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Abstract The notion of fuzzy extended filters is introduced
on residuated lattices, and its essential properties are inves-
tigated. By defining an operator � between two arbitrary
fuzzy filters in terms of fuzzy extended filters, two results
are immediately obtained. We show that (1) the class of all
fuzzy filters on a residuated lattice forms a complete Heyting
algebra, and its classical version is equivalent to the one intro-
duced in Kondo (Soft Comput 18(3):427–432, 2014), which
is defined with respect to (crisp) generated filters of single-
ton sets; (2) the connection between fuzzy extended filters
and fuzzy generated filters is built, with which three other
classes generating complete Heyting algebras, respectively,
are presented. Finally, by the aid of fuzzy t-filters, we also
develop the characterization theorems of the special algebras
and quotient algebras via fuzzy extended filters.

Keywords Complete Heyting algebra · Fuzzy extended
filters · Fuzzy generated filters · Fuzzy t-filters · Residuated
lattice

1 Introduction and preliminaries

The definition of extended filters on Rl-monoids was intro-
duced, and its properties were considered by Haveshki and
Mohamadhasani in 2012 (see Haveshki andMohamadhasani
2012). Later on, Kondo (2014) gave a characterization theo-
remof the extendedfilters on residuated lattices.Moreover, as
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a generalized result inHaveshki andMohamadhasani (2012),
a description of implicative, positive implicative and fantastic
filters on residuated lattices via extended filterswas provided.
However, Víta (2015) showed that this description can be
done uniformly in terms of t-filters.

In this note, the extended filter is shifted to the fuzzy set-
ting, and their properties and applications are discussed. We
have also obtained new results, some of whose classical ver-
sions are displayed as corollaries.

In the following, we recall some fundamental definitions
and results.

Definition 1 (Víta 2014) A bounded pointed commuta-
tive integral residuated lattice (abbr. residuated lattice) is a
structure

L = (L ,∨,∧,⊗,→, 0, 1),

which satisfies the following conditions:

(1) (L ,∨,∧, 0, 1) is a bounded lattice.
(2) (L ,⊗, 1) is a commutative monoid.
(3) (⊗,→) forms an adjoint pair, i.e., for any a, b, c ∈ L ,

a ⊗ b ≤ c ⇐⇒ a ≤ b → c.

A residuated lattice is called a complete residuated lattice
if (L ,∨,∧, 0, 1) is a complete lattice, and is called a Heyting
algebra if ⊗ = ∧. For example, [0, 1] is a complete Heyting
algebra.

Some other well-known algebras: MT L-algebras, BL-
algebras, MV -algebras and so on, are subvarieties of resid-
uated lattices (see Kondo 2014).

Starting now, unless otherwise stated, L always means a
residuated lattice and L its domain. The symbol x is a formal
listing of variables used in a given context. For a variety B
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of residuated lattices, we denote its subvariety, given by the
equation t = 1, by the symbol B[t].

Properties of (complete) residuated lattices can be found
in many papers, such as Hoo (1994), Höhle (1995), Ma and
Hu (2013), Radzikowska and Kerre (2004), She and Wang
(2009). We only give some properties that are used in the
further text.

Proposition 1 (Haveshki and Mohamadhasani 2012; Ma
and Hu 2013; Radzikowska and Kerre 2004; She and Wang
2009) In any complete residuated lattice (L ,∨,∧,⊗,→,

0, 1), the following properties hold for any a, b, ai , bi , c ∈
L (i ∈ I ):

(1) ⊗ is isotone in both arguments, → antitone in the 1st
argument and isotone in the 2nd argument.

(2) a ≤ b → (a ⊗ b).
(3) a⊗(∨i∈I bi ) = ∨i∈I (a⊗bi ), a⊗(∧i∈I bi ) ≤ ∧i∈I (a⊗

bi ).
(4) a → (∧i∈I bi ) = ∧i∈I (a → bi ), (∨i∈I ai ) → b =

∧i∈I (ai → b).
(5) (a ⊗ b) → c = b → (a → c) = a → (b → c).
(6) a ≤ b ⇐⇒ a → b = 1, 1 → a = a.
(7) a ∨ (b ⊗ c) ≥ (a ∨ b) ⊗ (a ∨ c).
(8) a ⊗ (b → c) ≤ (a → b) → c, specially, a ⊗ (a →

b) ≤ b.

