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Abstract Defect prediction models help software project
teams to spot defect-prone source files of software systems.
Software project teams can prioritize and put up rigorous
quality assurance (QA) activities on these predicted defect-
prone files to minimize post-release defects so that quality
software can be delivered. Cross-version defect prediction
is building a prediction model from the previous version of
a software project to predict defects in the current version.
This is more practical than the other two ways of building
models, i.e., cross-project prediction model and cross- valida-
tion prediction models, as previous version of same software
project will have similar parameter distribution among files.
In this paper, we formulate cross-version defect prediction
problem as a multi-objective optimization problem with two
objective functions: (a) maximizing recall by minimizing
misclassification cost and (b) maximizing recall by mini-
mizing cost of QA activities on defect prone files. The two
multi-objective defect prediction models are compared with
four traditional machine learning algorithms, namely logistic
regression, naive Bayes, decision tree and random forest. We
have used 11 projects from the PROMISE repository consist-
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ing of a total of 41 different versions of these projects. Our
findings show that multi-objective logistic regression is more
cost-effective than single-objective algorithms.

Keywords Cross-version defect prediction - Multi-
objective optimization - Search-based software engineering -
Misclassification cost - Cost-effectiveness

1 Introduction

Software project teams adopt various techniques such as test-
ing and expert reviews of software artifacts to improve qual-
ity. Due to limited resources and tight schedules, it may not
be possible to take up these activities on all files. The defect
prediction model predicts defect-prone files using trained
models built from the historical data. Software project teams
can prioritize and focus on rigorous QA activities of these
predicted defect-prone files to minimize post-release defects.
The defect prediction work has evolved in many different
directions like finding effective predictor metrics, efficient
prediction algorithms and performing defect prediction at
different granularity levels like method, file and project. In
the past, defect prediction models were built using process
metrics, product metrics or bug history of software systems.

Prediction models are built with training data, and they are
evaluated for performance on the testing data. In the litera-
ture, defect prediction models are built using three prediction
techniques that differ based on the source of training data
and testing data. The different prediction techniques are: (1)
cross-validation prediction: In this approach, training and
testing data are taken from the same version of a project. The
defect prediction models are built by taking 70% of data as
the training data and tested on remaining 30% of the data, or
by using tenfold cross-validation technique; (2) cross-version
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prediction: In this approach, the data of the previous version
of a software project are taken as the training data to build
prediction model and it is tested on the data of current ver-
sion of the same project; and (3) cross-project prediction:
The prediction models are built by taking data from differ-
ent projects as the training data and tested on the data of the
project under study.

It is our intuitive understanding that using data of the pre-
vious version of the same project is more appropriate and
can provide better results instead of using data from different
projects to build defect prediction models. The main architec-
tural or design characteristics of the project will remain more
or less the same across different releases. The pattern of bug
occurrences of the current version might also get influenced
by the bug occurrences in the previous version. Hence, for
predicting defect-prone files of the current version, the most
suitable training data are the data of previous version of the
same project. These factors motivated us to explore further
into cross-version defect prediction model.

Harman suggested that the defect prediction problem
can be viewed as a search problem, which can be solved
using evolutionary algorithms (Harman 2010). The defect
prediction problem can be formulated as a multi-objective
optimization problem with contrasting objectives. We have
attempted to solve two multi-objective defect prediction
problems with competing objective functions in cross-
version setup.

We formulate our first multi-objective defect prediction prob-
lem with the following contrasting objectives

— Maximize effectiveness of the model
— Minimize misclassification cost.

Effectiveness is the ratio of the number of components
correctly predicted as defective to the number of actual defec-
tive components (recall). The misclassification cost is the
cost incurred due to quality assurance activities required
on wrongly classified files, i.e., cost of reviewing/testing
the false-positive (predicted to be defective but not actually
defective) files and cost of the false- negative (predicted to be
non-defective but actually defective) files during post-release
phase. Ideally any good model attempts to minimize the mis-
classification cost and maximize the effectiveness of model.
Hence, we have chosen them as objective functions.

There are many evolutionary algorithms which can solve
multi-objective optimization problems. In this study, we have
used NSGA-II, a multi-objective genetic algorithm proposed
by Deb et al. (2000). Any multi-objective genetic algorithm
requires a fitness function that guides the search process to
find optimal or near optimal solutions. We have considered
logistic regression function as fitness function to find out cost
and effectiveness. Hence, we are denoting this approach as
multi-objective logistic regression (MOLR).
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We build a cross-version defect prediction model using
multi-objective logistic regression (MOLR) for our first
problem and this model is denoted by M1. We also build
prediction models using four traditional single-objective
algorithms, namely logistic regression, naive Bayes, deci-
sion tree and random forest. We try to answer the following
research question.

RQ;: How does the proposed M1 perform as compared to
traditional single-objective defect prediction models in the
cross-version defect prediction?

We formulate second multi-objective defect prediction prob-
lem with the following contrasting objectives.

— Maximize effectiveness of the model
— Minimize LOC cost.

Canfora et al. (2013, 2015) proposed this objective
function to solve multi-objective defect prediction problem
in cross-project setup. Effectiveness is the same as it is
defined in M1. The cost borne by project team to perform
review/test/any QA activity on all defect-prone files is taken
to be another objective. As the effort required is directly pro-
portional to the sum of lines of code of all defect-prone files,
cost is taken as the sum of lines of code (LOC) of all the
files which are predicted defective. This includes both true
positives (predicted to be defective and actually defective)
and false positives. Canfora et al. (2013, 2015) showed that
the multi-objective cross- project prediction is more cost-
effective than single-objective algorithms when there is lack
of training data for a project, which is true for relatively newer
projects. We consider these objective functions to implement
multi-objective defect prediction models across versions of
the same project.

We build cross-version defect prediction model using
multi-objective logistic regression (MOLR) for second prob-
lem, and this model is denoted by M2. We try to answer the
following research question.

R Q,: How does the proposed M2 perform as compared to
traditional single-objective defect prediction models in the
cross-version defect prediction?

We have used 11 software projects from the PROMISE
repository (Menzie et al. 2015), having a total of 41 differ-
ent versions to answer RQ1 and RQ2. We had 30 pairs of
training and testing versions. For each pair, we compared
multi-objective logistic regression with the traditional clas-
sification algorithms in terms of cost-effectiveness.

The rest of the paper is structured as follows. Related work
on defect prediction is discussed in Sect. 2. Datasets that con-
sist of features and projects used in experiments are discussed
in Sect. 3. We formulate problems in Sect. 4. And the process
of building prediction models with multi-objective algorithm
is discussed in Sect. 5. Experimental setup and analysis car-
ried out to compare MOLR with traditional algorithms are
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described in Sect. 5. Section 6 discusses the results and threats
to validity is explained in Sect. 7. Conclusions are presented
at the end.

2 Related work

Defect prediction models have been built using various sets of
static code attributes and process metrics. Metrics like lines
of code (LOC), Halstead, CK and OO, change metrics and
past bugs are mined from the code base, version control sys-
tem and bug trackers. They are used to predict defect-prone
files either within a project or across the projects. D’ Ambros
et al. (2010) tried to consolidate the defect prediction work,
using the metrics mentioned above. Though they found that
WCHU (weighted churn of source code metrics) and LDHH
(linearly decayed entropy of source code metrics) are bet-
ter performing metrics for defect prediction, they concluded
that there is not a single metric that predicts defect-prone
files well across software projects. But they agree to many
other past works which say that past bugs and source code
metrics are right alternatives in terms of overall prediction
and computational requirements. Researchers often say most
of the source code metrics are proxies of size. Zhang et al.
(2009) investigated the relationship between size of files and
defect, with an assumption that large code base may corre-
late with more defects. Their study concludes that the defect
proneness increased with the size of the classes, but they
suggested spending more resources on smaller classes which
were found to be more problematic than larger classes. Kim
et al. (2007) predicted defects using cached history. They
assumed that the defects will not occur alone, but rather in
bursts of several related faults. So they cached locations that
are likely to have bugs. Basili et al. (1996) found that CK
metrics are useful in finding defect proneness in early phases
of the software development. Subramanyam and Krishnan
(2003) showed that CK metrics are associated with defects
even after controlling for the size of the software. A few
other studies endorsed the defect prediction models built with
change metrics, as they gave better prediction performance in
classifying defect-prone files (Hassan 2009; Krishnan et al.
2011; Moser et al. 2008; Muthukumaran et al. 2015).

