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Abstract This work investigates a bio-inspired adaptive
sampling immune optimization approach to solve a general
kind of nonlinear multi-objective expected value program-
ming without any prior noise distribution. A useful lower
bound estimate is first developed to restrict the sample sizes
of random variables. Second, an adaptive racing ranking
scheme is designed to identify those valuable individuals in
the current population, by which high-quality individuals in
the process of solution search can acquire large sample sizes
and high importance levels. Thereafter, an immune-inspired
optimization approach is constructed to seek ε-Pareto opti-
mal solutions, depending on a novel polymerization degree
model. Comparative experiments have validated that the
proposed approach with high efficiency is a competitive opti-
mizer.

Keywords Immune optimization ·Multi-objective expected
value programming · Sample bound estimate · Adaptive
racing ranking · Computational complexity

1 Introduction

Multi-objective expected value programming (MEVP) is a
kind of stochastic programming with comprehensive engi-
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neering application background, involving multiple conflict-
ing expected value objective functions. Many real-world
problems can be formulated by MEVP models, such as
transportation logistics, project management, facility loca-
tion, healthcaremanagement, portfolio investment.Although
some achievements on single-objective expected value pro-
gramming and multi-objective programming were reported
(Jin and Branke 2005), less work on MEVP has appeared
in the literature, due to computational complexity and chal-
lenging difficulty. In particular, it is almost impossible to find
a Pareto optimal solution when noisy environments become
severe. The main challenge includes three points: (i) design-
ing adaptive sampling schemes with low computational
complexity; (ii) discriminating between individuals through
individual dominance; and (iii) studying efficient nondom-
inated sorting strategies in noisy environments. When the
conventional static sampling method, i.e., the same fixed
sample size for each individual, is adopted to handle noises,
there are two usual ways to cope with MEVP models (Gut-
jahr and Pichler 2016;Marler and Arora 2010; Hughes 2001;
El-Wahed and Lee 2006; Liu 2009): (i) translating them
into single-objective expected value ones solved by some
well-known methods such as the weighted sum approach
(Marler and Arora 2010; Hughes 2001) and goal program-
ming approaches (El-Wahed and Lee 2006; Liu 2009) and
(ii) replacing them by the related sample average approx-
imation models handled by multi-objective evolutionary
algorithms (MEAs) (Gutjahr and Pichler 2016). The first type
of approach is simple and easy to implement, but usually
can only find a single approximate Pareto optimal solution
in a run; the second type of approach can produce multiple
approximate solutions, but it easily causes high computa-
tional complexity.

When solving static multi-objective programming prob-
lems, traditional mathematical methods can only give poor
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performances usually, whereas the MEAs are an alterna-
tive and competitive tool and become increasingly pop-
ular (Deb 2002; Zitzler and Thiele 1999; Corne et al.
2001; Zhang and Li 2007). Some representative MEAs
based on Pareto dominance have been reported in the lit-
erature, such as nondominated sorting genetic approach
(NSGA2) (Deb 2002), strength Pareto evolutionary approach
(SPEAII) (Zitzler and Thiele 1999), Pareto envelope-based
selection approach (PESAII) (Corne et al. 2001), multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) (Zhang and Li 2007). Despite the advantages
of structural simplicity and strong availability, they also
face some difficulties when directly applied to MEVP prob-
lems, due to stochastic factors or noises. Even if so, some
reported multi-objective approaches in static environments
might solve such kind of problem by attaching static sam-
pling strategies, but it is inevitable that they cause high
computational complexity in the process of solution search.
Consequently, it is still desired to develop novel multi-
objective optimization approaches with efficient sampling
strategies.

We in this work suggest a multi-objective expected value
immune optimization approach (MEIOA) to solve general
nonlinear MEVP problems with unknown noise distribu-
tions. This approach, inspired by the principles of clonal
selection and immune regulation, is an adaptive optimiza-
tion tool with the merits of simplicity and practicability. It
includes mainly three modules of adaptive racing ranking,
immune evolution and archive set update. By compara-
tive experiments, we can draw a conclusion that MEIOA
presents significant superiority to the compared methods
and also prominent potential to complex nonlinear MEVP
problems. It is also pointed out that MEIOA is strongly dif-
ferent from any existing immune optimization techniques.
On the one hand, a new racing ranking approach in noisy
environments is developed to decide the importance of
individual; on the other hand, a useful sample bound esti-
mate is derived to control the dynamic sample size of
individual, while a novel polymerization degree model is
designed to pick up diverse and high-quality individuals
which participate in evolution. In particular, our previous
work (Zhang and Tu 2007b) also investigated one multi-
objective immune optimization approach (PDMIOA) with
static sampling. It is emphasized that such approach is
completely different from MEIOA, due to different design
inspirations. PDMIOA suppresses noisy influence on the
optimized qualities of solutions through individual aging
with a maximal lifetime and a reproduction scheme. It
includes a modified probabilistic dominance model used for
discriminating between low- and high-quality individuals.
However, since each individual is attached the same sample
size, PDMIOA is difficult in avoiding its high computational
complexity.

2 Related work survey

2.1 Noise handling approaches

When random variables are with known distributions, ana-
lytic formulas are usually adopted to replaceMEVP’s subob-
jective functions. Unfortunately, their noise distributions are
generally unknown in engineering applications, and hence
studies on model approximation are an alternative way to
find Pareto optimal solutions. Monte Carlo simulation as a
simple and useful sampling method is usually taken into
account, but it is difficult in deciding the sample sizes of
such random variables. In order to cope with noises, three
kinds of sampling approaches are adopted in general, i.e.,
static sampling (Zhang and Tu 2007b; Robert and Casella
2013), sample bound estimation (Shapiro et al. 2009;Hoeffd-
ing 1963) and adaptive sampling (Cantú-Paz 2004; Higle
and Zhao 2004; Chen 2003). Among these approaches, the
first is simple and available but usually causes high com-
putational complexity, as each individual is attached to the
same large sample size. The second can be used to con-
trol the sample sizes of the random variables, but needs
many mathematical theory foundations. For example, after
exhaustively discussing the relation between single-objective
expected value programming and its related sample average
approximation model, Shapiro et al. 2009 acquired a valu-
able lower bound estimate on sample size. They claimed
that one such estimate could make any δ-optimal solution
of the approximation model approach a corresponding ε-
optimal solution of the true problem with high probability.
The third can greatly reduce computational cost and is help-
ful to rapidly finding the optimum, and therefore, it becomes
increasingly popular in the context of stochastic optimiza-
tion. About the research on sampling termination conditions
of individuals, Cantú-Paz (2004) studied an adaptive sam-
pling technique to decide when to terminate the process
of sampling in terms of an one-sided t-test. He suggested
that such sampling method could dynamically determine the
sample size of individual and thus might reduce compu-
tational cost. Thereafter, Higle and Zhao (2004) examined
experimentally the difference between adaptive and non-
adaptive sampling schemes by using two approaches of
stochastic decomposition (SD) and sample average approx-
imation (SAA). Their results show that there exists little
difference between SD and SAA when only taking the qual-
ity of solution into account. However, such two methods
have different efficiencies, namely SAA causes high com-
putational complexity but SD does not. Additionally, in
order to identify whether an individual is superior to another
one, some researchers (Chen 2003; Lee et al. 2012) try
to investigate how to dynamically allocate a total sample
size to different individuals by means of special sam-
pling techniques. This can help excellent individuals obtain
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large sample sizes, and conversely poor individuals only
get few samples. For example, Chen (2003) developed an
efficient optimal computing budget allocation scheme to
determine the most important individuals in a given popu-
lation. The allocation scheme can allocate a given sample
size to different individuals among which better individu-
als can gain larger sample sizes, but usually it can be only
used in finding one or multiple best solutions. In our pre-
vious work (Zhang et al. 2013a; Zhang and Tu 2007a),
two adaptive sampling schemes were designed to provide
different individuals with different sample sizes, based on
the hypothesis test and a sample bound estimate. Such
schemes can find those valuable individuals in the process of
evolution.

2.2 Multi-objective immune optimization approaches

Since the end of the twentieth century, immune optimiza-
tion as an important branch of artificial immune systems
has become popular, as three famous artificial immune
models of negative selection, clonal selection and artificial
immune network (Aickelin et al. 2014) were originally pro-
posed based on immunology principles. Relying upon such
models, researchers developed a large number of immune
approaches to handle various kinds of optimization problems.
In particular, some researchers have paid great attention to
multi-objective immune optimization, for which the main
work concentrates on two aspects: (i) probing into origi-
nal multi-objective immune approaches (MOIAs) (Coello
and Cortés 2005; Gong et al. 2008; Qi et al. 2012; Lin
and Chen 2013) and (ii) developing hybrid multi-objective
immune techniques (Tan et al. 2008; Aydin et al. 2011; Gong
2013; Qi et al. 2015). Several valuable and original MOIAs
are drawing researchers’ interests in exploring new immune
techniques. For example,Coello andCortés (2005) suggested
a multi-objective clonal selection approach by virtue of the
concept of dominance and immune evolution inspirations.
They claimed that such approach could ensure those elitist
individuals to move toward the true Pareto front. Gong et al.
(2008) developed a new nondominated neighbor immune
approach (NNIA). In the approach, a novel nondominated
neighbor-based selection technique is constructed to pick up
diverse individuals, and meanwhile, several immune oper-
ators and heuristic search methods are chosen to ensure
that those survival individuals transform toward the desired
region and elitism. Lin and Chen (2013) proposed a valu-
able multi-objective micro-population immune optimization
approach, relying upon a novel adaptive mutation operator
and an efficient immune selection strategy; their adaptive
mutation operator can strengthen the exploratory capabil-
ity of boundary and less-crowded individuals. On the other
hand, some researchers devoted themselves to hybridMOIAs
by improving some existing techniques. For instance, Tan

et al. (2008) presented a multi-objective evolutionary arti-
ficial immune approach, which combined the evolutionary
approaches’ ability of global search with immune learning.
Depending on their new selection strategy and a density
preservation mechanism, the presented approach can main-
tain the balance between exploration and exploitation.

