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Abstract Artificial bee colony (ABC) is a very effective
and efficient swarm-based intelligence optimization algo-
rithm, which simulates the collective foraging behavior of
the honey bees. However, ABC has strong exploration abil-
ity but poor exploitation ability because its solution search
equation performs well in exploration but badly in exploita-
tion. In order to enhance the exploitation ability and obtain a
better balance between exploitation and exploration, in this
paper, a novel search strategy which exploits the valuable
information of the current best solution and a novel proba-
bility model which makes full use of the other good solutions
on onlooker bee phase are proposed. To be specific, in the
novel search strategy, a parameter P is used to control which
search equation to be used, the original search equation of
ABC or the new proposed search equation. The new proposed
search equation utilizes the useful information from the cur-
rent best solution. In the novel probability model, the selected
probability of the good solution is absolutely significantly
larger than that of the bad solution, which makes sure the
good solutions can attract more onlooker bees to search. We
put forward a new ABC variant, named MPGABC by com-
bining the novel search strategy and probability model with
the basic framework of ABC. Through the comparison of
MPGABC and some other state-of-the-art ABC variants on
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22 benchmark functions, 22 CEC2011 real-world optimiza-
tion problems and 28 CEC2013 real-parameter optimization
problems, the experimental results show that MPGABC is
better than or at least comparable to the competitors on most
of benchmark functions and real-world problems.
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1 Introduction

With the continuous development of science and technol-
ogy, many global optimization problems (GOPs) constantly
exist in all most of engineering and science fields, such as
portfolio investment (Shalan and Ykhlef 2015), queueing
system (Wei et al. 2013) and structural design (Aydogdu
et al. 2016). Since these GOPs are more and more complex,
and they are characterized as multimodality, discontinuity,
highly non-linearity, non-differentiability and non-convexity,
these kinds of GOPs are difficult or even impracticable to be
solved by traditional optimization methods, especially for the
gradient-based methods (Hu et al. 2015, 2016). Thus, many
swarm-based intelligence evolution algorithms (EAs), such
as Particle Swarm Optimization (PSO) (Kennedy and Eber-
hart 1995; Kuo et al. 2011), Ant Colony Optimization (ACO)
(Dorigo et al. 1996; Mavrovouniotis and Yang 2011), Genetic
Algorithm (GA) (Tang et al. 1996; Hunter and Chiu 2000),
and Differential Evolution (DE) (Storm and Price 1997; Teo
2006), Artificial Bee Colony (ABC) algorithm, have been
proposed to address this challenge task (Cui and Gao 2012)
and they also have shown great potential.

In this paper, we focus on the study of artificial bee
colony algorithm firstly proposed by Karaboga (2005), which
inspired by the intelligent foraging behavior of real bee
colony. The performance of ABC is firstly demonstrated by
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the comparison with other EAs, such as GA, PSO and DE,
on many benchmark functions. The results of the simula-
tion experiments show that the performance of ABC is better
than or at least comparable to PSO, GA and DE (Karaboga
and Basturk 2007, 2008; Karaboga and Akay 2009). Due to
its simply structure, ease to implementation and outstand-
ing performance, ABC has attracted great attention and has
been successfully applied to solve multi-objective optimiza-
tion problems (Reza et al. 2012), constrained optimization
problems (Karaboga and Akay 2011), binary optimization
problems (Ozturk et al. 2015), clustering problems (Banharn-
sakun et al. 2013) and many practical optimization problems
(Ma et al. 2011; Sun et al. 2011; Krink and Paterlini 2011).
Howeyver, like other EAs, ABC often shows slow conver-
gence speed since its solution search does well in exploration,
but badly in exploitation (Karaboga 2005). It is well known
that both exploration and exploitation are necessary for a
population-based optimization algorithm, and the perfor-
mance of the EAs depends on whether a suitable balance
between exploration and exploitation can be found or not
(Kiran et al. 2015; Gao et al. 2014, 2015¢). Therefore, the
performance of ABC can be improved by enhancing the
exploitation ability and finding better balance between explo-
ration and exploitation. A large number of improved ABC
variants have been presented by exploiting the valuable infor-
mation from the current best solution or other good solutions,
such as literatures (Zhang et al. 2015; Gao and Liu 2011). The
experimental results demonstrate that the population mod-
erately guided by the current best solution or other good
solutions can effectively improve the exploitation ability and
enhance the performance of ABC. Based on this outcome, in
this paper, we firstly propose a novel search strategy to make
use of the current best solution, in which the original solution
search equation and a new solution search equation exploit-
ing the current best solution are corporately used according
to a probability parameter P for generating a candidate food
source. Secondly, in order to utilize other good solutions, we
introduce a novel probability model on onlooker bee phase,
in which the good food sources could attract more onlooker
bees to search. The new search strategy and novel probability
model are embedded into original ABC to form a new variant
of ABC, named MPGABC.

To evaluate the performance of MPGABC, some exten-
sive experiments are conducted on 22 common benchmark
functions (Gao et al. 2013a), 22 real-world problems (Das
and Suganthan 2010) and 28 real-parameter optimization
problems (Liang et al. 2013). The comparison results with
other variants of ABC (i.e., GABC Zhu and Kwong 2010,
qABC Karaboga and Gorkemli 2014, best-so-far ABC Ban-
harsakunm et al. 2011, dABC Kiran and Findik 2015 and
MABC Gao and Liu 2012) validate the effectiveness and
efficiency of MPGABC in terms of solution quality, robust-
ness and convergence speed.
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The remainder of this paper is organized as follows.
Section 2 introduces the original ABC algorithm briefly. A
review on the improved ABC variants is given in Sect. 3. The
details of MPGABC, which mainly includes the novel search
strategy and the novel probability model, are described in
Sect. 4. The experimental results and corresponding analysis
are given in Sect. 5. Finally, Sect. 6 concludes this paper.

2 The original ABC

The ABC algorithm is a process of searching the optimal
solution by simulating the collective foraging behavior of
honey bees. In ABC, a food source position denotes a possi-
ble solution of the optimal problem, and the nectar amount
of each food source represents the quality of the correspond-
ing solution. In order to find better food sources, three types
of bees, namely employed bee, onlooker bee and scout bee,
search collectively. Firstly, employed bees are composed of
the first half of the colony, which are mainly responsible
for randomly searching better food sources in the neighbor-
hood of the corresponding parent food source. Moreover,
employed bees will share the quality information of their
food sources with onlooker bees after all employed bees find
out a new food resource. Secondly, onlooker bees are con-
sisted of the second half of the colony, which are mainly
responsible for searching better food sources in the neigh-
borhood of the good solutions according to the information
provided by employed bees. Thirdly, if a better food source
cannot be found by a preset number of times (/imif) in the
neighborhood of a certain food source, it will be abandoned
by its employed bee, and this employed bee will become a
scout bee to search a new food source randomly in all search
space. The original ABC includes four phase, i.e., initial-
ization phase, employed bee phase, onlooker bee phase and
scout bee phase. After the initialization phase, ABC enters a
loop of employed bee phase, onlooker bee phase and scout
bee phase until the termination condition is met. The detailed
descriptions of each phase are described as follows.
Initialization phase The initial population is generated
according to Eq. (1), which contains SN food sources (solu-
tions),

Xij = x}nin +rand(0, 1) - (xj** — x}ni“) (1)

wherei =1, 2, ...SN,j =1, 2, ... D.SNis the number
of employed bees or onlooker bees; D is the dimensionality
of the search space; x}nax and x™" represent the upper bound
and lower bound of the jth dimension, respectively. More-

over, the fitness value of each food source will be calculated
by Eq. (2),

if (f(xi) = 0)

otherwise

1
fit(x) = { 700 @

1 4 abs(f(x;))
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where fit(x;) represents the fitness value of the ith food
source x; and f(x;) is the objective function value of food
source x; for the optimization problem.

