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Abstract In 2014, Zhou and Hu (Inf Sci 269:378–387,
2014) introduced a kind of rough sets on a complete com-
pletely distributive lattice (short for CCD lattice), which
can be seen as a unified framework for the study of rough
sets based on ordinary binary relations, rough fuzzy sets
and interval-valued rough fuzzy sets. Han et al. (Soft Com-
put 20:1853–1861, 2016) introduced a new pair of rough
approximation operators via ideal on a CCD lattice in 2016,
which is more general and accurate than Zhou and Hu’s.
In this paper, we further investigate its properties, and then
the axiomatic approaches are studied. Through some of our
axioms, the rough approximations via ideal on a complete
atomic Boolean lattice can be viewed as special cases of
rough approximation operators via ideal on a CCD lattice if
the ideal is well given.
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1 Introduction

As a mathematical tool to deal with inaccuracy and nonde-
terminacy in data analysis, rough set theory was introduced
by Pawlak (1982). It has been triumphantly applied to intelli-
gent systems, machine learning, inductive reasoning, pattern
recognition and many other fields (see Pawlak 1991; Pawlak
and Skowron 2007a, b, c). The core tool of Pawlak rough set
model is the equivalence relation; however, in the practice,
this is not always satisfied. To break through this obstacle,
some scholars extended Pawlak rough set into many inter-
esting and meaningful models; for example, equivalence
relations were replaced by tolerance relations in Skowron
and Stepaniuk (1996), similarity relations in Vanderpooten
(1997), binary relations in Liu and Zhu (2008), Yao (1998b)
and so on. On the other hand, various fuzzy generalizations
of rough approximations have been proposed in Dubois and
Prade (1990), Nanda (1992), Qin and Pei (2005) andWu et al.
(2003), where the fuzzy rough set was acquired by replac-
ing the crisp relations with fuzzy relations and crisp subsets
with fuzzy sets. As generalizations, rough sets defined with
a mapping were introduced by Järvinen (2002) and Tantawy
andMustafa (2013). In addition, there is another direction for
promoting the Pawlak rough set model. It is well known that
the crisp power set of a universe is an atomic Boolean lattice,
thus a complete completely distributive lattice (short forCCD
lattice), where all the single point sets are atoms and equiva-
lence classes are the elements of this power set in thePawlak’s
rough sets, and the fuzzy power set of a universe is also aCCD
lattice. This leads authors to take a CCD lattice as the uni-
verse to construct rough set models, which brings different
kinds of generalizations of rough set models into a unified
framework. In fact, Chen et al. (2006) have introduced rough
approximations based on covers of aCCD lattice; later on, the
topological properties and structure of these rough sets were
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investigated in Gao et al. (2009). Qin et al. (2013) studied
approximation operators on a CCD lattice based on neigh-
borhoods in terms of a cover, and the connections among the
operators were studied. By using a binary relation on a CCD
lattice, Zhou and Hu (2014) defined one type of rough sets,
which was a generalization of rough sets based on a binary
relation (Yao 1998a, b), rough fuzzy sets (Dubois and Prade
1990), rough sets on Boolean lattices (Qi and Liu 2005) and
interval-valued rough fuzzy sets (Gong et al. 2008). As we
know, the ideal plays an important role in making some fore-
gone and related concepts of the universe together, through
which the imprecise concept can be approximately gained.
Based on the above work, Han et al. (2016) improved the
rough approximation operators in Zhou and Hu (2014) by
means of an ideal on a CCD lattice and obtained new rough
approximation operators on a CCD lattice; moreover, they
concluded that Zhou and Hu’s (2014) approximations, Yao’s
(1996) approximations, Pawlak’s (1982) approximations and
Dubois’s (1990) approximations are all their special cases.
It is shown that the accuracy measure of the approximations
via ideal is better than Zhou and Hu’s (2014).

By making a general survey of the approaches for the
research of approximation operators, the axiomatic approach
is important for the conceptual understanding of the rough
set theory. Many authors explored and refined the axiomatic
approaches in the development of rough set theory and fuzzy
rough set theory (see Liu 2013; Lin and Liu 1994; Mi and
Zhang 2004; Wu and Zhang 2004; Wu et al. 2016), where
Lin and Liu (1994) adopted six axioms on two abstract oper-
ators acting on the power set in the framework of topological
spaces. Mi and Zhang (2004) andWu and Zhang (2004) con-
sidered axioms for approximation operators in the context of
fuzzy sets. Liu (2013) proved that each axiomatic system
of upper approximations of rough sets and fuzzy rough sets
without any restriction on the cardinality of the universal set
can be replaced by only one axiom. And Wu et al. (2016)
investigated the axiomatic characterizations of (S, T )-fuzzy
rough approximation operators, where S and T are trian-
gular conorm and triangular norm on [0, 1], respectively.
Following the work in Zhou and Hu (2014), the authors also
discussed the axiomatic approaches of rough approximation
operators on a CCD lattice (Zhou and Hu 2016), which are
the generalization of the axiomatic approaches of rough sets,
rough fuzzy sets and fuzzy rough sets.

For the new pair of rough approximation operators via
ideal on a CCD lattice (Han et al. 2016), this paper addresses
the study for the axiomatic approaches of these operators.
With the help of the Galois connection, we overcome the
difficulty that there is no duality between lower and upper
rough approximation operators via ideal on a CCD lattice
successfully. Simultaneously, some small loopholes in Zhou
and Hu (2014, 2016) are rectified, with which the readers
can reduce some confusion.

The rest of this paper is organized as follows. In Sect. 2,
we show some basic definitions and results to be used in
the paper. In Sect. 3, some new properties of the rough
approximation operators via ideal on a CCD lattice are inves-
tigated, and then the axiomatic characterizations of upper
rough approximation operators are obtained. In Sect. 4, we
study the axiomatic approaches of roughapproximationoper-
ators via ideal on a CCD lattice with the assistance of the
Galois connection. Conclusions and future work are given in
Sect. 5.

2 Preliminaries

At the beginning, we review some definitions and previous
results which will be used in the subsequent parts of this text.