2.3 Intelligent optimization on MEVP

MEVP is a kind of extremely difficult uncertain program-
ming in the field of optimization. Some researchers made
great efforts to explore the possible potential of intelligent
approaches for this kind of problem. Their work mainly
focuses on investigating how to design new dominance
methods, noise handling techniques and efficient evolution-
ary methods. In this research, individual dominance as a
metric way of individual importance plays a role in iden-
tifying whether an individual is superior to another one
under uncertain environments (Hughes 2001; Trautmann
et al. 2009; Eskandari and Geiger 2009). Hughes (2001)
suggested a classical model of probabilistic dominance to
formulate the relation between individuals. Such model has
been comprehensively adopted by researchers who investi-
gate multi-objective expected value problems. Particularly,
Eskandari and Geiger (2009) introduced the concepts of
stochastic dominance and significant dominance to iden-
tify competitive solutions, and subsequently, a stochastic
fast Pareto genetic approach (FPGA) was designed to deal
with stochastic multi-objective optimization problems. Their
computational results showed that such approach was supe-
rior to NSGA2 (Deb 2002).

Since noise is a crucial factor to interfere the qual-
ity of individual evaluation during solution search (Bui
2005; Park and Ryu 2011; Phan and Suzuki 2012; Lee
2010), many researchers have paid great attention to how
to explore noise handling techniques. Bui (2005) exper-
imentally studied noisy influence on solution quality by
comparing the performances of probabilistic and resampling
methods related to NSGA2. They asserted that probabilistic
approaches could effectively find Pareto optimal solutions.
Park and Ryu (2011) proposed a new optimization technique
which mainly included three new operators of accumu-
lative sampling, ranking and selection. Their experiments
hinted that such approach performed well over several
multi-objective approaches, relying upon multiple kinds of
performance criteria. Another focus on solving single or
multi-objective expected value programming is to find an
appropriate way to accelerate the process of solution search.
Although many existing static multi-objective approaches
can also handle MEVP problems under the fixed sample
sizes of individuals, they are difficult in addressing various
kinds of complex MEVP problems with high dimensions or
unknown noise distributions, since their solution qualities
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depend greatly on sufficiently large and fixed sample sizes.
For instance, Drugan and Nowe (2013) developed a multi-
objective approach to solve the problem of multi-objective
multi-armed bandits in the field of reinforcement learning,
based on a standard upper confidence bound approach and a
Pareto dominance order relationship. Unfortunately, despite
being capable of solving themulti-objective problemdirectly,
such approach causes low performance efficiency. Addition-
ally, we have also investigated two immune-inspired multi-
objective optimization approaches to solve MEVP (Zhang
and Tu 2007b) and multi-objective chance-constrained pro-
gramming (Zhang et al. 2013b). They involve in several
design inspirations such as immune suppression, immune
selection, aging andprobabilistic dominance, inwhich a sam-
ple allocation technique is designed to assign large sample
sizes to high-quality individuals.

3 Problem statement and preliminaries

Consider the following multi-objective expected value pro-
gramming problem of the form:

MEVP min
x∈D

f (x) = E [ f1(x, ξ), f2(x, ξ), . . . , fq(x, ξ)],

with bounded and closed domain D in Rp, decision vec-
tor x in D, where ξ is a r -dimensional random vector with
unknown distribution; E [ f1(x, ξ), f2(x, ξ) . . . , fq(x, ξ)]
denotes the expected value vector function
(E [ f1(x, ξ)],E [ f2(x, ξ)], . . . ,E [ fq(x, ξ)]); E [.] is the
operator of expectation; f j (x, ξ) is the j th nonlinear stochas-
tic subobjective function. In order to seekMEVP’s solutions,
the concept of ε-dominance (Batista et al. 2011) is usually
picked up to execute solution comparison. In other words,
for two given candidates x, y∈D we say that x ε-dominates
y(x ≺ε y), if

E[ f j (x, ξ)] + ε ≤ E[ f j (y, ξ)], (1)

with 1 ≤ j ≤ q, and there exists k satisfying

E[ fk(x, ξ)] + ε < E[ fk(y, ξ)]. (2)

This way, x∗∈D is called an ε-Pareto optimal solution, if
there is no candidate z∈D such that z ≺ε x∗. In particu-
lar, for a given finite population A, x ∈ A is said to be
an ε-nondominated individual, if there is no individual y
in A such that y ε-dominates x. Similarly, the concept of
ε-dominance above may be naturally extended into the ver-
sion of β-dominance (Trautmann et al. 2009; Eskandari and
Geiger 2009) which will be used in identifying competi-
tive individuals. In other words, x β-dominates y with given
β = (β1, β2, . . . , βq) and βi > 0, if inequalities (1) and (2)

are true after replacing ε by β j and βk , respectively. Corre-
spondingly, x ∈ A is said to be a β-nondominated individual,
if there is no individual y in A such that y β-dominates x.

Generally, when ξ is with known distribution Fξ (z), each
of the above subobjective functions can be replaced by

E [ f j (x, ξ)] =
∫

z∈Rr

f j (x,z)dFξ (z), (3)

and hence the above MEVP can be changed into an analyt-
ically deterministic multi-objective programming problem.
However, in many practical problems, the noisy information
of ξ is unknown and accordingly, the model approximation
handling method is an alternative way to solve such kind
of problem. Sample average approximation is a simple and
popularmethod used in copingwith expected value program-
ming problems with unknown noise distributions. Therefore,
we use it to transform the above problem into the following
multi-objective sample average approximation model:

SAA min
x∈D f̂ (x) =

(
f̂1(x), f̂2(x), . . . , f̂q(x)

)
,

s.t., f̂ j (x) = 1

m

m∑
i=1

f j (x, ξ i ),

with 1 ≤ j ≤ q;m denotes the fixed sampling size; ξ i ,
1 ≤ i ≤ m, are the i.i.d samples of ξ . x is said to empirically
ε-dominate y (simply say x ≺ε̂ y) if satisfying f̂ j (x) + ε ≤
f̂ j (y) with 1 ≤ j ≤ q and f̂k(x) + ε < f̂k(y) for some k.
Similar to the version of ε- or β-dominance above, x is called
an ε- or β-empirical nondominated individual if there does
not exist any individual y in A such that y ε- or β-dominates
x empirically.

We easily know that the set of solutions for the above
problem SAA can approach that of the MEVP above when
m is sufficiently large according to the law of large number.
However, in such case any optimization method will cause
expensive computational cost. Consequently, we require that
different candidates be attached different sample sizes so as
to reduce the cost of computation. Hence, the above SAA
is transformed into the following multi-objective sample-
dependent approximation (SDA) model:

SDA min
x∈D f̂ (x) =

(
f̂1(x), f̂2(x), . . . , f̂q(x)

)
,

s.t., f̂ j (x) = 1

m(x)

m(x)∑
k=1

f j (x, ξ k), 1 ≤ j ≤ q,

wherem(x) is the sample size of ξ at the point x. We next cite
the following conclusions to help us design a novel racing
ranking approach to be used in deciding those competitive
individuals in a given population.
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Theorem 1 (Hoeffding’s inequality) (Hoeffding 1963). Let
X be a set, F(.) be a probability distribution function on X;
f1, . . ., fn denote the real-valued functions defined on X with
f j : X → [a j , b j ] for j = 1, . . . , n, where a j and b j are real
numbers satisfying a j < b j . Let x1, . . ., xn be the samples
of i.i.d random variables X1, X2, . . ., Xn on X, respectively.
Then, the following inequality is true:

Pr

⎛
⎝

∣∣∣∣∣∣
1

n

n∑
j=1

f j
(
x j

) − 1

n

n∑
j=1

∫
x∈X

f j (x)dF (x)

∣∣∣∣∣∣ ≥ ε

⎞
⎠

≤ e
− 2ε2n2∑n

j=1 (b j−a j)
2

. (4)

Corollary 1 (Hoeffding 1963) If X1, X2, . . ., Xn are i.i.d
random variables with a ≤ X j ≤ b, 1 ≤ j ≤ n, and mean
μ, then

∣∣X̄n − μ
∣∣ ≤ (b − a)

√
1

2n
ln

(
2

δ

)
, (5)

with probability at least 1 − δ, where X̄n = 1
n

∑n
j=1 X̂ j ;X̂ j

and δ denote the observation of X j and the significance level,
respectively.

4 Lower bound estimate theory

Wefirst investigate two lower bound estimates for the sample
sizes of random vector ξ , which can reflect the relationship
between two individual sets in a finite population Awith size
N . Then, an adaptive racing ranking approach is designed
to find β-empirical nondominated individuals in such pop-
ulation. In order to ensure each individual in A a rational
sampling size, we investigate lower bound estimates to con-
trol the value of m(x) with x ∈ A, based on the sample
average approximation model SAA. More precisely, let Aε

and Âε be two subsets in A composed of ε-nondominated
and ε-empirical nondominated individuals, respectively. We
next give the following conclusions for which the proofs can
be found in “Appendix 1”.