Employed bee phase Each employed bee selects a distinct
food source to search and generate a candidate food source
in the neighborhood of this selected food source according
to Eq. (3),

Vij =Xij+&i - (Xij— Xk ) (3)

where v; is the i th candidate food source and x; is the i th food
source. xj is randomly selected from the population, which
is different from x;. ¢; ; is the uniformly distributed random
number in the range of [—1, 1] and j is randomly selected
from {1, 2, ..., D}. If the fitness value of v; is better than
its parent x;, x; will be replaced by v;, and the counter which
records the number of the consecutive unsuccessful updates
of the food source x; is reset to 0. Otherwise, x; is kept to
enter into the next generation and counter is increased by 1.
Onlooker bee phase After each employed bee finishes its
search task, it will show the quality information of its food
source with onlooker bees. Each onlooker bee will select a
food source to search based on the probability of each food
source, which is calculated as Eq. (4). Obviously, the bet-
ter the fitness value is, the bigger the selection probability
is. And then it will further search better food source in the
neighborhood of the selected food source by using Eq. (3).
If a candidate food source obtained by the onlooker bee is
better than its parent food source, the parent food source will
be replaced by the new one, and its counter is reset to 0.
Otherwise, the old one is kept and counter is increased by 1.
Zfﬁ] fit(xj)
Scout bee phase The food source with the highest counter
value is selected. If its counter value is bigger than the limit
value, the selected food source will be abandoned by its
employed bee, and then, this employed bee will become a
scout bee to seek a new food source randomly according to
Eq. (1). After the new food source is generated, the corre-
sponding counter value is reset to 0, and the scout bee returns
to be an employed bee.

Note that if the jth variable v; ; of the ith candidate food
source violates the boundary constraints in employed bee

phase and onlooker bee phase, it will be reset according to
Eq. (1). The detailed procedure of ABC is shown in Fig. 1.

p(x;) = 4

3 The improved ABC variants

Over the past decade, alot of in-depth research works on ABC
have been conducted to achieve a better performance on solv-
ing GOPs. A brief survey of the improved ABC approaches
can be generally classified into three categories, i.e., modified

solution search equation, combination with other technolo-
gies and hybridization of ABC with other EAs. They are,
respectively, introduced as follows.

(1) Modified solution search equation Inspired by PSO, Zhu
and Kwong (2010) propose an improved ABC algo-
rithm, called as GABC, which incorporates the valuable
information of the global best solution into their solu-
tion search equation to improve the exploitation ability
of ABC. The experimental results show that GABC is
better than the original ABC on most of cases. Banharn-
sakun et al. (2011) propose a new ABC variant, named
best-so-far ABC, which introduces the best-so-far selec-
tion method and an adjustable search radius into the
solution search equation. In best-so-far ABC, the current
best solution is shared globally among the entire popula-
tion. Inspired by the DE mutation operator DE/best/1 and
DE/rand/1, Gao and Liu (2011; 2012) propose two novel
search equations ABC/best/1 and ABC/rand/1. Besides,
in order to appropriately take advantage of them, a selec-
tive probability P is used to control the frequency of
employing ABC/rand/1 and ABC/best/1. Moreover, a
new algorithm, named ABCgbest (Gao et al. 2012), is
proposed by them, in which bees only search around
the current best food source. Recently, Karaboga and
Gorkemli (2014) present a new version of search equa-
tion for onlooker bee (QABC), which uses the valuable
information of the best solution among the neighbors to
improve the search efficiency of ABC. Gaoetal. (2015a)
propose a Gaussian search equation (BABC), which
exploits the current best solution and Gaussian distri-
bution to produce candidate solutions in the onlooker
bee phase. Luo et al. (2013) present a new solution
search equation for the onlooker bee, which exploits
the best solution of the previous iteration to guide the
search of new candidate solutions (called COABC). Gao
et al. (2014, 2015c¢) propose two modified search equa-
tions. The one of them utilizes the beneficial information
of best solutions in a cluster, which is employed in
employed bee phase. And the other one learns from
the current best solution, which is used in onlooker bee
phase. Since different search equations have distinct
advantages and perform differently on different prob-
lems or at different stages on the same problem, some
methods with multiple search equations are proposed to
enhance the comprehensive performance of ABC, such
as MEABC (Wang et al. 2014), ABCVSS (Kiran et al.
2015) and MuABC (Gao et al. 2015b). In addition, Kiran
and Findik (2015) add the directional information into
ABC and design a new search mechanism, which selects
search equation to produce candidate solution according
to the previous directional information (named dABC).
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Algorithm 1:The procedure of ABC

Fig.

@)

01: | Initialization: Generate SN solutions that contain D variables according to Eq. (1)
02: | While FES < maxFES

03: fori=1to SN // employed bee phase

04: Generate a new solution v in the neighbourhood of x using Eq. (3)
05: Evaluate the new solution viG

06: it fie(v7) = fir(x1)

07: Replace x° by v

08: counter(i)=0

09: else

10: counter(i)= counter(i)+1

11: end if

12: end for /I end employed bee phase

13: Calculate the probability p according to Eq. (4) // onlooker bee phase

14: for i=1 to SN

15: Select a solution xSG from the population according to probability p
16: Generate a new solution VSG in the neighbourhood of st using Eq. (3)
17: Evaluate the new food source VSG

18: if fir(v)= fir(x7)

19: Replace xSG by VSG , counter(s)=0

20: else

21: counter(s)= counter(s)+1

22: end if

23: end for // end onlooker phase

24: FES=FES+2SN

25: Select the solution X ;fax with max counter value // scout phase

26: if counter(max)>limit

27: Replace X rfax by a new solution generated according to Eq.(1)

28: FES=FES+1, counter(max)=0

29: end if /I end scout phase

30: | end while

Output: The food source (solution) with the smallest objective value

1 The pseudo-code of original ABC

Combination with other technologies Inspired by the
concept of Grenade Explosion Method (GEM), two
modified versions of ABC (namely GABCI and GABC2)
are proposed by Zhang et al. (2015), which show high
robustness and fast convergence speed. Gao and Liu
(2012;2013a) employ the chaotic map (Feng etal. 2011)
and opposition-based learning method in the initial
phase and the orthogonal learning method to enhance the
performance of ABC. Moreover, Gao et al. (2013b) also
use the Powell’s method as a local search tool to improve
the exploitation ability of ABC. In addition, Kang et al.
(2011a; 2011b) proposed two new ABC variants (called
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RABC and HJABC), in which the original ABC is used
to realize the exploration ability and the exploitation
phase is completed by the rotational direction method
and Hooke Jeeves pattern search technology, respec-
tively. Moreover, Akay and Karaboga (2012) propose
two control parameters, i.e., modification rate (MR) and
scaling factor (SF), to control frequency and magni-
tude of perturbation, respectively. Loubiere et al. (2016)
apply a sensitivity analysis method, i.e., Morris’ OAT
method (One-At-Time), to select dimensions with high
influence on the objective result for preferential evolve-
ment. Xiang and An (2013) employ the chaotic search
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technique on initialization phase and scout bee phase
to, respectively, enhance the global convergence and
prevent falling into local optimum (called ERABC).
In addition, the memory-save technology has attracted
much attention. Kiran and Babalik (2014) add a mem-
ory board to save the solutions whose qualities are
better than the average fitness value. On the contrary,
Bayraktar (2014) uses the short-term tabu list (STTL)
of tabu search to memorize the abandoned solution.
Moreover, Li and Yang (2016) introduce a new ABC
variant named ABC with memory algorithm (ABCM),
which memorizes the previous successful experiences
of foraging behavior to guide the current foraging
behavior.