2.1 Lattice theory

A complete completely distributive lattice (abb. CCD lattice)
(L ,∨,∧, 0, 1) is a complete lattice which satisfies the com-
pletely distributivity laws: for any ai j ∈ L ,
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where τ and Ji are non-empty index sets, and f ∈ ∏
i∈τ Ji

means that f is a mapping f : τ → ∪i∈τ Ji such that f (i) ∈
Ji for every i ∈ τ . Throughout this paper, we denote by L a
CCD lattice unless otherwise stated.

In a lattice L , whether the element 0 (in case L has a zero)
is join irreducible or not, there is a bit of difference about
the introduction in Gierz et al. (2003) and Wang (1992), we
keep pace with Zhou and Hu’s (2014). A nonzero element e
is called join irreducible if for any a, b ∈ L , e ≤ a∨b implies
e ≤ a or e ≤ b. The set of all join-irreducible elements of
a CCD lattice L is denoted by M(L). In a CCD lattice L ,
for any nonzero element a, a = ∨{e ∈ M(L) : e ≤ a},
moreover, denote ua = {e ∈ M(L) : e ≤ a and ∀e′ ∈
M(L), e′ ≤ a 
⇒ e � e′}, then a = ∨

ua .
An element c in a complete lattice L is called completely

join irreducible if for any S ⊆ L , c ≤ ∨
S implies that there

exists s ∈ S such that c ≤ s (see Raney 1952).

Example 1 We give the following examples about CCD lat-
tices, join-irreducible elements and completely join-
irreducible elements, the related details can be found in
Draškovičová (1974), Järvinen andRadeleczki (2011), Järvi-
nen et al. (2009) and Raney (1952).
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1. L = ([0, 1],∨,∧, 0, 1) is a CCD lattice and M(L) =
L−{0}. However, one can easily verify that every element
in M(L) is not a completely join-irreducible element,
since every element x ∈ L is the join of the set of y ∈ L
such that y ≤ x .

2. A complete Brouwerian, dually Brouwerian lattice and
weakly atomic lattice is a CCD lattice, and every element
of L is a join of completely join-irreducible elements.

3. Let L be a lattice. Then, the following are equivalent:

(a) L is isomorphic to a complete ring of sets.
(b) L is algebraic, distributive and every element is a join

of completely join-irreducible elements.

4. RS = {(X�, X�) : X ⊆ U } determined by a qua-
siorder R is a CCD lattice isomorphic to a complete ring
of sets, and its completely join-irreducible elements are
members of {(∅, {x}�) : |R(x)| ≥ 2} ∪ {({x}�, {x}��) :
x ∈ U }, for more details see Järvinen et al. (2009).

Definition 1 (Chen et al. 2006) Let L be a CCD lattice and
C ⊆ L\{0} so as to

∨
a∈C

a = 1. Then, C is called a partition

of L if for every a, b ∈ C, a �= b implying a ∧ b = 0.

Definition 2 (Gierz et al. 1980) Let L be a complete lattice
and x, y ∈ L . We say that x is wedge-below y, in symbols,
x� y, iff for any D ⊆ L , y ≤ ∨D always implies that x ≤ d
for some d ∈ D.

Obviously, in a complete lattice L , if a ∈ L is a completely
join-irreducible element, then for any b ∈ L , b ≤ a implies
b � a.

Proposition 1 (Gierz et al. 1980) Let L be a complete lattice
and x, y, u, v ∈ L. Then

1. x � y 
⇒ x ≤ y.
2. u ≤ x � y ≤ v 
⇒ u � v.
3. x �= 0 
⇒ 0 � x.

Theorem 1 (Gierz et al. 1980)Acomplete lattice L is aCCD
lattice iff a = ∨{x ∈ L : x � a} for each a ∈ L.

Proposition 2 (Wang 1988) Let L be a CCD lattice. Then,
for any a, b ∈ L, a�b 
⇒ ∃c ∈ L s.t. a� c�b. Specially,
for any S ⊆ L, a �

∨
S 
⇒ ∃s ∈ S s.t. a � s.

Remark 1 Let L be a CCD lattice. Then

1. for any a �= 0, there exists z ∈ M(L) such that z � a.

Proof For any a �= 0, there exists b ∈ L and b �= 0 such
that b�a by Theorem 1. Then, it follows from the properties
of M(L) that there exists z ∈ M(L) such that z ≤ b, which
means z � a by Proposition 1. ��

2. a ≤ b if and only if for any z ∈ M(L), z � a implies
z ≤ b.

Proof (
⇒) It holds by Proposition 1.
(⇐
) Assuming that for any z ∈ M(L), z � a implies

z ≤ b. Then, for any x ∈ L , x � a, since x = ∨{y ∈
M(L) : y ≤ x}, we claim that x ≤ b. Because for any
y ∈ M(L), y ≤ x implies y � a by Proposition 1, which
means y ≤ b by the assumption, it follows from Theorem 1
that a ≤ b holds. ��

2.2 Rough approximation operators on a CCD lattice

We recall the binary relation on a CCD lattice, which is intro-
duced in Zhou and Hu (2014, 2016).

A binary relation R on a CCD lattice L is a subset of
M(L) × M(L). For any x, y ∈ M(L), if (x, y) ∈ R, we
say that y is R-related to x , denoted by x Ry. Moreover,
Rc denotes the inverse relation of R, i.e., x Rcy ⇐⇒ yRx ,
∀x, y ∈ M(L). Given x ∈ M(L), we note x R = {y ∈
M(L) : x Ry}, rx = ∨

x R and Rx = {y ∈ M(L) : yRx},
r∗
x = ∨

Rx , respectively. For any x, y, z ∈ M(L), we say
that R is reflexive iff x Rx , R is symmetric iff x Ry 
⇒ yRx ,
R is transitive iff x Ry, yRz 
⇒ x Rz and R is an equivalence
relation iff R is reflexive, symmetric and transitive.

In this text, R is a tolerance iff R is reflexive and symmet-
ric, R is a quasiorder iff R is reflexive and transitive.

Theorem 2 (Zhou and Hu 2014) Let R be an equivalence
relation on a CCD lattice L. Then, the following assertions
are equivalent:

1. {rx }x∈M(L) is a partition of L.
2. For every x, y ∈ M(L), y ≤ x 
⇒ x Ry.

