4ac must be

123

4472 R. Kumar et al.

equal to zero. Putting values of a, b and c in
√
b2 − 4ac = 0,

we get

√√√√
[
Wg(k)+ê(k)

[
∂ ê(k)

∂Wg(k)

]]2
−

[
1+

[
∂ ê(k)

∂Wg(k)

]2]
z=0

(37)

Squaring both sides, we will get

[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]2
−

[
1 +

[
∂ ê(k)

∂Wg(k)

]2]
z = 0

(38)

z comes out to be

z =
[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]2

[
1 +

[
∂ ê(k)

∂Wg(k)

]2] (39)

Since z ≥ 0, it means

[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]2

[
1 +

[
∂ ê(k)

∂Wg(k)

]2] ≥ 0 (40)

So, the unique root of Eq. 34 will be given as

�Wg(k) = −b

2a
=

−
[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]

[
1 +

[
∂ ê(k)

∂Wg(k)

]2] (41)

Hence, Eq. 32 is proved. Substituting �Wg(k) value from
Eqs. 41 to 20, we get

Wg(k + 1) = Wg(k) + η

[
Wg(k) + ê(k)

[
∂ ê(k)

∂Wg(k)

]]

[
1 +

[
∂ ê(k)

∂Wg(k)

]2] (42)

Eq. 42 is the Lyapunov stability-based weight update equa-
tion for the adjustment of input–output weight vectors of all
three neural networks of ADP scheme.

Figure 3 shows a flowchart which depicts step-by-step
detailed procedure of training for adjusting all three neural
networks weights.

5 Adaptive learning rate

It is a well-known fact that the speed of training and conver-
gence behavior depends upon number of factors like number

Fig. 3 Flowchart for weights adjustment training

of hidden neurons chosen, number of hidden layers used and
the value of learning rate η. In most of the cases, if the value
of η is chosen very small, then number of iterations required
to reach the optimal values of weight vectors will be exceed-
ingly large. On the other hand, large value of η may leads to
instability in the system or weights may oscillate during the
iterations around the desired values. So, instead of choos-
ing η to be constant if it is adjusted at each instant [thus
making constant η to function of time instant η(k)], then it
is known as adaptive (dynamic) learning rate. A number of
methods have been proposed in the literature for adaptive
adjustment of η(k). Becker and Le Cun (1988) showed that
second derivatives of the error provide value of the curvature
of error. This value can then be used to determine η(k) value
dynamically in order to decrease the online training time.
Franzini et al. (1987) utilized the concept of error surface
curvature in which direction cosine of error derivative vector
evaluated at instant k and k − 1 is employed to adjust the
learning rate. In this paper, we propose a weighted vector
average (of only output weight vectors of critic, action and
identification neural networks) of direction cosine of succes-
sive incremental weighted vectors at several instants. Thus,
each weight element in output weight vectors will be having
adjustable η(k). Only output weight vector is chosen with
adjustable η(k) because only for them the precise value of
error is available. Input weight vectors in all three neural

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4473

networks are adjusted with constant η. This constant η value
is taken to be 0.025 in all the simulation examples of this
paper. Let �WG

o (k) denote generalized adjustment output
weight vector in all three identification models. During the
learning (training), the change occurred in�WG

o (k) between
any two successive instants follows the steepest direction in
order to reduce the cost function. If there occurs no change
(or little change) in the direction between the two successive
instants, then it implies that error surface local shape is rel-
atively unchanged and in such case increasing the value of
η(k) may increase the speed of minimization. On the other
hand, if the current instant direction is very different from the
previous instant direction, then it suggests error surface have
quite complex local shape, then assigning η(k)with a smaller
value may avoid the instability or overshooting problem. We
propose to utilize the direction cosine of present �WG

o (k)
and several previously calculated �WG

o (k) for adjusting the
η(k). Then, η(k) is defined to be the weighted average of
L + 1 successive incremental output weight vectors, where
L is a positive integer and its value is set by us. In this paper,
we used L = 1. The dynamic learning rate is then defined as

η(k) = α0�WG
o (k)�WG

o (k − 1)∥∥�WG
o (k)