Lemma 1 Let f j (x, ξ) be uniformly bounded with 1 ≤
j ≤ q, namely there exists real number a and b such that
Pr{a ≤ f j (x, ξ) ≤ b} = 1 with ∀x ∈ D. Then, for any
x ∈ Aε and y ∈ Âε, the probability, which the event {y ≺ε̂ x}
occurs, satisfies

Pr{y ≺ε̂ x} ≤ 2e−mcε2 , (6)

where c = 1
2(b−a)2

.

Theorem 2 If f j (x, ξ) be uniformly bounded with 1 ≤
j ≤ q, the following formula holds,

Pr{Aε ⊆ Âε} ≥ 1 − 2N 2e−mcε2 . (7)

Corollary 2 Under the assumption of Theorem 2, Aε is a
subset of Âε with probability 1 − δ, if

m ≥ M1 ≡ 1

cε2
ln

2N 2

δ
. (8)

The above corollary shows that the lower bound estimate M1

depends on c, δ, ε, and in particular N 2. Once N is large, M1

is very large, and hence a large sample bound is needed to
control the sampling sizes of individuals in population A. If
so, such population will cause high computational complex-
ity. Therefore, we improve the above lower bound estimate
below.

Theorem 3 Under the assumption of Lemma 1, the follow-
ing formula holds,

Pr{ Âε ∩ Aε �= ∅} ≥ 1 − 2Ne−mcε2 . (9)

Corollary 3 Under Theorem 3, at least an ε-empirical non-
dominated individual in A is an ε-nondominated individual
with probability 1 − δ, if

m ≥ M2 ≡ 1

cε2
ln

2N

δ
. (10)

We can easily see that M2 is smaller than M1. This helps for
reducing the computational cost of deciding empirical objec-
tive values for individuals in A. Thereby,M2 is adopted in the
subsequent section to control the sample sizes of individuals.

5 Individual evaluation and similarity measure
model

5.1 Individual evaluation

As we mentioned above, a sufficiently large sample size can
make the empirical objective value approach the expected
objective value at a given individual, but the high compu-
tational complexity is inevitable. Fortunately, since those
inferior individuals will be gradually eliminated in the pro-
cess of solution search, it is not necessary to assign large
sample sizes to them. Conversely, since those high-quality
individuals are required to approach ε-nondominated solu-
tions gradually, their sample sizes should be large. Therefore,
in order to spend less computational cost to seek those
empirically nondominated individuals in a given population
A = {x1, x2, . . . , xN }, we develop a new adaptive racing
ranking approach (ARRA) to decide the β-empirical non-
dominated set of one such population, based on the reported
Hoeffding’s race approach (Even-Dar et al. 2006). The main
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task of ARRA includes two points: (i) Those superior indi-
viduals in A gain large sample sizes and (ii) those ε-empirical
nondominated individuals in A will be found gradually by
means of β-empirical dominance. More precisely, let s be
a sample increment; r(x) denotes the importance level for
x∈A. ARRA is formulated below:

Step 1: Input the parameters of ε and δ asmentioned above,
population A and empty set Q;

Step 2: Define initial sample size m0 and maximal impor-
tance level Rmax;

Step 3: Set m ← m0, τ ← 0, s ← m0, λ ← ln(1 + τ),
and Q ← A;

Step 4: Evaluate all the individuals in Q with the same
sample size m;

Step 5: Calculate the Hoeffding’s bound through Corol-
lary 1 given by

β j = (b j − a j )

√
1

2m
ln

(
2

δ

)
, 1 ≤ j ≤ q, (11)

where b j and a j denote the maximum and min-
imum of f̂ j (xi ) with xi ∈ A and 1 ≤ i ≤ N ,
respectively;

Step 6: Sort Q into Pnond and Pd , and set r(x) = τ with
x ∈ Pd , where Pnond consists of β-empirical non-
dominated individuals in Q and Pd is composed
of other elements in Q;

Step 7: Update τ ← τ + 1, λ ← ln(1 + τ), s ← λs, and
set Q ← Pnond;

Step 8: Update m ← m + s;
Step 9: Re-evaluate all the individuals in Q with the same

sample size m;
Step 10: Ifm < M2 and τ < Rmax, go to Step 5; otherwise,

set r(x) = τ + 1 with x ∈ Q;
Step 11: Output Q, A\Q and r(x) with x ∈ A.

In the above approach, Step 6 employs the nondominated
sorting (Zheng 2004) to determine the β-nondominated set
under sample size m, where the empirical objective values
of individuals in Q, instead of their expected objective val-
ues, are used to execute comparison between individuals. In
particular, each individual is attached an importance level.
Rmax and M2 control the sample sizes of individuals. With
the increasing sample size of m, β j will become small, and
thus those β-nondominated individuals will be found gradu-
ally. In other words, those valuable individuals in A will be
produced. Consequently, ARRA can determine those high-
quality individuals in A. Additionally, each individual in such
approach is evaluated at most M2 times. When executing β-
nondominated sorting, all individuals in Q are divided into
two subpopulations, in which in the worst case the com-
putational complexity is O(N log N ). Therefore, ARRA’s
complexity is given by O(N (M2 + log N )).

f1

f2

P1

P2
P

Q1

Q2

Q

Q1+Q2P1+P2

Fig. 1 Schematic illustration on individual’s similarity and importance

5.2 Similarity measure model

The well-known crowding distance method (Deb 2002)
is usually used to measure the similarity degree of a single
individual to other individuals in the objective space. Once
an individual has a large crowding distance, its neighbor-
hood includes few individuals. Whereas such method can
reflect some similarity features of all the individuals in pop-
ulation A, it cannot present any information on individual
quality. We here design a metric to emphasize the similar-
ity and importance for an individual in A. Precisely, let the
objective vectors of individuals in A appear in Fig. 1; P1 and
P2 are the two closest points of P; so are Q1 and Q2 for Q.
We easily see that P and Q have the same crowding distance
but different qualities. Since P1, P2 and P are close to the ori-
gin, we obtain that |S(P, P1+ P2)| < |S(Q, Q1+Q2)|, and
hence P is better than Q (take the problem of minimization
for example), where S(., .) and |.| represent the inner product
of two vectors and the absolute value of real number, respec-
tively. Thus, in order to measure whether an individual has
similar individuals in its neighborhood and whether it is of
high quality, we give the following polymerization degree
model (PDM),

PDM(x) = d(x)
S2(x, x1) + S2(x, x2)

, (12)

where x1 and x2 are the two closest points of x in A based on
the objective space and d(x) presents the crowding distance
of x. Notice that S(x, y) is the inner product of empirical
objective vectors of x and y. If x approaches the origin and
d(x) is large, we think preferably that it is a competitive
individual. Thus, Eq. (12) can be used to pick up those both
high-quality and diverse individuals in A, while prohibiting
more extreme individuals from being selected, e.g., those
individuals presented on the top left corner or on the lower
right corner.
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Fig. 2 Artificial immune model

6 Artificial immune model and algorithm
formulation

6.1 Artificial immune model

Adaptive immune response is usually triggered by invading
pathogens viewed as antigens (Ag), including the humoral
immunity and cell-mediated immunity mediated by B cells
and T cells (Owen et al. 2013), respectively. T cells can
be divided into several types, e.g., Th1, Th2, Ts and Tc,
according to their immune functions. Th1 cells can induce
the immune system to kill the infected target cells, whereas
Th2 cells can assist B cells to produce antibodies in order to
eliminate antigens in body fluid. Additionally, Ts and Th2
can regulate humoral immunity and cell-mediated immunity
so as to keep the balance of cell populations. When the anti-
gens invade the living body, B cells and T cells will conduct
an immune response process of activation, proliferation and
differentiation. In such process, antigen’s counter-specific
B cells and T cells will be selected to multiply for effec-
tors. These cells include cytotoxic T cells (Tc) and antibody
(Ab). Thereafter, some antigen-specific cells asmemory cells
stay at the immune system for a long time, while others take
place a change through somaticmaturation. Figure 2 presents
the relationship between different cells, while emphasizing
a simple learning and evolutionary process of immune cells,
which gives us sufficient bio-inspirations to study how to
design immune optimization approaches solving the MEVP
problem in Sect. 3.

6.2 Algorithm formulation

Inspired by Fig. 2 and immune metaphors, this section
formulates our new approach (MEIOA) in detail. As associ-
ated with the above problem SDA in Sect. 3 and the racing
ranking approach ARRA in Sect. 5.1, a real-coded candidate
solution is regarded as an antigen-specific B cell, and mean-
while the problem itself is viewed as the antigen; those best
solutions found until now correspond tomemory cells. Based

No
Yes

Input parameters

Initial population

ARRA

β-nondominated population β-dominated population

Memory pool update

Immune regulation

Elitist population Inferior population

Dynamical proliferation

Polynomial mutation

Population update

ARRA

Output memory cells

Uniform mutation

Termination?

