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Abstract We introduce a framework suitable for describ-
ing standard classification problems using the mathematical
language of quantum states. In particular, we provide a one-
to-one correspondence between real objects and pure density
operators. This correspondence enables us: (1) to represent
the nearest mean classifier (NMC) in terms of quantum
objects, (2) to introduce a quantum-inspired version of the
NMC called quantum classifier (QC). By comparing the QC
with the NMC on different datasets, we show how the first
classifier is able to provide additional information that can be
beneficial on a classical computer with respect to the second
classifier.
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1 Introduction

Quantum machine learning aims at merging the methods
from quantum information processing and pattern recogni-
tion to provide new solutions for problems in the areas of
pattern recognition and image understanding (Schuld et al.
2014a;Wittek 2014;Wiebe et al. 2015). In the first aspect, the
research in this area is focused on the application of themeth-
ods of quantum information processing (Miszczak 2012) for
solving problems related to classification and clustering Tru-
genberger (2002), Caraiman and Manta (2012). One of the
possible directions in this field is to provide a representa-
tion of computational models using quantum mechanical
concepts. From the other perspective, the methods for classi-
fication developed in computer engineering are used to find
solutions for problems such as quantum-state discrimination
(Helstrom 1976; Chefles 2000; Hayashi et al. 2005; Lu and
Braunstein 2014),which are tightly connectedwith the recent
developments in quantum cryptography.
Using quantum states for the purpose of representing patterns
is naturally motivated by the possibility of exploiting quan-
tum algorithms to boost the computational intensive parts of
the classification process. In particular, it has been demon-
strated that quantum algorithms can be used to improve the
time complexity of the k-nearest neighbor (kNN) method.
Using the algorithms presented in Wiebe et al. (2015), it is
possible to obtain polynomial reductions in query complex-
ity in comparisonwith the corresponding classical algorithm.
Such an approach has been exploited by various authors. In
Tanaka andTsuda (2008), the authors propose an extension of
Gaussian mixture models by using the statistical mechanics
point of view. In their approach, the probability density func-
tions of conventional Gaussianmixturemodels are expressed
by density matrix representations. On the other hand, in
Ostaszewski et al. (2015), the authors utilize the quantum
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representation of images to construct measurements used for
classification. Such approachmight be particularly useful for
the physical implementation of the classification procedure
on quantum machines.

In the last few years,many efforts have beenmade to apply
the quantum formalism to non-microscopic contexts (Aerts
and D’Hooghe 2009; Aerts et al. 2013; Chiang et al. 2013;
Eisert et al. 1999; Nagel 1963; Nagy and Nagy 2016; Ohya
and Volovich 2011; Schwartz et al. 2005; Sozzo 2015; Stapp
1993) and to signal processing (Eldar and Oppenheim 2002).
Moreover, some attempts to connect quantum information to
pattern recognition can be found in Schuld et al. (2014a),
Schuld et al. (2014b), Schuld et al. (2014c). An exhaustive
survey and bibliography of the developments concerning the
applications of quantum computing in computational intel-
ligence are provided in Manju and Nigam (2014), Wittek
(2014). Even if these results seem to suggest some possi-
ble computational advantages of an approach of this sort, an
extensive and universally recognized treatment of the topic
is still missing (Schuld et al. 2014a; Lloyd et al. 2014, 2013).

Also, this paper is motivated by the idea of using quantum
formalism in a non-standard domain that consists in solving
classification problems on datasets of classical objects. The
main contribution of our work is the introduction of a new
framework to encode the classification process by means of
the mathematical language of density matrices (Beltrametti
et al. 2014b, a). We show that this representation leads to
two different developments: (i) It enables us to provide a
representation of the nearest mean classifier (NMC) in terms
of quantumobjects; (ii) it can be used to introduce a quantum-
inspired version of the NMC, that we call quantum classifier
(QC), which can be considered (similarly as the NMC) to
be a minimum distance classifier. This allows us a detailed
comparison between NMC and QC. In particular, we will
show that QC provides additional information about the data
distribution and, in different cases, an improvement in the
performance on a classical computer.

The paper is organized as follows. In Sect. 2, the basic
notions of quantum information and pattern recognition
are introduced. In Sect. 3, we formalize a correspondence
between arbitrary two-feature patterns and pure density oper-
ators and we define the notion of density pattern. In Sect. 4,
we provide a representation of NMC by using density pat-
terns and by the introduction of an ad hoc definition of the
distance between quantum states. Section 5 is devoted to
the description of a new quantum classifier QC that does
not have a classical counterpart in the standard classification
process. Numerical simulations for both QC and NMC are
presented, and particular benefits in favor of the first classifier
are exploited. In Sect. 6, a geometrical idea to generalize the
model to arbitrary n-feature patterns is proposed. Finally,
Sect. 7 presents concluding remarks and suggests further
developments.

2 Representing classical and quantum information
quantities

In the standard quantum information theory (Bennett and
Shor 1998; Shannon 1948), the states of physical systems are
described by unit vectors and their evolution is expressed in
terms of unitarymatrices (i.e., quantum gates). However, this
representation can be applied for an ideal case only, because
it does not take into account some unavoidable physical
phenomena, such as interactions with the environment and
irreversible transformations. In the modern quantum infor-
mation theory (Jaeger 2007, 2009; Wilde 2013), another
approach is adopted. The states of physical systems are
described by density operators—also called mixed states
(Aharonov et al. 1998; Chiara et al. 2004; Freytes et al.
2010)—and their evolution is described by quantum oper-
ations. The space Ωn of density operators for n-dimensional
system consists of positive semidefinite matrices with unit
trace.

A quantum state can be pure or mixed. We say that a state
of a physical system is pure if it represents “maximal” infor-
mation about the system, i.e., information that cannot be
improved by further observations. A probabilistic mixture
of pure states is said to be amixed state. Generally, both pure
and mixed states are represented by density operators that
are positive and Hermitian operators (with unitary trace) liv-
ing in a n-dimensional complex Hilbert space H. Formally,
a density operator ρ is pure iff tr(ρ2) = 1 and it is mixed iff
tr(ρ2) < 1.