∥∥ ∥∥�WG
o (k − 1)

∥∥ + · · ·

+ αL�WG
o (k − L)�WG

o (k − L − 1)∥∥�WG
o (k − L)

∥∥ ∥∥�WG
o (k − L − 1)

∥∥

(43)

Further, the coefficients in Eq. 43 are assigned value as

α j = β

e j
(j = 0, 1, 2 . . . , L) (44)

So, from the Eq. 44 it can be concluded that α0 > α1 >

α2 · · · > αL. Value of β in Eq. 44 is evaluated as

β = 1
∑L

j=1 e
− j

(45)

6 Simulation results

Three nonlinear dynamical systems (plants) are used to test
the ADP-based identification and control by using both
gradient descent (GD)- and Lyapunov stability (LS)-based
weight updating algorithms. The corresponding responses
were compared, and it is found that the responses obtained
with LS algorithm are better than those obtained with GD-
based learning algorithm. The dynamics of plants considered
are assumed to be unknown while carrying out the simu-
lation study. In each example, the online training of each
neural network is shown and the corresponding comparison
of responses of plant with reference trajectory is plotted. The
main objective of learning algorithm is to adjust the weights

0 500 1000 1500 2000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
r(k)=sin(2πk/240)

Instants

Response of a plant
Reference input

Fig. 4 Response of plant without ADP control (Example 1) (color
figure online)

of all three neural networks in such a way that output of plant
follows the reference trajectory signal r(k).After that,ADP is
further testedwith a different reference trajectory (whose val-
ues fall in the same domain as of initial trajectory values for
which the system earlier underwent training) just to ensure
that NNs get properly trained. Finally, the scheme is also
tested against parameter variation and disturbance signal.

6.1 Example 1

Consider a nonlinear dynamical system described by the
following difference equation (Narendra and Parthasarathy
1990)

y(k + 1) = F[y(k), y(k − 1)] + r(k) (46)

where

F[y(k), y(k − 1)] = y(k)y(k − 1)[y(k) + λ]
1 + y2(k) + y2(k − 1)

(47)

which is assumed to be unknown and parameter λ is equal
to 0.05. Assuming system described by Eq. 46 is control-
lable and possess bounded-input bounded-output stability
(BIBO), our aim is then to generate a control sequence so
that output of the plant follows the desired trajectory r(k).
The response of plant without control is shown in Fig. 4when
the desired trajectory signal r(k) = sin(2πk240) is applied to it.
From thefigure, it can be noted that the response of plant (dot-
ted red curve) is not following the desired trajectory (solid
blue curve) and the reason for this is its owndynamics (plant).

123

4474 R. Kumar et al.

7000 7200 7400 7600 7800 8000 8200

−1

−0.5

0

0.5

1

1.5

2

y(
k)

 a
nd

 N
(k

)
r(k)=sin(2πk/240)

Instants

Response of a plant

Response of Identification model with LS

Response of Identification model with GD

Fig. 5 Response of ANN identification model (Example 1) (color fig-
ure online)

So, proposed scheme, as shown inFig. 1 is setup. SinceF is
unknown, to identify it following ANN-based identification
model is set up in parallel to it

N (k + 1) = N [y(k), y(k − 1)] + uc(k) (48)

The series-parallel identification structure is used in which
output(s) of the plant will be used to compute the next value
of identification model. Since BIBO stability is assumed in
the plant, all the signals in the ANN identification model
will also remain bounded. The value of γ is selected to be
0.43. All three neural networks undergo training simultane-
ously. The response of ANN identification model at the end
stages of learning is shown in Fig. 5. It can be seen from
the figure that response of identification model (broken red
line) due to Lyapunov stability (LS)-based learning algo-
rithm is closer to the output of plant (solid blue line) than
the response obtained (solid golden color line) due to gra-
dient descent (GD) weight updating learning algorithm. As
the online training progressed, response of plant continues to
improve because weights of all three neural networks con-
tinues to update (improve). Figure 6 shows the response of
plant during the final stages of training under the action of
ADP scheme [where r(k) got replaced by uc(k) in Eq. 46
during controller action].