(3) Hybridization of ABC with other EAs Kang et al. (2009)
take the advantages of Nelder—-Mead simplex method
and ABC to develop a hybrid ABC, named HSABCA.
Xiang et al. (2014) propose a well-known hybrid algo-
rithm named hABCDE, which incorporates a modified
ABC with a modified DE. In addition, Shi et al. (2010)
present a hybrid intelligent algorithm (named IABAP)
based on the information exchange process, in which all
population share beneficial information between particle
swarm and bee colony. Marinakis et al. (2009) propose a
hybrid algorithm for clustering by combining ABC opti-
mization with the greedy randomized adaptive search
procedure (GRASP method). Xiao and Chen (2011) pro-
pose a novel hybrid algorithm, which consists of ABC
algorithm and artificial immune network algorithm to
address multi-mode resource constrained multi-project
scheduling problem. Sharma and Pant (2011) embed
the DE mutation operators into the framework of ABC
algorithm and develop a hybrid ABC (called DE-ABC).
Hsieh et al. (2012) introduce PSO into ABC and pro-
pose a new hybrid algorithm, named EABC-PGSVM.
Abraham et al. (2012) invent a novel hybrid differen-
tial artificial bee colony algorithm (called HDABCA),
which combines DE strategy with standard ABC algo-
rithm. Besides, Tuba and Bacanin (2014) combine ABC
with firefly algorithm, Fister et al. (2012) mix ABC with
memetic search, and Chen et al. (2012) integrate ABC
with annealing algorithm, and so on.

4 The proposed algorithm

In this section, the proposed algorithm is described in detail.
Firstly, we give the motivations of our proposed algorithm.
Secondly, the novel search strategy and the novel probabil-
ity model are presented, respectively. Finally, the complete
proposed algorithm is shown.

Algorithm 2: The novel search strategy
1. |if rand(0,1)< P\
Vij =X +¢L/‘ '(x[_/ _xk_/)

else
V=X 0 (N X))

end

Fig. 2 The pseudo-code of the novel search strategy

4.1 Motivations

Generally, the performance evaluation of Evolutionary Algo-
rithms (EAs) depends on that a suitable trade-off between
exploration and exploitation can be maintained. Usually,
exploiting the information of the current best solution and
other good solutions could enhance the exploitation ability,
while excessively exploiting could degrade the exploration
ability. Therefore, the key issue is how to exploit the current
best solution and other good solutions. On the one hand, in
the search Eq. (3) of the original ABC, only the target solu-
tion and a randomly selected solution are used to generate
new solution, which does well in exploration but badly in
exploitation. On the other hand, in the search equations of
other ABC variants (Zhang et al. 2015; Wang et al. 2014),
the current best solution is always used, which performs well
in exploitation but relatively underperforms in exploration.
Therefore, the incorporation of the original solution search
equation and a new search equation utilizing the best solution
could get a better balance between exploration and exploita-
tion. Moreover, in the onlooker bee phase of original ABC,
the onlooker bee selects a food source to search according
to the information provided by employed bees. In theory, the
food source with higher quality could attract more onlooker
bees to search. However, if the qualities (fitness values) of all
food sources have no significant difference, all food sources
will obtain nearly the same probability according to Eq. (4),
which makes that the good solutions are not fully exploited.
Therefore, a new probability model should make sure that the
good solutions are more likely to be chosen by onlooker bee
for searching, which could enhance the performance of ABC.

4.2 The novel search strategy
In order to enhance the exploitation ability and accelerate the
convergence speed of ABC, Zhu and Kwong (2010) propose

a new solution search equation in GABC as Eq. (5),

Vi =Xij+ & (i — Xk )+ @i (pest,j — Xij) (S)

where xpeg 1S the current best solution of the population,
and x; is the ith food source. x is a randomly selected food
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source from the population, which is different from x;. ¢; ;
is the uniformly distributed random number in the range of
[—1, 1] and ¢; ; is a uniform random number in the range of
[0, 1.5]; j is randomly selected from {1, 2, ..., D}.

Although Eq. (5) exploits the current best solution, there
are two drawbacks. Firstly, as claimed in Gao et al. (2013a),
Eq. (5) may cause the oscillation phenomenon when the
guidance of the last two terms (¢ ; - (x;; — Xk ;) and
@i,j - (Xpest,j — Xi,j)) 1s in opposite direction, which could
degrade convergence. Secondly, Eq. (5) may easily make the
new solution v; ; violate the boundary constraints when the
last two terms are in identical direction, which also could hin-
der convergence. In order to address these issues, we propose
a novel search strategy shown in Algorithm 2 (Fig. 2).

In Algorithm 2, P is a parameter defined by the user. xpest
is the current best solution of the population, and x; is the ith
food source. xi is a randomly selected food source from the
population, which is different from x;. ¢; ; is the uniformly
distributed random number in the range of [—1, 1] and ¢; ;
is a uniform random number in the range of [0, 1.5]. j is ran-
domly selected from {1, 2, ..., D}. Obviously, with the
guidance from only one term, the novel search strategy can
easily avoid the oscillation phenomenon and violating the
boundary constraints. Moreover, parameter P could be used
to control how to appropriately exploit the valuable infor-
mation of the current best solution. The effectiveness of the
novel search strategy is validated through extensive experi-
ments in Sect. 5.2, and the sensitiveness of parameter P is
analyzed experimentally in Sect. 5.4.

4.3 The novel probability model

In the onlooker bee phase of the original ABC, onlooker
bees mainly select good solutions to search according to the
information shared by the employed bees. From our above
analysis, the original probability model Eq. (4) for onlooker
bee phase is unable to make sure that the good solutions could
attract more onlooker bees than the bad solutions to search.
In order to address this issue, we propose a novel probability
model as Eq. (6),

0.8

S YGED ©

where p (x;) is the selected probability of the ith food source
and SN is the number of employed bees or onlooker bees.
r (x;) is the ranking of the ith food source in ascending
order among all food sources according to the objective func-
tion value. For example, the ranking of the current best food
source and worst food source is 1 and SN, respectively. To
explain clearly, when SN =50, the selection probability of
each food source is illustrated in Fig. 3, where X axis denotes
the ranking of the food source, and Y axis denotes the cor-
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Fig. 3 An illustrated example of the novel probability model

responding probability. Obviously, the selected probability
of a good solution is significantly larger than a bad solution.
The effectiveness of the novel probability model is validated
in Sect. 5.2.

4.4 The complete proposed algorithm (MPGABC)

In this subsection, we put forward a novel ABC variant
(named MPGABC) by combining the novel search strategy
and the novel probability model with the basic framework of
ABC. The pseudo-code of the complete MPGABC is demon-
strated in Fig.4. Obviously, the differences of Algorithm 1
(ABC) and Algorithm 3 (MPGABC) are shown in lines 4,
13 and16.