If we confine ourselves to the two-dimensional Hilbert
space H, a suitable representation of an arbitrary density
operator ρ ∈ Ω2 is provided by

ρ = 1

2
(I + r1σ1 + r2σ2 + r3σ3)

= 1

2

(
1 + r3 r1 − ir2
r1 + ir2 1 − r3

)
,

(1)

where σi are the Pauli matrices. This expression is useful
when providing a geometrical representation of ρ. Indeed,
each density operator ρ ∈ Ω2 can be geometrically rep-
resented as a point of a radius-one sphere centered in the
origin (the so-called Bloch sphere), whose coordinates (i.e.,
Pauli components) are ri (with

∑
i r

2
i ≤ 1). By using the

generalized Pauli matrices (Bertlmann and Krammer 2008;
Kimura 2003), it is also possible to provide a geometrical
representation for an arbitrary n-dimensional density oper-
ator, as it will be showed in Sect. 6. Again, by restricting
to a two-dimensional Hilbert space, points on the surface of
the Bloch sphere represent pure states, while inner points
represent mixed states.

Quantum formalism turns out to be very useful not only
in the microscopic scenario but also to encode classical
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data. This has naturally suggested several attempts to rep-
resent the standard framework of machine learning through
the quantum formalism (Lloyd et al. 2013; Schuld et al.
2014a). In particular, pattern recognition (Webb and Copsey
2011; Duda et al. 2000) is the scientific discipline which
deals with theories and methodologies for designing algo-
rithms and machines capable of automatically recognizing
“objects” (i.e., patterns) in noisy environments. Some typical
applications aremultimedia document classification, remote-
sensing image classification, and people identification using
biometrics traits such as fingerprints.

A pattern is a representation of an object. The object can
be a concrete one (i.e., an animal), and the pattern recognition
task could be to identify the kind of animal or an abstract one
(i.e., a facial expression), and the task could be to identify
the emotion expressed by the facial expression. The pattern is
characterized via a set ofmeasurements called features.1 Fea-
tures can assume the forms of categories, structures, names,
graphs, or, most commonly, a vector of real numbers (feature
vector) x = (x1, x2, . . . , xd) ∈ R

d . Intuitively, a class is the
set of all similar patterns. For the sake of simplicity, andwith-
out loss of generality, we assume that each object belongs to
one and only one class, and we will limit our attention to
two-class problems. For example, in the domain of “cats and
dogs,” we can consider the classes Ccats (the class of all cats)
and Cdogs (the class of all dogs). The pattern at hand is either
a cat or a dog, and a possible representation of the pattern
could consist of the height of the pet and the length of its tail.
In this way, the feature vector x1 = (x11, x12) is the pattern
representing a pet whose height and length of the tail are x11
and x12, respectively.
Now, let us consider an object xt whose membership class
is unknown. The basic aim of the classification process is
to establish which class xt belongs to. To achieve this goal,
standard pattern recognition designs a classifier that, given
the feature vector xt , has to determine the true class of the
pattern. The classifier should take into account all available
information about the task at hand (i.e., information about
the statistical distributions of the patterns and information
obtained from a set of patterns whose true class is known).
This set of patterns is called “training set,” and it will be used
to define the behavior of the classifier.
If no information about the statistical distributions of the pat-
terns is available, an easy classification algorithm that could
be used is the nearest mean classifier (NMC) (Manning et al.
2008; Hastie et al. 2001) or minimum distance classifier. The
NMC

1 Hence, as a pattern is an object characterized by the knowledge of its
features, analogously, in quantummechanics a state of a physical system
is represented by a density operator, characterized by the knowledge of
its observables.

– computes the centroids of each class, using the patterns
on the training set μ∗

i = 1
ni

∑
x∈Ci

x, where ni is the
number of patterns of the training set belonging to the
class Ci ;

– assigns the unknown pattern xt to the class with the clos-
est centroid.

In the next section,weprovide a representation of arbitrary
2D patterns by means of density matrices, while in Sect. 4,
we introduce a representation of NMC in terms of quantum
objects.

3 Representation of two-dimensional patterns

Letxi = (xi1, . . . , xik)be a generic pattern, i.e., a point inRk .
Bymeans of this representation,we consider all the k features
of xi as perfectly known. Therefore, xi represents a maximal
kind of information, and its natural quantum counterpart is
provided by a pure state. For the sake of simplicity, we will
confine ourselves to an arbitary two-feature pattern indicated
by x = (x, y).2 In this section, a particular one-to-one corre-
spondence between each pattern and its corresponding pure
density operator is provided.
The pattern x can be represented as a point in R2. The stere-
ographic projection (Coxeter 1969) allows to unequivocally
map any point r = (r1, r2, r3) on the surface of a radius-one
sphere S2 (except for the north pole) onto a point x = (x, y)
of R2 as

SP : (r1, r2, r3) �→
(

r1
1 − r3

,
r2

1 − r3

)
. (2)

The inverse of the stereographic projection is given by

SP−1 : (x, y) �→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
.

(3)

Therefore, by using theBloch representation given byEq. (1)
and placing

r1 = 2x

x2 + y2 + 1
, r2 = 2y

x2 + y2 + 1
,

r3 = x2 + y2 − 1

x2 + y2 + 1
, (4)

we obtain the following definition.

2 In the standard pattern recognition theory, the symbol y is generally
used to identify the label of the pattern. In this paper, for the sake of
simplicity, we agree with a different notation.
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Definition 1 (Density pattern) Given an arbitrary pattern
x = (x, y), the density pattern (DP) ρx associated with x
is the following pure density operator

ρx = 1

2

(
1 + r3 r1 − ir2
r1 + ir2 1 − r3

)

= 1

x2 + y2 + 1

(
x2 + y2 x − iy
x + iy 1

)
. (5)

It is easy to check that tr(ρ2
x ) = 1. Hence, ρx always repre-

sents a pure state for any value of the features x and y.
Following the standard definition of the Bloch sphere, it can
be verified that ri = tr(ρx · σi ), with i ∈ {1, 2, 3} and σi are
Pauli matrices.