From the figure, it is seen that the response of plant, when
ADP neural networks trainedwith LS algorithm, is following
more closely the desired trajectory signal than the response
obtained through GD-based learning algorithm. This shows
that weights of each neural network in the proposed scheme
reaches to their desired values (and hence can be freeze
(stored)). Now, ADP with its final weights is tested (or vali-
dation) by taking a different desired trajectory signal

r(k)=
⎧
⎨

⎩

sin
(2πk
250

)+0.2sin
(2πk

25

)
if k≤1000

1 if 1000< x≤1500
sin

(2πk
125

)
if 1500< x≤2000

⎫
⎬

⎭

(49)

1600 1800 2000 2200 2400 2600 2800
−1.5

−1

−0.5

0

0.5

1

1.5

2

y(
k)

 a
nd

 r
(k

)

r(k)=sin(2πk/240)

Instants

Response of a plant with GD
Reference input
Response of a plant with GD

Fig. 6 Response of plant under ADP controller action (Example 1)

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

1.5

2

y(
k)

 a
nd

 r
(k

)

Instants

Response of a plant with LS
Reference input
Response of a plant GD

Fig. 7 Response of plant under ADP controller action with a different
desired trajectory signal (validation) (Example 1) (color figure online)

Fig. 7 shows the response of plant under ADP scheme when
above desired trajectory signal is used.

From the figure, it is again seen that the response of plant
(continuous red line) obtained with LS algorithm is better
than that (continuous golden line) obtained with GD-based
learning. Since the weights are frozen after the training, the
value of J (k) must be closer to zero. Figure 8 shows the plot
of J (k) with LS- and GD-based ADP learning. The instan-
taneous mean square error (MSE) plot is shown in Fig. 9. It
can be seen that the MSE remains close to zero all the time
except at the instants when reference trajectory is changed.
At these instants, a rise in MSE can be seen, but they quickly
reduce to zero, which shows the robustness of the proposed
scheme.

The response of critic neural network with LS learning is
much smoother and closer to zero as compared to response
obtained through GD-based weight learning. The response
of critic neural network shows that weights of each neural
network have reached to their optimum values. Figure 10
shows the average mean square error (MSE) using e(k) for
different learning rates (i.e., the fixed learning rate for input
weight vectors in all three neural networks is changed to dif-

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4475

200 300 400 500 600 700 800 900 1000

−0.2

−0.1

0

0.1

0.2

0.3
J(

k)
r(k)=sin(2πk/240)

Instants

Response of a critic neural network with LS
Response of a critic neural network with GD

Fig. 8 Response of critic neural network (Example 1)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

M
S

E

Instants

998 1000 1002 1004 1006
0

0.2

0.4

0.6

0.8

1499 1500 1501 1502 1503
0

0.5

1

Fig. 9 Instantaneous mean square error (MSE) (Example 1)

Fig. 10 Average MSE with LS and GD weight learning algorithm
(Example 1)

ferent values) with LS and GD weight learning algorithm.
From the bar graph, it is clear that average MSE in case
of LS-based learning remains smaller than the GD-based
weight learning for different learning rates (γ value was kept
constant).

1.0999 1.1 1.1001 1.1002 1.1003 1.1004 1.1005 1.1006

x 10
4

0

0.5

1

1.5

2

2.5

Instants

In
st

an
ta

ne
ou

s
M

S
E

MSE with GD method
MSE with LS method

Fig. 11 InstantaneousMSEplot at disturbance signal instant (Example
1) (color figure online)

1 1.0005 1.001 1.0015 1.002 1.0025 1.003 1.0035 1.004

x 10
4

0

0.5

1

1.5

2

Instants

In
st

an
ta

ne
ou

s
M

S
E

MSE with LS method
MSE with GD method

Fig. 12 Instantaneous MSE plot at parameter variation instant (Exam-
ple 1)

6.1.1 Performance testing against disturbance signal

The disturbance signal of magnitude 2.5 is added in iden-
tification model output at k = 11,000th instant. The
correspondingMSEplotwith respect to ei(k) is shown in Fig.
11. From the figure, it can be seen that MSE (broken black
line) with LS method reduces very quickly again to zero
value after the effect of disturbance signal as compared to
MSE drop (continuous blue line) obtained with GD method.
So, we can write robustness order with respect to disturbance
signal for two training algorithms as LS>GD.