A fuzzy set of a residuated latticeL is a function f : L →
[0, 1]. Specially, for any A ⊆ L , the characteristic function
χA is defined as follows:

χA(x) =
{
1, x ∈ A,

0, x /∈ A.

We denote χy instead of χ{y}. Put F (L) = { f |
f is a fuzzy set ofL}. Furthermore, 0, 1 ∈ F (L) are defined
as: 0(x) = 0, 1(x) = 1, ∀x ∈ L , respectively.

Definition 2 (Zhu and Xu 2010) A fuzzy set μ of L is a
fuzzy filter on L if and only if for any x, y ∈ L , it satisfies
the following two conditions:

(F1) if x ≤ y, then μ(x) ≤ μ(y),
(F2) μ(x) ∧ μ(y) ≤ μ(x ⊗ y).

Denote FFil(L) = {μ | μ is a fuzzy filter on L} (resp.
Fil(L) = {F | F is a (crisp) filter on L}).

The definition of fuzzy filters on L can be given by many
equivalent ways, for comprehensive overview see Zhu and
Xu (2010).

Definition 3 (Víta 2014) A fuzzy filter μ on L is called a
fuzzy t-filter on L, if μ(t (x)) = μ(1) for any x ∈ L , where
t (x) is a term of the language of L.

The fuzzy generated filter was introduced by Liu and Li
(2005) on BL-algebras, Jun et al. (2005) on MT L-algebras,
etc. We generalize it on residuated lattices here. Moreover,
for any ν ∈ F (L), 〈ν〉 denotes the fuzzy generated filter of
ν and 〈B] the (crisp) generated filter of B for any B ⊆ L .

Definition 4 Let ν be a fuzzy set of L. A fuzzy filter ϑ on L
is said to be generated by ν, if ν ⊆ ϑ and for any fuzzy filter
h on L, ν ⊆ h implies ϑ ⊆ h.

Proposition 2 Let ν be a fuzzy set of L. Then for any x ∈ L,

〈ν〉(x) =
∨

a1,··· ,an∈L , a1⊗···⊗an≤x

n∧
i=1

ν(ai ).

Proof It is similar to the proof of Theorem 3.11 in Liu and
Li (2005). ��

In Liu and Li (2005), the authors have drawn the conclu-
sion that (FFil(X),∧,∨, 0, 1) is a complete (Brouwerian)
lattice, where X is a BL-algebra. In a similar way, we can
verify that it is also a complete lattice under the framework
of residuated lattices and the proof is omitted here.

Theorem 1 (FFil(L),�,�, 0, 1) is a complete lattice,
where for any {μi }i∈I ⊆ FFil(L):

�i∈Iμi =
⋂
i∈I

μi , �i∈Iμi =
〈⋃
i∈I

μi

〉
.

The following content is introduced in order to discuss the
lattice structures.

In a poset P , for any S ⊆ P , denote Su = {y ∈ P | x ≤
y (∀x ∈ S)}.
Proposition 3 (Davey and Priestley 2002) Let P be a poset
such that

∧
S exists in P for every non-empty subset S of P .

Then
∨

Q exists for every non-empty subset Q of P, indeed,∨
Q = ∧

Qu .

Theorem 2 (Davey and Priestley 2002) Let P be a non-
empty poset. Then the following are equivalent:

(1) P is a complete lattice.
(2)

∧
S exists in P for every subset S of P.

(3) P has a top element, and
∧

S exists in P for every non-
empty subset S of P.

Definition 5 (Davey and Priestley 2002) Let P be a poset.
A closure operator is a mapping c : P → P satisfying for
every a, b ∈ P ,

(1) a ≤ c(a).
(2) a ≤ b �⇒ c(a) ≤ c(b).
(3) c(c(a)) = c(a).