The assertion (2) in Theorem 2 implies that R is reflexive,
which is denoted as (C1). R is called an ordered equivalence
relation iff R is symmetric, transitive and satisfies the condi-
tion (C1).

When considering Theorem 2, we find that the authors
maybe confuse the concepts of join-irreducible elements and
completely join-irreducible elements in the proof of (2) 
⇒
(1), a more rigorous proof is given in the following in order
to avoid causing difficulties for the readers.

Proof of (2) 
⇒ (1) On the one hand, R is reflexive, which
implies

∨
x∈M(L) rx ≥ ∨

x∈M(L) x = 1 by the properties of
M(L). On the other hand, for any rx , ry ∈ {rx }x∈M(L), if
rx ∧ ry �= 0, then there is z ∈ M(L) such that z � rx ∧ ry by
(1) in Remark 1. z � rx implies that there exists z′ ∈ M(L)

such that x Rz′ and z ≤ z′ by Propositions 2 and 1, i.e., x Rz′
and zRz′. Then, we get x Rz because R is symmetric and
transitive. Analogously, yRz holds. Hence, z ∈ x R ∩ yR �=
∅, which means rx = ry .
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One can give the proper proofs of Eq. (L3), (LH4) and
(LH5) in Zhou and Hu (2014) and Lemma 1 in Zhou and Hu
(2016) likewise.

Definition 3 (Zhou and Hu 2014) Let R be a binary relation
on a CCD lattice L . Two mappings R, R : L −→ L , called
lower and upper rough approximation operators, respec-
tively, are defined as follows, for each a ∈ L ,

R(a) = ∨{x ∈ M(L) : rx ≤ a},
R(a) = ∨{x ∈ M(L) : ∃y ∈ x R, y ≤ a}.

R(a) is called a lower rough approximation of a, R(a) is
called an upper rough approximation of a.

2.3 Rough approximations via ideal on a CCD lattice

Han et al. (2016) investigated the rough approximations
based on a binary relation via ideal on a CCD lattice, we
present a review.

Definition 4 (Davey and Priestley 2002) Let L be a lattice.
A non-empty subset I of L is called an ideal if

1. a, b ∈ I implies a ∨ b ∈ I .
2. a ∈ L , b ∈ I and a ≤ b imply a ∈ I .

Definition 5 (Han et al. 2016) Let R be a binary relation on
L and I an ideal of L . Define lower and upper approximation
operators, RI , RI : L −→ L , respectively. For each a ∈ L ,

1. RI (a) = a ∧ ∨{x : x ∈ M(L),∨(x R ∩ L\↓a) ∈ I }.
2. RI (a) = a ∨ ∨{x : x ∈ M(L),∨(x R ∩ ↓a) /∈ I }.

The elements RI (a) and RI (a) are called the lower and
the upper approximations of a via ideal I with respect to R,
respectively. For convenience, we denote R∗(a) = ∨{x :
x ∈ M(L),∨(x R ∩ L\↓a) ∈ I }, R∗(a) = ∨{x : x ∈
M(L),∨(x R ∩ ↓a) /∈ I }.
Remark 2 (Han et al. 2016) Let R be a reflexive binary rela-
tion on L and I the least ideal {0} of L . Then, for each a ∈ L ,
RI (a) = R(a), RI (a) = R(a).

Lemma 1 (Han et al. 2016) Let I be an ideal of L. Then,
I = ↓{↓m ∩ M(L) : m ∈ I } is an ideal on P(M(L)).

Theorem 3 (Han et al. 2016) Let R be a binary relation on
L and I an ideal of L. Then, for each a ∈ L,

1. R∗(a) = ∨{x : x ∈ M(L), x R ∩ L\↓a ∈ I }.
2. R∗(a) = ∨{x : x ∈ M(L), x R ∩ ↓a /∈ I }.

Proposition 3 (Han et al. 2016) Let R be a binary relation
on L and I an ideal of L. Then, for every a, b ∈ L,

1. RI (a) ≤ a ≤ RI (a).
2. RI (1) = 1, RI (0) = 0.
3. if a ≤ b, then RI (a) ≤ RI (b), RI (a) ≤ RI (b).
4. RI (a∧b) ≤ RI (a)∧RI (b), moreover, if R is a transitive

relation satisfying (C1), then RI (a∧b) = RI (a)∧RI (b)
and RI (∧A) = ∧{RI (a) : a ∈ A}.

5. RI (a ∨ b) = RI (a) ∨ RI (b).
6. if R is transitive, then RI RI (a) = RI (a).
7. if R is an ordered equivalence relation, then RI RI (a) =

RI (a).

Theorem 4 (Han et al. 2016) Let I be an ideal of L. If R is
a reflexive binary relation on L, then for each a ∈ L,

R(a) ≤ RI (a) ≤ a ≤ RI (a) ≤ R(a).

3 Axioms of upper rough approximation operators
via ideal on a CCD lattice

Zhou and Hu (2016) studied the axiomatic approaches of
rough approximation operators on a CCD lattice. In this sec-
tion, we investigate the axiomatic approaches of upper rough
approximation operators via ideal on a CCD lattice, which
are appropriate for the case that the ideal is a special ideal
{0}, i.e., they fit Zhou and Hu’s rough approximation oper-
ators. For the convenience of readers, we point out a small
mistake in Zhou and Hu (2016), the authors recalled the con-
dition (C1) improperly, they consider it as x ≤ y 
⇒ x Ry in
Lemma 2 and Theorem 7; unfortunately, they are not typing
errors after our careful verification.

Remark 3 If I is not only an ideal but also a complete sub-
lattice of L , we call it a complete sublattice ideal (for short)
of L in the rest of this paper.

Theorem 5 Let R be a binary relation on L and I a complete
sublattice ideal of L. Then, for each a ∈ L, A ⊆ L,

1. R∗(a) = ∨{x : x ∈ M(L), x R ∩ L\↓a ⊆ I }.
2. R∗(a) = ∨{x : x ∈ M(L), ∃y ∈ x R, y ≤ a, but y /∈

I }
= ∨{r∗

y : y ∈ M(L), y ∈ ↓a\I }.
3. RI (∨A) = ∨{RI (a) : a ∈ A}.