Example 1 Let us consider the pattern x = (1, 3). The cor-
responding ρx reads

ρx = 1

11

(
10 1 − 3i

1 + 3i 1

)
.

One of the advantages of this encoding is based on the
fact that it allows an easy visualization of an arbitrary two-
feature dataset on the Bloch sphere, as it will be showed in
the next section. The manner to encode a real pattern onto
the space of the density operators is not unique and there
is a risk of losing some information during the encoding.
Taking into account the recent debates (Schuld et al. 2014a;
Lloyd et al. 2013; Rebentrost et al. 2014), in order to encode
a real vector to a quantum states without losing information,
it is necessary to normalize the vector but maintain some
information about the norm of the same vector at the same
time. By following this procedure, we briefly show that it is
alternatively possible to recover the stereographic encoding
proposed in Eq. (5) also by simple analytical considerations.

Let x = (x, y) be an arbitrary real vector.

1. First, we map x onto a vector x′ whose first component
is given by x + iy and the second component is given
by the norm of x (|x| = √

x2 + y2); i.e., x = (x, y) �→
x′ = (x + iy,

√
x2 + y2).

2. Now, we consider a second map: x′ �→ x′′ =(
x+iy√
x2+y2

,
√
x2 + y2

)
, obtained by normalizing the first

component of x′.
3. Then, we consider the norm of x′′, i.e., |x′′| =√

x2 + y2 + 1 andwe normalize the vector x′′, i.e., x′′ �→
x′′′ = x′′

|x′′| =
(

x+iy√
(x2+y2)(x2+y2+1)

,√
x2+y2

x2+y2+1

)
.

4. Now, we consider the projector: P = x′′′ · (x′′′)† =
1

x2+y2+1

(
1 x + iy

x − iy x2 + y2

)
.

5. Finally, we apply the operator Not =
(
0 1
1 0

)
to P and we

recover: Not (P) = 1
x2+y2+1

(
x2 + y2 x − iy
x + iy 1

)
, that is

the same expression of the density pattern ρx introduced
in Eq (5).

The introduction of the density pattern leads to two differ-
ent developments. The first one is shown in the next section
and consists of the representation of the NMC in quantum
terms. Moreover, in Sect. 5, starting from the framework of
density patterns, it will be possible to introduce a quantum
classifier that exhibits an improvement in the performance (in
terms of decreasing of the error in the classification process)
with respect to the NMC.

4 Classification process for density patterns

As introduced in Sect. 2, the NMC is based on the computa-
tion of the minimum Euclidean distance between the pattern
to classify and the centroids of each class. In the previous
section, a quantum counterpart of an arbitrary (two feature)
“classical” pattern was provided. In order to obtain a quan-
tum counterpart of the standard classification process, we
need to provide a suitable definition of distance d between
DPs. In addition to satisfy the standard conditions of met-
ric, the distance d also needs to satisfy the preservation of
the order: Given three arbitrary patterns a, b, c such that
dE (a, b) ≤ dE (b, c), if ρa, ρb, ρc are the DPs related to
a, b, c, respectively, then d(ρa, ρb) ≤ d(ρb, ρc). In order to
fulfill all the previous conditions, we obtain the following
definition.

Definition 2 (Normalized trace distance) The normalized
trace distance d tr between two arbitrary density patterns ρa
and ρb is given by formula

d tr(ρa, ρb) = Ka,bdtr(ρa, ρb), (6)

where dtr(ρa, ρb) is the standard trace distance, dtr(ρa, ρb) =
1
2

∑
i |λi |, with λi representing the eigenvalues of ρa − ρb

(Barnett 2009; Nielsen and Chuang 2000), and Ka,b is a nor-
malization factor given by Ka,b = 2√

(1−ra3 )(1−rb3 )
, with ra3

and rb3 representing the third Pauli components of ρa and
ρb, respectively.

Proposition 1 Given two arbitrary patterns a = (xa, ya)
and b = (xb, yb) and their respective density patterns, ρa
and ρb, we have that

dtr(ρa, ρb) = dE (a, b). (7)
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Proof It can be verified that the eigenvalues of the matrix
ρa − ρb are given by

Eig(ρa − ρb) = ± dE (a, b)√
(1 + x2a + y2a )(1 + x2b + y2b )

. (8)

Using the definition of trace distance, we have

tr
√

(ρa − ρb)2 = dE (a, b)√
(1 + x2a + y2a )(1 + x2b + y2b )

. (9)

By applying formula (4) to both ra3 and rb3 , we obtain that

Ka,b = 2√
(1 − ra3)(1 − rb3)

=
√

(1 + x2a + y2a )(1 + x2b + y2b ).

(10)

	


Using Proposition 1, one can see that the normalized trace
distance d tr satisfies the standard metric conditions and the
preservation of the order.

Due to the computational advantage of a quantum algo-
rithm able to faster calculate the Euclidean distance (Wiebe
et al. 2015), the equivalence between the normalized trace
distance and the Euclidean distance turns out to be poten-
tially beneficial for the classification process we are going to
introduce.

Let us now consider two classes, CA and CB and the
respective centroids3 a∗ = (xa, ya) and b∗ = (xb, yb). The
classification process based on NMC consists of finding the
space regions given by the points closest to the first centroid
a∗ or to the second centroid b∗. The patterns belonging to
the first region are assigned to the class CA, while patterns
belonging to the second region are assigned to the class CB .
The points equidistant from both the centroids represent the
discriminant function (DF), given by

fDF(x, y) = 2(xa−xb)x+2(ya−yb)y+(|b∗|2−|a∗|2) = 0.

(11)

Thus, an arbitrary pattern c = (x, y) is assigned to the class
CA (or CB) if fDF(x, y) > 0 (or fDF(x, y) < 0).
Let us notice that the Eq. (11) is obtained by imposing
the equality between the Euclidean distances dE (c, a∗) and
dE (c, b∗). Similarly, we obtain the quantum counterpart of
the classical discriminant function.