5 Experimental results
5.1 Benchmark test functions and experimental settings

In this paper, 22 well-known benchmark functions (Gao
et al. 2013a; Kiran et al. 2015; Zhang et al. 2015) with
low dimension (D =30), middle dimension (D =50) and
high dimension (D =100) are employed to validate the
performance of MPGABC. These functions have differ-
ent characteristics, such as continuous unimodality function
(f1— fe and f3), multimodality functions ( f11 — f22), discon-
tinuous step function (f7) and noisy-quartic function ( fo).
Particularly, fio is the Rosenbrock function, which is uni-
modal for D =2 and D =3, but it may have many optimal
solutions when D > 3. Generally speaking, the unimodal
functions can be used to test the exploitation ability and
the multimodal functions can be employed to demonstrate
the exploration ability. The mathematical expression, search
range, the global optimal value and the “acceptable value” of
each function are listed in columns 2, 3, 4 and 5 of Table 1,
respectively. When the objective function value of the best
solution obtained by an algorithm in a run is less than the
acceptable value, this run is regarded as a successful run.
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Table 1 Benchmark functions in experiments
Name Function Range Min Accept
Sphere fi)y =22 [—100, 100]° 0 1x10°8
Elliptic L@ =2, (106)5;—‘1x,.2 [—100, 1001 0 1 x 1078
SumSquare f) =3P ix? [—10, 101P 0 1 x 1078
SumPower fa @) =P | E+D -1, 11 0 1x10°8
Schwefel 2.2 fs (x) = 22, x| + 12, Ixi] [—10, 101 0 1x10°8
Schwefel 2.21  fg (x) = max {|x;|, 1 <i <n) [—100, 1001 0O 1 x 100
Step 1) =3P (L +05))2 [—100,1001” 0O 1 x 1078
Exponential f3 (x) =exp (0 5x Zl lx,) [—10, 101" 0 1x10°8
Quartic fo(x) =32, ix* + random [0, 1] [—1.28,1.281° 0 1 x 107!
Rosenbrock f1o (x) = Z [100 (x,+] — X! ) +(x; =1 ] [-5, 10]? 0 1x 10!
Rastrigin fir () =2 [x? = 10cos 27x;) + 10] [-5.12,5.121° 0 1x10°8
fr2 () =2, [y? = 10cos 2y;) + 10]
NCRastrigin R E lxil < 4 [-5.12,5.121° 0 1x10°8
Yi = round(2x,~) Ixi| > %
Griewank fi3 () = 1/4000 -2 37 = 12 cos (%) + 1 [~600, 600]° 0 1x 1078
Schwefel2.26  fia (x) = 418.98288727243380+D — Y"1, x; sin (v/Ix;]) [—500,5001° 0O 1x1078
Ackley D
fi5 (x) =204 ¢ — 20exp (—0.2,/i D x.2)
D L= (=50, 501 0 1% 1078
— exp (i Z'D:1 cos (271x,~)>
Penalizedl fi6 (x) = {10 sin (ry) + Y2 (i = D? [1+ 10sin? (wy;11)]
+(YD*1) 2+ 32w (x, 10, 100, 4)
k(xi —a)" xi>a [—100, 1001”0 1 x10°8
yi=1+1/4xi +1), ty,akm=10 —a<xi<a
k(=x;i —a)™ x; <a
Penalized2 { 12 ) )
fir (x) = sin? (rx1) + Y7 (x Dl) [1+sin® Grrxiqn)] [—100, 100]° 0 1x10°8
+ (xp — 1) [ + sin (2nxi+1)]} + Y u(xi,5,100,4)
Alpine fis (1) = 225 g - sin () 4+ 0.1 - x| [—10, 101° 0 1x 1078
Li D—1 2 . .
vy f19 (x) = Zi:l (‘Xiz_ 1) [l + Sln2 (37TX[+])] + Slnz (37[]) [—10, IO]D 0 1 x 1078
+ lxp — 1] [1 + sin (37'rxD)]
i Kmax k k kmax
Weierstrass oo (x) = Zl | (Z % [a* cos (2b* (x; +0.5))] — D> )™ [ 1. 1]° 0 | % 10-8
cos (276%0.5)],a = 0.5,b = 3, kax = 20
Himmelblau  fo1 (x) = 1/D Y72 (x} — 16x7? + 5x;) [-5, 51P —78.33236 —78
P2
Michalewicz ~ fa (x) = — Y I, sin (x;) sin? (%) [0, =1? —30,—50, —100 —29,—49,—99
To evaluate the performance of MPGABC, three eval- (2) The average number of function evaluation (AVEN): Itis

uation metrics are used in our experiments. The detailed
descriptions are given as follows:

(1) The mean and standard deviation (mean/std): They are
utilized to evaluate the accuracy of the best objective
function value for different algorithms. For minimum
optimization problem, the smaller the value of mean and
standard deviation is, the higher quality/accuracy of the
solution has.

3

required to reach the acceptable value, which is adopted
to evaluate the convergence speed. The smaller AVEN
is, the faster the convergence speeds is. Note that AVEN
will be only calculated for the successful runs. If an
algorithm cannot find any solution whose objective func-
tion value is smaller than the acceptant value in all runs,
AVEN will be denoted by “NAN.”

The successful rate (SR): The successful rate (SR %)
of the 25 independent runs is utilized to evaluate the
robustness or reliability of different algorithms. The
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greater the value of this metric is, the better the robust- 5? 2\7 "l:’ § § % %
e | | | | |
ness/reliability is. ﬁ § § § éj 5:: é’
= o < S o0 o S
There are five parts in our experiments. Experiment gledagdeigaads s7
1 validates the effectiveness of our proposed algorithmic Slie s s& b2 bedz i
- AL EEEE R R R R
components (i.e., the novel search strategy and the novel S|liSssSZsTs5Sxs5:2°<S
probability model). Experiment 2 evaluates the performance
of MPGABC by the comparison with other outstanding ABC
variants on some common benchmark functions. Experi-
ment 3 analyzes the sensitiveness of parameter P on the 5 ¥ g 5§ = =z g
performance of MPGABC. Experiment 4 demonstrates the (Jg g‘l’,\ glg ér'J l“\l’ &L é‘
performance of MPGABC by the comparison of MPGABC e 3 n = = - < =
and other ABC variants on real-world problems of CEC 2011. ST IS5 8252
. . . . T TS YN TSR Q0
Experiment 5 investigates the effectiveness of MPGABC by ol b8 L2 4B bLE L EFE
: : : AT s agaLasarzssg3
the comparison with ABC variants on the real-parameter glEesIsfsascsgazsS
optimization problems of CEC 2013.
5.2 Experiment 1: the effectiveness of the proposed
algorithmic components © S > = = =) g
| | | | | | +
. . 2 8 2 K & 3 3
In order to demonstrate the effectiveness and efficiency of the 2 = « 2 e 2 =
two proposed algorithmic components (i.e., the novel search sl o aag-g-8 é é =
e .. — — — on —
strategy and the novel probability model), the original ABC, g l,°~|’> @ 1"\" § .;'L’ E ) g JI% § ;{; z § g
GABC and the following three ABC variants (MGABC, ﬁ S EN8NE8TE8n 8. Z3E
. . . B~ F = - = N = O =~ < S S ~
PABC and MPGABC) are used to study in this experiment
on 22 benchmark functions with 30D.
Q
(1) ABC only combines with the novel search strategy, = > o = s = = =
. = [agl [ag} <t o~ [\ (=) (=)
denoted by MGABC (the modified GABC). ‘; 5 5 s 5 5 3 3
(2) ABC only combines with the novel probability model, 2 8 A 3 = “ ¥ 8
o — =] v N — s =}
denoted by PABC. s N oo T Sa S
. . SOl ad R e R FTUA =~ o S %
(3) ABC combines with the novel search strategy and the Slgl e lelaldlgfzid
novel probability model, denoted by MPGABC. dlgldsgnggsesges e 2 g 3
gzqﬁ@ﬁ<ﬁ~¢‘~(\i~(\ioo’~
. . . )
Each algorithm will be conducted 25 times (Shan et al. 2
2015; Omidvar et al. 2014) independent run for all test func- en
tions. For a fair comparison, we use the maximum number of '% & & S & & o s
function evaluation (maxFES) as the termination condition, % T °|' b bk n o| ?-
(5] 5] (5] (5] 5] Q Q
which is set to 150000 (Wang et al. 2014). Moreover, the E & = & A = & S
same parameter settings (SN = 50, limit = SN - D) are used - T oSS eSS gS.
. . . . g DAL A T ENSOE S SR ~
in all compared algorithms. P is set to 0.3 in the novel search 2ol TS 9 TS TETSTS
~ - Elale2 88T e gL gy
strategy. The experimental results are shown in Table 2. % s[5 sdsgs2s2s83s83
It can be seen from Table2 that MGABC and PABC are s Ofe=—-=cd===wv=09d=gc=
better than or at least comparable to GABC and the orig- =
inal ABC, respectively, in terms of solution accuracy and 9
convergence rate on most cases. To be specific, MGABC = ~ ~ ~ ~ ~ ~ ~
. S A ZAaZAZzAZAZAZAZ
is significant better than GABC on all functions except fg, 2| [2ECEcHedsnsEcd
fo, fio and fi3. Moreover, PABC outperforms the original S5 & g g s g s g s g s g s g s
ABC on all functions excluding fs, f5, f14. fis and fio. S22 2 n=2d=2v2v 24820
In addition, MPGABC outperforms MGABC and PABC on §
all cases excluding fg and f1o. This phenomenon effectively «
validates that each of our proposed components can make = | w0
contribution to ABC and improve the performance of ABC. gl<| <= < < pS < < =
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Algorithm 3:The procedure of MPGABC