Fig. 3 Flowchart of MEIOA

on the above ARRA and bio-immune inspirations, MEIOA
is shown in Fig. 3 above. It divides the current population
into superior and inferior subpopulations by ARRA. On the
one hand, the superior subpopulation consists of β-empirical
nondominated B cells which also update the memory pool
so that those elitist B cells can be reserved in the process of
evolution. One such subpopulation also transforms its ele-
ments toward the desired regions through proliferation and
mutation. On the other hand, the inferior subpopulation is
composed of β-empirical dominated B cells, in which each
B cell makes change only through uniform mutation. In the
whole process of solution search, the operator of immune
regulation is used to regulate the sizes of the two subpop-
ulations. Once the number of β-empirical nondominated B
cells is beyond a limited bound, some of them are regarded as
inferior B cells to enter the inferior subpopulation. MEIOA’s
detailed descriptions are as follows:

Step 1: Input parameters: population size N , memory pool
size M , initial sample size m0, tolerance factor ε,
significance level δ, high-quality solution ratioη%,
maximal clonal size Cmax, mutation weight μ and
maximal importance level Rmax;

Step 2: Set n ← 1. Generate an initial population An of N
random B cells, and initialize memory pool Mset ;

Step 3: Evaluate all the elements in An by ARRA, and
acquire the importance levels of B cells, and r (x)
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with x ∈ An ; divide An into two subpopulations
Bn and Cn , where Bn consists of β-empirical non-
dominatedBcells (in otherwords, their importance
levels are the highest) and Cn is composed of ele-
ments in An but not in Bn ;

Step 4: Copy elements inBn intoMset , and eliminate those
ε-empirical dominated B cells; if |Mset | > M , the
conventional crowding distance method is used to
remove those redundant cells;

Step 5: Calculate PDMvalues of B cells in An through Eq.
(12);

Step 6: If Bn includes at least η% of elements in An , those
elements in Bn with small PDM values move from
Bn to Cn ; subsequently, those B cells in Cn with
large PDMvalues are kept so that Cn includes only
r B cells with r = N − |Bn|;

Step 7: B cell x in Bn proliferates clonal subpopulation
Cl(x) with size cl(x) = min(r(x), Cmax); the
clones of all the B cells in Bn constitute clonal
population Dn ;

Step 8: B cell x in Dn changes its genes through polyno-
mial mutation with mutation rate pm(x) = μ +
(1 − μ)/(r(x) + rmax); B cell y in Cn mutates its
genes through uniformmutationwithmutation rate
pm(x) = μ+(1−μ)/(r(x)+1); all those mutated
B cells form En ;

Step 9: Evaluate all elements in En by ARRA;
Step 10: Execute comparison between themutated cells and

their parents. For each x in An , if x is inferior to
y by virtue of the version of β-dominance, x is
replaced by y, by which an updated population
An+1 is created, where y denotes the mutated cell
of x or the best of the mutated clones of it; if
the termination criterion is not satisfied, then set
n ← n + 1 and go to Step 3; otherwise, output the
cells in Mset.

In the above approach, Step 3 estimates the objective val-
ues of B cells and divides An into Bn and Cn . In Step 6, once
the size of Bn is beyond a limited bound, some elements in Bn

with small PDM values enter Cn , due to the requirement of
the diversity of population. Such two subpopulations evolve
toward different directions by Step 8. All the mutated B cells
are evaluated in Step 9 through ARRA.

7 Computational complexity and performance
criteria

7.1 Computational complexity

Based on the above approach description, MEIOA’s compu-
tational complexity is decided by Steps 4, 5, 8 and 9. We
acquire the following conclusion.

Theorem 3 MEIOA’s computational complexity in theworst
case is

Oc = O((N + M) log(N + M)

+ NCmax(M2 + p + NCmax)). (13)

Through Eq. (13), MEIOA’s complexity depends mainly on
N , M , M2, Cmax and p. We know that M2 helps the ARRA
suppress the noisy influence on high-quality individuals; M
is used to ensure that the solutions acquired by MEIOA have
satisfactory distributions. Consequently, in order to consider
MEIOA’s efficiency, N and Cmax take values as small as
possible, e.g., N = 30 and Cmax = 2.

7.2 Performance criteria

We here cite four reported criteria (Gong et al. 2008; Hu
2010) to execute algorithm comparison. Assume that two
Algorithms A and B execute only once on some optimiza-
tion problem, respectively. Correspondingly, they acquire
ε-empirical nondominated sets P and Q in sequence.

(A1) Coverage rate (CR). This can measure the difference of
the optimized qualities for A and B, defined as

CR(A,B)= |{x∈Q|∃y∈P,s.t.y≺ε̂x}|
|Q| . (14)

Obviously, 0 ≤ CR(A, B) ≤ 1. If CR(A, B) >

CR(B, A), A can achieve better solution search than
B. If CR(A, B) = 1, the solution quality gained by A
is absolutely superior to that obtained by B.

(A2) Coverage density (CD). This can formulate the distri-
bution performance of solutions in P , given by

CD = 1

|P| − 1

|P|∑
j=1

(d j − d̄)2, (15)

d j = min
j �=i,1≤k≤|P|

{∥∥x j − xk
∥∥ , xj, xk ∈ P

}
,

d̄ = 1

|P|
|P|∑
j=1

d j .

Equation (15) indicates that CD takes values within 0
and 1. If CD = 0, the solution set P is totally with
uniform distribution, and thus if CD is smaller, the dis-
tribution of the solutions in P is better.

(A3) Coverage scope (CS). This denotes the coverage width
of solutions in P , given by

CS = max
1≤ j,k≤|P|{

∥∥x j − xk
∥∥ , x j , xk ∈ P}. (16)

(A4) Convergence metric (CM). This is utilized to measure
how close the solution set P approaches P∗, where
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P∗ is the theoretical Pareto optimal solution set. CM is
defined by

CM
(
P∗, P

) = 1

|P∗|
∑
x∈P∗

dist (x, P), (17)

where dist (x, P) represents the Hausdorff distance
from x to P . It is clear that A is convergent if
CM(P∗, P) = 0. Therefore, the smaller the
CM(P∗, P), the better the convergence.

8 Experimental study

All experiments are executed on a Windows XP system
with CPU/3.50 GHz and 2.98 GB RAM by means of Visual
C++ platform. In order to analyze MEIOA’s intrinsic char-
acteristics, two evolutionary approaches [HEA (Zhang et al.
2015) and FPGA (Eskandari and Geiger 2009)] and three
immune optimization approaches [PDMIOA (Zhang and Tu
2007b), NNIA (Gong et al. 2008) and MAMMOIA (Hu
2010)] are selected to participate in comparison by means
of two benchmark test suites and one engineering exam-
ple. It is pointed out that, although NNIA and MAMMOIA
are not specially designed to solve stochastic programming
problems, they are still efficient and competitive in stochastic
environments. On the other hand, FPGA,HEA and PDMIOA
with static sampling strategies are developed to deal with
MEVP problems, and their individuals in this experiment
take the same reported sampling size 300. After manual
experimental tuning, MEIOA takes population size 30 but
100 for the compared approaches. In order to be fair, each
approach is required to stop its solution search procedure
when the total of evaluations in a run is beyond T , while exe-
cuting 100 times on each test problem. It is emphasized that
T is defined according to different kinds of problems below.
Other parameter settings of the compared approaches are the
same as those in their corresponding literature. In particu-
lar, in order to avoid noisy influence on solution comparison
between the above approaches, all the best solutions found by
them are required to re-evaluate 105 times, since their empir-
ical objective values are used to execute statistical analysis.

8.1 MEIOA’s parameter settings

In MEIOA, ε and δ do not depend on any prior information
on problems solving. The parameter ε as a factor of tolerance
takes values within 0.01 and 0.1 usually. δ used in deciding
M2 and the Hoeffding’s bound is the significance level pre-
sented in Corollary 2 above, changing within 0.05 and 0.2.
In addition, M ,Cmax and Rmax influence the optimized qual-
ity and efficiency. In order to acquire a set of solutions with
uniform distribution and wide coverage scope, M takes val-
ues within 60 and 100. Cmax is an important parameter to

strengthen the ability of population exploitation. We think
that it is rational to define Cmax within 1 and 3. η helps
for improving the quality of solution search, taking values
within 60 and 80 generally. Rmax is used to decide the max-
imal sorting level of individuals in the process of evolution.
If Rmax is large, ARRA spends much more runtime to decide
competitive individuals, and conversely those excellent indi-
viduals are identified difficultly.We designate it as 5. Further,
μ as a minimal mutation rate influences the solution quality
to be acquired; it takes values within 0 and 0.3. m0 is an
initial sample size of individual included in ARRA, taking
values within 10 and 60. After experimental trials, we define
M = 100, m0 = 30, η = 80, Cmax = 2, ε = 0.05, δ = 0.1
and μ = 0.1.

8.2 Theoretical test example design

In this experiment, nine static multi-objective benchmark
problems, proposed originally by Van Veldhuizen and Deb
et al. (1999, 2000), i.e., five test problems [MOP1, MOP2,
MOP3, MOP4 and MOP6 (Van Veldhuizen 1999)] and four
test problems [ZDT1, ZDT2, ZDT3 and ZDT4 (Zitzler et al.
2000)], are picked up to transform intoMEVP problems (see
“Appendices 2 and 3”) by, respectively, adding a Gaussian
noise with the standard normal distribution to their respec-
tive subobjective functions. Such MEVP problems are still
named by the same versions as their original ones and divided
into two sections. The first section, namely the first test suite,
includes the above former five test problems, while the other
test problems, i.e., the latter four test problems, constitute the
second test suite.

It is worth pointing out that in the first test suite, besides
MOP1 and MOP3 involving in at most two decision vari-
ables, other three examples are all three-dimensional prob-
lems.Whereas MOP1 is easily solved in that its subobjective
functions are quadratic, other test problems are handled diffi-
cultly because of multimodality. These examples are chosen
to check if the above approaches can all effectively solve
low-dimensional uni- and multi-modal expected value prob-
lems. Additionally, the test problems in the second test suite
are still difficult, since their Pareto fronts are composed of
disjoint curve segments. In order that the approaches can
present clear differences for one such test suite, our exper-
iment is executed on these problems according to different
dimensional settings, i.e., n = 30 and 80.