Apart from finding better prediction metrics, coming up
with competitive prediction techniques for defect predic-
tion is also an interesting research area. Classifiers such
as logistic regression, naive Bayes, decision tree, support
vector machine and random forest are applied by different
researchers in the past (He et al. 2013; Kamei et al. 2010;
Kim et al. 2007; Mende and Koschke 2009; Peters et al.
2013). Czibula et al. used relational association rule min-
ing to predict defective modules in software systems. Their
model, defect prediction using relational association rules
(DAPR) gives better predictive performance compared to the

existing defect prediction techniques (Czibula et al. 2014).
Marianetal. (2015) proposed unsupervised machine learning
method based on self-organizing maps which puts defective
and non-defective files in two clusters. Lessmann et al. per-
formed a comparative study on defect prediction experiments
with 22 classifiers applied on 10 public domain datasets from
NASA repository and concluded that though the metrics-
based classification was useful in this domain, the importance
of classification algorithm was not significant. They did not
find any significant performance difference between top 17
out of 22 classifiers used in the study (Lessmann et al. 2008).
But Ghotra et al. (2015) argue that by making use of cleaned
versions of NASA, PROMISE corpus and different classifi-
cation algorithms, it is possible to produce defect prediction
models with significant differences in performance.

With a perspective different from traditional approaches,
Harman suggested to reformulate the classic software engi-
neering problems as a search problem. This will help the
community in finding solutions to difficult problems with
competing constraints (e.g., quality, cost) (Harman 2010).
Harman and Clark (2004) showed that many metrics can be
used as the guiding force behind the search for optimal or
near optimal solutions to many software engineering prob-
lems. Taking a clue from Harman’s work, some researchers
have come up with multi-objective defect prediction tech-
niques. Canfora et al. (2013, 2015) proposed MODEP
(multi-objective defect predictor) based on multi-objective
forms of machine learning techniques, logistic regression
and decision tree, trained using genetic algorithm. Carvalho
et al. (2010) came up with multi-objective particle swarm
optimization (MOPSO), which generates a model composed
of rules with specific properties, which are intuitive and com-
prehensible.

Research studies mentioned above were focused on either
within project cross-validation or cross-project defect pre-
diction to build defect prediction models. According to our
understanding, there is not much comprehensive work done
on the defect prediction across multiple versions of a soft-
ware project. Zimmermann et al. (2007) showed that defect
prediction models learned from earlier releases can be used
to predict defects for future releases. For instance, the model
trained from release 1.0 can be used to predict defects in
release 2.0. But they concluded that their results were far
from being perfect. Yang et al. (2015) built a regression
model based on the data of previous version to predict defect
proneness of components in the current version and ranked
them based on their defect proneness. They compared many
traditional regression algorithms with their newly proposed
learning-to-rank (LTR) approach and concluded that LTR
performed better as compared to other algorithms. One of
the recent works in cross-version defect prediction found
that network measures are more effective in cross- version
defect prediction. But they conclude that it does not improve
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Table 1 Metrics (Canfora et al.

2015) Name

Description

Lines of code (LOC)

Weighted methods per class (WMC)

Coupling between objects (CBO)
Depth of inheritance (DIT)

Number of children (NOC)
Response for a class (RFC)

Lack of cohesion among methods (LCOM)

Number of non-commented lines
of code for each software
component (e.g., in a class)

Number of methods contained in a
class including public, private
and protected methods

Number of classes to which a class

is coupled

Maximum inheritance path from
the class to the root class

Number of immediate subclasses of a class

Number of methods that can be
invoked for an object of given

class

Number of methods in a class that
are not related through the
sharing of some of the class fields

the prediction performance in a bigger way, especially when
ranking fault-prone modules (Ma et al. 2016). Our work treats
cross-version defect prediction within a project as a multi-
objective optimization problem, with competing constraints
like cost and effectiveness. We have presented a comprehen-
sive comparison of multi-objective algorithm with traditional
algorithms. We have conducted experiments in a large num-
ber of projects with multiple releases, with the motivation of
providing more generalizable results.

3 Datasets and metrics

We are using six Chidamber and Kemerer metrics (CK) (Chi-
damber and Kemerer 1994) and LOC as features to build
defect prediction models. The choice of the metrics is based
on the fact that all projects used in our study are object-
oriented projects and CK metrics has been widely used as
quality indicators for object oriented softwares (D’ Ambros
et al. 2010; He et al. 2013; Herbold 2013; Jureczko and
Madeyski 2010; Peters et al. 2013). Table 1 gives brief
description about predictors used in our study.

We have considered 11 open-source projects that are hav-
ing data for 3 or more versions in PROMISE repository
(Menzie et al. 2015). The details of these versions, namely
number of classes and percentage of defective classes, are
presented in Table 2. As the table shows, different versions
of the projects have 109-965 classes with average number
of classes being 385. The choice of projects is done with a
view of evaluating performance of multi-objective algorithm
across projects having wide diversity, so that the results can
be generalized.
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Table 2 Projects under study

Project Version Number of classes % of Defective classes
Ant 1.3 125 16
1.4 178 22.47
1.5 293 10.92
1.6 351 26.21
1.7 745 22.28
Camel 1.0 339 3.83
1.2 608 35.53
1.4 872 16.63
1.6 965 19.48
Ivy 1.1 111 56.76
1.4 241 6.64
2.0 352 11.36
Jedit 32 272 33.09
4.0 306 24.51
4.1 312 25.32
4.2 367 13.08
43 492 223
Log-4j 1.0 135 25.18
1.1 109 33.94
1.2 205 92.19
Lucene 2.0 195 46.67
22 247 58.3
2.4 340 59.7
Poi 1.5 237 59.49
2.0 314 11.78
2.5 385 64.41
3.0 442 63.57
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Table 2 continued

Project Version ~ Number of classes % of Defective classes
Synapse 1.0 157 10.19
1.1 222 27.03
1.2 256 33.59
Velocity 1.4 196 75
1.5 214 66.35
1.6 229 34.06
Xalan 2.4 723 15.21
2.5 803 48.19
2.6 885 46.44
2.7 909 98.79
Xerces init 162 47.53
1.2 440 16.14
1.3 453 15.23
1.4 588 74.32

4 Formulation of multi-objective defect prediction
models

We formulate defect prediction problem as multi-objective
optimization problem with contrasting objectives. We pro-
pose two multi-objective prediction problems each with
distinct set of objective functions.

Most of the machine learning algorithms are single objec-
tive in nature. That is, their final goal is to estimate one
solution that minimizes the prediction error. For example,
logistic regression minimizes prediction error, i.e., root-
mean-square error (RMSE) where RMSE is defined as
follows,

RMSE = | (f(ci) —dp(ci))? (1

i=1

where f(c;) and dp(c;) take either 1 or 0, f(c;) represents
whether ¢; is defective class or not and dp(c;) represents
whether c; is predicted to be defective or not.