Proof 1. It is sufficient to prove that for every a ∈ L , x ∈
M(L), ∨(x R ∩ L\↓a) ∈ I ⇐⇒ x R ∩ L\↓a ⊆ I .

(
⇒) Assuming that ∨(x R ∩ L\↓a) ∈ I , then for any y ∈
x R ∩ L\↓a, y ≤ ∨(x R ∩ L\↓a) ∈ I implies y ∈ I
by the properties of the ideal I , i.e., x R∩ L\↓a ⊆ I .

(⇐
) It is directly obtained by the condition that I is a
complete sublattice of L .
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2. For every a ∈ L , x ∈ M(L), the proof of “∨(x R∩↓a) /∈
I ⇐⇒ ∃y ∈ x R, y ≤ a, but y /∈ I” is similar to (1).
Furthermore, we have

R∗(a) =
∨

{x : x ∈ M(L), ∃y ∈ x R, y ≤ a, but y /∈ I }
=

∨
{r∗

y : y ∈ M(L), y ≤ a, but y /∈ I }
=

∨
{r∗

y : y ∈ M(L), y ∈ ↓a\I }.

3. For any A ⊆ L , by (3) in Proposition 3, we only need to
prove RI (∨A) ≤ ∨{RI (a) : a ∈ A}. Obviously,

RI (∨A) = ∨A ∨ R∗(∨A),∨{RI (a) : a ∈ A} = ∨{a ∨ R∗(a) : a ∈ A} =
∨A ∨ ∨{R∗(a) : a ∈ A}.

We claim that R∗(∨A) ≤ ∨{R∗(a) : a ∈ A}.
In fact, for any x ∈ M(L), let ∨(x R∩↓∨ A) /∈ I . Then,
∨(x R ∩ ↓ ∨ A) ≤ ∨x R ∧ ∨ ↓ ∨ A = ∨x R ∧ ∨A =∨{∨x R∧ a : a ∈ A} implies

∨{∨x R∧ a : a ∈ A} /∈ I .
Moreover, I is a complete sublattice, which implies that
∨x R∧a /∈ I for some a ∈ A, i.e., R∗(∨A) ≤ ∨{R∗(a) :
a ∈ A}. ��

Remark 4 Let R be a transitive relation on L and satisfies
condition (C1). Then, for every x, y ∈ M(L), x ≤ y implies
rx ≤ ry , specially, if R is an ordered equivalence relation,
then it also implies r∗

x ≤ r∗
y , which is denoted as (C3).

Proof Suppose R is a transitive relation on L satisfying con-
dition (C1). Then, for every x, y ∈ M(L), x ≤ y 
⇒
yRx 
⇒ x R ⊆ yR 
⇒ rx ≤ ry . In the case of ordered
equivalence relation, x ≤ y 
⇒ yRx 
⇒ x Ry 
⇒ Rx ⊆
Ry 
⇒ r∗

x ≤ r∗
y , ∀x, y ∈ M(L). ��

Lemma 2 Let R be a binary relation satisfying (C3) on L
and I a complete sublattice ideal of L. Then, for any x ∈
M(L),

R I (x) =
{
x, x ∈ I,
x ∨ r∗

x , x /∈ I.

Proof Denote S = {r∗
y : ∃y ∈ M(L), y ≤ x, but y /∈ I }.

According to (2) in Theorem 5, we have

1. If x ∈ I , then y ∈ I for any y ≤ x , i.e., S = ∅. Thus,
RI (x) = x .

2. If x /∈ I , first, r∗
x ∈ S implies x ∨ r∗

x ≤ RI (x), second,
r∗
y ≤ r∗

x if y ≤ x by (C3), which implies RI (x) ≤ x∨r∗
x .

Thus, RI (x) = x ∨ r∗
x . �

Now, with the help of Lemma 2, we discuss the upper
rough approximation operators via ideal on a CCD lattice.

Theorem 6 Let I be a complete sublattice ideal of L and
f a mapping on L. Then, there exists a binary relation R′
satisfying (C3) on L, such that f = R′

I if and only if f
satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L),

f (x)

{= x, x ∈ I,
≥ x, x /∈ I.

Proof (
⇒) If f = R′
I , condition (1) holds by (2) in

Proposition 3 and condition (2) holds by (3) in Theorem 5.
Moreover, since R′ satisfies condition (C3), it follows from
Lemma 2 that condition (3) holds.

(⇐
) Define a binary relation R on L as: x R′y ⇐⇒ x ∈
u f (y). Since r∗

x = ∨{y ∈ M(L) : yR′x} = ∨
u f (x) =

f (x), from (C3), Lemma 2 and condition (3), we obtain that
for any x ∈ M(L), if x ∈ I , then R′

I (x) = x = f (x) and
R′

I (x) = x ∨ r∗
x = x ∨ f (x) = f (x) if x /∈ I , which means

R′
I (x) = f (x), ∀x ∈ M(L).
Then, for any a ∈ L , if a = 0, it is straightforward

that f (0) = 0 = R′
I (0). If a �= 0, we have R′

I (a) =
R′

I (
∨{xi ∈ M(L) : xi ≤ a}) = ∨{R′

I (xi ) : xi ≤ a, xi ∈
M(L)} = ∨{ f (xi ) : xi ≤ a, xi ∈ M(L)} = f (

∨{xi ∈
M(L) : xi ≤ a}) = f (a). ��
Theorem 7 Let I be a complete sublattice ideal of L and
f a mapping on L. Then, there exists a reflexive relation
R satisfying (C3) on L, such that f = RI if and only if f
satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L),

f (x)

{= x, x ∈ I,
≥ x, x /∈ I.

Proof We only state (⇐
) here, define a binary relation R
on L as: x Ry ⇐⇒ x ≤ f (y), ∀x, y ∈ M(L). Apparently,
R is reflexive by condition (3) and r∗

x = ∨{y ∈ M(L) :
yRx} = ∨{y ∈ M(L) : y ≤ f (x)} = f (x). Then, f = RI

can be obtained similarly. ��
Remark 5 If L is a complete atomic Boolean lattice, then
R′ = R, where R′ and R are binary relations defined in the
proofs of Theorem 6 and 7, respectively.