01: | Initialization: Generate SN solutions that contain D variables according to Eq. (1)

02: | while FES < maxFES

03: for i=1to SN // employed bee phase

04: Generate a new solution vl.G in the neighbourhood of xl.G using Algorithm 2
05: Evaluate the new solution v’

06: if ﬁt(v'_G)Zﬁt(xl,G)

07: Replace x; by v/

08: counter(i)=0

09: else

10: counter(i)= counter(i)+1

11: end if

12: end for /I end employed bee phase

13: Calculate the probability p according to Eq. (6) // onlooker bee phase
14: for i=1to SN

15: Select a solution xSG from the population according to probability p
16: Generate a new solution VSG in the neighbourhood of xSG using Algorithm 2
17: Evaluate the new food source vSG

18: if ﬁt(vf)zﬁt(xf)

19: Replace xSG by VSG

20: counter(s)=0

21: else

22: counter(s)= counter(s)+1

23: end if

24: end for /I end onlooker phase

25: FES=FES+2SN

26: Select the solution X lffax with max counter value // scout phase

27: if counter(max) > limit

28: Replace X, nfax by a new solution generated according to Eq.(1)

29: FES=FES+1, counter(max)=0

30: end if // end scout phase

31: | end while

Output: The food source (solution) with the smallest objective value

Fig. 4 The pseudo-code of MPGABC

Besides, through the combination of two proposed algorith-
mic components, the performance of ABC can be further
significantly improved.

To clearly show the convergence rate, the AVEN of
GABC, MGABC, the original ABC, PABC and MPGABC
are plotted in Fig. 5a, which clearly indicates that MGABC
and PABC are better than GABC and ABC, respectively,
regarding to convergence speed on most test functions.
This result demonstrates that the novel search strategy and

@ Springer

the novel probability model can independently enhance the
exploitation of ABC and accelerate the convergence speed.
Moreover, MPGABC is better than GABC and MGABC on
most cases, which means that the combination of the novel
search strategy and the novel probability model can further
enhance the exploitation ability of ABC. Note that some
points are vacant in Fig. 5a, such as fg and fs. The reason
is that some algorithms cannot find an acceptable solution in
25 independent runs.
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Fig. 6 The evolutionary frequency of each individual

Overall, it can be concluded that either the novel search
strategy or the novel probability model can make a contri-
bution to ABC. Moreover, the performance of ABC can be
further enhanced by integrating these two proposed algorith-
mic components.

As shown in Table 2, PABC is better than ABC on most
test functions especially in terms of convergence speed. The
distinction between PABC and ABC is mainly caused by
the novel probability model. In order to clearly show the dif-
ference between the novel probability model and the original
probability model, the evolutionary frequency (the number of
evolution/maxFES) of each individual in population on some
selected representative functions with 30D (unimodal func-
tions f3, fg, and multimodal functions f13, f1g) is illustrated
in Fig. 6, where X axis denotes the index of the individual,
and Y axis denotes the evolutionary frequency (Fre). Note
that the same initial population is employed by PABC and
ABC on each function. Obviously, there is no significant
difference between individuals’ evolutionary frequencies in

10 20 30 40 50
index

VE

10 20 30 40 50
index

Jis

ABC, which means that the original probability model is
unable to ensure the good food sources attract more onlooker
bees to search. However, some frequencies are always signif-
icantly larger than others in PABC, which demonstrates that
the novel probability model can make sure the good food
sources can be selected to search by more onlooker bees.
Therefore, the novel probability model can fully exploit the
valuable information hidden in the good food sources and
enhance the exploitation ability of ABC.

5.3 Experkipment 2: comparison on benchmark
functions

In this experiment, in order to verify the performance of
our proposed MGPABC, five state-of-the-art ABC variants
(i.e., GABC, qABC, best-so-far ABC, dABC and MABC)
are used to compare with MPGABC on 22 test functions
with 30D, 50D and 100D. To make a fair comparison, for
all compared algorithms, SN is set to 50, and maxFES is set to
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Table 3 Parameters setting of all compared algorithms

Algorithm Parameters setting

GABC SN =50, limit =SN -D,C =1.5

qABC SN =50, limit = SN - D, r =1

best-so-far ABC SN =50, limit = SN - D, wmax= 1, wmin = 0.2
dABC SN =50, limit = SN - D

MABC SN =50, limit = SN - D, P = 0.7

MPGABC SN =50, limit = SN - D, P =0.3

150,000, 250,000 and 500,000 (Wang et al. 2014; Zhang et al.
2015) corresponding to 30D, 50D and 100D, respectively.
The detailed parameter settings of all algorithms are given in
Table 3, which are set as the same as the original papers. Each
algorithm will be conducted 25 (Shan et al. 2015; Omidvar
et al. 2014) independent runs for all test functions. In addi-
tion, the Wilcoxon’s rank-sum test (Shi et al. 2010), which is
anonparametric statistic test for independent samples, is also
used in experiment results at 5% significance level to show
the significant differences between MPGABC and other algo-
rithms. The detailed experimental results are given in Tables
4, 5 and 6, and the best results are marked with boldface. It is
noted that the symbols “—”, “+”, “="" denote that the perfor-
mance of the corresponding algorithm is worse than, better
than and similar to that of MPGABC, respectively, according
to Wilcoxon’s rank-sum test at a 0.05 significance level.
Table4 gives the experimental result on 30D functions.
It can be clearly observed that MPGABC is significantly
better than all compared algorithms in terms of solution accu-
racy and convnce rate on most test functions. To be specific,
MPGABC outperforms all other algorithms on all unimodal
functions (f] — fe and f3) except fs. Since the global opti-
mal solution of Step function (f7) is a region rather than a
point, all algorithms can obtain the global optimal solution
and show similar performance in terms of solution quality.
But the convergence speed of MPGABC is better than all
competitors except GABC and qABC. Moreover, MPGABC
also outperforms or at least is competitive to all compared
algorithms on Quartic function (f9) and Rosenbrock func-
tion (f10). Concerning multimodal functions fj; — f22,
MPGABC is better than or at least comparable to competi-
tors on all functions excluding f13 — fis5, fis and fao. With
respect to Griewank function fj3, MPGABC is beaten by
gABC and best-so-far ABC, but it has better convergence
rate than all compared algorithms. For Schwefel2.26 function
f14, MPGABC is superior to all competitors except GABC.
On fi5, f1g and f>0, MPGABC is only beaten by MABC.
Regarding to the remainder functions, MPGABC is better
than or at least comparable to all compared algorithms. Over-
all, MPGABC outperforms GABC, qABC, best-so-far ABC
(BsfABC), dABC and MABC on 9, 15, 18, 18 and 7 out of
22 functions. On the contrary, MPGABC is only beaten by

@ Springer

GABC, gABC, best-so-far ABC (BsfABC) and MABC on 2,
2, 1, 1 and 4 functions, respectively. Furthermore, MPGABC
is faster than all other competitors on a larger proportion of
test functions (i.e., f1 — f5, f3, f13, f15 — f17 and f19). For
the convenience and clearness of illustration, the convergence
curves of mean objective function value for all functions are
presented in Fig.7, which clearly indicates that MPGABC
has better solution accuracy and convergence rate than all
other competitors on most test functions.