8.3 Experimental analysis on the first test suite

All the above approaches take the same maximal evalua-
tion number 2 × 105, among which each of the compared
approaches directly executes 100 single executions on the
sample average approximation model (SAA) of each test
example, and so does MEIOA on the sample-dependent
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Fig. 4 Comparison of results on CM based on box plots for problems MOP1 to MOP4. a MOP1, b MOP2, c MOP3, d MOP4

approximation model (SDA) of it. Based on the perfor-
mance criteria in Sect. 7.2, their statistical results are given in
Table 1. Additionally, we only take four examples, MOP1 to
MOP4, for example, to display the corresponding box plots
(see Fig. 4) on CM, because of the limit of space.

Table 1 presents the performance characteristics of the
above four approaches and also their main differences with
respect to evolution, noise handling, diversity, search stabil-
ity, solution distribution, execution efficiency and so forth.
By the statistical results on ACR in columns 3–8 and Fig. 4,
MEIOA can clearly acquire the best solution qualities for the
above examples, since there are always the following cover-
age relationships for any given test example:

ACR (MEIOA, PDMIOA) ≥ ACR (PDMIOA, MEIOA),

ACR (MEIOA, FPGA) ≥ ACR (FPGA, MEIOA),

ACR (MEIOA, HEA) ≥ ACR (HEA, MEIOA),

ACR (MEIOA, MAMMOIA) ≥ ACR (MAMMOIA, MEIOA),

and ACR (MEIOA, NNIA) ≥ ACR (NNIA, MEIOA).

These inequalities illustrate that MEIOA, relying upon the
proposed ARRA, can work well over the compared methods
and effectively overcome noise interference. For instance,
for MOP2 the nondominated sets found by MEIOA cover

averagely in order 41, 50, 43, 6 and 46% of those obtained
by NNIA, MAMMOIA, HEA, FPGA and PDMIOA; con-
versely, the latter five approaches can only gain smaller ACR
values in comparison with MEIOA. On the other hand, the
values on CR and Fig. 4 can ensure that PDMIOA behaves
well over the other compared approaches, since it only per-
forms worse for MOP2 and MOP6. We also notice that the
compared approaches except PDMIOA have similar solu-
tion qualities. As associated with the values on CS, we see
that the two evolutionary approaches FPGA and in particular
HEA indeed get easily into local search, whereas the immune
optimization approaches are opposite. In particular, although
NNIApresents the phenomenon of search instability, it is still
competitive for the above examples. Totally, with respect to
solution quality we claim that MEIOA is best, PDMIOA is
secondary, andNNIA andMAMMOIA are better than FPGA
and HEA.

Through the results on CD given in columns 9 to 12 in
Table 1, we note that the best solutions gained by the above
six approaches present different distribution characteristics.
For each test example, the solutions obtained byMEIOA can
almost uniformly and stably distribute over the theoretical
Pareto front, whereas all the compared approaches except
NNIA cause poor solution distributions for at least one test
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Table 1 Statistical comparison of ε-nondominated sets acquired for the first test suite

Prob. Algor. ACR (%) CD CS AT (s)

NNIA MAMMOIA HEA FPGA PDMIOA MEIOA Mean SD Mean SD

MOP1 NNIA 0 3 76 0 3 3 0.07 0.02 9.32 3.97 14.4

MAMMOIA 14 0 77 0 2 0 0.18 0.08 9.23 5.95 12.6

HEA 1 0 0 0 0 0 0.05 <10−2 0.10 0.16 15.1

FPGA 2 1 75 0 0 0 0.27 0.51 2.66 2.07 16.6

PDMIOA 12 2 77 0 0 1 0.04 <10−2 7.62 0.65 15.5

MEIOA 17 3 78 0 3 0 0.03 0.01 9.71 0.18 3.8

MOP2 NNIA 0 49 7 11 56 39 <10−2 <10−2 1.92 <10−2 14.3

MAMMOIA 16 0 9 7 31 18 <10−2 <10−2 1.92 <10−2 14.4

HEA 46 55 0 5 44 37 <10−2 <10−2 1.39 0.09 15.2

FPGA 3 2 0 0 7 4 <10−2 <10−2 0.02 <10−2 16.4

PDMIOA 21 56 5 1 0 16 0.02 <10−2 1.80 0.01 13.9

MEIOA 41 50 43 6 46 0 <10−2 <10−2 1.96 <10−2 5.2

MOP3 NNIA 0 56 4 6 6 6 0.20 0.04 44.94 11.4 14.2

MAMMOIA 48 0 4 1 2 3 3.75 28.53 43.47 13.6 14.0

HEA 36 3 0 0 0 3 8.84 163.43 10.54 79.7 14.8

FPGA 23 2 3 0 0 1 0.30 0.06 1.28 22.1 16.6

PDMIOA 74 14 8 8 0 7 2.45 100.04 40.96 5.67 15.9

MEIOA 78 26 7 7 7 0 0.23 0.04 48.34 4.00 8.2

MOP4 NNIA 0 47 2 16 23 20 0.32 0.06 16.60 3.53 15.2

MAMMOIA 25 0 4 2 2 4 0.93 0.48 15.59 5.41 15.0

HEA 20 50 0 0 7 6 0.31 0.63 1.33 0.60 16.2

FPGA 15 2 0 0 2 2 1.93 16.4 1.89 3.14 17.6

PDMIOA 69 28 7 20 0 16 0.37 0.21 17.01 0.06 15.1

MEIOA 64 29 8 18 17 0 0.25 0.06 17.50 2.01 7.9

MOP6 NNIA 0 12 14 6 34 7 <10−2 <10−2 1.65 0.54 14.6

MAMMOIA 26 0 9 5 8 8 0.45 0.31 1.90 3.22 14.9

HEA 75 5 0 13 36 9 0.58 0.87 1.50 2.06 15.9

FPGA 38 10 9 0 29 6 0.10 <10−2 1.20 0.10 16.9

PDMIOA 14 57 8 5 0 12 0.13 0.06 1.06 1.14 14.7

MEIOA 31 55 31 25 49 0 <10−2 <10−2 2.30 0.04 5.3

ACR(A, B) denotes the average of 100 coverage rates (CR) by Eq. (14) for Algorithm A versus Algorithm B; the symbols of CD and CS are
mentioned in Sect. 7.2; AT stands for the average runtime spent by a given algorithm
Each bold value denotes the best of results acquired by the approaches for a given performance index

problem. We also observe that those best solutions acquired
by NNIA are with relatively uniform and stable distribu-
tions by comparison against the other compared approaches.
Additionally, with respect to solution coverage scope, the
values on CS hint that HEA and in particular FPGA can
only find extremely crowding solutions with narrow cover-
age scopes and thus get easily into local search. The four
immune optimization approaches, however, can make their
individuals evolve along multiple directions and thus present
their strongpopulation diversity.With respect to performance
efficiency, the values onAT illustrate that, although the above
six approaches are with the same termination criterion when

solving the same test example, their performance efficiencies
are different. The compared approaches spend twice run-
time to solve each test problem in comparison with MEIOA.
We also know that these compared approaches have similar
performance efficiencies, and relatively PDMIOA is more
efficient.

As a whole, all the above comments can draw the conclu-
sions: (i) When solving the above first test suite, MEIOA can
averagely perform well with the aspects of solution quality,
solution distribution and coverage scope as well as perfor-
mance efficiency, (ii) PDMIOA behaves well over the other
compared approaches, while NNIA is also a still competitive
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Table 2 Statistical comparison of ε-nondominated sets found for the second test suite with dimension 30

Prob. Algor. ACR (%) CD CS AT (s)

NNIA MAMMOIA HEA FPGA PDMIOA MEIOA Mean SD Mean SD

ZDT1 NNIA 0 13 0 0 22 0 0.51 0.40 1.12 1.17 15.8

MAMMOIA 9 0 0 0 14 0 0.30 0.27 1.43 22.92 28.5

HEA 13 10 0 0 25 0 <10−2 <10−2 0.02 0.01 15.8

FPGA 70 38 0 0 24 9 <10−2 <10−2 1.23 0.28 17.2

PDMIOA 72 70 0 20 0 17 0.03 <10−2 1.62 1.07 14.6

MEIOA 96 79 0 31 30 0 <10−2 <10−2 1.73 0.02 6.3

ZDT2 NNIA 0 10 0 0 20 0 0.56 0.53 1.34 0.63 17.4

MAMMOIA 10 0 0 2 16 3 0.33 0.36 1.65 6.88 32.3

HEA 22 17 0 79 30 6 <10−2 <10−2 <10−2 <10−2 17.4

FPGA 18 10 0 0 28 2 0.34 0.61 1.54 1.16 18.8

PDMIOA 65 38 3 9 0 22 0.01 <10−2 1.59 0.87 16.1

MEIOA 89 20 8 4 30 0 <10−2 <10−2 1.81 0.02 7.0

ZDT3 NNIA 0 18 0 1 27 4 0.75 0.38 1.83 0.70 15.2

MAMMOIA 32 0 0 2 27 3 0.61 0.62 1.68 2.45 27.6

HEA 16 11 0 16 30 2 <10−2 <10−2 0.03 0.03 15.3

FPGA 23 18 0 0 29 10 0.22 0.47 1.46 1.60 16.4

PDMIOA 56 51 1 18 0 29 0.02 <10−2 1.90 1.64 14.2

MEIOA 40 38 5 11 42 0 <10−2 <10−2 2.08 0.31 5.1

ZDT4 NNIA 0 0 0 0 0 0 1.38 9.60 9.56 4.36 163.4

MAMMOIA 22 0 6 1 13 2 55.38 706.67 50.96 36.02 290.7

HEA 89 17 0 2 22 3 29.24 242.37 20.00 62.81 162.9

FPGA 86 83 40 0 82 17 13.49 51.40 9.58 15.40 174.7

PDMIOA 54 50 17 2 0 4 19.09 241.78 14.06 32.76 206.4

MEIOA 87 79 25 25 82 0 0.75 8.60 8.45 4.73 92.5

Each bold value denotes the best of results acquired by the approaches for a given performance index

approach, and (iii) compared by MEIOA, each of the com-
pared approaches spends much more than runtime to solve
each test problem above.