Example 2 By using an ideal on B, Tantawy and Mustafa
(2013) introduced two pairs of rough approximations on a
complete atomic Boolean lattice B.
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(1) Let ϕ : A(B) −→ B be an any mapping, where A(B)

is the set of atoms of B. For each a ∈ B, the lower and upper
approximations of a via ideal I with respect to ϕ are defined
as:

a∇ I = a ∧ ∨{y : y ∈ A(B), ϕ(y) ∧ a′ ∈ I, a �= 0}.
a�I = a ∨ ∨{y : y ∈ A(B), ϕ(y) ∧ a /∈ I, a �= 1}.

(2) Let 〈ϕ〉 be a mapping induced from ϕ as 〈ϕ〉(x) =∧
x≤ϕ(y) ϕ(y), for all x ∈ A(B). For each a ∈ B, the lower

and upper approximations of a via ideal I with respect to 〈ϕ〉
are defined as:

a∨I = a ∧ ∨{y : y ∈ A(B), 〈ϕ〉(x) ∧ a′ ∈ I, a �= 0}.
a∧I = a ∨ ∨{y : y ∈ A(B), 〈ϕ〉(x) ∧ a /∈ I, a �= 1}.

where �I satisfies the following properties:

(a) (Proposition3.1 inTantawyandMustafa 2013) 0�I = 0.
(b) (Proposition 3.3 in Tantawy and Mustafa 2013) if

every element in I is completely join irreducible, then∨
S�I = (

∨
S)�I for any S ⊆ B.

(c) for any x ∈ A(B), if x ∈ I , then x�I = x .

Proof of (c) Denote H = {y : y ∈ A(B), ϕ(y)∧ x /∈ I, x �=
1}. If x ∈ I , then ϕ(y) ∧ x ∈ I because ϕ(y) ∧ x ≤ x for
any y ∈ A(B), i.e., H = ∅, thus, x�I = x .

Thus, let I be a complete sublattice ideal of a com-
plete atomic Boolean lattice B. If every element in I is
completely join irreducible, since the mapping �I on B sat-
isfies the condition in Theorem 7 and any complete atomic
Boolean lattice is a CCD lattice, it follows from Theorem 7
that there exists a reflexive relation R on B, defined as
x Ry ⇐⇒ x ≤ ϕ(y), ∀x, y ∈ A(B), such that �I = RI .
Similarly, let I be a complete sublattice ideal of a complete
atomic Boolean lattice B. If every element in I is completely
join irreducible, then there exists a reflexive relation R on B,
defined as x Ry ⇐⇒ x ≤ 〈ϕ〉(y), ∀x, y ∈ A(B), such that
∧I = RI .

The example above shows that if the ideal I is a complete
sublattice ideal and every element in I is completely join
irreducible, then Tantawy and Mustafa’s rough approxima-
tions can be seen as rough approximation operators based on
a reflexive relation via ideal on a CCD lattice.

Remark 6 In Theorem 7, if we set I = {0}, then it coincides
with Theorem 5 in Zhou and Hu (2016).

Theorem 8 Let I be a complete sublattice ideal of L and f
a mapping on L. If f satisfies

1. f (0) = 0.

2. f (
∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L),

f (x)

{= x, x ∈ I,
≥ x, x /∈ I.

4. for any x ∈ M(L), f (x) ≥ ∨{y ∈ M(L) : x ≤ f (y)}.

then there exists a tolerance R on L, such that f = RI .

Proof Define a binary relation R on L as Theorem 7. It is
immediate to get f = RI from the proof of Theorem 7. We
only prove the symmetry of R, for any x ∈ M(L), condition
(4) implies f (x) ≥ ∨{y : x ≤ f (y)} = ∨{y : x Ry} = rx ,
then x Ry 
⇒ y ≤ rx ≤ f (x) 
⇒ yRx, ∀x, y ∈ M(L). ��

The condition of Theorem 8 is sufficient but not necessary,
and we consider the following example.

Example 3 Let L = {0, a1, a2, a3, b1, b2, b3, c, 1}be aCCD
lattice depicted in Fig. 1, where M(L) = {a1, a2, b1, b2}.
Define a tolerance R on L as Table 1. Then a1R = {a1, b2},
a2R = {a2, b2}, b1R = {b1}, b2R = {a1, a2, b2}, ra1 =
r∗
a1 = b3, ra2 = r∗

a2 = 1, rb1 = r∗
b1

= b1 and rb2 = r∗
b2

= 1,
it is trivial that R satisfies (C3).

Let I = {0, a1, b1, c}. We have RI (a1) = a1 and
RI (b1) = b1 by Lemma 2. Moreover,

RI (a2) = a2 ∨
∨

{x : x ∈ M(L), ∃y ∈ x R, y ≤ a2, but y /∈ I }
= a2 ∨ (a2 ∨ b2) = 1,

RI (b2) = b2 ∨
∨

{x : x ∈ M(L), ∃y ∈ x R, y ≤ b2, but y /∈ I }
= b2 ∨ (a1 ∨ a2 ∨ b2) = 1.

Fig. 1 The lattice L

c

1

0

1a

3a

2a

1b

3b

2b

Table 1 The tolerance R in
Example 3

R a1 a2 b1 b2

a1 1 0 0 1

a2 0 1 0 1

b1 0 0 1 0

b2 1 1 0 1
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Thus,

RI (a1) = a1 � 1 = a1 ∨ a2 ∨ b2

= ∨{y ∈ M(L) : a1 ≤ RI (y)}.

Corollary 1 Let f be a mapping on L. If f satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L), f (x) ≥ x.
4. for any x ∈ M(L), f (x) ≥ ∨{y ∈ M(L) : x ≤ f (y)}.

then there exists a tolerance R on L, such that f = R.

Theorem 9 Let I be a complete sublattice ideal of L and f
a mapping on L. If f satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L), f (x) = x.

then there exists a quasiorder R on L, such that f = RI .

Proof Define a binary relation R on L as Theorem7.Weonly
illustrate that R is transitive, assume that x, y, z ∈ M(L),
x Ry and yRz, then x ≤ f (y), y ≤ f (z), it follows from
condition (3) that x ≤ f (y) = y ≤ f (z), thus, z ≤ f (x),
i.e., x Rz. ��

The following example indicates that the inverse of The-
orem 9 does not always hold.