The results on functions with 50D and 100D are given
in Tables 5 and 6, respectively, which also clearly show that
MPGABC has better solution accuracy and convergence rate
than all the competitors on most test functions. To be specific,
regarding to 50D functions, MPGABC is better than GABC,
qABC, best-so-far ABC(BsfABC), dABC and MABC on
14, 15, 18, 17 and 7 out of 22 functions, and MPGABC
is only beaten by GABC, qABC, dABC and MABC on 1,
3, 1 and 4 functions, respectively. Concerning 100D func-
tions, MPGABC is better than GABC, qABC, best-so-far
ABC, dABC and MEABC on 13, 15, 19, 17 and 8 out of
22 functions, respectively, and MPGABC is only beaten by
GABC, qABC, dABC and MEABC on 1, 4, 1 and 4 func-
tions, respectively. Therefore, the superiority of MPGABC
is not affected by the growth of the search space dimension.
In order to clearly show the convergence rate of all com-
pared algorithms, the AVEN of all compared algorithms on
30D, 50D and 100D functions is, respectively, presented in
Fig. 5b—d, which clearly illustrates that MGABC can obtain
the best AVEN value on most functions.

In addition, according to the Friedman test, the final rank-
ing of all ABC variants for each benchmark function with
30D, 50D and 100D is shown in Table 7. The best results
are marked in boldface. Evidently, the average ranking of
MPGABC on all functions is better than that of all other ABC
variants on 30D and 100D. But MABC performs slightly
better than MPGABC on 50D. Therefore, it clearly shows
that MPGABC is better than or at least competitive to all
competitors on all the test functions.

Furthermore, we compare the average runtime between
MPGABC and original ABC on 22 commonly benchmark
functions with 30D. MPGABC and ABC are conducted 25
independent runs on each function. The average runtime and
Ratio are given in Table8, where Ratio denotes the value
that the average runtime of MPGABC is divided by that
of original ABC. As shown in Table 8, the Ratio values are
prominently less than 1 for all functions. This phenomenon
indicates the average runtime of MPGABC is significantly
less than that of original ABC on all cases. The reason is
that in original ABC, the selection probabilities of all food
source positions are similar and small, which means it is
a time-consuming procedure that the onlooker bee selects
a food source position to search by roulette wheel method.
While in MPGABC, the selection probabilities of some good
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Table 8 Average runtime (in seconds) used by ABC and MPGABC on 22 functions with D=30

Fun N f2 f3 Ja fs Je S f8 Jo fio S
ABC 35.24 36.01 35.59 36.25 36.07 36.81 37.39 36.61 37.67 36.90 37.00
MPGABC 7.24 8.23 7.80 8.47 8.12 7.72 7.98 7.58 8.86 7.90 8.24
Ratio 0.2055 0.2286 0.2192 0.2337 0.2251 0.2097 0.2134 0.2071 0.2352 0.2141 0.2227
Fun fiz f13 f1a fis f6 Sf17 fis f19 20 fa1 f2
ABC 38.34 37.28 37.08 36.34 40.10 35.90 35.62 36.13 78.88 36.78 36.73
MPGABC 9.31 8.59 8.63 9.18 13.02 8.79 8.41 8.84 52.06 10.20 10.14
Ratio 0.2428 0.2304 0.2327 0.2526 0.3247 0.2449 0.2361 0.2447 0.6600 0.2773 0.2761

food source positions are significantly enlarged by the novel
probability model, and therefore, the time of the onlooker bee
choosing a food source position to search by roulette wheel
method is significantly less than that of ABC. Overall, the
average runtime of MPGABC is better than that of ABC.

5.4 Experiment 3: sensitiveness analysis of parameter P

In MGABC, an additional parameter P is used to control the
operating frequency of the original solution search equation
(the operating frequency of the new solution search equa-
tion learning the beneficial information from the current best
solution is 1—P), which could adjust the exploration ability
and exploitation ability of MPGABC. In order to analyze
the influence of the parameter P on the performance of
MPGABC, five different values of P (i.e., 0.1, 0.3, 0.5, 0.7
and 0.9) are utilized to study on some selected representa-
tive functions (unimodal functions f; and f3, multimodal
functions f11, f14, f15 and f>1) with 30D. In this experi-
ment, SN is set to 50, and maxFES is set to 150000. Each
value on each test function is run independently by 25 times.
The mean of the best objective function values and AVEN
obtained by each value are used to evaluate their perfor-
mance. The experimental results are illustrated in Fig. 8§,
which clearly shows that for unimodal functions, the smaller
values of P (e.g., P =0.1 or P =0.3) can make MPGABC
achieve stronger exploitation ability and better optimiza-
tion performance according to mean best value and AVEN.
Moreover, the smaller the value of P is, the better the per-
formance is. The reason of this phenomenon is that since
unimodal function has only one global optimal solution, the
current best solution could always guide the correct evolu-
tion direction, and thus, the current best solution could be
fully utilized to improve the performance. Regarding to mul-
timodal functions, MGABC could obtain better performance
when P =0.3. This is because multimodal function has mul-
tiple local optimal solutions and thus the current best solution
cannot always point to the correct direction. It means both
the overuse and nonuse of the current best solution cannot

obtain a better trade-off between exploration and exploita-
tion. Therefore, based on the comprehensive consideration
of unimodal and multimodal function, a proper value of P
should be close to 0.3.

5.5 Experiment 4: comparison on CEC2011 real-world
problems

In this subsection, MPGABC is tested on 13 kinds of real-
world optimization problems (22 problems in total), which
are all derived from CEC2011 (Das and Suganthan 2010), to
further compare the performance of MPGABC with GABC,
best-so-far ABC (BsfABC), dABC and MABC. To make
a fair comparison, the parameter settings of all competi-
tors are set the same as the settings used in their original
papers. And according to the requirements of CEC2011 (Das
and Suganthan 2010), maxFES is employed as the termi-
nation condition, which is set to 50,000, and all compared
algorithms are independently conducted 25 runs on each
real-world optimization problem. The mean and standard
deviation of the objective functions value are used to evaluate
the performance. The experimental results are given in Table
9, and the best result is highlighted in boldface.

5.6 Experiment 5: comparison on CEC2013
real-parameter problems

In this subsection, to further demonstrate the effectiveness
of MPGABC in solving more complex problems, we com-
pare MPGABC with three ABC variants (i.e., GABC, gABC
and dABC) on 28 test functions with D =50 and D = 100,
which are derived from the CEC 2013 special session on
real-parameter optimization (Liang et al. 2013). In this exper-
imental study, the parameter settings of all competitors are set
the same as the settings used in their original papers. Accord-
ing to the requirements of CEC2013 (Liang et al. 2013), the
maxFES of all functions is set to 10000 - D, and each com-
pared algorithm is independently conducted 51 runs on each
function. The average and standard deviation of the func-

@ Springer
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Fig. 8 Mean best values and AVEN with different values of parameter P

tion error value f(Xpest)-f(X™*) are employed to evaluate
the optimization performance, where Xpes; 1S the best solu-
tion found by the algorithm in each run and X* is the true
global optimal solution of the test function. Moreover, the
Wilcoxon’s rank-sum test with the 5% significant level is
conducted on the experimental results to obtain the reliable
statistic conclusion. The experimental results are given in
Tables 10 and 11 for D =50 and D = 100, respectively. For
the sake of clarity, the best results are highlighted in boldface.