It is always good to have defect prediction models with
high recall so as to minimize post-release defects. And it is
easy to build models with recall value of 1. A dummy model
which predicts all files to be defect prone will have a recall
value of 1. But this model is of no use because recall is max-
imized without considering cost of misclassification. Hence,
we would like to view defect prediction problem as multi-
objective optimization problem rather than single-objective
optimization problem. There will be two types of costs
associated with defect prediction models. We will discuss
building multi-objective defect prediction models that max-
imizes effectiveness and minimizes cost(misclassification
cost/LOC cost) in the next two subsections.

4.1 Optimize misclassification cost and effectiveness

There are two types of errors for any prediction model. For
defect prediction problem, type I error is predicting non-
defective file to be defect prone and type Il error is predicting
defective file to be non-defective. In fact, the number of type
T errors and type II errors is number of false-positive files and
number of false- negative files, denoted by FP and FN. The
cost incurred due to Type I errors is the effort spent by project
team on quality assurance (QA) activities such as reviewing
and testing of false-positive files. The cost incurred to fix type
IT errors is the effort spent by project team to fix the defective
file in post-release phase.

Misclassification Cost = Costof Type I errors

+ Cost of Type I errors
(2)

It is evident that cost of type II error is much more than the
cost of type I error for our problem as fixing defective file
during post release phase takes huge effort as compared to
reviewing / testing a file before release. It is difficult to say
how much type I error is costly as compared to type II error.
Cost factor denotes how much is the cost of misclassifying a
defective class as non-defective compared to misclassifying
a non-defective class as defective. The cost factor o can be
written as follows:

o = Cost of Type Il error | Cost of Type I error
(3)

If cost of Type I error is c, then cost of Type 11 error is
ac.

Misclassification Cost = FPc+ (FN)ac (@)
‘We can normalize misclassification cost as follows:

Normalized Misclassification Cost
= (FP +a(FN))c/nClasses (5)

where nClasses is number of classes in given version. It
is always recommended to have defect prediction model
that maximizes the effectiveness and minimizes misclas-
sification cost. As nClasses and c are constants for a
project, minimizing the misclassification cost is same as
minimizing normalized misclassification cost. And mini-
mizing normalized misclassification is same as minimizing
(FP+a(FN))/nclasses. Hence, ¢ can be taken to be 1 for
these kinds of optimization problems. Now, we formulate
our first multi-objective defect prediction problem with the
following contrasting objectives.
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— maximize recall and minimize normalized misclassifi-
cation cost.

We take effectiveness of model to be recall, misclassifica-
tion cost as normalized misclassification cost where

TP
Recall = —— 6)
TP+ FN
. . e FP+oa-FN
Normalized Misclassification Cost = ————
nClasses
(N

4.2 Optimize cost of QA activities and effectiveness

In cross-version defect prediction, the defect-prone files of
the current version will be predicted by making use of pre-
diction models built using previous version data. The project
team performs QA activities on the files which are predicted
defective. The predicted defective files involve both TP and
FP. Hence, the cost incurred by project team is cost of QA
activities on TP and FP files. The cost of QA activities is
proportional to LOC of TP and FP files. Thus, cost is mea-
sured in terms of lines of code and effectiveness in terms of
recall. The main motive behind these objectives is to find set
of models such that they minimize cost of reviewing/testing
files while achieving best possible effectiveness. And among
these models, the most effective model can be selected based
on the cost borne by project team.

We formulate second multi-objective defect prediction prob-
lem with the following contrasting objectives.

— maximize recall and minimize LOC cost.

We take effectiveness of model to be recall, and it is the
same as defined in Eq. 6. We believe that the cost of QA
activities of defect-prone class(c;) is proportional to number
of lines of ¢;(LOC(c;)) and this is also confirmed by Rah-
man et al. (2012). We can find LOC cost using the following
equation,

LOC cost =ZP(C,~)~LOC(C,-) ®)
i=l1

where P(c;) denotes whether i'" class, ¢;, is defect prone or
not. P(c;) is set to 1 if the predicted probability p(c;) > 0.5,
otherwise it is set to 0.

5 Proposed approach
In this section, we illustrate our approach to build multi-

objective prediction models. Let C = {c1,¢2,...,c,} be
classes of a given version V. of a project P with each class
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having ‘m’ attributes. So training data take form of n x m
matrix. A matrix entry x; ; denotes the value of ;' " attribute
for i'" class. The mathematical formulation of logistic regres-
sion is given as,

ewo+w1xi_1+w2x,-,2+-~+wmxi,m

plci) = )

1 + eWotwixi1+waxi a4 +WpnXim

where p(c;) denotes probability of i’ class being defective,
while the set of scalars

W = {wg, wi, wa, ..., w,} represents the coefficients for
the attributes {x; 1, ..., x;,,}. The objective of traditional
logistic regression approach is to find out a set of coefficients
W = {wo, wi, w2, ..., w,} that minimize the prediction
error. It is usually done with the help of gradient descent
algorithm. This model is built using training data, and it is
used to predict defective classes in the test data. A class ¢;
is predicted to be defective if p(c;) > 0.5, based on the
coefficients found during training process and the metrics
{xi 1, Xi2, ooy Xim}e

The goal of multi-objective problem stated above is to find
out a set of coefficients W, which optimizes two objectives.
As there are two contrasting objectives, we will get multiple
models with different trade-offs between two objectives. This
problem of multi-objective optimization can be solved by
using genetic algorithm.

Now we briefly describe some basic concepts used to
solve multi-objective optimization problem. The definitions
are presented here for the sake of continuity. The set of all
possible values that can be taken by solutions is defined as
the feasible region. In our case, the set of values that can be
taken by the coefficients W forms the feasible region, which
is the set of real numbers, as there are no constraints on the
values that coefficients can take.

In multi-objective optimization problems, concepts of
Pareto dominance and Pareto optimality are used to define
the optimality of solutions (Coello et al. 2007). These terms
are defined for two contrasting objectives.

A solution x dominates another solution y (also written
x <p y) if and only if the values of the objective functions
satisfy the following conditions:

objectivel(x) < objectivel(y) and
objective2(x) > objective2(y)
or
objectivel(x) < objectivel(y) and
objective2(x) > objective2(y)

Let us assume that objectivel is the cost (LOC cost or mis-
classification cost) and objective2 is effectiveness (recall) of
a prediction model. In simple words, above definition indi-
cates that x is better than y if and only if, at the same level of
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cost x achieves greater effectiveness than that of y, or at the
same level of effectiveness x incurs lower cost than that of
y. A solution x is Pareto optimal if and only if it is not domi-
nated by any other solution in the feasible region. The set of
solutions (coefficient vectors W;) that are not dominated by
any other solutions is said to form Pareto optimal set, while
the corresponding objective vectors, cost and effectiveness
values of the solution set W, said to form Pareto frontier.

The final set of solutions on the Pareto frontier gives differ-
ent cost-effectiveness trade-offs. It is up to software project
team to decide upon how much amount of time (cost) they
can spend and then choose appropriate model. For example,
with one month away from the release, owing to shortage of
time, the software project manager typically needs to plan the
cost of quality assurance activities on topmost n% of defec-
tive components. The value of n can vary based on quality
requirements, cost borne by project and organization. In this
case, there is aneed of having amodel which can provide mul-
tiple solutions with different cost-effectiveness trade-offs. So
multi-objective approach presented here can be of great help
in similar situations.

To search for coefficient vectors in the solution space,
we have used a multi-objective genetic algorithm (MOGA)
presented by Goldberg (2006). In general terms, a genetic
algorithm works as follows:

— It starts with random set of solutions called population
of size p. Each individual in the population is known as
chromosome.