Example 4 Let L be the same CCD lattice and I the same
complete sublattice ideal of L as in Example 3, respec-
tively. Define a quasiorder R on L as Table 2. Then, a1R =
{a1, b1, b2}, a2R = {a2}, b1R = {b1, b2}, b2R = {b2}.
Thus,

RI (b2) = b2 ∨
∨

{x : x ∈ M(L), ∃y ∈ x R,

y ≤ b2, but y /∈ I }
= b2 ∨ (a1 ∨ b1 ∨ b2) = b3 �= b2.

Corollary 2 Let f be a mapping on L. If f satisfies

Table 2 The quasiorder R in
Example 4

R a1 a2 b1 b2

a1 1 0 1 1

a2 0 1 0 0

b1 0 0 1 1

b2 0 0 0 1

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L), f (x) = x.

then there exists a quasiorder R on L, such that f = R.

Theorem 10 Let I be a complete sublattice ideal of L and
f a mapping on L. If f satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L),

f (x)

{= x, x ∈ I,
≥ x, x /∈ I.

4. for any a ∈ L, f (a) = f ( f (a)).

then there exists a quasiorder R on L, such that f = RI .

Proof Define a binary relation R on L as Theorem 7. The
transitivity of R is examined here. Suppose x, y, z ∈ M(L),
x Ry and yRz. It follows from conditions (4) and (2) that
r∗
y = f (y) = f ( f (y)) = f (r∗

y ) = f (
∨{p : pRy}) =∨{ f (p) : pRy} = ∨{r∗

p : pRy}, then x Ry implies r∗
x ∈

{r∗
p : pRy}, i.e., r∗

x ≤ r∗
y , similarly, r∗

y ≤ r∗
z , thus, x ≤ r∗

x ≤
r∗
y ≤ r∗

z = f (z), i.e., x Rz. ��

Example 5 Continue with Example 2, we note that �I also
possesses the property:

(d) (Lemma 3.2 in Tantawy and Mustafa 2013) if ϕ is a
closed mapping, then a�I�I = a�I for any a ∈ B.

Thus, let I be a complete sublattice ideal of a complete
atomic Boolean lattice B, ϕ : A(B) −→ B a closedmapping
on B. If every element in I is completely join irreducible, it
follows from Theorem 10 that there exists a quasiorder R on
B, defined as x Ry ⇐⇒ x ≤ ϕ(y), ∀x, y ∈ A(B), such
that �I = RI . Similarly, let I be a complete sublattice ideal
of a complete atomic Boolean lattice B, ϕ : A(B) −→ B a
closedmapping on B. If every element in I is completely join
irreducible, then there exists a quasiorder R on B, defined as
x Ry ⇐⇒ x ≤ 〈ϕ〉(y), ∀x, y ∈ A(B), such that ∧I = RI .

The example above indicates that Tantawy and Mustafa’s
rough approximations can be taken for rough approximation
operators based on a quasiorder via ideal on a CCD lattice
if ϕ is a closed mapping, the ideal I is a complete sublattice
ideal, and every element in I is completely join irreducible.

The following example demonstrates that the condition in
Theorem 10 is non-necessity.
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Fig. 2 The lattice L

Table 3 The quasiorder R in
Example 6

R a b d e f l p

a 1 0 0 0 0 0 0

b 0 1 0 0 0 0 0

d 0 0 1 1 0 0 0

e 0 0 0 1 0 0 0

f 0 0 0 1 1 0 0

l 0 1 0 0 0 1 0

p 0 0 0 0 0 0 1

Example 6 Let L be aCCD lattice defined as shown in Fig. 2,
whereM(L) = {a, b, d, e, f, l, p}. Define a quasiorder on L
in Table 3. Then aR = {a}, bR = {b}, dR = {d, e}, eR =
{e}, f R = {e, f }, l R = {b, l}, pR = {p}.

Let I = {0, a}. We get,

RI (e) = e ∨
∨

{x : x ∈ M(L), ∃y ∈ x R, y ≤ e, but y /∈ I }
= e ∨ (d ∨ e ∨ f ) = m,

RI RI (e) = RI (m)

= m ∨
∨

{x : x ∈ M(L), ∃y ∈ x R, y ≤ m, but y /∈ I }
= m ∨ (b ∨ d ∨ e ∨ f ∨ l) = n �= m.

Corollary 3 Let f be a mapping on L. If f satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L), f (x) ≥ x.
4. for any a ∈ L, f (a) = f ( f (a)).

then there exists a quasiorder R on L, such that f = R.

Theorem 11 Let I be a complete sublattice ideal of L and
f a mapping on L. If f satisfies

1. f (0) = 0.
2. f (

∨
i∈τ

ai ) = ∨
i∈τ

f (ai ), ∀ai ∈ L.

3. for any x ∈ M(L),

f (x)

{= x, x ∈ I,
≥ x, x /∈ I.

4. for any x, y ∈ M(L), f (x) �= f (y) 
⇒ f (x)∧ f (y) =
0.

then there exists an ordered equivalence relation R on L,
such that f = RI .

Proof Define a binary relation R on L asTheorem7.Weneed
to illustrate that R is symmetric, transitive and satisfies (C1).
For any x, y ∈ M(L), x Ry 
⇒ x ≤ f (y) 
⇒ x ∧ f (y) �=
0, then x ∧ f (y) ≤ f (x) ∧ f (y) �= 0, thus, f (x) = f (y)
by (4), it follows from (3) that y ≤ f (y) = f (x), i.e., x Ry.
Suppose x, y, z ∈ M(L), x Ry and yRz. Then, by the proof
above, x ≤ f (x) = f (y) = f (z), i.e., x Rz. Condition (3)
and the symmetry of R imply that y ≤ x ≤ f (x) ⇐⇒
yRx ⇐⇒ x Ry, i.e., R satisfies (C1). ��
Remark 7 When we pick I = {0} in Theorem 11, the con-
dition in Theorem 11 is necessary and sufficient for the
existence of an ordered equivalence relation (see Theorem
8 in Zhou and Hu 2016). However, it does not hold for the
general ideal. The following example indicates this view.