123



Fuzzy extended filters on residuated lattices 2323

Denote Pc = {x ∈ P | c(x) = x}.
Proposition 4 (Davey and Priestley 2002) Let c be a closure
operator on a poset P. Then

(1) Pc = {c(x) | x ∈ P}.
(2) Pc is a complete lattice, under the order inherited from

P, such that, for every subset S of Pc:

∧
Pc

S =
∧
P

S,
∨
Pc

S = c

(∨
P

S

)
.

2 Fuzzy extended filters

The extended filter on a residuated lattice (Kondo 2014),
generalized from Haveshki and Mohamadhasani (2012), is
defined as:

Let F be a filter on L and B a subset of L. Then EF (B) =
{x ∈ L | x ∨ b ∈ F, ∀b ∈ B} is called an extended filter
associated with B, where “E” means “extended”. Specially,
EF ({a}) is abbreviated as EF (a).

According to the notation, we propose the concept of the
fuzzy extended filter on L. For a fuzzy filter μ on L and a
fuzzy set ν of L, εμ(ν) ∈ F (L) defined by

(∀x ∈ L) εμ(ν)(x) =
∧
b∈L

(ν(b) → μ(x ∨ b))

is called a fuzzy extended filter on L associated with ν.
Specially,

(∀x, y ∈ L) εμ(χy)(x) =
∧
b∈L

(
χy(b) → μ(x ∨ b)

)

= μ(x ∨ y).

Remark 1 Let μ be a fuzzy filter on L and ν a fuzzy set of
L. Then for any x ∈ L ,

εμ(ν)(x) =
∧
b∈L

(
ν(b) → εμ(χx )(b)

)
.

Wegive the crisp version of Remark 1, which plays a key role
in the proof of Theorem 7, and one can examine it easily.

Remark 2 Let F be a filter on L and B a subset of L. Then
EF (B) = {x ∈ L | B ⊆ EF (x)}.
Theorem 3 Let μ be a fuzzy filter on L and ν a fuzzy set of
L. Then

(1) εμ(ν) ∈ FFil(L).
(2) μ ⊆ εμ(ν).

Proof (1) For any x, y ∈ L , we have
(i) Assuming that x ≤ y, (F1) implies

εμ(ν)(x) =
∧
b∈L

(ν(b) → μ(x ∨ b))

≤
∧
b∈L

(ν(b) → μ(y ∨ b))

= εμ(ν)(y).

(ii) μ is a fuzzy filter, which implies

εμ(ν)(x) ∧ εμ(ν)(y)

=
∧
b∈L

(ν(b) → μ(x ∨ b)) ∧
∧
m∈L

(ν(m) → μ(y ∨ m))

≤
∧
b∈L

(ν(b) → μ(x ∨ b)) ∧ (ν(b) → μ(y ∨ b))

(by (4) in Proposition 1)

=
∧
b∈L

ν(b) → (μ(x ∨ b) ∧ μ(y ∨ b))

(by (F2) and (1) in Proposition 1)

≤
∧
b∈L

ν(b) → μ((x ∨ b) ⊗ (y ∨ b))

(by (7) in Proposition 1)

≤
∧
b∈L

ν(b) → μ((x ⊗ y) ∨ b)

= εμ(ν)(x ⊗ y).

Thus, εμ(ν) ∈ FFil(L).
(2) For any x ∈ L , since μ is a fuzzy filter,

εμ(ν)(x) =
∧
b∈L

ν(b) → μ(x ∨ b)

≥
∧
b∈L

ν(b) → μ(x)

≥
∧
b∈L

(1 → μ(x))

= μ(x),

i.e., μ ⊆ εμ(ν). ��

Proposition 5 Let μ,μ1, μ2 be fuzzy filters on L and
ν, ν1, ν2, ω fuzzy sets of L. We have

(1) if ν1 ⊆ ν2 then εμ(ν2) ⊆ εμ(ν1).
(2) if μ1 ⊆ μ2 then εμ1(ν) ⊆ εμ2(ν).
(3) ν ⊆ εμ

(
εμ(ν)

)
.