6.2 Performance testing against parameter variation

Parameter λ of given plant is changed from its actual value
0.05 to 2 at k = 10,000th instant. The corresponding vari-
ation in MSE is shown in Fig. 12. From the MSE plot, we
can see that MSE response recovered very quickly with LS
method as compared to GD method. This again shows the
robustness order of training methods as LS>GD.

123

4476 R. Kumar et al.

6.3 Example 2

In this example, following nonlinear difference equation
describes the BIBO stable dynamical system (Narendra and
Parthasarathy 1990)

y(k + 1) = G[y(k)] + r3(k) (50)

where the nonlinear part

G[y(k)] = y(k)

1 + y2(k)
(51)

is assumed to be unknown. Symbol r(k) denotes desired tra-
jectory and is given as

r(k) = cos

(
2πk

240

)
+ 0.2cos

(
k

10

)
(52)

The ANN identification model is chosen as

N (k + 1) = N [y(k)] + +r3(k) (53)

The response of plant without ADP scheme is shown in Fig.
13. From the figure, it is clearly seen that the output of plant
is not following the desired trajectory signal, so ADP scheme
is again set up and the online training of all three neural net-
works is initiated. The value of γ is set to 0.43. Again, 20
neurons are used in the hidden layers for all three neural
networks. The final stage plant output under ADP action is
shown in Fig. 14. It is clear from the figure that response
of plant (red line) with weights trained by LS algorithm
is much closer to reference trajectory (blue line) than the
response obtained with GD-based learning (green line). The
response of ANN identification model during the final stages
of online training is shown in Fig. 15. In this example also,
we have obtained a better response from ANN identifica-
tion model when its weights are updated through LS-based
learning as compared to GD-based weight updating equa-
tions. Now, again it is time to test the neural networks (NNs)
with updated weights by considering some different desired
trajectory signal. The new desired trajectory is chosen as

r(k)=
⎧
⎨

⎩

cos
(2πk
250

)+0.2sin
(2πk

25

)
if k≤500

0.6sin
(k
120

)+0.4cos
(k
21

)
if 500≤ x≤900

sin
(2πk
125

)
if 900 < x ≤ 2000

⎫
⎬

⎭

(54)

The plant response underADP action corresponding to above
external trajectory input is shown in Fig. 16. The response
of plant obtained with LS method is very much closer to the
desired trajectory than that obtained with GD-based method.

0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

1

2

3

y(
k)

 a
nd

 r
(k

)

r(k)=cos(2πk/240)+0.2sin(k/10)

Instants

Response of a plant
Reference input

Fig. 13 Plant response without control (Example 2)

5500 6000 6500 7000 7500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y(
k)

 a
nd

 r
(k

)

r(k)=cos(2πk/240)+0.2sin(k/10)

Instants

Response of a plant with LS
Reference input
Response of a plant with GD

Fig. 14 Plant response with ADP control (Example 2) (color figure
online)

1 1.02 1.04 1.06 1.08 1.1 1.12

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y(
k)

 a
nd

 N
(k

)

Instants

Response of ANN Identification model with LS
Response of plant
Response of ANN Identification model with GD

Fig. 15 ANN-based identification model output (Example 2)

This again shows the superiority of weights update equations
obtained through LS method over the equations obtained
through GD-basedmethod. The response of critic neural net-
work, J (k), is shown in Fig. 17. It is again seen that the
critic response with LS method all the time remains close

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4477

0 500 1000 1500 2000
−1.5

−1

−0.5

0

0.5

1

1.5

2
y(

k)
 a

nd
 r

(k
)

Instants

Reference input
Response of a plant with LS
Response of a plant with GD

Fig. 16 ADP-based plant output (validation) (Example 2)

0 100 200 300 400 500 600 700

−0.2

0

0.2

0.4

0.6

0.8

J(
k)

r(k)=cos(2πk/240)+0.2sin(k/10)

Instants

Response of a critic neural network with LS
Response of a critic neural network with GD

Fig. 17 Critic neural network output (Example 2)

Fig. 18 Average MSE with different learning rates (Example 2)

to zero as compared to response obtained through GD-based
method. The average MSE bar chart corresponding to differ-
ent learning rates, η, is shown in Fig. 18 (where γ value was
kept constant). From the figure, it is clear that average MSE
in case of LS learning is much smaller than that obtained
through GD-based weight update equations.