Example 7 Let L be the same CCD lattice as in Exam-
ple 3. We consider the ordered equivalence relation R =
1M(L)×M(L), i.e., x Ry, ∀x, y ∈ M(L). Then, a1R = a2R =
b1R = b2R = M(L), thus, RI (a1) = a1 �= 1 = RI (a2).
But,

RI (a1) ∧ RI (a2) = a1 ∧ 1 = a1 �= 0.

4 Axioms of rough approximation operators via
ideal on a CCD lattice in terms of Galois
connection

The following concepts and results of Galois connection are
reviewed in order to further explore the axiomatic approaches
of rough approximation operators via ideal on a CCD lattice,
for more details, see Gierz et al. (2003). We claim that the
condition (2) of Theorem 10, 12 and 13 in Zhou and Hu
(2016) is erroneous, because the formulas g(s) ≥ t ⇐⇒
s ≥ f (t) and g(s) ≤ t ⇐⇒ s ≤ f (t) are not equivalence in
the theory of Galois connection.

Definition 6 (Gierz et al. 2003) For posets P and Q, a pair
(g, f ) of maps g : P −→ Q and f : Q −→ P is called a
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Galois connection between P and Q iff for all p ∈ P and
q ∈ Q,

g(p) ≥ q ⇐⇒ p ≥ f (q).

Theorem 12 (Gierz et al. 2003) Let g : P −→ Q and
f : Q −→ P be two order preserving functions between
posets P and Q. Then, for any p ∈ P, q ∈ Q, the following
conditions are equivalent:

1. g(p) ≥ q ⇐⇒ p ≥ f (q).
2. p ≥ f (g(p)), g( f (p)) ≥ q.

Moreover, these conditions imply

3. f ◦ g ◦ f = f and g ◦ f ◦ g = g.
4. The map g is a meet preserving function and f is a join

preserving function.

Theorem 13 (Gierz et al. 2003) In a Galois connection
(g, f ), each of g and f uniquely determines the other via
the formulae

1. g(p) = ∨{q : p ≥ f (q)}, ∀p ∈ P.
2. f (q) = ∧{p : g(p) ≥ q}, ∀q ∈ Q.

Remark 8 According to Pawlak (1982) and Yao (1998a),
when L is a power set of a universe X , the symmetry of
R implies the following property: for any a ∈ L , a ≤ RR(a)

and RR(a) ≤ a, which imply that a ≤ RcR(a) and
RRc(a) ≤ a if R is an ordinary binary relation, i.e., (Rc, R)

forms aGalois connection onP(X). For these two formulas,
Zhou and Hu (2014) illustrated that RRc(a) ≤ a does not
hold for the general CCD lattice L by a counterexample, of
course, it does not hold for rough approximation operators
via ideal on a CCD lattice either. Let I be an ideal of L . The
following example states that a ≤ Rc

I RI (a) is not always
true for rough approximation operators via ideal on a CCD
lattice.

Example 8 Let L be the same CCD lattice as in Example
6. Define a binary relation R on L as Table 4. Then, aR =
{a}, bR = {b}, dR = {d, e}, eR = {e}, f R = { f },
l R = {b, d, l}, pR = {p} and Ra = {a}, Rb = {b, l},
Rd = {d, l}, Re = {d, e}, R f = { f }, Rl = {l}, Rp = {p}.

We consider I = {0, a, b, c}, then

RI (g) = g ∨
∨

{x : x ∈ M(L), ∃y ∈ x R, y ≤ g, but y /∈ I }
= g ∨ (d ∨ e) = i,

Rc
I RI (g) = Rc

I (i)= i ∧
∨

{x : x ∈M(L), Rx∩L\↓i⊆ I }
= i ∧ (a ∨ e) = e � g.

Table 4 The binary relation R
in Example 8

R a b d e f l p

a 1 0 0 0 0 0 0

b 0 1 0 0 0 0 0

d 0 0 1 1 0 0 0

e 0 0 0 1 0 0 0

f 0 0 0 0 1 0 0

l 0 1 1 0 0 1 0

p 0 0 0 0 0 0 1

Now, we present when (Rc
I , RI ) is a Galois connection

on a CCD L .

Remark 9 Denote (I1): x Ry 
⇒ x ≤ y, ∀x, y ∈ M(L).
Then, if R is a transitive relation satisfying (C1) and (I1)
on L , it is easy to verify that R is an ordered equivalence
relation.

Proposition 4 Let R be a binary relation satisfying (I1) on
L and I an ideal of L. Then, for every a ∈ L,

1. a ≤ Rc
I RI (a).

2. if I is a complete sublattice of L, then RI Rc
I (a) ≤

a,∀a ∈ L.

Proof (1) Rc
I RI (a) = RI (a) ∧ ∨{x : x ∈ M(L), Rx ∩

L\↓RI (a) ∈ I }. Denote S = {x : x ∈ M(L), Rx ∩
L\↓RI (a) ∈ I }. For any z ∈ M(L), z � a, we claim that
z ≤ RI (a) ∧ ∨

S.
In fact, it is direct that z ≤ a ≤ RI (a) by (1) in Propo-

sition 1 and (1) in Proposition 3. According to (I1), we
have r∗

z ≤ z, which implies r∗
z ≤ RI (a), it is equivalent

to Rz ⊆ ↓RI (a), thus, Rz ∩ L\↓RI (a) = ∅ ∈ I , i.e.,
z ∈ S. Therefore, z ≤ Rc

I RI (a), i.e., a ≤ Rc
I RI (a).

(2) RI Rc
I (a) = Rc

I (a) ∨ ∨{r∗
y : y ∈ M(L), y ∈

↓Rc
I (a)\I }. Denote T = {r∗

y : y ∈ M(L), y ∈
↓Rc

I (a)\I }. We only need to prove
∨

T ≤ a by (1) in
Proposition 3. It follows from Proposition 2 that for any
z ∈ M(L), z�

∨
T , there exists y ∈ M(L), y ∈ ↓Rc

I (a)\I
such that z � r∗

y , thus there exists p ∈ Ry such that z ≤ p,
p ∈ Ry implies p ≤ y by (I1), moreover, y ≤ Rc

I (a) ≤ a,
Thus, z ≤ p ≤ y ≤ a. This completes the proof. ��

Theorem 14 Let R be a binary relation satisfying (I1) on L
and I a complete sublattice ideal of L. Then, (Rc

I , RI ) is a
Galois connection.