3 Let us remark that, in general, a∗ and b∗ do not represent true cen-
troids, but centroids estimated on the training set.

Proposition 2 Let ρa∗ and ρb∗ be the DPs related to the
centroids a∗ and b∗, respectively. Then, the quantum dis-
criminant function (QDF) is defined as

fQDF(r1, r2, r3) = F(ra∗ , rb∗)T · r + K̃ 2 − 1 = 0 (12)

where r = (r1, r2, r3), {ra∗
i
}, {rb∗

i
} are Pauli components

of ρa∗ and ρb∗ , respectively, K̃ = K̃ (ra∗
3
, rb∗

3
) = Kc,a∗

Kc,b∗ =√
1−ra∗

3
1−rb∗3

, F(ra∗, rb∗) = (ra∗
1

− K̃ 2rb∗
1
, ra∗

2
− K̃ 2rb∗

2
, ra∗

3
−

K̃ 2rb∗
3
).

Proof In order to find the QDF , we use the equality
between the normalized trace distances Kc,a∗dtr(ρc, ρa∗) and
Kc,b∗dtr(ρc, ρb∗), where ρc is a generic DP with Pauli com-
ponents r1, r2, r3. We have

Kc,a∗dtr(ρc, ρa∗ ) =
√√√√ (r1 − ra∗

1
)2 + (r2 − ra∗

2
)2 + (r3 − ra∗

3
)2

(1 − ra∗
3
)(1 − r3)

,

Kc,b∗dtr(ρc, ρb∗ ) =
√√√√ (r1 − rb∗

1
)2 + (r2 − rb∗

2
)2 + (r3 − rb∗

3
)2

(1 − rb∗
3
)(1 − r3)

.

(13)

The equality Kc,a∗dtr(ρc, ρa∗) = Kc,b∗dtr(ρc, ρb∗) reads

3∑
i=1

r2i +
3∑

i=1

r2a∗
i

− 2
3∑

i=1

rira∗
i

= 1 − ra∗
3

1 − rb∗
3

(
3∑

i=1

r2i +
3∑

i=1

r2b∗
i
− 2

3∑
i=1

rirb∗
i

)
. (14)

In view of the fact that ρa∗ , ρb∗ and ρc are pure states, we use
the conditions

∑3
i=1 r

2
a∗
i

= ∑3
i=1 r

2
b∗
i

= ∑3
i=1 r

2
i = 1 and

we get

3∑
i=1

(
ra∗

i
− 1 − ra∗

3

1 − rb∗
3

rb∗
i

)
ri + 1 − ra∗

3

1 − rb∗
3

− 1 = 0. (15)

	

This completes the proof.

Similarly to the classical case, we assign the DP ρc
to the class CA (or CB) if fQDF(r1, r2, r3) > 0 (or
fQDF(r1, r2, r3) < 0). Geometrically, Eq. (12) represents
the surface equidistant from the DPs ρa∗ and ρb∗ .

Let us remark that, if we express the Pauli components
{ra∗

i
}, {rb∗

i
} and {ri } in terms of classical features by Eq. (4),

then Eq. (12) exactly corresponds to Eq. (11). As a conse-
quence, given an arbitrary pattern c = (x, y), if fDF(c) >

0 (or fDF(c) < 0), then its relative DP ρc will satisfy
fQDF(ρc) > 0 (or fQDF(ρc) < 0, respectively).
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As an example, the comparison between the classical and
quantumdiscrimination functions for theMoondataset (com-
posed of 200 patterns equally allocated in two classes) is
made in Fig. 1. Plots in Fig. 1a, b present the classical and
quantum discrimination, respectively.

It is worth noting that the correspondence between the pat-
tern expressed as a feature vector (according to the standard
pattern recognition approach) and the pattern expressed as
a density operator is quite general. Indeed, it is not related
to a particular classification algorithm (NMC, in the previ-
ous case) nor to the specific metric at hand (the Euclidean
one). Therefore, it is possible to develop a similar correspon-
dence by using other kinds of metrics and/or classification
algorithms, different from NMC, adopting exactly the same
approach.

This result suggests potential developments which con-
sist of finding a quantum algorithm able to implement the
normalized trace distance between density patterns. So, it
would correspond to implement theNMCon a quantumcom-
puter with the consequent well-known advantages (Wiebe
et al. 2015). The next section is devoted to the exploration
of another development that consists of using the framework
of density patterns in order to introduce a “purely” quantum
classification process (having no direct classical correspon-
dence) called QC. It can be considered as a quantum-inspired
version of the classicalNMCbecause it substantially is amin-
imum distance classifier among quantum objects. The main
difference between them, as we will show by numerical sim-
ulations, is that the NMC is a linear classifier which does not
take into account the data dispersion, while the QC is not lin-
ear, and conversely, it seems sensitive to the data dispersion.
As it will be showed in the next section by involving some
datasets, this fact seems to be particularly beneficial (with
respect to the NMC) mostly in the cases where the classes
are quite mixed, and hence, the NMC generates a consider-
able error.

5 Quantum classification procedure

In Sect. 4, we have shown that the NMC can be expressed by
means of quantum formalism, where each pattern is replaced
by a correspondingdensity pattern and theEuclideandistance
is replaced by the normalized trace distance. Representing
classical data in terms of quantum objects seems to be par-
ticularly promising in quantum machine learning. Quoting
Lloyd et al. (2013) “Estimating distances between vectors
in N -dimensional vector spaces takes time O(logN ) on
a quantum computer. Sampling and estimating distances
between vectors on a classical computer is apparently expo-
nentially hard”. This convenience has already been exploited
inmachine learning for similar tasks (Wiebe et al. 2015; Gio-
vannetti et al. 2008). Hence, finding a quantum algorithm for

pattern classification using the proposed encoding could be
particularly beneficial to speed up the classification process
and it can suggest interesting developments. However, they
are beyond the scope of this paper.

What we propose in this section is to exhibit some explica-
tive examples to show how, on a classical computer, our
classification procedure, based on the minimum distance,
gives additional information with respect to the standard
NMC.