— The population evolves through set of iterations, known
as generations.

— From the given generation, new population called off-
spring is created using crossover and mutation opera-
tions. Crossover operator combines two individuals to
generate new offspring. Mutation operator modifies the
internal structure of an individual.

— A fitness function is applied on each individual of the cur-
rent population to find the values of objective functions.
From the current population, fittest set of p individuals
are selected to be part of next generation using a selection
operator. The fittest set of individuals are selected based
on their objective values. The selection process follows
the concepts of Pareto dominance and crowding distance.
This is done to keep the size of population as constant in
each generation.

— This process is repeated until termination criteria are met.

The intuition behind the genetic algorithm is that at the
end of every generation only the fittest set of individuals
make it to the next generation. So there is some improvement
in the solution at the end of every generation. After many
generations, the population approaches to an ideal solution
or approximately ideal solution.

In our implementation, we have used NSGA-II proposed
by Deb et al. (2000). For multi-objective logistic regression
used in our study, one chromosome represents the coefficient
vector W = {wg, wi, wa, ..., wy}, which forms one logistic
regression model. Initially, a process starts with a population
size of say p. For each model, the fitness function computes
the values of objectives. Based on the definition of Pareto
optimality and crowding distance, the best p set of coefficient
vectors are selected for the next generation. The process of
selecting best chromosomes depends on implementation of
multi-objective genetic algorithm. NSGA-II uses fast non-
dominated sorting algorithm and the concept of crowding
distance for selection process. Complete explanation of the
selection process, used in NSGA-II, is beyond the scope of
this paper. One can refer to the original paper by Deb et al.
(2000). The process of generating new population and selec-
tion of fittest set of individuals repeats in each iteration, until
optimal set of coefficients are found or maximum number of
generations are reached. At the end of training process, we
get optimal set of coefficients, i.e., logistic regression models.

5.1 Data preprocessing

We describe the steps required to build and evaluate the
prediction models built using single-objective and multi-
objective algorithms. We preprocess the data of training
version and testing version using data standardization. We
have used CK metrics (Chidamber and Kemerer 1994) and
lines of code (LOC) as predictor metrics. Since the values of
different metrics have different ranges, metrics are standard-
ized to reduce the heterogeneity. Mathematically, a metric m
is normalized as follows:

m(i,cj, Vi, P) — u(, Vi, P)

.1 .9V9P =
me(h. ¢jx Vie: P) o, Vi, P)

(10)

where m(i, cj, Vi, P) is the value of i th metric computed on
class ¢; of version Vi of project P. Mean (i, Vi, P) and
standard deviation o (i, Vi, P) have been calculated on all
the classes of version Vj of the project P for the i’ metric.
m(i, cj, Vi, P) is the normalized value of i metric. We
apply this normalization on data of both the training and
testing versions, while building and predicting the use of any
modeling technique.

5.2 Training process

1. We train MOLR for our first multi-objective optimization
problem as mentioned above on normalized data of the
training version Vi_1. At the end of training, we get mul-
tiple MOLR models and four single-objective models.
From the final set of MOLR models, we find out the best
model. The best model is the one which is closest to the
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ideal model. The ideal model has misclassification cost
=0 and recall = 1. We find the closest model with help of
Euclidean distance measure as shown in Algorithm 1. If
more than one models are equidistant to the ideal model,
then we chose the model with least misclassification cost.

2. We train MOLR for our second problem as mentioned
above and single-objective models on normalized data of
the training version Vj_;. At the end of training, we get
multiple MOLR models and four single-objective mod-
els. We retain all the MOLR models and apply it on the
data of the test version.

Algorithm 1 Algorithm to select best MOLR model among
several models of final population produced by genetic algo-
rithm.

function FINDBESTMODEL(X, train_data, o)

/* X is a p x (m + 1) matrix which represents set of coefficient
vectors obtained at the end of execution of multi-objective genetic
algorithm. Here p is the number of coefficient vectors in X (final
population) and m is the number of predictor metrics (6 CK metrics
and LOC).*/

/* train_data represents n X m matrix denoting predictor metrics
values for n classes in the training data.*/

/* a is the cost factor.*/

Y = CALCULATEMISCLASSCOSTRECALL(X, train_data, )

/* calculateMisclassCostRecall function will find out misclassifi-
cation cost and recall for each of the coefficient vectors in X based
on the current training data and the cost factor. Y is p x 2 matrix.*/

/* Initializing min_distance, max_recall, min_misclass_cost
variables to find out best model which is closest to ideal model with
misclassification cost 0 and recall 1. */

best_model_index < (—1)

min_dist < o0

min_misclass_cost < 00

max_recall < 0

for i=0 to p do
dist < SQRT((Y[i, 1% + (1 = Y[i, 2])?)
if dist < min_dist then
best_model_index < i
min_dist < dist
min_misclass_cost < Y[i, 1]
max_recall < Y[i,?2]

else if dist = min_dist & Y[i, 1] < min_misclass_cost
then
/* Choosing the model with lesser misclassification cost in
case the distance is same as current minimum distance */
best_model_index < i
min_dist < dist
min_misclass_cost < Y[i, 1]
max_recall < Y[i, 2]
end if
end for

best_model < X[best_model_index]
return best_model
end function
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5.3 Testing process

We illustrate testing process for both of our problems in this
subsection.

5.3.1 Testing process for M1

The best possible MOLR model and other four single-
objective models are applied on the data of test version. We
compare all the single objective algorithms with MOLR in
terms of misclassification cost, recall and F-measure.

Misclassification cost changes based on the value of cost
factor «. So, for both MOLR and single-objective algo-
rithms, misclassification cost is calculated each time cost
factor changes. For any model (single-objective or MOLR
model) misclassification, cost and recall can be calculated
as per Egs. 6 and 7. As recall is one of the objectives in
MOLR, its value changes based on cost factor. F-measure
is the harmonic mean of recall and precision. It denotes the
balance achieved by the model between recall and precision
values. This, in turn, shows how a model achieves the bal-
ance between false negatives and false positives. This is also
a useful measure to find out effectiveness of the prediction
model. For MOLR, F-measure changes as cost factor value
changes, recall being one of the objectives of MOLR. For
single-objective models, it remains the same. F-measure can
be calculated using the following equation.

2 - precision - recall
F — measure = P — (11)
precision + recall

As explained earlier, after choosing the best MOLR model
from the training process we apply it on the data of test ver-
sion. The evaluation measures (recall, misclassification cost
and F-measure) are calculated for the MOLR and single-
objective models.

We perform two-tailed Wilcoxon signed-rank test for each
pair of results between MOLR and other single-objective
algorithms to determine whether the following null hypoth-
esis can be rejected.

— Hpp: There is no significant difference between evalua-
tion measures of MOLR and single-objective models.

This comparison is different for all four single-objective
algorithms and for different cost factors. We have conducted
experiments with different cost factors—5, 10, 15, 20. One
can choose appropriate cost factor as required by project,
company and past experiences. For all the tests, the signifi-
cance level is assumed to be 0.05, i.e., probability of rejecting
the null hypothesis is 5%, when it should not be rejected.
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Fig. 1 Example showing selection of multi-objective objective model having same cost as single-objective model

5.3.2 Testing process for M2

From the training process, we get multiple models for
MOLR. In this approach, we apply all the training models on
the data of test version. We compare all the single-objective
algorithms with multi-objective algorithm in terms of LOC
cost and effectiveness. LOC cost and effectiveness can be
found using Egs. 6 and 8. After complete training and testing
process, we plot LOC cost and effectiveness obtained from
data of testing version on the same graph for comparison
purpose.