3.6999 3.6999 3.7 3.7001 3.7001 3.7001 3.7002 3.7003 3.7003 3.7003 3.7004

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Instants

In
st

an
ta

ne
ou

s
M

S
E

MSE with LS method
MSE with GD method

Fig. 19 Forced rigid pendulum

6.3.1 Testing of performance against disturbance signal

A disturbance signal of magnitude 3.1 is added in identifica-
tion model output at k = 37,000th instant.

Figure 19 shows the corresponding variation in MSE plot
at the instant of disturbance signal. In this case also, MSE
response with LS method is found to be better (as it reduces
again to zero in a very short time after the inclusion of dis-
turbance signal in the system) as compared to MSE response
obtained with GD method. Thus, order of robustness against
disturbance signal can be written as LS>GD.

6.4 Example 3

In this example, a forced rigid pendulum is considered. Its
differential dynamical equation is given as in Lilly (2011)

I ψ̈ = −MgLsinψ − Bψ̇ + τ (55)

The above equation is discretized with sampling period T =
0.01s, and the corresponding difference equation is

ψ(k + 2) = 2ψ(k + 1) − ψ(k) − 32.66T 2sin(ψ(k))

− 0.2T (ψ(k + 1) − ψ(k)) + T 222.22τ(k)

(56)

τ(k) represents the external control torque applied to the shaft
at the attached point to the pendulum so that it follows the
desired input trajectory signal. Figure 20 shows the forced
pendulum (Lilly 2011). The values taken for various parame-
ters in the pendulummodel aremass:M = 0.5kg, coefficient

of friction at attached point: B = 0.009 kg·m
s2 , acceleration

due to gravity: g = 9.8 m
s2 and length of mass less shaft:

L = 0.3m and moment of inertia: I = ML2. The open loop
response of pendulum without controller action correspond-
ing to desired input trajectory signal, r(k) = 0.3sin(πkT),
is shown in Fig. 21. From the figure, it can be clearly seen
that the pendulum output (solid red line) is not following the

123

4478 R. Kumar et al.

Fig. 20 Instantaneous MSE when disturbance signal is added
(Example 2)

0 1 2 3 4 5 6 7 8 9 10
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ψ
(k

)
an

d
r(

k)

Instants

Response of a plant
Reference input

Fig. 21 Open loop response of forced rigid pendulum (Example 3)
(color figure online)

desired input trajectory signal (solid blue line). Hence, ADP
configuration as shown in Fig. 1 is set up. The value of γ is
set to 0.27. Since the dynamics of pendulum are assumed to
be unknown, ANN-based identification model is set up. The
structure of series parallel identification model is chosen as

N (k + 2) = N [ψ(k + 1), ψ(k)] + T 222.22τ(k) (57)

The response of forced pendulum with LS- and GD-based
learning algorithm is shown in Fig. 22. It can be seen from the
figure that response due to LS-basedweight learning is closer
to reference trajectory as compared to response obtainedwith
GD-based weight learning. The striking difference is in the
number of iterations used in both the techniques. In LS-based
method, only 400 iterations are used, whereas in GD-based
method 1200 iterations were used to train the weights. A
total of 1000 samples were used in every iteration during
the training. This large difference in the number of iterations
shows the superiority of the LS-based training over the GD-

0 2 4 6 8 10

−0.4

−0.2

0

0.2

0.4

0.6

r(
k)

 a
nd

 ψ
(k

)

r(k)=0.3sin(πkT)

Instants

Reference signal
Response of pendulum with LS
Response of pendulum with GD

Fig. 22 Response of Pendulum with ADP action (Example 3)

Fig. 23 Average MSE with different learning rates (Example 3)

based training. Figure 23 shows the bar chart in which the
comparison is shown in terms of average mean square error
(MSE) by taking different learning rates. It can be easily
seen that average MSE in the case of LS-based training is
much less than that obtained with GD-based training. This
again shows that LS-based weight update equation is more
powerful than that obtained with GD-based learningmethod.
So, from the 3 numerical examples simulated in this paper it
can be easily concluded that weight update equation derived
using LS-based method is more powerful than that obtained
with GD-based method.