5.1 Description of the quantum classifier (QC)

In order to get a real advantage in the classification process,
we need to be not confined in a pure representation of the
classical procedure in quantum terms. For this reason, we
introduce a purely quantum representation where we con-
sider a new definition of centroid. The basic idea is to define
a quantum centroid not as the stereographic projection of the
classical centroid, but as a convex combination of density
patterns.

Trivially, given two real points x and y, the point z =
1
2 (x+y) has the property tominimize the quantity dE (x, z)+
dE (z, y). In this case, dE (x, z) = dE (z, y) = 1

2dE (x, y).
Similarly, let us consider two density operators ρ and σ

and let τ = 1
2 (ρ + σ). It is straightforward to show that

dtr(ρ, τ ) = dtr(τ, σ ) = 1
2dtr(ρ, σ ). In fact, dtr(ρ, τ ) =

dtr(ρ, 1
2 (ρ + σ)) = 1

2

∑ |Eigenvalues(ρ − 1
2ρ − 1

2σ)| =
1
2

∑ |Eigenvalues( 12 (ρ − σ))| = 1
2 · 1

2

∑ |Eigenvalues(ρ −
σ)| = 1

2dtr(ρ, σ ). Analogously, we prove that dtr(σ, τ ) =
1
2dtr(ρ, σ ).

Following this argument, we reasonably introduce the fol-
lowing definition.

Definition 3 (Quantum centroid) Given a dataset {P1, . . . ,
Pn} with Pi = (xi , yi ), let us consider the respective set
of density patterns {ρ1, . . . , ρn}. The Quantum centroid is
defined as:

ρQC = 1

n

n∑
i=1

ρi .

Obviously, the reasonable ways to define a quantum version
of the classical centroid are not unique. We accord with this
definition because, as we show in the rest of the section, it
turns out to be beneficial in the reduction of the error during
some typical classification process. The reasons of this con-
venience are intuitively contained in the following argument.
Let us notice that ρQC is a mixed state that does not have any
counterpart in the standard pattern recognition. Indeed, the
quantum centroid may include some further information that
the classical centroid generally discards (Kolossa and Haeb-
Umbach 2011; Sause and Horn 2013). In fact, the classical
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A quantum-inspired version of the nearest mean classifier 697

Fig. 1 Comparison between the discrimination procedures for the
Moon dataset in R

2 (a) and in the Bloch sphere S
2 (Banana). Green

and blue points represent the two classes in the real space and in the
Bloch sphere, respectively. The straight line in b represents the classical

discriminant function given by (11); on the other hand, the plane that
intersects the Bloch sphere in b represents the quantum discriminant
function given by (12)

centroid does not involve all the information about the disper-
sion of a given dataset, i.e., the classical centroid is invariant
under uniform scaling transformations of the data. Conse-
quently, the classical centroid does not take into account any
dispersion phenomena. Standard pattern recognition com-
pensates for this lack by involving the covariance matrix
(Duda et al. 2000).

On the other hand, the quantum centroid is not invariant
under uniform scaling. In what follows, we show how the
general expression of the quantum centroid is dependent on
an arbitrary rescaling of a given dataset.

Let us consider the set of n points {P1, . . . , Pn}, where
Pi = (xi , yi ) and let C = (cx , cy) = ( 1n

∑n
j=1 x j ,

1
n

∑n
j=1 y j ) be the respective classical centroid. A uniform

rescaling of n points of the dataset corresponds to move
each point Pi along the line joining itself with C , whose
generic expression is given by: yxi = x−cx

xi−cx
(yi − cy) + cy .

Let P̃i = (x̃i , yx̃i ) be a generic point on this line. Obviously,
a uniform rescaling of Pi by a real factor α is represented by
the map: P̃i = (x̃i , yx̃i ) �→ α P̃i = (α x̃i , yα x̃i ). Even if the
classical centroid is not dependent on the rescaling factor α,
on the other hand the expression of the quantum centroid is:

ρQC = 1

n

⎛
⎜⎝

∑n
i=1

(α x̃i )2+(yα x̃i )
2

(α x̃i )2+(yα x̃i )
2+1

∑n
i=1

α x̃i−iyα x̃i
(α x̃i )2+(yα x̃i )

2+1∑n
i=1

α x̃i+iyα x̃i
(α x̃i )2+(yα x̃i )

2+1

∑n
i=1

1
(α x̃i )2+(yα x̃i )

2+1

⎞
⎟⎠

that, clearly, is dependent on α.

According to the same framework used in Sect. 4, given
two classes CA and CB of real data, let ρQCa and ρQCb

be the respective quantum centroids. Given a pattern P
and its respective density pattern, ρP , P is assigned to
the class CA (or CB) if dtr (ρP , ρQCa) < dtr (ρP , ρQCb)

(or dtr (ρP , ρQCa) > dtr (ρP , ρQCb), respectively). Let us
remark that we no longer need any normalization parame-
ter to be added to the trace distance dtr , because the exact
correspondencewith the Euclidean distance is nomore a nec-
essary requirement in this framework. From now on, we refer
to the classification process based on density patterns, quan-
tum centroids, and trace distances as the Quantum Classifier
(QC).

We have shown that the quantum centroid is not indepen-
dent from the dispersion of the patterns and it could contain
some additional informationwith respect to the classical cen-
troid. Consequently, it is reasonable to expect that in different
cases QC could provide some better performance than the
NMC. The next subsection will be devoted to the exploita-
tion of the difference between the classification procedures
by means of numerical simulations on different datasets.
Before presenting the experimental results, let us briefly
introduce the main statistical indices widely used to evaluate
the performance of a supervised learning algorithm.

In particular, for each class, it is typical to refer to the
respective confusion matrix (Fawcet 2006). It is based on
four possible kinds of outcome after the classification of a
certain pattern:

– True positive (TP): pattern correctly assigned to its class;
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698 G. Sergioli et al.

– True negative (TN): pattern correctly assigned to another
class;

– False positive (FP): pattern uncorrectly assigned to its
class;

– False negative (FN): pattern uncorrectly assigned to
another class.