From the definition of Pareto dominance described in the
previous section, for each single-objective model, we try to
find out one MOLR model that has the same or lesser LOC
cost than that of the single-objective model. In particular, we
try to compare single- and multi-objective models in terms
of effectiveness at the same LOC cost that we have to spend
with the single-objective model. Figure 1 depicts the process
of selecting multi-objective model corresponding to single-
objective model, having same LOC cost as that of single
objective model. For the situation shown in Fig. 1, multi-
objective model has more effectiveness than single-objective
model.

Due to inherent randomness of NSGA-II algorithm, we
may not get a multi-objective model having the same LOC
cost as that of the single objective model. So we try to
find nearest multi-objective model having lesser cost than
single-objective model. We find out how multi-objective

model performs compared to the single-objective model by
spending lesser LOC cost than that to be spent with use of
single-objective model. The results show that multi-objective
model is more effective even at lesser LOC cost. One example
for this situation is depicted in Fig. 2. Here multi-objective
model has more effectiveness than single-objective model
even at lesser LOC cost than that of the single-objective
model.

For M2, we compare single-objective and multi-objective
models in terms of effectiveness. As explained above, we
find out MOLR model having same or lesser LOC cost as
compared to given single-objective model. After finding such
a MOLR model for each of the single objective algorithm,
we compare recall values of both the models. We find out
how much effective the MOLR model is compared to single
objective model at the same LOC cost.

To prove significance of the results statistically, we com-
pare recall values of MOLR and single-objective model using
two-tailed Wilcoxon paired test to determine whether the fol-
lowing null hypotheses could be rejected.

— Hop: There is no significant difference between recall
values of MOLR and single-objective predictors for
cross-version defect prediction at the same LOC cost.

This comparison is different for all four single-objective
algorithms. In other words, we find out closest multi-
objective model with respect to each single-objective models,
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Fig. 2 Example showing selection of closest multi-objective objective model having lesser cost than single objective model

using the process described above. For all tests, the signifi-
cance level is assumed to be 0.05, i.e., probability of rejecting
the null hypothesis is 5%, when it should not be rejected.

5.4 Implementation settings

MOLR isimplemented using MATLAB Global Optimization
Toolbox (MATLAB 2015). Other single-objective algo-
rithms are also implemented in MATLAB. The implementa-
tion settings are kept the same for all experiments and for both
the approaches, so that we can compare results in the same
conditions. Otherwise, one can choose appropriate parame-
ters according to project requirement.

The implementation details about single-objective algo-
rithms are as follows:

— Logistic Regression: gimfir function has been used
for logistic regression implementation. The distribution
parameter has been set to binomial and link parameter
has been set to logit.

— Naive Bayes: NaiveBayes.fit function has been used for
naive Bayes implementation. Implementation of naive
Bayes function requires unnormalized data as input. Rest
of the functions requires normalized data as described in
data preprocessing process (Sect. 5.1).

— Decision Tree: classregtree function has been used for
decision tree implementation. The method parameter has
been set to classification.
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— Random Forest: TreeBagger function has been used for
random forest implementation. The method parameter
has been set to classification. Number of trees (ntrees
parameter) has been set to 100. We experimented with
different number of trees and chose the one having the
least variation in results.

gamultiobj function has been used for NSGA-II implemen-
tation. Selection of parameters for NSGA-II implementation
has been done with reference to some of the previous stud-
ies like (Canfora et al. 2013, 2015; Coello et al. 2007; Krall
et al. 2015) and experimentation. For the parameters chosen
by experimentation, we have taken spread value, defined by
Deb, as the evaluation criteria (Deb 2001). Spread value gives
an indication of how well the solutions are spaced on the final
Pareto front. The greater the spread value, the better the solu-
tions on Pareto front. Krall et al. (2015) have also used spread
as one of the parameters to evaluate the multi-objective algo-
rithm proposed by them. Spread value has been calculated
on the Pareto fronts obtained after each run of NGSA-II on
the data of training version. The parameters that are used for
NSGA-II implementation are described in Table 3.

For the first multi-objective defect prediction problem
M1, NSGA-II algorithm has been executed 30 times dur-
ing training process. This is done to account for the inherent
randomness of GAs. After each run, we choose a best model
as described with algorithm 1. At the end of 30 runs, we take
best model among all 30 models obtained during each run.
This is also done with help of Algorithm 1, i.e., final logistic
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Table 3 Multi-objective genetic
algorithm parameter

configuration

Parameter Value

Population size 200

Initial population Random values between [—10,10]
Number of generations 500

Crossover function

Mutation function

Stopping criteria

Arithmetic crossover with crossover probability p. = 0.9

Uniform Mutation with probability
pm = 1/n where n is size of
chromosomes

If the average Pareto spread is
<107° in the subsequent 50
generations, then the execution
of GA is terminated

regression model is the one which is closest to ideal model
(0 misclassification cost, 1 recall) among all the 30 models
obtained in 30 runs. Final logistic regression model obtained
from the training process is applied on the data of the testing
version.

For our second problem, NSGA-II algorithm has been exe-
cuted 31 times during training process. The reason behind
choosing an odd number (31 runs) is to choose coefficient
vectors with respect to median Pareto front. We chose Pareto
front with median spread value as the final solution, i.e.,
the coefficient vectors corresponding to median spread value
among these 31 runs. These coefficient vectors represent final
logistic regression models obtained from the training process,
and these models will be applied on the data of the testing
version.

6 Results and discussion

We discuss the results obtained for both the multi-objective
defect prediction models and four single-objective
approaches in this section. We have conducted 30 exper-
iments in 11 projects among 41 versions. We have taken
projects which had at least 3 versions to put more strength
to cross-version study, with the hope of achieving more
generalizable results. Each experiment will be referred
as ‘project_name train_version-test_version.’ For example,
‘Ant 1.3—1.4° denotes that data of version 1.3 of Ant project
are used as training data and data of version 1.4 are used as
testing data. We use this notation to denote each experiment
throughout this section.

RQ: How does the proposed M1 perform as compared to
traditional single-objective defect prediction models in the
cross-version defect prediction?

In this section, we discuss about the results obtained from
our experiments and try to answer research question RQ.
As explained earlier, we compare the performance in terms
of misclassification cost, recall and F-measure.

We have built multi-objective defect prediction model
MOLR with cost factors being 5, 10, 15, 20, and the results
are presented in Tables 4, 5, 6 and 7, respectively. At the end
of training phase of MOLR, we will have the best possible
MOLR model that has (misclassification cost, recall) closest
to (0,1) as explained in Sect. 5.2. For each of the experiments,
misclassification cost and recall values of MOLR and four
single-objective prediction models are recorded. For each of
the experiment, we have boldfaced misclassification value
if it is the lowest among all other misclassification values.
Similarly, we have boldfaced recall value if it is the largest
among all other recall values. For example, misclassification
cost is the lowest and recall is the highest for MOLR for the
experiment ‘Ant 1.3—1.4" as shown in Table 4. And in this
scenario, we can always claim that MOLR is preferred to
other four single objective models.

From Table 4, we can observe that MOLR achieves
lesser misclassification cost and higher recall as compared
to other single objective algorithms in most of the experi-
ments. Overall, in 20 out of 30 experiments, MOLR achieve
better performance in terms of misclassification cost and
recall combined. As cost factor increases, the performance
of MOLR keeps improving. We can observe that, for the
cost factors 10, 15 and 20, MOLR model dominates 24, 25
and 28 out of 30 experiments, respectively, in terms of both
evaluation measures (misclassification cost and recall).