The experimental results on all functions with D =50
are presented in Table 10. It can be seen that MPGABC
is better than or at least comparable to all compared algo-
rithms on these test functions. To be specific, with regard
to unimodal functions (F1-F5), MPGABC outperforms all
compared algorithms on F3 and F5, and MPGABC is only
beaten by gQABC on F2, F4, and dABC on F1. For basic multi-
modal functions (F6-F20), MPGABC is better than or at least
comparable to all compared algorithms on F7, F11, F15, F17
and F19, respectively. Moreover, MPGABC can obtain the
second best results, respectively, on F10, F12, F13, F18 and

@ Springer

F20. In addition, MPGABC is only beaten by GABC on F9,
qABCon F6 and F16, qQABC and dABC on F14, respectively.
Furthermore, all compared algorithms can obtain the simi-
lar performance on F8. Concerning composition functions
(F21-F28), MPGABC is better than or at least comparable
to all compared algorithms on F21-F23, F26 and F28. On the
contrary, MPGABC is only beaten by GABC on F24, F25
and F27. Overall, MPGABC outperforms GABC, gABC and
dABC on 14, 10 and 16 functions, respectively. On the con-
trary, MPGABC is only beaten by GABC, qQABC and dABC
on 8, 6 and 2 functions. According to the above analysis,
it can be concluded that MPGABC is better than or at least
comparable to all compared algorithms when considering all
the test functions with D = 50.

In order to investigate the performance of MPGABC on
the CEC2013 test functions with high dimensionality, we
further compare MPGABC with GABC, qABC and dABC
on these test functions with D =100. The experimental
results are given in Table 11. Clearly, as shown in Table
11, MPGABC is better than all other algorithms in terms
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Table 10 Comparisons of MPGABC with ABC variants on CEC2013 functions with 50D
Pro Alg

GABC qABC dABC MPGABC

Mean (SD) Mean (SD) Mean (SD) Mean (SD)
F1 2.76e—13 (9.44e—14)— 2.50e—13 (6.83e—14)— 8.92e—14 (1.12e—13)+ 2.27e—13 (0.00e—00)
F2 1.35e+07 (5.63e+06)— 5.84e+06 (1.91e+06)+ 1.18e+07 (3.21e+06)~ 1.10e+-07 (2.39e+06)
F3 1.30e+09 (1.19e+09)— 1.18e+09 (9.67e+08)— 1.53e+09 (1.16e+09)— 8.15e+08 (4.23e+08)
F4 1.59e+05 (1.48e+04)~ 1.52e+05 (1.71e+04)+ 1.62e+05(1.59e+-04)~ 1.60e+-05 (1.50e+04)
F5 2.74e—13 (5.65e—14)— 4.12e—13 (6.81e—14)— 2.32e—13 (2.23e—14)— 2.01e—13 (4.87e—14)
F6 4.36e+01 (1.82e+00)~ 4.15e+-01 (4.85e+00)+ 4.22e+4-01(3.80e+00)~ 4.35e+01 (2.05e+00)
F7 1.43e+02 (1.29¢+01)~ 1.44e+402 (1.72e401)~ 1.52e+402 (1.54e+01)— 1.43e+02 (1.57e+01)
F8 2.11e+01 (3.51e—02)~ 2.11e+01 (4.40e—02)~ 2.11e+01 (2.97e—02)~ 2.11e+01 (3.72e—02)
F9 5.88e+01 (2.43e+00)+ 6.00e+01 (2.67e+00)~ 6.12e+01(2.55e+00)~ 6.02e+01 (2.93e+00)
F10 3.17e+00 (8.48e—01)— 1.74e—01 (8.24e—02)+ 1.62e+00 (3.06e—01)— 3.60e—01 (1.47e—01)
F11 8.25¢—14 (2.86e—14)— I.1le—13 (1.1le—14)— 5.46e—14 (1.1le—14)~ 5.68e—14 (0.00e—00)
F12 4.64e+02 (5.64e+01)+ 6.42e+02 (7.33e+01)— 6.62e+02 (8.48e+01)— 5.64e+02 (7.11e+01)
F13 5.81e+02(5.60e+01)+ 7.48e+02 (6.02e+01)— 7.63e+02 (5.41e+01)— 6.57e+02 (6.96e+01)
Fl14 3.16e+00 (1.28e+00)— 6.64e—02 (2.70e—02)+ 7.08e—01(7.53e—01)+ 1.71e+00 (7.44e—01)
F15 7.57e403 (6.11e4+02)— 7.30e+03 (5.12e+02)~ 7.59e+03 (4.84e+02)— 7.42e+03 (3.85e+02)
F16 1.53e+00 (2.57e—01)— 1.22e+00 (2.27e—01)+ 1.42e+-00 (1.83e—01)~ 1.39e+4-00 (1.97e—01)
F17 5.08e+-01 (1.06e—02)~ 5.08e+01 (3.33e—04)~ 5.10e+01 (5.18e—02)— 5.08e+01 (1.31e—02)
F18 5.05e+02 (5.02e+01)+ 6.79e+02 (7.41e+01)— 7.65e+02 (7.57e+01)— 5.91e+02 (5.17e+01)
F19 9.38¢e—01 (2.94e—01)— 5.80e—01 (1.97e—01)~ 9.77e—01 (2.07e—01)— 5.34e—01 (1.55e—01)
F20 2.34e+01 (6.93e—01)+ 2.43e+01 (2.90e—01)— 2.42e+01 (4.79e—01)— 2.37e+01 (7.31e—01)
F21 2.10e+02 (9.04e+01)— 2.00e+02 (1.12e+01)~ 1.92e+02(2.58e+01)~ 2.06e+02 (1.70e+01)
F22 2.26e+01 (2.64e+01)— 5.90e+00 (3.71e+00)— 2.68e+01 (3.46e+00)— 1.34e+01 (1.80e+00)
F23 9.69¢+03 (8.78e+02)— 9.55e+03 (7.05e+02)~ 9.73e+03 (6.65e+02)— 9.51e+03 (6.76e+02)
F24 3.66e+-02 (7.56e+00)+ 3.75e+02 (8.90e+00)~ 3.77e+02 (9.97e+00)— 3.73e+02 (7.56e+00)
F25 4.13e+02 (9.05e+00)+ 4.31e402 (1.08e+01)— 4.36e+02 (1.15e+01)— 4.24e+4-02 (9.80e+00)
F26 2.02e+02 (3.95e—01)— 2.01e+02 (1.57e—01)~ 2.02e+02(2.93e—01)— 2.01e+02 (2.46e—01)
F27 1.58e+03 (6.27e+02)+ 1.66e+03 (6.29¢e+02)~ 1.67e+03 (6.44e+02)~ 1.74e+4-03 (5.68e+02)
F28 4.00e+02 (5.67e—13)~ 4.00e+02 (1.05e—02)~ 4.00e+02 (2.15e—04)~ 4.00e+02 (4.57e—13)
—/~/+ 14/6/8 10/12/6 16/10/2

“—7 “a” and “4,” respectively, denote that the performance of the corresponding algorithm is worse than, similar to, and better than that of
MPGABC according to the Wilcoxon’s rank test at a 0.05 significance level

of solution accuracy on unimodal functions F3 and F5, and
MPGABC also can obtain the second best results, respec-
tively, on F1 and F2. Moreover, MPGABC is only beaten
by qABC on F4. With regard to basic multimodal functions
(F6-F20), MPGABC is better than or at least comparable
to all compared algorithms on F6, F11, F15, F16, F17, F19
and F20, respectively. Moreover, MPGABC is only beaten
by GABC on F7, F12, F13 and F18, and qABC on F10,
respectively. In addition, all compared algorithms show simi-
lar performance on F8 and F9. However, MPGABC performs
worst on F14, which may be caused by the property that
the number of local optimal solution of F14 is huge and the
second better local optimal solution is far from the global
optimum. For composition functions (F21-F28), MPGABC
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is better than or at least comparable to all compared algo-
rithms on F26, and MPGABC also exhibits the second best
performance on F21, F23-F25 and F28, respectively. But
MPGABC is, respectively, beaten by gABC and dABC on
F22, GABC and dABC on F27. In summary, MPGABC
outperforms GABC, qABC and dABC on 16, 13 and 15
functions, respectively. On the contrary, MPGABC is only
beaten by GABC, qABC and dABC on 9, 7 and 4 functions.
Therefore, MPGABC can also perform better than the recent
ABC variants on these complex test functions with D = 100.
According to the above analysis, it can be concluded that the
superiority of MPGABC is not affected by the growth of the
dimensions in search space.
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Table 11 Comparisons of MPGABC with ABC variants on CEC2013 functions with 100D