According to above, it is possible to recall the following def-
initions use to evaluate the performance of an algorithm.4

True positive rate (TPR), or sensitivity or recall: TPR =
TP

TP+FN ; false positive rate (FPR): FPR = FP
FP+TN ; true nega-

tive rate (TNR): TNR = TN
TN+FP ; false negative rate (FNR):

FNR = FN
FN+TP .

Let us consider a dataset of C elements allocated in m dif-
ferent classes. We also recall the following basic statistical
notions:

– Error: E = 1 − TP+TN
C ;

– Precision: Pr = TP
TP+FP .

Moreover, another statistical index that is very useful to
indicate the reliability of a classification process is given by
the Cohen’s k, that is k = Pr(a)−Pr(e)

1−Pr(e) , where Pr(a) = TP+TN
C

and Pr(e) = (TP+FP)(TP+FN)+(FP+TN)(TN+FN)

C2 . The value of
k is such that−1 ≤ k ≤ 1, where the case k = 1 corresponds
to a perfect classification procedure and the case k = −1
corresponds to the worst classification procedure.

5.2 Implementing the quantum classifier

In this subsection, we implement theQCon different datasets
and show the difference betweenQCandNMCin terms of the
values of error, accuracy, precision, and other probabilistic
indices summarized above.
We will show how our quantum classification procedure
exhibits partial or significant convenience with respect to the
NMC on a classical computer.

In particular, we consider four datasets: Two of them (fol-
lowing Gaussian distributions) called Gaussian and 3Class-
Gaussian, where the first one is composed of 200 patterns
allocated in two classes and the second one is composed of
450 patterns allocated in three classes, and the other two,
called Moon and Banana, composed of 200 and 5300 pat-
terns (respectively) allocated in two different classes.

The experiments have been conducted by randomly sub-
dividing each dataset into a training set made up of 80% of
instances and a test set containing the remaining instances.
The results are reported in terms of averages of the computed
statistical indices over 100 runs of the experiments.

4 For the sake of the simplicity, from now on, we indicate
∑C

j=1 TP j
with TP. Similarly for TN, FP, and FN.

We denote the variables listed in the tables as follows: E =
Error; Ei = Error on the class i ; Pr = Precision; k = Cohen’s
k; TPR =True positive rate; FPR= False positive rate; TNR=
True negative rate; FNR = False negative rate. Let us remark
that i) the values listed in the table are referred to the mean
values over the classes; i i) in the casewhere the number of the
classes is equal to two, a pattern that is correctly classified as
belonging to a class corresponds to a pattern that is correctly
classified as not belonging to the other class; on this basis,
the mean value of TPR is equal to the mean value of TNR,
and similarly, the mean value of FPR is equal to the mean
value of FNR.

In order to provide a complete visualization of the dif-
ference between the two classification procedures, we also
represent in the figures below the results of both classifica-
tions by considering the whole dataset for both training and
test dataset.5

We stress that for some of the following datasets, theNMC
is clearly not the optimal classifier and there exist classifiers
that overcome it in terms of accuracy and performance. How-
ever, our aim in this context is confined the comparison of
two minimum distance classifiers (classical and quantum-
inspired version) trying to capture the main differences.

5.2.1 Gaussian dataset

This dataset consists of 200 patterns allocated in two classes
(of equal size), following Gaussian distributions whose
means are μ1 = (1, 1), μ2 = (2, 2) and covariance matrices
are Σ1 = diag(20, 50), Σ2 = diag(5, 5), respectively.

As depicted in Fig. 2, the classes appear particularly over-
lapped and theQC is able to classify a number of true positive
patterns that is significantly larger than the NMC. Hence, see
Table 1, the error of the QC is (about 20%) smaller than
the error of the NMC. In particular, the QC turns out to be
strongly beneficial in the classification of the patterns of the
second class. Moreover, the values related to accuracy, pre-
cision, and the other statistical indices also exhibit relevant
improvements with respect to the NMC.6

5.2.2 The 3ClassGaussian dataset

In this example, we consider an equally distributed three-
class dataset, consisting of 450 patterns. The classes are
distributed as Gaussian random variables whose means are
μ1 = (−3,−3), μ2 = (5, 5), μ3 = (7, 7) and covariance

5 This make sense because it can be seen that for all the datasets we
deal with, the classification error is very similar both with and without
splitting training and test sets.
6 Let us remark that there are some patterns correctly classified by
the NMC which are neglected by the QC. On this basis, exploiting
their complementarity, in principle it also makes sense to consider a
combination of both classifiers.
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A quantum-inspired version of the nearest mean classifier 699

Fig. 2 Experimental results obtained for the Gaussian dataset: a dataset used in the experiments, b classification obtained using NMC, c classifi-
cation obtained using QC

Table 1 Gaussian dataset
E E1 E2 Pr k TPR FPR

NMC 0.457 ± 0.065 0.409 ± 0.108 0.503 ± 0.096 0.544 0.085 0.544 0.456

QC 0.246 ± 0.064 0.291 ± 0.096 0.203 ± 0.088 0.756 0.502 0.753 0.247

matrices are Σ1 = diag(50, 100), Σ2 = diag(10, 5), and
Σ3 = diag(30, 70), respectively.