(4) εμ(ν) = εμ (〈ν〉).
(5) εεμ(ν)(ω) = εεμ(ω)(ν).
(6) εμ(ν) = εμ

(
εμ

(
εμ(ν)

))
.

(7) εεμ(ν)(ν) = εμ(ν).
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(8)
⋂
i∈I

εμ(νi ) = εμ

(⋃
i∈I

νi

)
.

Proof (1) For any x ∈ L ,

εμ(ν2)(x) =
∧
b∈L

ν2(b) → μ(x ∨ b)

≤
∧
b∈L

ν1(b) → μ(x ∨ b)

= εμ(ν1)(x),

i.e., εμ(ν2) ⊆ εμ(ν1).
(2) For any x ∈ L ,

εμ1(ν)(x) =
∧
b∈L

ν(b) → μ1(x ∨ b)

≤
∧
b∈L

ν(b) → μ2(x ∨ b)

= εμ2(ν)(x),

i.e., εμ1(ν) ⊆ εμ2(ν).
(3) For any x ∈ L ,

εμ

(
εμ (ν)

)
(x) =

∧
b∈L

εμ(ν)(b) → μ(x ∨ b)

=
∧
b∈L

(∧
c∈L

ν(c) → μ(b ∨ c)

)
→ μ(x ∨ b)

≥
∧
b∈L

(ν(x) → μ(b ∨ x)) → μ(x ∨ b)

(by (8) in Proposition 1)

≥
∧
b∈L

ν(x) ⊗ (μ(b ∨ x) → μ(x ∨ b))

= ν(x),

hence, ν ⊆ εμ(εμ(ν)).
(4) ν ⊆ 〈ν〉 implies εμ(ν) ⊇ εμ (〈ν〉) by (1). For any

b, x ∈ L , we obtain

〈ν〉(b) ⊗ εμ(ν)(x)

=
⎛
⎝ ∨

a1,··· ,an∈L , a1⊗···⊗an≤b

n∧
i=1

ν(ai )

⎞
⎠ ⊗ εμ(ν)(x)

≤
⎛
⎝ ∨

a1,··· ,an∈L , x∨(a1⊗···⊗an )≤x∨b

n∧
i=1

ν(ai )

⎞
⎠ ⊗ εμ(ν)(x)

(by (7) and (1) in Proposition 1)

≤
⎛
⎝ ∨

a1,··· ,an∈L , (x∨a1)⊗···⊗(x∨an )≤x∨b

n∧
i=1

ν(ai )

⎞
⎠ ⊗ εμ(ν)(x)

≤

⎛
⎜⎜⎝

∨
a1,··· ,an∈L ,

μ((x∨a1)⊗···⊗(x∨an ))≤μ(x∨b)

n∧
i=1

ν(ai )

⎞
⎟⎟⎠ ⊗

(∧
c∈L

ν(c) → μ(x ∨ c)

)

(by (3) in Proposition 1)

≤
∨

a1,··· ,an∈L ,
μ((x∨a1)⊗···⊗(x∨an ))≤μ(x∨b)

n∧
i=1

(
ν(ai ) ⊗

(∧
c∈L

ν(c) → μ(x ∨ c)

))

≤
∨

a1,··· ,an∈L ,
μ((x∨a1)⊗···⊗(x∨an ))≤μ(x∨b)

n∧
i=1

(ν(ai ) ⊗ (ν(ai ) → μ(x ∨ ai )))

(by (8) in Proposition 1)

=
∨

a1,··· ,an∈L ,
μ((x∨a1)⊗···⊗(x∨an ))≤μ(x∨b)

n∧
i=1

μ(x ∨ ai )

(by (F2))

≤
∨

a1,··· ,an∈L ,
μ((x∨a1)⊗···⊗(x∨an ))≤μ(x∨b)

μ((x ∨ a1) ⊗ · · · ⊗ (x ∨ an))