Pro Alg
GABC qABC dABC MPGABC
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

F1 5.71e—13 (1.23e—13)— 6.51e—13 (9.12e—14)— 2.27e—13 (0.00e—00)+ 4.10e—13 (9.12e—14)
F2 3.43e+07 (9.75e+06)— 1.09e+07 (2.64e+06)+ 3.10e+07 (5.07e+06)— 2.64e+07 (3.43e+06)
F3 1.05e+10 (6.03e+09)— 1.20e+10 (5.84e+09)— 1.25e+10 (5.94e+09)— 7.53e+09 (3.03e+09)
F4 3.51e+05 (2.41e+04)~ 3.31e+05 (2.37e+04)+ 3.41e+05 (2.51e4+04)~ 3.43e+4-05 (2.09e+04)
F5 4.70e—13 (5.58e—14)— 8.78e—13 (9.40e—14)— 5.46e—13 (5.10e—14)— 3.39e—13 (1.59¢—14)
Fo6 1.77e+02 (2.71e+01)— 1.46e+02 (3.38e+01)~ 1.54e+02 (2.91e+01)~ 1.46e+02 (2.76e+01)
F7 4.09¢+02 (1.58e+02)+ 2.01e+03 (1.13e+03)— 2.33e+03 (1.42e+03)— 1.18e+03 (7.24e+-02)
F8 2.13e+01 (2.50e—02)~ 2.13e+01 (2.95e—02)~ 2.13e+01 (2.89e—02)~ 2.13e+01 (2.64e—02)
F9 1.40e+-02 (4.23e+00)~ 1.42e+4-02 (4.24e+00)~ 1.43e+02 (3.56e+00)~ 1.41e+02 (4.31e+00)
F10 1.43e+-00 (1.92e—01)— 1.31e—01 (7.23e—02)+ 1.42e+4-00 (1.22e—01)— 9.32e—01 (3.07e—01)
F11 1.54e—13 (3.07e—14)— 2.36e—13 (2.09e—14)— 1.10e—13 (1.35e—14)~ 1.10e—13 (1.35e—14)
F12 1.60e+03 (1.31e+02)+ 2.03e+03 (1.84e+02)— 2.17e+03 (1.61e+02)— 1.86e+-03 (1.82e+02)
F13 1.81e+03 (1.09e+02)+ 2.30e+03 (1.28e+02)— 2.31e+03 (1.47e+02)— 2.05e+03 (1.40e+02)
F14 2.85e+00 (1.39e+00)+ 9.24e—02 (5.28e—02)+ 9.38e—01 (9.79¢e—01)+ 5.65e+00 (1.25e+00)
F15 1.57e+04 (8.16e+02)— 1.51e+4-04 (8.96e+02)~ 1.55e+04 (8.01e+02)— 1.51e+-04 (8.81e+02)
F16 2.07e+400 (2.14e—01)— 1.85e+00 (2.24e—01)~ 1.93e4-00(2.27e—01)~ 1.91e+00 (2.18e—01)
F17 1.07e+02 (2.35¢e—02)— 1.02e+-02 (5.12e—04)~ 1.02e+-02 (1.24e—01)~ 1.02e+-02 (2.29¢—02)
F18 1.76e+03 (1.37e+02)+ 2.41e+03 (1.65e+02)— 2.60e+03 (1.96e+02)— 2.15e+403 (1.63e+02)
F19 2.25e+400 (5.07e—01)— 1.53e+4-00 (3.95e—01)— 2.63e+00 (3.74e—01)— 1.27e+4-00 (2.44e—01)
F20 5.00e+01 (1.33e—01)— 5.00e+-01 (2.82e—03)— 5.00e+01 (1.11e—01)— 4.98e+01 (2.43e—01)
F21 3.67e+02 (4.91e+01)— 3.03e+02 (1.31e+01)+ 4.16e+02 (3.57e+01)— 3.65e+-02 (4.83e+01)
F22 7.47e+01 (5.18e+01)— 1.40e+01 (2.14e+00)+ 4.34e+01 (5.52e+00)+ 4.53e+01 (3.96e+-01)
F23 2.16e+-04 (1.45e+03)— 2.08e+04 (1.43e+03)+ 2.15e+04 (1.31e+03)~ 2.14e+04 (1.19¢+03)
F24 6.00e+02 (1.17e+01)+ 6.25e+02 (1.53e+01)— 6.26e+02 (1.27e+01)— 6.12e+4-02 (1.33e+01)
F25 7.16e+02 (1.42e+01)+ 7.62e+02 (2.07e+01)— 7.70e+402 (1.94e+01)— 7.43e+402 (2.23e+01)
F26 2.07e+02 (2.15e+01)— 2.02e+02 (3.77e—01)~ 2.04e+02 (1.45e+00)~ 2.03e+02 (9.36e—01)
F27 3.81e+03 (1.14e+03)+ 4.12e+03 (9.46e+02)~ 4.05e+03 (1.10e+03)+ 4.08e+03 (9.35e+-02)
F28 4.27e+03 (1.18e+03)+ 8.28e+-03 (2.83e+03)— 9.93e+-03 (2.92e+03)— 6.74e+03 (2.48e+03)
—/~/+ 16/3/9 13/8/7 15/9/4

“—7 “a” and “4,” respectively, denote that the performance of the corresponding algorithm is worse than, similar to, and better than that of
MPGABC according to the Wilcoxon’s rank test at a 0.05 significance level

Furthermore, an insightful phenomenon should be point
out that all ABC methods are able to obtain the near optimal
solution on F1, F5 and F11, but fail to get the near optimal
solution on others functions. The reason for this phenomenon
may be that F1, F5, F11 and F22 are separable, while all
other functions are non-separable. Therefore, the property of
changing one variable at one time in ABCs may determine
that ABCs are suitable for solving separable problems.

6 Conclusion and future work

In this paper, to improve the exploitation ability and further
enhance the performance of ABC, we propose two new algo-
rithmic components by suitably exploiting the current best

solution and other good solutions. The one component is the
novel search strategy, which exploits the useful information
of the current best solution according to a probability param-
eter P. The other one is the novel probability model, which
can make sure that the good solutions can always attract more
onlooker bees to search. Through combining these two new
algorithmic components with the basic framework of ABC, a
new ABC variant is produced, named MPGABC. The perfor-
mance of MPGABC has been validated by the comparison
with other outstanding ABC variants (i.e., GABC, qABC,
best-so-far ABC, dABC and MABC) on 22 benchmark test
functions with 30D, 50D and 100D, 22 real-world problems
and 28 CEC2013 real-parameter optimization problems with
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50D and 100D in terms of solution accuracy, robustness and
convergence speed.

Since the current best solution and other good solutions
have valuable information, how to effectively employ them to
further improve the performance of ABC is still worth study-
ing in the future. Moreover, MPGABC could be extended to
solve constraint optimization problems, multi-objective opti-
mization problems (Lin et al. 2015) and real-world practice
optimization problems.
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