7 Contributions and achievements of this paper

1. Recursive weight update equations are developed using
the powerful concept of Lyapunov stability criterion.
The results so obtained are superior than those obtained
through gradient descent based weight learning method.
The benefit of using LS-based weight update equations
is that it guarantees the stability of the system, and there
is no fear of stucking in the minima (which may occur in
case of GD-based weight update equations).

123

Lyapunov stability-based control and identification of nonlinear dynamical systems using... 4479

2. Though the dynamics of plants under consideration are
assumed to be unknown, the proposed scheme is able
to provide successfully the optimal trajectory control of
unknown nonlinear dynamical systems.

3. Adaptive learning rate is employed in the weight update
equation which ensures that in less number of iterations
weights will reach to their optimal values.

4. In case of robustness also, LS-based method performed
better than GD-based method.

5. The training of all three neural networks are done online
whichmakes the proposed schememore viable to be used
in the real-time control applications. One such real-time
example of forced pendulum is successfully controlled
in this paper.

8 Conclusion

Recursive weight update equations for the proposed ADP
scheme are derived using Lyapunov stability (LS) method,
and the results so obtained were compared with the update
equations using gradient descent (GD) principle. Both meth-
ods are able to provide the satisfactory results, but the
responses obtained through LS method are improved and
better than those obtained through GD method. The inclu-
sion of adaptive learning rate has made the proposed learning
algorithm more stronger. Also, in the presence of parameter
variation and disturbance signal the performance of proposed
scheme is found to be better with LS method as compared
to the performance obtained with GD method. The mod-
els of plants considered in numerical simulation study are
assumed to be unknown since there is always a possibility of
lack of information about the dynamics of the plant and the
presence of uncertainties like parameter variations anddistur-
bance signals. Hence, in order to deal with these problems,
a separate ANN identification model is set up which, dur-
ing the online training, captures all these features. All three
neural networks, namely critic neural network, action neural
network and ANN identification model, which are employed
in the ADP scheme, are able to successfully perform their
respective functions (approximating the cost function, as a
controller and as an identification model respectively), and
simulation results obtained support these claims.

Acknowledgements This study is not funded by any agency.

Compliance with ethical standards

Conflict of interest Rajesh Kumar declares that he has no conflict of
interest. Smriti Srivastava declares that she has no conflict of interest.
J. R. P. Gupta declares that he has no conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Abu-Khalaf M, Lewis FL (2005) Nearly optimal control laws for non-
linear systems with saturating actuators using a neural network hjb
approach. Automatica 41(5):779–791

Aguilar-Leal O, Fuentes-Aguilar R, Chairez I, García-González A,
Huegel J (2016) Distributed parameter system identification using
finite element differential neural networks. Appl Soft Comput
43:633–642

Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time non-
linear hjb solution using approximate dynamic programming:
convergence proof. IEEE Trans Syst Man Cybern Part B Cybern
38(4):943–949

Balakrishnan S, Biega V (1996) Adaptive-critic-based neural networks
for aircraft optimal control. J Guid Control Dyn 19(4):893–898

Becker S, Le Cun Y (1988) Improving the convergence of back-
propagation learning with second order methods. In: Proceedings
of the 1988 connectionist models summer school. Morgan Kauf-
mann, San Matteo, pp 29–37

Bellman R (1957) Dynamic programming. Princeton university press,
Princeton

BertsekasDP (2011)Temporal differencemethods for general projected
equations. IEEE Trans Autom Control 56(9):2128–2139