8.4 Experimental analysis on the second test suite

Let the test problems in such test suite share the same dimen-
sion 30 or 80. This is done to examine sufficiently whether
the above experimental conclusions are true when some hard
problems with higher dimensions are taken into account.
After manual trials, in the case of n = 30 we define the total
of evaluations for each approach as 2 × 105 for problems
ZDT1 to ZDT3 but 2 × 106 for ZDT4 because of difficulty.
When n = 80, however, we set T = 2 × 106 for the former
three problems, but T = 2 × 107 for the latter one prob-
lem. Like the above experiment, each compared approach
directly runs 100 times on the sample average approximation
model (SAA) of each of thoseMEVP problems, andMEIOA
executes 100 times on the sample-dependent approximation
model (SDA) of it.

Case 1: 30-dimensional experimental analysis
The results acquired by the above approaches are listed in

Table 2, and correspondingly, their box plots on convergence
metric CM are displayed in Fig. 5.

The values on ACR in Table 2 illustrate that, besides
the inequalities in Sect. 8.3 still being true, the solutions
obtained byMEIOA for each test problem cover greatly those
obtained by other approaches. For example, when solving the
hard ZDT4, we can clearly see that the solutions found by
MEIOA dominate averagely in order 87, 79, 25, 25 and 82%
of those acquired by NNIA, MAMMOIA, HEA, FPGA and
PDMIOA; conversely, these latter five approaches can only
gain smaller ACR values by comparison against MEIOA.
This indicates that ARRA presented in MEIOA can effec-
tively distinguish between individuals in noisy environments.
Additionally, FPGA behaves well over NNIA, MAMMOIA
and HEA, while PDMIOA and HEA are superior to NNIA
and MAMMOIA. Whereas the compared approaches can
acquire some nondominated solutions with relatively stable
distributions for problems ZDT1 to ZDT3, they fail to solve
ZDT4. In particular, it seems to be true that HEA is better
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Fig. 5 Comparison of convergence based on box plots for the second test suite with dimension 30. a ZDT1, b ZDT2, c ZDT3, d ZDT4

than either NNIA or MAMMOIA. In fact, the values on CS
hint that it is of poor population diversity and gets easily into
local search. In addition, although NNIA is not suitable for
ZDT4, we think that it is a still competitive optimizer.

The statistical results on Mean in CD andCS listed in
columns 9 and 12 inTable 2 follow that the solutions acquired
by MEIOA are with almost uniform distributions and wide
coverage scopes; the values on SD demonstrate sufficiently
that such approach can perform stable search for the above
problems. Other approaches, however, expose some weak
search performances when solving ZDT4. Namely, whereas
they can acquire some nondominated solutions with wide
coverage scopes in comparison withMEIOA, their values on
Mean and SD clearly show that their search performances
are extremely instable, which can also be found in Fig. 5.
In addition, the values on AT, listed in Table 2 derive that,
when solving each test problem, the compared approaches
spend twice runtime in comparison with MEIOA; MAM-
MOIA needs the most average runtime; the other compared
approaches have similar performance efficiencies.

Graphically, Fig. 5 displays some important and different
properties for the approaches. When solving each problem
above, those solutions obtained by MEIOA are very close

to the Pareto optimal front, as its box plot is very narrow
and near the horizontal line. Thus, MEIOA can present the
best effects for all the above test problems, whereas other
approaches are opposite. Most notably, by the experimental
results in Sect. 8.3 we know that PDMIOA is globally supe-
rior to the other compared approaches. This, however, is not
true in this experiment.

Case 2: 80-dimensional experimental analysis
The statistical results are listed in Table 3, andmeanwhile,

the corresponding box plots are shown in Fig. 6.
The results in Table 3 and Fig. 6 present some distinct

differences for the above approaches and expose somepromi-
nent drawbacks for the compared approaches. MEIOA can
still perform well over other approaches with the aspects of
solution quality, distribution, efficiency and so on. Although
the compared approaches can exhibit their stable search per-
formances for problems ZDT1 to ZDT3, they cause poor
solution search. Particularly, HEA still gets easily into local
search. Relatively, FPGA is more suitable for the above
high-dimensional problems in comparison with the other
compared approaches. NNIA and MAMMOIA are supe-
rior to PDMIOA and HEA. On the other hand, the values
on AT presented in Table 3 illustrate that the same conclu-
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Table 3 Statistical comparison of ε-nondominated sets found for the second test suite with dimension 80

Prob. Algor. ACR (%) CD CS AT (s)

NNIA MAMMOIA HEA FPGA PDMIOA MEIOA Mean SD Mean SD

ZDT1 NNIA 0 14 0 0 16 0 0.18 0.26 1.53 3.59 187.8

MAMMOIA 10 0 0 0 15 0 0.26 0.29 1.21 23.32 378.2

HEA 6 12 0 2 95 0 <10−2 <10−2 <10−2 <10−2 170.6

FPGA 67 29 0 0 83 10 0.01 <10−2 1.51 63.07 182.8

PDMIOA 0 0 0 0 0 8 0.46 0.85 0.72 2.05 221.7

MEIOA 86 44 0 28 60 0 <10−2 <10−2 1.68 1.02 60.0

ZDT2 NNIA 0 8 0 0 6 0 0.09 0.10 1.29 5.22 186.6

MAMMOIA 7 0 0 0 6 1 0.20 0.21 1.36 12.46 398.0

HEA 8 8 0 51 96 0 <10−2 <10−2 <10−2 <10−2 167.8

FPGA 11 7 0 0 89 1 0.46 9.27 0.26 1.04 177.9

PDMIOA 0 0 0 0 0 2 0.80 0.70 0.96 1.28 209.0

MEIOA 83 20 10 2 42 0 <10−2 <10−2 1.50 0.73 57.7

ZDT3 NNIA 0 17 0 0 20 0 0.26 0.46 1.28 1.36 188.7

MAMMOIA 42 0 0 0 26 3 0.49 0.35 0.88 1.07 380.3

HEA 5 13 0 7 56 1 <10−2 <10−2 0.02 0.02 170.9

FPGA 14 21 0 0 56 6 1.09 3.15 0.50 3.05 181.1

PDMIOA 4 4 0 0 0 0 0.15 0.15 0.37 0.61 221.9

MEIOA 28 35 7 9 63 0 <10−2 <10−2 1.38 1.52 59.5

ZDT4 NNIA 0 72 0 7 29 0 32.81 21.04 73.72 5.82 1800.7

MAMMOIA 16 0 26 2 12 0 92.56 322.2 10.15 17.70 3857.4

HEA 38 1 0 0 18 0 71.21 154.3 24.94 27.15 1755.3

FPGA 74 53 8 0 68 0 1.62 9.06 4.06 3.60 1903.1

PDMIOA 47 47 14 1 0 0 100.6 198.5 122.4 198.7 2284.5

MEIOA 98 84 72 91 92 0 0.27 0.82 5.95 2.87 1080.9

Each bold value denotes the best of results acquired by the approaches for a given performance index

sion on performance efficiency as that in Sect. 8.3 is also
true. Consequently, in comparison with the above exper-
imental results in Table 2, we can assert that MEIOA is
effective and efficient for the second test suite and FPGA
is secondary. The other compared approaches cannot present
stable search performances, when the dimensions make a
change.

Summarily, when solving the above two test suites, the
six approaches exhibit their respective performance charac-
teristics. For the simple uni-modal MEVP problem (MOP1),
whereas they can all find some approximate Pareto optimal
solutions in a single run, their nondominated sets present
different distribution characteristics. MEIOA can effectively
solve all the above problems with high efficiency, but other
approaches are difficult. Relatively, PDMIOA can perform
well over the other compared approaches for the first test
suite but fails to solve the second test suite. FPGA can work
well over the other compared approaches for the second test
suite but cannot do so for the first test suite; HEA can only
find local Pareto optimal solutions.

8.5 Experimental analysis on significant difference

We next detect whether MEIOA shows a significant
improvement over the above five compared approaches for
the above two test suites. By means of the average of con-
vergence metric values acquired by each approach for the
thirteen test problems, i.e., MOP1 to MOP4, MOP6, and
ZDT1 to ZDT4 with dimensions 30 and 80, we obtain
the statistical values of the Friedman rank and Friedman
aligned rank tests given in Table 4. As the table formulates,
with respect to solution quality MEIOA shows a significant
improvement over the compared approaches with signif-
icance level α = 5%; therefore, we can reject the null
hypothesis of error convergence metric for MEIOA versus
the other approaches. Table 4 also highlights that MEIOA is
the most effective algorithm with a rank of 1.00 and 20.77
for the Friedman and Friedman aligned tests, respectively.
In addition, since the statistical values 35.42 and 30.63 are
larger than 5.99 (X2

1−α/2 = 5.99), the above six approaches
have significant difference with respect to solution quality.
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Fig. 6 Comparison of convergence based on box plots for the second test suite with dimension 80. a ZDT1, b ZDT2, c ZDT3, d ZDT4

Table 4 Statistical comparison
of CM based on the Friedman
rank and Friedman aligned rank
tests

NNIA MAMMOIA HEA FPGA PDMIOA MEIOA Statistic

Friedman rank 2.92 3.92 4.85 4.38 3.92 1.00 35.42

Friedman aligned rank 33.54 42.08 49.00 48.23 43.38 20.77 30.63

8.6 Sensitivity analysis

We conduct the current experiment to check if MEIOA’s
solution quality is sensitive to the settings of parameters.
Here, only two parameters of m0 and μ are used to ana-
lyze MEIOA’s sensitivity. m0 as an initial sample size of
individual included in ARRA influences the efficiency of
solution search,whileμ as a crucial parameter can strengthen
the diversity of population and accelerate population evolu-
tion. We define (m0, μ) as (10k, 0.1(k − 1)) or (10(7 − k),
0.1(k −1)) with 1 ≤ k ≤ 6. Other settings of parameters are
the same as those in Sect. 8.1. After executing 100 runs on
MOP1 and MOP3 as well as ZDT1 and ZDT3 with dimen-
sion 30, MEIOA acquires the following statistical results on
CM in Table 5.