With increase in cost factors, FN file is penalized more
than FP file. Minimizing misclassification cost takes care
of controlling false-negative files in prediction, and hence,
recall improves. Hence, MOLR performs better than other
single-objective models with increase in cost factor value.

There are only 2 experiments, namely Ivy 1.1-1.4 and
Jedit 4.2—4.3, where MOLR is not able to achieve least mis-
classification cost. One of the reasons can be that the test
versions of both experiments have very few classes which
are actually defective.

For Camel 1.2-1.4,Ivy 1.1-1.4, Poi 1.5-2.0 And Velocity
1.5-1.6 experiments, recall values achieved by MOLR are 1.
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Table 4 Misclassification cost and recall comparison for & = 5

Project Train  Test MOLR LR NB DT RF
MC cost  Recall MC cost Recall MC cost  Recall MC cost  Recall MC cost  Recall
Ant 1.3 1.4 0.9551 0.3000 1.0169 0.1500 1.0674 0.1250  0.9719 0.2250 1.0843 0.1250
1.4 1.5 0.6894 0.9063 0.4676 0.1563  0.7884 0.6563  0.3686 0.5625  0.5256 0.1250
1.5 1.6 0.8262 0.4239 1.1225 0.1522 1.0342 0.2500 1.1909 0.1087 1.0712 0.1957
1.6 1.7 0.5557 0.8855  0.6765 0.4398  0.8040 0.3735  0.6832 0.5121 0.6268 0.5121
Camel 1.0 1.2 1.4227 0.2824 1.7516 0.0139 1.5526 0.1574 1.7204 0.0370 1.7549 0.0139
1.2 1.4 0.7924 1.0000  0.7397 0.1517  0.7144 0.2345  0.7592 0.3931 0.7099 0.4483
1.4 1.6 0.6705 0.7234  0.9098 0.0798  0.8860 0.1489  0.8642 0.2394  0.8342 0.1702
Ivy 1.1 1.4 0.9253 1.0000  0.5560 0.8125  0.4398 0.3125  0.6805 0.6875  0.6141 0.7500
1.4 2.0 0.3977 0.7750  0.4858 0.1750  0.5341 0.1250  0.5483 0.1250  0.5653 0.0250
Jedit 32 4.0 0.5784 0.8667  0.7745 0.4667 1.0523 0.2000  0.6928 0.5333  0.6569 0.5733
4.0 4.1 0.5064 0.8734  0.8237 0.3671 1.0417 0.2152  0.6058 0.6329  0.6795 0.5063
4.1 4.2 0.4823 0.9375  0.3924 0.5417  0.5259 0.3125  0.3760 0.8542  0.4005 0.6042
4.2 43 0.3862 0.6364  0.1077 0.4546  0.1240 0.2727  0.1728 0.3636  0.1280 0.3636
Log4j 1.0 1.1 0.5780 0.7568  0.9083 0.4865  0.9908 04595  0.6147 0.6757  0.7798 0.5676
1.1 1.2 1.3854 0.7090  3.5659 0.2275 3.2488 0.2963 3.4732 0.2487  3.7122 0.1958
Lucene 2.0 22 0.6559 0.9028 1.7692 04236 22915 0.2292 1.7692 0.4306 1.5830 0.4861
2.2 24 0.4412 0.9803  0.7265 0.8670  2.2353 0.2906 1.1676 0.6897  0.9147 0.7636
Poi 1.5 2.0 0.8599 1.0000  0.8567 0.5946  0.6879 0.3243  0.8280 0.7838  0.8280 0.8919
2.0 2.5 2.5403 0.2581  3.1351 0.0282  2.8649 0.1169  2.9558 0.0927  2.9870 0.0766
2.5 3.0 0.3778 0.9893  0.6538 0.8577  2.5317 0.2135 1.1380 0.7011 0.8869 0.7829
Synapse 1.0 1.1 0.9505 0.4167 1.3514 0.0000 1.0991 0.4333 1.1486 0.1667 1.2072 0.1167
1.1 1.2 0.7344 0.7791 1.3594 0.2093 1.5352 0.1279 1.1836 0.3488 1.2930 0.2558
Velocity 1.4 1.5 0.5701 0.9225  0.6729 0.8873 1.4112 0.6620  0.8037 0.8451 0.6121 0.9085
1.5 1.6 0.6332 1.0000  0.5721 0.9615 1.2882 0.3205  0.6900 0.8590  0.5852 0.8718
Xalan 2.4 2.5 1.2304 0.5736  2.2864 0.0543 2.1644 0.1137  2.1270 0.1344  2.2379 0.0801
2.5 2.6 0.5356 0.9903 1.4147 0.4453 2.0362 0.1484  0.8429 0.7348 1.1119 0.6034
2.6 2.7 0.7701 0.8463  3.3333 0.3252  3.6084 0.2695 2.6095 0.4733 2.7393 0.4454
Xerces 1.0 1.2 0.8295 09718 0.7614 0.4085  0.8932 0.4507  0.7159 0.2535  0.7591 0.3380
1.2 1.3 0.7550 0.6232 0.7174 0.0580  0.6313 0.3188  0.7638 0.1739  0.7395 0.1449
1.3 1.4 1.9711 0.4783  3.4201 0.0801 3.1207 0.1625 3.1667 0.1510  3.4456 0.0732
Average 0.7603 0.3625 0.2774 0.4346 0.4005

This means MOLR is able to identify all the defective classes
accurately.

F-measure is the harmonic mean of recall and precision,
and it explains how the model is balanced against false pos-
itives and false negatives. For each value of cost factor—S5,
10, 15, 20, F-measure achieved by the respective models
is reported in Table 8. And also F-measure of four single-
objective prediction models is also shown in the same table.
F-measure of MOLR models is relatively better than other
single-objective algorithms.

For Xalan 2.6-2.7 experiment, F-measure is greater than
0.9 for all values of cost factors. Unlike other experiments, F'-
measure does not always increase with increase in cost factor.
We can observe that on an average, for different values of
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cost factor, MOLR achieves better F-measure as compared
to four single-objective prediction models.

Wilcoxon signed test is applied to test whether MOLR
model is significantly better than single-objective optimiza-
tion model. If p value is <0.05, we can conclude that MOLR
is significantly better than the single-objective prediction
model. For each evaluation measure (recall, misclassifica-
tion cost, F-measure) and cost factor value (5, 10, 15, 20),
the MOLR model is tested to check whether it is significantly
better than the four single-objective prediction models. And
p values are shown in Table 9.