Bertsekas DP, Tsitsiklis JN (1995) Neuro-dynamic programming: an
overview. In: Proceedings of the 34th IEEE conference on decision
and control, 1995, vol 1. IEEE, pp 560–564

Bhuvaneswari N, Uma G, Rangaswamy T (2009) Adaptive and optimal
control of a non-linear process using intelligent controllers. Appl
Soft Comput 9(1):182–190

Castillo O, Melin P (2003) Intelligent adaptive model-based control
of robotic dynamic systems with a hybrid fuzzy-neural approach.
Appl Soft Comput 3(4):363–378

Chen CW (2011) Stability analysis and robustness design of nonlinear
systems: an nn-based approach. Appl Soft Comput 11(2):2735–
2742

Denaï MA, Palis F, Zeghbib A (2007) Modeling and control of non-
linear systems using soft computing techniques. Appl Soft Comput
7(3):728–738

Dong L, ZhongX, SunC, HeH (2016) Adaptive event-triggered control
based on heuristic dynamic programming for nonlinear discrete-
time systems

Dreyfus SE, Law AM (1977) Art and theory of dynamic programming.
Academic Press, Inc, Cambridge

Franzini M et al (1987) Speech recognition with back-propagation.
In: Proceedings, 9th annual conference of IEEE engineering in
medicine and biology society

Gao W, Jiang ZP (2015) Global optimal output regulation of partially
linear systems via robust adaptive dynamic programming. IFAC-
PapersOnLine 48(11):742–747

Gao W, Jiang Y, Jiang ZP, Chai T (2016) Output-feedback adaptive
optimal control of interconnected systems based on robust adaptive
dynamic programming. Automatica 72:37–45

Hendzel Z, Szuster M (2011) Discrete neural dynamic programming
in wheeled mobile robot control. Commun Nonlinear Sci Numer
Simul 16(5):2355–2362

Jiang Y, Jiang ZP (2014) Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems. IEEE Trans Neural
Netw Learn Syst 25(5):882–893

Jin N, Liu D, Huang T, Pang Z (2007) Discrete-time adaptive dynamic
programming using wavelet basis function neural networks. In:
IEEE international symposium on approximate dynamic program-
ming and reinforcement learning, (2007). ADPRL 2007. IEEE, pp
135–142

123

4480 R. Kumar et al.

Lewis FL, Vrabie D (2009) Reinforcement learning and adaptive
dynamic programming for feedback control. IEEE Circuits Syst
Mag 9(3):32–50

Lilly JH (2011) Fuzzy control and identification. Wiley, New York City
Liu D, Wei Q (2014) Policy iteration adaptive dynamic programming

algorithm for discrete-time nonlinear systems. IEEE Trans Neural
Netw Learn Syst 25(3):621–634

Liu D, Wang D, Yang X (2013) An iterative adaptive dynamic pro-
gramming algorithm for optimal control of unknown discrete-time
nonlinear systems with constrained inputs. Inf Sci 220:331–342

Liu D, Wang D, Li H (2014) Decentralized stabilization for a class
of continuous-time nonlinear interconnected systems using online
learning optimal control approach. IEEETrans Neural Netw Learn
Syst 25(2):418–428

Ljung L (1998) System identification. Springer, Ne York
Man Z, Lee K, Wang D, Cao Z, Miao C (2011) A new robust training

algorithm for a class of single-hidden layer feedforward neural
networks. Neurocomputing 74(16):2491–2501

Narendra KS, Parthasarathy K (1990) Identification and control of
dynamical systems using neural networks. IEEE Trans Neural
Netw 1(1):4–27

Ni Z, He H (2013) Heuristic dynamic programming with internal goal
representation. Soft Comput 17(11):2101–2108

Petrosian A, Prokhorov D, Homan R, Dasheiff R, Wunsch D (2000)
Recurrent neural network based prediction of epileptic seizures in
intra-and extracranial eeg. Neurocomputing 30(1):201–218

Prokhorov DV, Wunsch DC et al (1997) Adaptive critic designs. IEEE
Trans Neural Netw 8(5):997–1007