Table 5 illustrates that the settings of the two parameters
influenceMEIOA’s solution quality.Whenm0 is directly pro-
portional to μ with m0 > 10 and μ > 0, MEIOA are not
totally sensitive to the parameter settings in that its solution

quality is not influenced seriously. This phenomenon also
takes place in the case where m0 is conversely proportional
toμwithm0 < 60 andμ > 0.We also notice that, whenμ is
set as 0,MEIOA’s solution quality is poor, due to large values
on ACM for MOP1 and MOP3. Summarily, MEIOA is not
sensitive to the settings of m0 and μ, provided that m0 ≥ 20
and 0.1 ≤ μ ≤ 0.4. However, in order to take a trade-off
between effect and efficiency, we suggest that the two param-
eters take values with 30 ≤ m0 ≤ 40 and 0.1 ≤ μ ≤ 0.3.

8.7 Engineering application example

We examine further whether the above approaches can effec-
tively solve the machine tool spindle design optimization
problemwith noise. The original problem includes four deci-
sion variables, described by a static bi-objective model (Tan
et al. 2001). In order to examine the above approaches, we
transform such staticmodel into the followingMEVPmodel:
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Table 5 Comparison of ACM
values with different settings of
(m0, μ); ACM denotes the
average of 100 results on CM

(m0, μ) ACM (m0, μ) ACM

MOP1 MOP3 ZDT1 ZDT3 MOP1 MOP3 ZDT1 ZDT3

(10, 0) 0.21 1.58 0.05 0.07 (60, 0) 0.10 1.34 0.02 0.05

(20, 0.1) 0.14 0.47 0.03 0.06 (50, 0.1) 0.09 0.46 0.02 0.05

(30, 0.2) 0.11 0.40 0.03 0.05 (40, 0.2) 0.10 0.35 0.02 0.05

(40, 0.3) 0.11 0.31 0.03 0.06 (30, 0.3) 0.12 0.34 0.03 0.05

(50, 0.4) 0.11 0.27 0.05 0.06 (20, 0.4) 0.14 0.33 0.06 0.07

(60, 0.5) 0.12 0.22 0.28 0.08 (10, 0.5) 0.20 0.31 0.08 0.12

min E [ f1 (x, ξ) , f2 (x, ξ)]

f1 (x, ξ) = π

4

[
a

(
d2a − d20

)
+ l

(
d2b − d20

)]
+ ξ1,

f2 (x, ξ) = Fa3

3E Ia

(
1 + l Ia

a Ib

)
+ F

ca

[(
1 + a

l

)2

+caa2

cbl2

]
+ ξ2,

x = {da, db, d0, l} , 180mm ≤ l ≤ 200mm,

d0 ≤ db
1.25

, db ≤ da
1.05

, da ∈ {80, 85, 90, 95} ,

db ∈ {75, 80, 85, 90} , ca = 35400 |δra | 19 d
10
9
a ,

cb = 35400 |δrb| 19 d
10
9
b , Ia = 0.049

(
d4a − d40

)
,

Ib = 0.049
(
d4b − d40

)
,

E = 210000N/mm2, F = 10000N,

δra = 0.001, δrb = −0.001,

ξ1, ξ2 ∼ N (0, σ 2).

This is a difficult optimization problem, as both continuous
and discrete decision variables aswell as some constraints are
included. In this experiment, the six approaches take the same
maximal evaluation number 105; we examine their ability of
noise suppression by considering different settings of vari-
ance σ . Here, take σ = 0, 0.5, 1 and 1.5. Like the above
experiments, for a given value on σ each approach exe-
cutes 100 runs. Thereafter, the statistical values are shown
in Table 6 below. Take σ = 0.5 and 1.5 for example. We
only display the acquired nondominated fronts in Fig. 7, due
to the unknown Pareto front of such problem.

Through Table 6, it is obvious that the similar conclusions
to those in Sects. 8.3 and 8.4 can be drawn. More precisely,
whatever σ takes within 0 and 1.5, MEIOA can stably seek
some approximate solutions for each run, while Fig. 7 hints
that the nondominated fronts acquired by it are with rela-
tively satisfactory distributions and wide coverage scopes.
Thus, it can effectively suppress noisy influence on solu-
tion search quality. However, other approaches expose their
weak ability of noise handling and the poor diversity of pop-
ulation, as the solutions obtained by them depend greatly
on the amplitude of σ . It seems that their solutions found

are with uniform distributions, due to their small values on
Mean in CD. In fact, when σ takes a large value, the val-
ues on Mean in CS show that the compared approaches, in
particular HEA, can only find some solutions which cover
narrow regions, because their static sampling schemes result
that those high-quality individuals in a given evolving pop-
ulation cannot be effectively discriminated. In addition, we
easily see that MEIOA spends the least runtime to solve the
above problem and PDMIOA is secondary. We can clearly
emphasize that MEIOA is the best for the above problem.

9 Conclusions and further work

This work aims to investigate one multi-objective immune
optimization approach (MEIOA) solving a challenging topic
in the context of optimization-nonlinear multi-objective
expected value programming with unknown noise distribu-
tion. We first transform one such kind of multi-objective
programming into a sample average approximation model
with the same sample size for each candidate solution.
Second, this approximation model is extended into a sample-
dependent approximation model which the sample size of
each candidate depends on its quality.One suchmodel is used
to seek the desired approximate solutions. In order to reduce
MEIOA’s computational complexity, we study the relation-
ship between the theoretically best individual set and the
empirically best individual set included in a given popula-
tion. This derives out a useful sample bound estimate for
each individual. By means of one such estimate, a reported
Hoeffding’s inequality and an adaptive sampling rule, an
adaptive racing ranking approach (ARRA) is designed to
help MEIOA determine those empirically best individuals
presented in the current population. Additionally, a novel
metric criterion model, based on the well-known crowding
distance approach and the version of vector inner product is
constructed topickup someexcellent anddiverse individuals.
Thereafter, as related to the principle of the immune response,
some bio-immune inspirations are adopted to develop an
immune optimization mechanism which consists of ARRA,
proliferation, adaptive mutation and immune selection. The
theoretical analysis demonstrates that MEIOA’s computa-
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Table 6 Statistical comparison of ε-nondominated sets for the above engineering problem

σ Algor. ACR (%) CD ACS AT (s)

NNIA MAMMOIA HEA FPGA PDMIOA MEIOA Mean SD Mean SD

0 NNIA 0 31 2 5 28 1 <10−2 <10−2 1.22 0.01 1.9

MAMMOIA 5 0 0 1 4 0 0.41 0.11 1.19 0.06 2.2

HEA 14 12 0 0 14 1 <10−2 <10−2 <10−2 <10−2 1.8

FPGA 8 13 0 0 9 1 0.14 0.05 0.60 0.25 3.2

PDMIOA 22 18 1 5 0 2 0.02 <10−2 0.91 0.10 1.0

MEIOA 62 42 5 16 70 0 <10−2 <10−2 1.22 0.01 0.4

0.5 NNIA 0 20 2 9 15 32 0.02 <10−2 0.67 0.10 8.2

MAMMOIA 52 0 12 27 24 45 <10−2 <10−2 1.23 <10−2 8.5

HEA 8 4 0 23 10 4 0.01 <10−2 0.05 0.02 8.9

FPGA 14 10 4 0 10 15 0.04 0.01 0.21 0.09 9.7

PDMIOA 22 10 2 7 0 18 0.01 <10−2 0.18 0.02 7.4

MEIOA 60 65 6 16 34 0 <10−2 <10−2 1.36 <10−2 5.4

1.0 NNIA 0 20 3 12 11 25 0.03 <10−2 0.63 0.08 7.6

MAMMOIA 54 0 9 28 32 42 <10−2 <10−2 1.11 <10−2 7.8

HEA 6 3 0 22 8 3 0.01 <10−2 0.04 0.01 8.2

FPGA 9 7 6 0 10 8 0.01 <10−2 0.09 0.02 8.8

PDMIOA 12 7 0 4 0 11 0.01 <10−2 0.06 0.02 6.8

MEIOA 64 65 7 26 52 0 <10−2 <10−2 1.23 0.01 3.8

1.5 NNIA 0 21 2 5 15 17 0.07 0.01 0.62 0.09 7.5

MAMMOIA 52 0 9 25 22 37 <10−2 <10−2 1.20 <10−2 7.8

HEA 9 3 0 23 7 7 0.01 <10−2 0.04 0.02 8.2

FPGA 11 4 5 0 9 8 0.01 <10−2 0.07 0.02 8.8

PDMIOA 11 9 3 2 0 14 0.01 <10−2 0.08 0.02 6.8

MEIOA 43 57 12 11 32 0 <10−2 <10−2 1.30 0.02 4.8

Each bold value denotes the best of results acquired by the approaches for a given performance index

Fig. 7 Comparison of
nondominated fronts found by
the six approaches for the above
engineering problem. a σ = 0.5,
b σ = 1.5
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tional cost is decided mainly by Mand M2. By two test
suites of benchmark problems and an engineering example,
comparative experiments have illustrated that MEIOA is a
competitive optimizer and also performs well over the com-
pared approaches. The sensitivity analysis has indicated that
MEIOA is robust for nonlinear MEVP problems. However,
whereas we make some studies on how to explore immune
optimization to solve nonlinear MEVP, some issues will be
further studied. For example, its structures needs to be opti-

mized in the precondition of improving the solution quality,
while its engineering applications are to be further discussed.
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Appendix 1

Proof Lemma 1. In the case of x ∈ Aε, there exists at least a
subscription j0 satisfying that

E[ f j0(x, ξ)] + ε < E[ f j0(y, ξ)]. (18)

Hence, once f̂ j0(y) + ε ≤ f̂ j0(x), one can imply that

f̂ j0(y) + ε < E[ f j0(y, ξ)] − ε

2

or

f̂ j0(x) > E[ f j0(x, ξ)] + ε

2
.