From the results, one can observe that p value is <0.05
for all evaluation measures and cost factors. In fact, for com-
parison in terms of recall value, p value is zero for all the
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Table S Misclassification cost and recall comparison for o = 10
Project Train  Test MOLR LR NB DT RF
MC cost  Recall MC cost  Recall MC cost  Recall MC cost  Recall MC cost  Recall
Ant 1.3 1.4 1.4326 0.5000 1.9719 0.1500  2.0506 0.1250  1.8427 0.2250  2.0506 0.1250
14 1.5 0.7509 0.9688  0.9283 0.1563  0.9761 0.6563  0.6075 0.5625  0.9727 0.1563
1.5 1.6 0.7664 0.8261  2.2336 0.1522  2.0171 0.2500  2.3590 0.1087  2.1538 0.1848
1.6 1.7 0.6349 09157  1.3007 0.4398  1.5020 0.3735 1.2268 0.5121 1.0966 0.5482
Camel 1.0 1.2 2.5707 0.3287  3.5033 0.0139  3.0493 0.1574  3.4309 0.0370  3.4885 0.0185
1.2 1.4 0.7947 1.0000  1.4450 0.1517 1.3509 0.2345 1.2638 0.3931 1.0940 0.4621
1.4 1.6 0.6984 0.9362 1.8062 0.0798 1.7150 0.1489 1.6052 0.2394  1.6435 0.1702
Ivy 1.1 1.4 0.8755 1.0000  0.6183 0.8125  0.6680 0.3125  0.7842 0.6875  0.7261 0.8125
1.4 2.0 0.4773 0.8000  0.9545 0.1750  1.0313 0.1250  1.0455 0.1250  1.0938 0.0500
Jedit 32 4.0 0.6993 0.8800  1.4281 0.4667  2.0327 0.2000  1.2647 0.5333 1.1078 0.6133
4.0 4.1 0.7115 0.8861  1.6250 0.3671  2.0353 0.2152  1.0705 0.6329  1.2468 0.5317
4.1 42 0.5995 09583  0.6921 0.5417  0.9755 03125  0.4714 0.8542  0.5886 0.6458
4.2 4.3 0.4817 0.6364  0.1687 0.4546  0.2053 0.2727  0.2439 0.3636  0.1850 0.4546
Log4j 1.0 1.1 1.0183 0.7568  1.7798 0.4865  1.9083 0.4595 1.1651 0.6757  1.5138 0.5676
1.1 1.2 2.4341 0.7407  7.1268 02275  6.4927 0.2963  6.9366 0.2487  7.4683 0.1905
Lucene 2.0 22 0.9393 0.9028  3.4494 0.4236  4.5385 02292 3.4292 0.4306  3.2186 0.4653
22 24 0.5294 0.9754  1.1235 0.8670  4.3529 0.2906  2.0941 0.6897  1.6794 0.7537
Poi 1.5 2.0 0.8822 1.0000  1.0955 0.5946  1.0860 0.3243  0.9554 0.7838  0.8758 0.8919
2.0 2.5 4.3818 0.3427  6.2649 0.0282  5.7091 0.1169  5.8779 0.0927  6.0104 0.0686
2.5 3.0 0.4887 09715  1.1063 0.8577  5.0317 0.2135  2.0882 0.7011 1.6176 0.7758
Synapse 1.0 1.1 1.6757 0.4500 2.7027 0.0000  1.8649 0.4333 22748 0.1667  2.3604 0.1333
1.1 1.2 0.9453 0.8488  2.6875 0.2093  3.0000 0.1279  2.2773 0.3488  2.5078 0.2674
Velocity 1.4 1.5 0.5187 09718  1.0467 0.8873  2.5327 0.6620  1.3178 0.8451  0.8178 0.9225
1.5 1.6 0.6419 1.0000  0.6376 09615  2.4454 0.3205  0.9301 0.8590  0.7860 0.8718
Xalan 24 2.5 1.9738 0.6408  4.5654 0.0543  4.3001 0.1137  4.2130 0.1344  4.4060 0.0904
2.5 2.6 0.5458 0.9951  2.7028 0.4453  4.0136 0.1484  1.4588 0.7348  1.8000 0.6545
2.6 2.7 0.3311 0.9677  6.6667 03252 7.2167 0.2695  5.2112 0.4733  5.5006 0.4432
Xerces 1.0 1.2 0.8500 09718  1.2386 0.4085 1.3364 0.4507  1.3182 0.2535 1.1818 0.4085
1.2 1.3 1.0088 0.6812  1.4349 0.0580  1.1501 0.3188  1.3929 0.1739  1.4062 0.1304
1.3 14 3.1412 0.5835  6.8384 0.0801  6.2330 0.1625  6.3214 0.1510  6.8912 0.0732
Average 0.8146 0.3625 0.2774 0.4346 0.4161

experiments. Even for misclassification cost, p value is zero
for the cost factor greater than or equal to 10. This shows that
MOLR is working quite dominantly. As p value is <0.05 for
all evaluation measures and cost factors, we can easily reject
null hypothesis Hpi. This confirms domination of MOLR
over single-objective prediction models.

RO, How does the proposed M2 perform as compared to
traditional single-objective defect prediction models in the
cross-version defect prediction?

In this subsection, we discuss about results of our exper-
iments to answer our second research question RQ,. As
explained earlier, we compare the performance of MOLR
and four single objective prediction models in terms of cost
and recall.

Atthe end of the training phase of building multi-objective
defect prediction model, there are several models with vary-
ing cost and effectiveness. As described in Sect. 5.3.2, for
each single objective prediction model we select the clos-
est multi-objective model having the same or lesser LOC
cost. We find out how effective (in terms of recall) the multi-
objective model is compared to single objective model at the
same or lesser LOC cost.

The comparative results of single-objective logistic regres-
sion model and the corresponding multi-objective prediction
model are shown in Table 10. We also report LOC cost dif-
ference along with recall difference of two models since we
compare effectiveness at the same or lesser LOC cost. From
Table 10, it can be observed that, for the experiment Ant 1.6—
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Table 6 Misclassification cost and recall comparison for o = 15

Project Train  Test MOLR LR NB DT RF
MC cost  Recall MC cost  Recall MC cost  Recall MC cost  Recall MC cost  Recall
Ant 1.3 1.4 2.0787 0.4750  2.9270 0.1500  3.0337 0.1250  2.7135 0.2250  3.1124 0.1000
1.4 1.5 0.8464 0.9375 1.3891 0.1563 1.1638 0.6563  0.8464 0.5625 1.4437 0.1563
1.5 1.6 1.0399 0.8152  3.3447 0.1522  3.0000 0.2500  3.5271 0.1087  3.2678 0.1739
1.6 1.7 0.8148 0.9036 1.9248 0.4398  2.2000 0.3735 1.7705 0.5121 1.5960 0.5482
Camel 1.0 1.2 3.6266 0.3565  5.2549 0.0139  4.5461 0.1574  5.1414 0.0370  5.2566 0.0139
1.2 1.4 0.7936 1.0000  2.1502 0.1517 1.9874 0.2345 1.7683 0.3931 1.6594 0.4207
1.4 1.6 0.7741 0.9628  2.7026 0.0798  2.5440 0.1489  2.3461 0.2394  2.3648 0.2021
Ivy 1.1 1.4 0.8589 1.0000  0.6805 0.8125  0.8963 0.3125  0.8880 0.6875  0.8589 0.7500
1.4 2.0 0.6278 0.8000 1.4233 0.1750 1.5284 0.1250 1.5426 0.1250 1.6364 0.0500
Jedit 32 4.0 0.9183 0.8667  2.0817 0.4667  3.0131 0.2000 1.8366 0.5333 1.5196 0.6267
4.0 4.1 0.8301 0.9241 2.4263 0.3671 3.0288 0.2152 1.5353 0.6329 1.8397 0.5317
4.1 4.2 0.5940 0.9792  0.9918 0.5417 1.4251 0.3125  0.5668 0.8542  0.8965 0.6042
4.2 43 0.5346 0.6364  0.2297 0.4546  0.2866 0.2727  0.3150 0.3636  0.2663 0.3636
Log4;j 1.0 1.1 1.2569 0.8108 2.6514 0.4865 2.8257 0.4595 1.7156 0.6757  2.1009 0.5946
1.1 1.2 4.5805 0.6720 10.6878 0.2275  9.7366 0.2963 10.4000 0.2487 11.0537 0.2011
Lucene 2.0 22 1.2834 0.8958  5.1296 04236  6.7854 0.2292  5.0891 0.4306  4.6599 0.4792
2.2 24 0.5559 0.9803 1.5206 0.8670  6.4706 0.2906  3.0206 0.6897 1.9147 0.8128
Poi 1.5 2.0 0.8822 1.0000 1.3344 0.5946 1.4841 0.3243 1.0828 0.7838  0.8089 0.9730
2.0 2.5 6.1195 0.3871  9.3948 0.0282  8.5532 0.1169  8.8000 0.0927  8.9351 0.0766
2.5 3.0 0.5045 0.9822 1.5588 0.8577  7.5317 0.2135 3.0385 0.7011 2.2285 0.7865
Synapse 1.0 1.1 2.6126 0.4000  4.0541 0.0000  2.6306 0.4333  3.4009 0.1667  3.5901 0.1167
1.1 1.2 0.5977 0.9884 4.0156 0.2093  4.4648 0.1279  3.3711 0.3488 3.8477 0.2442
Velocity 1.4 1.5 0.6028 0.9718 1.4206 0.8873 3.6542 0.6620 1.8318 0.8451 1.1589 0.9155
1.5 1.6 0.6245 1.0000  0.7031 0.9615 3.6026 0.3205 1.1703 0.8590 1.0087 0.8718
Xalan 2.4 2.5 2.4620 0.7003  6.8443 0.0543 6.4359 0.1137  6.2989 0.1344  6.6389 0.0853
2.5 2.6 0.8203 0.9586 3.9910 0.4453 5.9910 0.1484  2.0746 0.7348  2.3480 0.6910
2.6 2.7 0.6062 0.9599 10.0000 0.3252 10.8251 0.2695  7.8130 0.4733 8.1683 0.4488
Xerces 1.0 1.2 0.8886 0.9155 1.7159 0.4085 1.7795 0.4507 1.9205 0.2535 1.6318 0.4225
1.2 1.3 1.2450 0.6812  2.1523 0.0580 1.6689 0.3188  2.0221 0.1739  2.0839 0.1449
1.3 1.4 4.5340 0.5973 10.2568 0.0801 9.3452 0.1625  9.4762 0.1510 10.3078 0.0755
Average 0.8186 0.3625 0.2774 0.4346 0.4160