Proof It follows from Proposition 4 and Theorem 12. ��

Corollary 4 Let R be a binary relation satisfying (I1) on L
and I a complete sublattice ideal of L. Then, for any a, b ∈
L , A ⊆ L, we have
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1. Rc
I (a ∧ b) = Rc

I (a) ∧ Rc
I (b) and Rc

I (∧A) =∧{Rc
I (a) : a ∈ A}.

2. if R is transitive, then RI RI (a) = RI (a).
3. Rc

I RI Rc
I (a) = RI (a).

4. RI Rc
I RI (a) = Rc

I (a).

Proof (1) holds by Theorem 14 and (3) in Theorem 5.
(2) R is transitive implies that Rc is transitive, thus,

Rc
I R

c
I (a) = Rc

I (a) by (6) in Proposition 3. According
to Theorem 13 and 14, we have

RI RI (a) =
∧

{b : Rc
I (b) ≥ RI (a)} =

∧
{b : Rc

I R
c
I (b)

≥ a}
=

∧
{b : Rc

I (b) ≥ a} = RI (a).

(3) and (4) hold by Theorem 12 and 14. ��
Theorem 15 Let I be a complete sublattice ideal of L and
(g, f ) a Galois connection on L. Then, there exists a qua-
siorder R satisfying (C3) and (I1) on L, such that g = Rc

I
and f = RI if and only if f satisfies

1. f (0) = 0.
2. for any x ∈ M(L), f (x) = x.

Proof (
⇒) We only need to prove (2), it follows from (C3)
that for any x ∈ M(L),

RI (x) =
{
x, x ∈ I,
x ∨ r∗

x , x /∈ I.

(I1) implies x ≥ r∗
x , thus, RI (x) = x .

(⇐
) (g, f ) a Galois connection on L , which implies
that f is a join preserving function by Theorem 12. From
Theorem 9, there exists a quasiorder R such that f = RI ,
and (C3) holds by the property of f . Furthermore, condition
(2) implies x Ry ⇐⇒ x ≤ f (y) = y, which means that
R satisfies (I1). Then (Rc

I , RI ) is a Galois connection by
Theorem 14, thus g = Rc

I . ��
Theorem 16 Let I be a complete sublattice ideal of L and
(g, f ) a Galois connection on L. Then, there exists an
ordered equivalence relation R satisfying (I1) on L, such
that g = Rc

I and f = RI if and only if f satisfies

1. f (0) = 0.
2. for any x ∈ M(L), f (x) = x.
3. for any x, y ∈ M(L), f (x) �= f (y) 
⇒ f (x)∧ f (y) =

0.

Proof (
⇒) Since R is an ordered equivalence relation, it
follows from Remark 4 that R satisfies (C3), then (2) holds
by the proof of Theorem 15. We state (3) here, R is reflexive,

symmetric and satisfies (I1), which implies that for any x ∈
M(L), x = r∗

x = rx . Thus, RI (x) = x = rx . It follows from
Theorem 2 that {rx }x∈M(L) is a partition of L , i.e., RI (x) �=
RI (y) 
⇒ RI (x) ∧ RI (y) = 0.

(⇐
) Combining with Theorem 11, it can be proved by a
similar way to the proof of Theorem 15. ��

5 Conclusions and future work

In this paper, we have studied the axiomatic approaches to
relation-based rough approximation operators via ideal on a
CCD lattice. This work may be taken for the extension of
Zhou and Hu (2016) and may also be considered as the com-
pleteness of Han et al. (2016). We believe that the axiomatic
approaches we offer here will help us to gain much more
insights into the mathematical structures of rough approxi-
mation operators.

The recent research has shown that rough set theory and
formal concept analysis provide complementary data mod-
eling techniques for information retrieval and knowledge
representation (Li et al. 2013). In Yao (2004), by combining
these two theories, the author obtained a better understanding
of knowledge embedded in data. Guo et al. (2014) applied
rough set theory to formal concept analysis and then got a
representation of algebraic domains.

Zhou and Hu (2014) also discussed generalized rough
approximation operators defined on two CCD lattices (X,∨,

∧, 0, 1) and (Y,∨,∧,⊥,�) based on a binary relation R ⊆
M(X) × M(Y ). Yao et al. (2016) presented a concept of
lattice-theoretic contexts (G, P, I) for G, P being complete
lattices and I a Galois ideal of G and P , which is a common
generalization of classical formal concept analysis. Further-
more, when the lattices G, P are completely distributive,
a reduction of the relation I in the lattice-theoretic context
(G, P, I) was obtained.

In the future, we will investigate the relation between
rough set theory and formal concept analysis from the fol-
lowing aspects:

1. ForZhou andHu’s rough sets definedon twoCCDlattices
(X,∨,∧, 0, 1) and (Y,∨,∧,⊥,�)with a binary relation
R ⊆ M(X) × M(Y ), we can consider the correspond-
ing lattice-theoretic context (X,Y, IR), where IR is the
generated Galois ideal of R (the smallest Galois ideal of
X and Y contains R). Then, there comes a natural ques-
tion that: What is the relation between the generalized
rough approximation operators defined on the two CCD
lattices (X,∨,∧, 0, 1) and (Y,∨,∧,⊥,�) based on a
binary relation R ⊆ M(X) × M(Y ) and concept lattices
of related CCD lattice-theoretic contexts (X,Y, IR)?

2. In a CCD lattice-theoretic context (G, P, I), if we put
RI = I |M(G)×M(P) (or equivalently RI = I ∩
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(M(G) × M(P))). Then we can research related rough
approximation operators defined on two CCD lattices
G and M with respect to RI. Hence, a second ques-
tion arises: What is the connection between the concept
lattices of CCD lattice-theoretic contexts (X,Y, I) and
corresponding generalized rough approximation opera-
tors defined on the two CCD lattices G and P with RI?

3. Due to the nice features of ideal, we will further study
lattice-theoretic contexts via an ordinary ideal.
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Draškovičová H (1974) On a representation of lattices by congruence
relations. Mat čas 24(1):69–75
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