≤ μ(x ∨ b),

i.e., for any b, x ∈ L , 〈ν〉(b) → μ(x ∨b) ≥ εμ(ν)(x). Thus,
for any x ∈ L ,

εμ (〈ν〉) (x) =
∧
b∈L

〈ν〉(b) → μ(x ∨ b) ≥ εμ(ν)(x),

which implies εμ(ν) ⊆ εμ(〈ν〉).
(5) For any x ∈ L , we get

εεμ(ν)(ω)(x)

=
∧
b∈L

ω(b) → εμ(ν)(x ∨ b)

=
∧
b∈L

(
ω(b) →

∧
c∈L

(ν(c) → μ(x ∨ b ∨ c))

)

=
∧
b∈L

∧
c∈L

(ω(b) → (ν(c) → μ(x ∨ b ∨ c)))

(by (5) in Proposition 1)

=
∧
b∈L

∧
c∈L

(ν(c) → (ω(b) → μ(x ∨ b ∨ c)))

=
∧
c∈L

(
ν(c) →

∧
b∈L

(ω(b) → μ(x ∨ b ∨ c))

)

=
∧
c∈L

ν(c) → εμ(ω)(x ∨ c)

= εεμ(ω)(ν)(x),

therefore, εεμ(ν)(ω) = εεμ(ω)(ν).
(6) It follows from (1) and (3).
(7) It is sufficient to prove εεμ(ν)(ν) ⊆ εμ(ν), for any

x ∈ L ,

(
εεμ(ν)(ν)

)
(x)

=
∧
b∈L

(
ν(b) → εμ(ν)(x ∨ b)

)
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=
∧
b∈L

(
ν(b) →

(∧
c∈L

ν(c) → μ(x ∨ b ∨ c)

))

≤
∧
b∈L

(ν(b) → (ν(b) → μ(x ∨ b ∨ b)))

=
∧
b∈L

(ν(b) → (ν(b) → μ(x ∨ b)))

(by (5) in Proposition 1)

=
∧
b∈L

((ν(b) ∧ ν(b)) → μ(x ∨ b))

=
∧
b∈L

(ν(b) → μ(x ∨ b))

= εμ(ν),

i.e., εεμ(ν)(ν) = εμ(ν).
(8) For any x ∈ L ,

εμ

(⋃
i∈I

νi

)
(x) =

∧
b∈L

(∨
i∈I

νi (b) → μ(x ∨ b)

)

(by (4) in Proposition 1)

=
∧
i∈I

(∧
b∈L

νi (b) → μ(x ∨ b)

)

=
⋂
i∈I

εμ(νi ),

i.e.,
⋂
i∈I

εμ(νi ) = εμ

(⋃
i∈I

νi

)
. ��

Remark 3 Let ν be a fuzzy set of L. Then

〈ν〉 ⊆
⋂

μ∈FFil(L)

εμ

(
εμ(ν)

)

according to (3) and (4) in Proposition 5. However, its inverse
is not always true.

The following theorem indicates that any fuzzy filter on
L can be characterized by all its fuzzy extended filters.

Theorem 4 Let μ be a fuzzy filter on L. Then

μ =
⋂

ν∈F (L)

εμ(ν).

Proof Obviously, μ ⊆ ⋂
ν∈F (L)

εμ(ν) by (2) in Theorem 3.

On the other hand, for any x ∈ L , we have

⎛
⎝ ⋂

ν∈F (L)

εμ(ν)

⎞
⎠ (x) =

∧
ν∈F (L)

εμ(ν)(x)

≤ εμ(χx )(x)

= μ(x ∨ x)

= μ(x).

Thus, μ = ⋂
ν∈F (L)

εμ(ν). ��

Furthermore, we give the crisp form of Theorem 4 as a
corollary.

Corollary 1 Let F be a filter on L. Then F = ⋂
B⊆L

EF (B).

Proof It is trivial that F ⊆ ⋂
B⊆L

EF (B) from Theorem 3.1

in Haveshki and Mohamadhasani (2012). Conversely, if x ∈⋂
B⊆L

EF (B), then x ∈ EF (x), i.e., x ∈ F . ��

3 Application of the fuzzy extended filter in
studying lattice structures

As mentioned in Theorem 1, all fuzzy filters on a residuated
lattice (resp. a special residuated lattice, e.g., a BL-algebra)
generate a complete lattice (resp. a special complete lattice,
e.g., a complete Brouwerian lattice). In this section, we prove
that it is also a Heyting algebra.