Si J, Wang YT (2001) Online learning control by association and rein-
forcement. IEEE Trans Neural Netw 12(2):264–276

Singh M, Srivastava S, Gupta J, Handmandlu M (2007) Identification
and control of a nonlinear system using neural networks by extract-
ing the system dynamics. IETE J Res 53(1):43–50

Song R, Zhang H, Luo Y, Wei Q (2010) Optimal control laws for time-
delay systemswith saturating actuators based on heuristic dynamic
programming. Neurocomputing 73(16):3020–3027

Song R, Xiao W, Zhang H (2013) Multi-objective optimal control
for a class of unknown nonlinear systems based on finite-
approximation-error adp algorithm. Neurocomputing 119:212–
221

Song R, Lewis FL,Wei Q, ZhangH (2016) Off-policy actor-critic struc-
ture for optimal control of unknown systems with disturbances.
IEEE Trans Cybern 46(5):1041–1050

Srivastava S, SinghM, HanmandluM (2002) Control and identification
of non-linear systems affected by noise using wavelet network. In:
Computational intelligence and applications. Dynamic Publishers,
Inc., pp 51–56

Srivastava S, Singh M, Hanmandlu M, Jha AN (2005) New fuzzy
wavelet neural networks for system identification and control.Appl
Soft Comput 6(1):1–17

Tutunji TA (2016) Parametric system identification using neural net-
works. Appl Soft Comput 47:251

Vamvoudakis KG, Lewis FL (2010) Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control prob-
lem. Automatica 46(5):878–888

Visnevski NA (1997) Control of a nonlinear multivariable system with
adaptive critic designs. PhD thesis, Texas Tech University

Vrabie D, Lewis F (2009) Neural network approach to continuous-time
direct adaptive optimal control for partially unknown nonlinear
systems. Neural Netw 22(3):237–246

Wang D, Liu D, Zhang Q, Zhao D (2016) Data-based adaptive critic
designs for nonlinear robust optimal controlwith uncertain dynam-
ics. IEEE Trans Syst Man Cybern Syst 46:1544

Watkins CJ, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292
Werbos PJ (1992) Approximate dynamic programming for real-time

control and neural modeling. Handb Intell Control Neural Fuzzy
Adapt Approach 15:493–525

Xiao G, Zhang H, Luo Y (2015) Online optimal control of unknown
discrete-time nonlinear systems by using time-based adaptive
dynamic programming. Neurocomputing 165:163–170

Yang X, Liu D, Wei Q (2014) Online approximate optimal control
for affine non-linear systems with unknown internal dynamics
using adaptive dynamic programming. IET Control Theory Appl
8(16):1676–1688

Yang X, Liu D, Wei Q, Wang D (2016) Guaranteed cost neural tracking
control for a class of uncertain nonlinear systems using adaptive
dynamic programming. Neurocomputing 198:80–90

Zhang J, Zhang H, Luo Y, Feng T (2014) Model-free optimal control
design for a class of linear discrete-time systems with multiple
delays using adaptive dynamic programming. Neurocomputing
135:163–170

Zhu Y, Zhao D, Li X (2016) Iterative adaptive dynamic programming
for solving unknown nonlinear zero-sum game based on online
data

123

	Lyapunov stability-based control and identification of nonlinear dynamical systems using adaptive dynamic programming
	Abstract
	1 Introduction
	1.1 Novelties and contributions of the paper

	2 Preliminaries: structure of proposed scheme and its mathematical formulation
	2.1 How the proposed scheme works?

	3 Weights adjustment algorithm for ADP using gradient descent (GD) principle
	3.1 Update equations for action neural network weights
	3.2 Update equations for critic neural network weights
	3.3 Update equations for ANN identification model weights

	4 Lyapunov stability (LS) criterion-based weight learning algorithm
	5 Adaptive learning rate
	6 Simulation results
	6.1 Example 1
	6.1.1 Performance testing against disturbance signal

	6.2 Performance testing against parameter variation
	6.3 Example 2
	6.3.1 Testing of performance against disturbance signal

	6.4 Example 3

	7 Contributions and achievements of this paper
	8 Conclusion
	Acknowledgements
	References