As for the two-class Gaussian dataset, the three classes
appear quite overlapped, and once again, the computation of
the error and the other statistical indices evaluated for both
QC and NMC shows that the first one is more convenient
especially for the classification of the first- and second-class
patterns (Table 2).7

7 In this case, by combining QC and NMC together, the mean error
decreases up to about 0.247 (±4.280).

5.2.3 The Moon dataset

This dataset consists of 200 patterns equally distributed in
two classes. In this case, we observe a mean error reduction
of about 4%. In particular, the classification error related to
the second class is very similar for both NMC and QC, while
we can note that the QC turns out to be particularly beneficial
in the classification of the first-class patterns (for which the
error decreases by about 10%).
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Table 2 3ClassGaussian Dataset

E E1 E2 E3 Pr k TPR FPR TNR FNR

NMC 0.358 ± 0.046 0.385 ± 0.085 0.422 ± 0.094 0.272 ± 0.077 0.651 0.462 0.640 0.179 0.821 0.360

QC 0.288 ± 0.045 0.296 ± 0.097 0.310 ± 0.084 0.259 ± 0.083 0.723 0.567 0.712 0.144 0.856 0.288

5.2.4 The Banana dataset

The Banana dataset presents a particularly complex distri-
bution that is very hard to deal with the NMC. Indeed, the
classification error we get by using the NMC is high and
we would not use it in practice. Anyway, as we have already
explained,we consider this particular dataset in order to show
the substantial difference between two approaches (i.e., min-
imum distance classifiers) having the same nature (Fig. 3;
Table 3).

This dataset consists of 5300 patterns unequally dis-
tributed between the two classes (2376 patterns belonging
to the first class and 2924 belonging to the second one). In
this case, the QC turns out to be beneficial in terms of all sta-
tistical indices and for both classes8 it exhibits a mean error
reduction of about 3% (Figs. 4, 5; Table 4).

Let us notice that, in accordance with the well known No
Free Lunch Theorem (Duda et al. 2000), even if the previ-
ous examples exhibit a (particular or partial) benefit of the
QC with respect to the NMC, in general there is no classi-
fier whose performance is better than all the others for any
dataset. This paper is focused on the comparison between
the NMC and the QC because these methods are exclusively
based on the pattern-centroid distance. Anyway, a wide com-
parison among the QC and other commonly used classifiers
(such as the LDA—Linear Discriminant Analysis—and the
QDA—Quadratic Discriminant Analysis) will be proposed
for future works, where also other quantum metrics (such as
the Fidelity, the Bures distance etc) instead of the trace dis-
tance and alternative definitions of quantum centroids will
be considered to provide an adaptive version of the quantum
classifier.

6 Geometrical generalization of the model

In Sect. 3, we provided a representation of an arbitrary two-
feature patternx in terms of a point on the surface of theBloch
sphereS2, i.e., a density operatorρx. A geometrical extension
of this model to the case of n-feature patterns inspired by
quantum framework is possible.

8 Similarly to the Gaussian case, also for the Banana dataset, the NMC
is able to correctly classify some points unclassified by the QC. Indeed,
by considering the combination of both classifiers, the mean error can
decrease up to 10%.

In this section, by generalizing the encoding proposed in
Sect. 2, we introduce a method for representing an arbitrary
n-dimensional real pattern as a point in the radius-one hyper-
sphere Sn , centered in the origin.

A quantum system described by a density operator ρ in
an n-dimensional Hilbert space H can be represented by a
linear combination of the n-dimensional identity I and n2−1
(n×n)-square matrices {σi } [i.e., generalized Pauli matrices
(Bertlmann and Krammer 2008; Kimura 2003)]:

ρ = 1

n
I + 1

2

n2−1∑
i=1

riσi , (16)

where the real numbers {ri } are the Pauli components of ρ.
Hence, by Eq. (16), a density operator ρ acting on an n-
dimensional Hilbert space can be geometrically represented
as a (n2 − 1)-dimensional point P = (r1, r2, . . . , rñ) in
the Bloch hypersphere S

ñ−1, with ñ = n2 − 1. Therefore,
by using the generalization of the stereographic projection
(Karlıǧa 1996), we obtain the vector x = (x1, x2, . . . , xñ−1)

that is the correspondent of P in Rn2−2. In fact, the general-
ization of Eqs. (2–3) is given by

SP(ñ) : (r1, r2, . . . , rñ) �→
(

r1
1 − rñ

,
r2

1 − rñ
, . . . ,

rñ−1

1 − rñ

)

= (x1, x2, . . . , xñ−1) (17)

SP−1
(ñ)

: (x1, x2, . . . , xñ−1)

�→
(

2x1∑ñ
i=1 x

2
i + 1

, . . . ,
2xñ−1∑ñ
i=1 x

2
i + 1

,

∑ñ
i=1 x

2
i − 1∑ñ

i=1 x
2
i + 1

)

= (r1, r2, . . . , rñ). (18)

Hence, by Eq. (17), a two-dimensional density matrix is
determined by three Pauli components and it can be mapped
onto a two-dimensional real vector. Analogously, a three-
dimensional density matrix is determined by eight Pauli
components and it can be mapped onto a seven-dimensional
real vector. Generally, an n-dimensional density matrix is
determined by n2−1 Pauli components and it can bemapped
onto an n2 − 2-dimensional real vector.

Now, let consider an arbitrary vector x = (x1, x2, . . . , xm)

with (n−1)2−1 < m < n2−2. In this case, Eq. (18) cannot
be applied because m �= n2 − 2. In order to represent a in an
n-dimensional Hilbert space, it is sufficient to involve only
m + 1 Pauli components (instead of all the n2 − 1 Pauli
components of the n-dimensional space). Hence, we need to
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Fig. 3 Experimental results obtained for the 3ClassGaussian dataset: a dataset used in the experiments, b classification obtained using NMC, c
classification obtained using QC

Table 3 Moon dataset
E E1 E2 Pr k TPR FPR

NMC 0.211 ± 0.057 0.212 ± 0.094 0.210 ± 0.076 0.789 0.572 0.789 0.211

QC 0.174 ± 0.047 0.118 ± 0.075 0.226 ± 0.079 0.831 0.649 0.828 0.172

project the Bloch hypersphere S
n2−2 onto the hypersphere

S
m . We perform this projection by using Eq. (18) and by

assigning some fixed values to a number of Pauli components
equal to n2 −m − 2. In this way, we obtain a representation
in S

m that involves m + 1 Pauli components and it finally
allows the representation of an m-dimensional real vector.

Example 2 Let us consider a vector x = (x1, x2, x3). By Eq.
(18), we can map x onto a vector rx = (r1, r2, r3, r4) ∈ S

3.