Theorem 5 (FFil(L),�,�,�, 0, 1) is a complete Heyting
algebra, where for any {μi }i∈I ⊆ FFil(L), �,� are defined
as in Theorem 1 and for any μ, ϑ ∈ FFil(L):

μ � ϑ = εϑ(μ).

Proof It is sufficient to prove that for any μ, ϑ,ψ ∈
FFil(L), μ � ϑ ⊆ ψ ⇐⇒ μ ⊆ ϑ � ψ .

(�⇒) For any x ∈ L , we get

(ϑ � ψ)(x) = εψ(ϑ)(x)

=
∧
b∈L

(ϑ(b) → ψ(x ∨ b))

≥
∧
b∈L

(ϑ(b) → (μ ∩ ϑ)(x ∨ b))

=
∧
b∈L

(ϑ(b) → (μ(x ∨ b) ∧ ϑ(x ∨ b)))

≥
∧
b∈L

(ϑ(x ∨ b) → (μ(x ∨ b) ∧ ϑ(x ∨ b)))

(by (2) in Proposition 1)

≥
∧
b∈L

μ(x ∨ b)

≥ μ(x),
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i.e., μ ⊆ ϑ � ψ .
(⇐�) For any x ∈ L , we have

(μ � ϑ)(x) = μ(x) ∧ ϑ(x)

≤ (ϑ � ψ)(x) ∧ ϑ(x)

= εψ(ϑ)(x) ∧ ϑ(x)

=
∧
b∈L

(ϑ(b) → ψ(x ∨ b)) ∧ ϑ(x)

≤ (ϑ(x) → ψ(x ∨ x)) ∧ ϑ(x)

= (ϑ(x) → ψ(x)) ∧ ϑ(x)

= (ϑ(x) → ψ(x)) ⊗ ϑ(x)

(by (8) in Proposition 1)

≤ ψ(x),

i.e., μ � ϑ ⊆ ψ . ��
The following corollary shows the crisp version of Theo-

rem 5.

Corollary 2 (Fil(L),∧,∨, ↪→, {1}, L) is a complete Heyt-
ing algebra, where for any {Fi }i∈I ⊆ Fil(L), F,G ∈
Fil(L):

∧
i∈I

Fi =
⋂
i∈I

Fi ,
∨
i∈I

Fi =
〈⋃
i∈I

Fi

]
, F ↪→ G = EG(F).

Proof It is well known that (Fil(L),∧,∨) is a complete
lattice. We only illustrate that for any F,G, H ∈ Fil(L),
F ∧ G ⊆ H ⇐⇒ F ⊆ G ↪→ H .

(�⇒) Let x ∈ F . Then for any b ∈ G, we have x ∨b ∈ F
and x ∨ b ∈ G, i.e., x ∨ b ∈ F ∩ G by the property of
filters, thus x ∈ EF∩G(G) ⊆ EH (G) = G ↪→ H from 2. of
Theorem 3.5 in Haveshki and Mohamadhasani (2012).

(⇐�) Assuming that x ∈ F ∧ G. Then x ∈ (G ↪→
H) ∩ G = EH (G) ∩ G, i.e., for any b ∈ G, x ∨ b ∈ H and
x ∈ G, pick b = x , we have x ∈ H . ��

Now, we further study the relationship between fuzzy
extended filters and fuzzy generated filters.

Theorem 6 Let μ be a fuzzy filter on L and ν a fuzzy set of
L. Then εμ(ν) = 〈ν〉 � μ.

Proof εμ(ν) = εμ (〈ν〉) = 〈ν〉 � μ by Theorem 5 and (4)
in Proposition 5. ��
Corollary 3 Let F be a filter onL and B a subset ofL. Then
EF (B) = 〈B] ↪→ F.