Otherwise, by Eq. (18) we have that

f̂ j0(y)+ε ≥ E[ f j0(y, ξ)]− ε

2
> E[ f j0(x, ξ)]+ ε

2
≥ f̂ j0(x).

(19)

This yields contradiction. Consequently,

Pr
{
f̂ j0(y) + ε ≤ f̂ j0(x)

}
≤ Pr{ f̂ j0(y) < E[ f j0(y, ξ)]

−3ε

2
} + Pr{ f̂ j0(x) > E[ f j0(x, ξ)] + ε

2
}. (20)

Further, it follows from Eq. (20) and Theorem 1 that

Pr
{
f̂ j0(y) + ε ≤ f̂ j0(x)

}
≤ 2e−mcε2 . (21)

Thus,

Pr {y ≺ε̂ x} ≤
q∏
j=1

Pr
{
f̂ j (y) + ε ≤ f̂ j (x)

}
(22)

≤ Pr
{
f̂ j0(y) + ε ≤ f̂ j0(x)

}
≤ 2e−mcε2 .

The proof is completed. ��
Proof of Theorem 2. For a given x ∈ Aε, if x /∈ Âε, there
exists y ∈ Âε such that y ≺ε̂ x. Hence,

Pr{x /∈ Âε} ≤ Pr{∃y ∈ Âε, s.t.y ≺ε̂ x}
≤

∑
y∈ Âε

Pr{y ≺ε̂ x}, (23)

and accordingly,

Pr{Aε �⊂ Âε} = Pr{∃x ∈ Aεs.t.x /∈ Âε} (24)

≤ Pr{∃x ∈ Aε, y ∈ Âε, s.t.y ≺ε̂ x}
≤

∑
x∈Aε

∑
y∈ Âε

Pr{y ≺ε̂ x}.

Therefore, as related to Lemma 1 and Eq. (24), we can obtain
that

Pr{Aε ⊆ Âε} = 1 − Pr{Aε �⊂ Âε} ≥ 1 − 2N 2e−mcε2 . (25)

This finishes the proof. ��
The proof of Theorem 3. In the case of x ∈ Aε, we know
that

Pr{x /∈ Âε} = Pr{∃y ∈ Âε, s.t.y ≺ε̂ x} ≤
∑
y∈ Âε

Pr {y ≺ε̂ x}.

(26)

By Lemma 1, Eq. (21) implies that

Pr{x /∈ Âε} ≤ 2| Âε|e−mcε2 . (27)

Subsequently, we can easily obtain that

Pr{ Âε ∩ Aε = ∅} ≤
∏
x∈Aε

Pr{x /∈ Âε} ≤ 2Ne−mcε2 . (28)

Thereby, the conclusion is true. ��
The proof of Theorem 3. In Step 4, those β-dominated and
redundant B cells in Mset will be eliminated after copy-
ing Bn into Mset , for which the computational complexity
is O(|Mset | log |Mset |). In particular, it is possible that the
number of B cells in Mset is beyond (N + M). Thus, in the
worst case we can assert that the complexity of Step 4 is
O((N + M) log(N + M)). Step 5 needs to calculate PDM
values of elements in An ; more precisely, we need to calcu-
late their crowding distances with at most NCmax log NCmax

times and their values on Swith (NCmax+1)NCmax/2 times.
Step 8 executes mutationwith at most NpCmax times. In Step
9, the size of Bn ∪ En is at most NCmax. Thus, when ARRA
is enforced on Bn ∪ En , the complexity in the worst case is
O(NCmax(M2+log NCmax)) bymeans of the computational
complexity in Sect. 5.1. Summarily,MEIOA’s computational
complexity in the worst case is decided by

Oc = O ((N + M) log(N + M)) + O (NpCmax)

+O (NCmax(M2 + log NCmax)) + O((NCmax)
2)

= O ((N + M) log(N + M) + NCmax(M2 + p

+NCmax)) .

Therefore, the conclusion is right. ��

Appendix 2

See Table 7.
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Table 7 The first test suite (Van Veldhuizen 1999)

Problem Definition Constraints

MOP1 min E[ f1(x, ξ), f2(x, ξ)] x ∈= [−1000, 1000], ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

f1(x, ξ) = x2 + ξ1, f2(x, ξ) = (x − 2)2 + ξ2

MOP2 min E[ f1(x, ξ), f2(x, ξ)] m = 3, x1, . . ., xm ∈ [−4, 4], ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

f1(x, ξ) = 1 − exp(−�m
i=1(xi − m−1/2)2) + ξ1,

f2(x, ξ) = 1 − exp(−�m
i=1(xi + m−1/2)2) + ξ2

MOP3 max E[ f1(x, y, ξ ), f2(x, y, ξ )] x, y∈[−3.1416, 3.1416],ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

f1(x, y, ξ ) = −1 − (A1 − B1)
2 − (A2 − B2)

2 + ξ1, A1 = 0.5 sin 1 − 2 cos 1 + sin 2 − 1.5 cos 2

f2(x, y, ξ ) = −(x + 3)2 − (y + 1)2 + ξ2 A2 = 1.5 sin 1 − cos 1 + 2 sin 2 − 0.5 cos 2,

B1 = 0.5 sin x − 2 cos x + sin y − 1.5 cos y

B2 = 1.5 sin x − cos x + 2 sin y − 0.5 cos y

MOP4 min E[ f1(x, ξ), f2(x, ξ)] m = 3, x1, . . ., xm∈[−5, 5],
f1(x, ξ) = �m−1

i=1 (−10 exp(−0.2 × (x2i + x2i+1)
1/2)) + ξ1, ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

f2(x, ξ) = �m
i=1(|xi |0.8) + 5 sin(xi )3 + ξ2

MOP6 max E[ f1(x, y, ξ ), f2(x, y, ξ )] x, y∈[0, 1], q = 4, α = 2, ξ1 ∼ N (0, 1),ξ2 ∼ N (0, 1)

f1(x, y, ξ ) = x
+ ξ1, f2(x, y, ξ) = (1 + 10y)
× (1 − (x/(1 + 10y)))α

− x sin(2πqx)/(1+ 10y)) + ξ2

Appendix 3

See Table 8.

Table 8 The second test suite (Zitzler et al. 2000)

Problem Definition Constraints

ZDT1 min E[ f1(x, ξ), f2(x, ξ)] m = 30, x1, . . ., xm ∈ [0, 1],
f1(x, ξ) = x1 + ξ1, f2(x, ξ)

= g(x2, . . ., xm)h(x1, g(x2, . . ., xm)) + ξ2, x = (x1, . . ., xm),
ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

g(x2, . . ., xm) = 1 + 9�m
i=2 xi , h( f1, g) = 1 − (x1/g)1/2

ZDT2 min E[ f1(x, ξ), f2(x, ξ)] m = 30, x1, . . ., xm ∈ [0, 1],
f1(x, ξ) = x1 +ξ1, f2(x, ξ) = g(x2, . . ., xm)h(x1, g(x2, . . ., xm))+ξ2 ξ1 ∼ N (0,1), ξ2 ∼ N (0,1)

x = (x1, . . ., xm), g(x2, . . ., xm) = 1 + 9�m
i=2 xi , h( f1, g)

= 1 − (x1/g)2

ZDT3 min E[ f1(x, ξ), f2(x, ξ)] m = 30, x1, . . ., xm ∈ [0, 1],
f1(x, ξ) = x1 + ξ1, f2(x, ξ)

= g(x2, . . ., xm)h(x1, g(x2, . . ., xm)) + ξ2, x = (x1, . . ., xm),
ξ1 ∼ N (0, 1), ξ2 ∼ N (0, 1)

g(x2, . . ., xm) = 1 + 9�m
i=2 xi ,

h( f1, g) = 1 − (x1/g)1/2 − (x1/g) sin(10πx1)

ZDT4 min E[ f1(x, ξ), f2(x, ξ)] m = 30, x1 ∈ [0, 1], x2, . . ., xm ∈ [−5, 5], ξ1 ∼ N (0, 1),

f1(x, ξ) = x1 + ξ1, f2(x, ξ)

= g(x2, . . ., xm)h(x1, g(x2, . . ., xm)) + ξ2,x = (x1, . . ., xm),
ξ2 ∼ N (0,1)

g(x2, . . ., xm)

= 1+10(m−1)+�m
i=2(x

2
i −10 cos(4πxi )), h( f1, g) = 1−(x1/g)1/2
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