Hence,weneed to consider a three-dimensionalHilbert space
H. Then, an arbitrary density operator ρ ∈ Ω3 can be written
as

ρ = 1

3

(
I + √

3
8∑

i=1

riσi

)
(19)

with {ri } Pauli components such that
∑8

i=1 r
2
i ≤ 1 and {σi }

generalized Pauli matrices. In this case, {σi } is the set of eight
3 × 3 matrices also known as Gell-Mann matrices, namely

σ1 =
⎛
⎝0 1 0
1 0 0
0 0 0

⎞
⎠ , σ2 =

⎛
⎝0 −i 0
i 0 0
0 0 0

⎞
⎠ , σ3 =

⎛
⎝1 0 0
0 −1 0
0 0 0

⎞
⎠ ,
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Fig. 4 Experimental results obtained for the Moon dataset: a dataset used in the experiments, b classification obtained using NMC, c classification
obtained using QC

Table 4 Banana dataset
E E1 E2 Pr k TPR FPR

NMC 0.448 ± 0.017 0.425 ± 0.028 0.466 ± 0.021 0.554 0.107 0.554 0.446

QC 0.419 ± 0.015 0.387 ± 0.022 0.446 ± 0.023 0.583 0.165 0.584 0.416

σ4 =
⎛
⎝0 0 1
0 0 0
1 0 0

⎞
⎠ , σ5 =

⎛
⎝0 0 −i
0 0 0
i 0 0

⎞
⎠ , σ6 =

⎛
⎝0 0 0
0 0 1
0 1 0

⎞
⎠ ,

σ7 =
⎛
⎝0 0 0
0 0 −i
0 i 0

⎞
⎠ , σ8 = 1√

3

⎛
⎝1 0 0
0 1 0
0 0 −2

⎞
⎠ .

(20)

Consequently, the generic form of a density operator ρ in the
three-dimensional Hilbert space is given by

ρ = 1

3

⎛
⎝

√
3r3 + r8 + 1

√
3(r1 − ir2)

√
3(r4 − ir5)√

3(r1 + ir2) −√
3r3 + r8 + 1

√
3(r6 − ir7)√

3(r4 + ir5)
√
3(r6 + ir7) 1 − 2r8

⎞
⎠ .

(21)
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Fig. 5 Experimental results obtained for the Banana dataset: a dataset used in the experiments, b classification obtained usingNMC, c classification
obtained using QC

Then, for any ρ, it is possible to associate an eight-
dimensional Bloch vector r = (r1, . . . , r8) ∈ S

7. However,
by taking r j = 0 for j = 5, . . . , 8, we obtain

ρx = 1

3

⎛
⎝

√
3r3 + 1

√
3(r1 − ir2)

√
3r4√

3(r1 + ir2) −√
3r3 + 1 0√

3r4 0 1

⎞
⎠ (22)

that, by Eq. (18), can be seen as a point projected in S3,where

SP−1
(4) (x) = rx

=
(

2x1∑3
i=1 x

2
i + 1

,
2x2∑3

i=1 x
2
i + 1

,
2x3∑3

i=1 x
2
i + 1

,

∑3
i=1 x

2
i − 1∑3

i=1 x
2
i + 1

)
.

(23)

The generalization introduced above allows the representa-
tion of arbitrary patterns x ∈ R

n as points ρx ∈ S
n as a

natural extension of the encoding proposed in Sect. 2. Also,
the classification procedure introduced in Sect. 4 can be nat-
urally extended for an arbitrary n-feature pattern where the
normalized trace distance between two DPs ρa and ρb can
be expressed using Eq. (17) in terms of the respective Pauli
components as

d tr(ρa, ρb) =
√∑n

i=1[(rai − rbi ) − (rai ran+1 − rbi ran+1)]2
(1 − ran+1)(1 − rbn+1)

.

(24)

Analogously, also the QC could be naturally extended to a
n-dimensional problem (without loss of generality) by intro-
ducing a n-dimensional quantum centroid.
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7 Conclusions and further developments

In this work, we have proposed a quantum-inspired version
(QC) of the nearest mean classifier (NMC) and we have
shown some convenience of the QC by comparing them
on different datasets. Firstly, we have introduced a one-to-
one correspondence between two-feature patterns and pure
density operators by using the concept of density patterns.
Starting from this representation, firstly we have described
the NMC in terms of quantum objects by introducing an
ad hoc definition of normalized trace distance. We have
found a quantum version of the discrimination function by
means of Pauli components. The equation of this surface was
obtained by using the normalized trace distance between den-
sity patterns. Geometrically, it corresponds to a surface that
intersects the Bloch sphere. This result could be potentially
useful because it suggests to find an appropriate quantum
algorithm able to provide a quantum version of the NMC in
a quantum computer, with a consequent significative reduc-
tion in the computational complexity of the process (Lloyd
et al. 2013; Wiebe et al. 2015).

Secondly, a suitable definition of a quantum centroid that
does not have a classical direct correspondence permits to
introduce a quantum classifier, which can be considered as
a quantum-inspired version of the NMC, i.e., a minimum
distance classifier.

The main implementative result of the paper consists of
comparing the performance ofNMCandQCon datasetswith
different properties. In particular, we found out that the QC
may exhibit some better performance sensitive to the data
dispersion. Then, the QC seems to be promising for classi-
fying datasets whose classes have mixed distributions more
difficult to treat by using the NMC. This also suggests to
compare the QC with other standard classifiers as a further
development. Further developments will be devoted to com-
pare the QC with other commonly used classical classifiers.

Finally, we have presented a generalization of our model
that allows to express arbitrary n-feature patterns as points
on the hypersphere Sn , obtained by using the generalized
stereographic projection. However, even if it is possible to
associate the points of a n-hypersphere to n-feature patterns,
these points do not generally represent density operators. In
Kimura (2003), Jakóbczyk andSiennicki (2001),Kimura and
Kossakowski (2005), the authors found some conditions that
guarantee the one-to-one correspondence between the points
on particular regions of the hypersphere and density matri-
ces. A full development of our work is therefore intimately
connected to the study of the geometrical properties of the
generalized Bloch sphere.
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