Proof From 8. of Theorem 3.5 in Haveshki and Mohamad-
hasani (2012) and Corollary 2, we have EF (B) = EF (〈B])
= 〈B] ↪→ F . ��

In Kondo (2014), the author presented that (Fil(L),∧,∨,

�, {1}, L) is a complete Heyting algebra, where for any
F,G ∈ Fil(L), “F � G” is defined by

F � G = {x ∈ L | F ∩ 〈x] ⊆ G}. (*)

The question naturally arises whether it conflicts with the
result in Corollary 2 or not? It is shown that the answer is
negative by the following theorem.

Theorem 7 Let F,G be filters on L. Then F ↪→ G defined
in Corollary 2 is equal to F � G defined by Eq. (∗).

Proof In the residuated lattice (Fil(L),∧,∨, ↪→, {1}, L),
(∧, ↪→) is an adjoint pair, which implies that for any x ∈ L ,
F ⊆ 〈x] ↪→ G ⇐⇒ F ∧ 〈x] ⊆ G ⇐⇒ F ∩ 〈x] ⊆ G.
Then combining with Remark 2 and Corollaries 2, 3, we
have F ↪→ G = EG(F) = {x ∈ L | F ⊆ EG(x)} = {x ∈
L | F ⊆ 〈x] ↪→ G} = {x ∈ L | F ∩ 〈x] ⊆ G} = F � G.

��
From Corollary 3 and Theorem 7, for any F ∈ Fil(L),

B ⊆ L , EF (B) = 〈B] � F holds. This is the characteriza-
tion of (crisp) extended filters in Kondo (2014).

Denote

εμ = {εμ(ν) | ν ∈ F (L)}.
S(ν) = {μ ∈ FFil(L) | εμ(ν) = μ}, εν = {εμ(ν) |
μ ∈ FFil(L)}.
εμμ = {εμ

(
εμ(ν)

) | ν ∈ F (L)}, S(μμ) = {ν ∈
F (L) | εμ

(
εμ(ν)

) = ν}.
ε(ν) : FFil(L) → FFil(L) : μ �→ εμ(ν).
εμ(εμ) : F (L) → F (L) : ν �→ εμ(εμ(ν)).

Proposition 6 Let μ be a fuzzy filter on L and μ a fuzzy set
of L. Then

(1) (εμ,⊆) is a complete lattice.
(2) ε(ν) is a closure operator on FFil(L), S(ν) = εν ,

(S(ν),⊆) is a complete lattice.
(3) εμ(εμ) is a closure operator on F (L), εμμ = S(μμ),

(S(μμ),⊆) is a complete lattice.

Proof (1) Obviously, 1 = εμ

(
0
) ∈ εμ, it follows from (8) in

Proposition 5 and Theorem 2 that (εμ,⊆) is a complete
lattice.

(2) ε(ν) is a closure operator on FFil(L) by (2) in Theo-
rem 3 and (2), (7) in Proposition 5. Then Proposition 4
implies that S(ν) = εν and (S(ν),⊆) is a complete lat-
tice.

(3) It is straightforward by (1), (3) and (6) in Proposition 5
that εμ(εμ) is a closure operator onF (L). Similar to (2),
εμμ = S(μμ) and (S(μμ),⊆) is a complete lattice. ��

With the help of Theorem 6, we further discuss the lattice
structures of (εμ,⊆), (S(ν),⊆) and (S(μμ),⊆).

123



Fuzzy extended filters on residuated lattices 2327

Theorem 8 Let μ be a fuzzy filter on L and μ a fuzzy set of
L. Then

(1) (εμ,⊆) is a complete Heyting algebra.
(2) (S(ν),⊆) is a complete Heyting algebra.
(3) (S(μμ),⊆) is a complete Heyting algebra.

Proof (1) For any εμ(ν1), εμ(ν2) ∈ εμ, according to Theo-
rem 6, (5) in Proposition 1 and Theorem 5, we have

εμ(ν1) � εμ(ν2) = εμ(ν1) � (〈ν2〉 � μ)

= (
εμ(ν1) ∧ 〈ν2〉

)
� μ

= εμ

(
εμ(ν1) ∩ 〈ν2〉

) ∈ εμ,

then (εμ,⊆) is a complete Heyting algebra by Proposition 4
and (1) in Proposition 6.

(2) For any μ, 	 ∈ S(ν), we get

μ � 	 = μ � ε	(ν) = μ � (〈ν〉 � 	) = 〈ν〉 � (μ � 	)

= εμ�	(ν) ∈ εν = S(ν)

by (2) in Proposition 6, Theorem 6, (5) in Proposition 1 and
Theorem 5. Then it follows from Proposition 4 and (2) in
Proposition 6 that (S(ν),⊆) is a complete Heyting algebra.

(3) For any ν, ω ∈ S(μμ), it follows from (3) in Proposi-
tion 6, Theorems 5, 6 and (4), (5) in Proposition 1 that

ν � ω = εμ

(
εμ(ν)

)
� εμ

(
εμ(ω)

)
= (

εμ(ν) � μ
)

� ((〈ω〉 � μ) � μ)

= ((
εμ(ν) � μ

) ∧ (〈ω〉 � μ)
)

� μ

= ((
εμ(ν) ∨ 〈ω〉) � μ

)
� μ

= εμ

(
εμ

(〈
εμ(ν) ∪ 〈ω〉〉)) ∈ εμμ = S(μμ).

Then (S(μμ),⊆) is a complete Heyting algebra by Propo-
sition 4 and (3) in Proposition 6. ��
Remark 4 It is straightforward that (εν,⊆) and (εμμ,⊆)

are also complete Heyting algebras from Proposition 6 and
Theorem 8.

4 Application of the fuzzy extended filter in
characterizing special algebras and quotient
algebras

In Víta (2014), the author concluded that fuzzy t-filters can
be used to characterize special algebras and quotient algebras
(associate to fuzzy filters).

Theorem 9 (Víta 2014) (Equivalent characteristics) Let B
be a variety of residuated lattices and B ∈ B. Then the fol-
lowing statements are equivalent:

(1) Every fuzzy filter of B is a fuzzy t-filter.
(2) χ1 is a fuzzy t-filter.
(3) μμ(1) is a t-filter for any μ ∈ FFil(L).
(4) B ∈ B[t].

Theorem 10 (Víta 2014) (Quotient characteristics) LetB be
a variety of residuated lattices, B ∈ B and μ a fuzzy filter on
B. Then the fuzzy quotient L/μ belongs to B[t] if and only if
μ is a fuzzy t-filter on B.

Theorem 11 Let μ be a fuzzy filter on L. Then μ is a fuzzy
t-filter if and only if for any x ∈ L, εμ(χt (x)) = 1.

Proof (�⇒) μ is a fuzzy t-filter, which implies μ(t (x)) =
μ(1). Then for any y ∈ L , εμ(χt (x))(y) = μ(y ∨ t (x)) ≥
μ(t (x)) = 1.

(⇐�) If εμ(χt (x)) = 1 for any x ∈ L , then εμ(χt (x))(0) =
μ(0 ∨ t (x)) = μ(t (x)) = 1, i.e., μ is a fuzzy t-filter. ��

Theorem 11 states that fuzzy t-filters can be characterized
by fuzzy extended filters. Thus, we can apply fuzzy extended
filters to characterize special algebras and quotient algebras.

Theorem 12 (New equivalent characteristics). Let B be a
variety of residuated lattices and B ∈ B. Then the following
statements are equivalent:

(1) For every fuzzy filterμ onL, εμ(χt (x)) = 1 for any x ∈ L.
(2) εχ1(χt (x)) = 1 for any x ∈ L.
(3) Eμμ(1) (t (x)) = L for any μ ∈ FFil(L), x ∈ L.
(4) B ∈ B[t].

Proof It follows from Theorems 9, 11. ��
Theorem 13 (New quotient characteristics) Let B be a vari-
ety of residuated lattices andB ∈ B. Letμ be a fuzzy filter on
B. Then the fuzzy quotient L/μ belongs to B[t] if and only if
εμ(χt (x)) = 1 for any x ∈ L.

Proof It can be easily obtained by Theorems 10, 11. ��
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