1.7, MOLR gained recall of 0.1446 by incurring lesser cost
(—1050) than that of single-objective logistic regression.

The comparative results of multi-objective prediction
model with single-objective prediction models, naive Bayes
classifier, decision tree, random forest, are shown in Tables
11, 12 and 13, respectively. We take a deeper look on each
comparison table. For each comparison table, we discuss the
gain in recall values achieved by MOLR and the special cases
where MOLR did not achieve any gain compared to single-
objective algorithm. From the tables, it can be seen that recall
values of MOLR are better than single-objective algorithms
for most of the cases.

The comparative results of MOLR and single-objective
logistic regression are shown in Table 10. For 25 out of 30
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experiments, MOLR is able to achieve better recall than sin-
gle objective logistic regression. MOLR is able to achieve
1-65% gain in recall. In Xalan project, all 3 experiments
achieved more than 40% gain in recall, with Xalan 2.6-2.7
experiment achieving highest recall gain of 65.14%. The
LOC cost difference is highest for Xerces 1.3-1.4 experi-
ment (LOC difference of 11412), but recall gain achieved by
MOLR model is 63.39%.

There are five cases when recall value of MOLR is lesser
than or equal to SOLR values (Ant 1.3-1.4, Ant 1.4-1.5,
Ant 1.5-1.6, Jedit 4.2—4.3 and Synapse 1.0-1.1). In Synapse
1.0-1.1 experiment, SOLR achieves zero LOC cost and effec-
tiveness. The reason for this can be that the train version
Synapse-1.0 had very few defective classes (10% of 157
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Table 7 Misclassification cost and recall comparison for o = 20
Project Train  Test MOLR LR NB DT RF
MC cost  Recall MC cost  Recall MC cost  Recall MC cost  Recall MC cost  Recall
Ant 1.3 1.4 2.2303 0.5750  3.8820 0.1500  4.0169 0.1250  3.5843 0.2250  3.8989 0.1500
14 1.5 0.8498 09375  1.8498 0.1563 1.3515 0.6563 1.0853 0.5625 1.7850 0.2188
1.5 1.6 1.2251 0.8261  4.4558 0.1522  3.9829 0.2500  4.6952 0.1087  4.3476 0.1739
1.6 1.7 0.9879 0.8976  2.5490 0.4398  2.8980 0.3735  2.3141 0.5121 2.1987 0.5241
Camel 1.0 1.2 4.8059 0.3519  7.0066 0.0139  6.0428 0.1574  6.8520 0.0370  7.0740 0.0046
1.2 14 0.7936 1.0000  2.8555 0.1517  2.6239 0.2345  2.2729 0.3931 2.1021 0.4345
14 1.6 0.7627 0.9734  3.5990 0.0798  3.3731 0.1489  3.0870 0.2394  3.2394 0.1755
Ivy 1.1 1.4 0.8797 1.0000  0.7427 0.8125  1.1245 03125  0.9917 0.6875  0.8423 0.8125
1.4 2.0 0.6165 0.8500  1.8920 0.1750  2.0256 0.1250  2.0398 0.1250  2.2898 0.0000
Jedit 32 4.0 0.9444 09333  2.7353 0.4667  3.9935 0.2000  2.4085 0.5333  2.0523 0.6133
4.0 4.1 0.9840 09114  3.2276 0.3671  4.0224 0.2152  2.0000 0.6329  2.3045 0.5570
4.1 4.2 0.6294 0.9792  1.2916 0.5417  1.8747 03125  0.6621 0.8542  1.0599 0.6458
4.2 4.3 0.6138 0.6364  0.2907 0.4546  0.3679 0.2727  0.3862 0.3636  0.3333 0.3636
Log4j 1.0 1.1 1.2752 0.8649  3.5229 0.4865  3.7431 0.4595  2.2661 0.6757 29725 0.5676
1.1 1.2 6.1902 0.6667  14.2488 0.2275 12.9805 0.2963 13.8634 0.2487  14.8342 0.1958
Lucene 2.0 22 1.2632 0.9236  6.8097 0.4236  9.0324 02292  6.7490 04306  6.1741 0.4792
22 24 0.9029 0.9557 19176 0.8670  8.5882 0.2906  3.9471 0.6897  3.0941 0.7586
Poi 1.5 2.0 0.8822 1.0000  1.5732 0.5946  1.8822 0.3243 1.2102 0.7838  1.0223 0.8919
2.0 2.5 2.2468 0.8468  12.5247 0.0282  11.3974 0.1169  11.7221 0.0927  12.0130 0.0686
2.5 3.0 0.4593 0.9893 20113 0.8577  10.0317 0.2135  3.9887 0.7011  2.8190 0.7936
Synapse 1.0 1.1 3.2658 0.4333  5.4054 0.0000  3.3964 0.4333  4.5270 0.1667  4.7928 0.1167
1.1 1.2 0.9375 0.9419  5.3438 0.2093  5.9297 0.1279  4.4648 0.3488  4.9688 0.2674
Velocity 1.4 1.5 0.7850 0.9648  1.7944 0.8873  4.7757 0.6620  2.3458 0.8451 1.3411 0.9225
1.5 1.6 0.6288 1.0000  0.7686 0.9615  4.7598 0.3205 1.4105 0.8590  1.2271 0.8718
Xalan 24 2.5 2.4135 0.7830  9.1233 0.0543  8.5716 0.1137  8.3848 0.1344  8.8406 0.0853
2.5 2.6 0.5480 0.9951 5.2791 0.4453  7.9684 0.1484  2.6904 0.7348  3.0927 0.6886
2.6 2.7 0.8482 0.9577  13.3333 0.3252  14.4334 0.2695 10.4147 0.4733 10.8691 0.4499
Xerces 1.0 1.2 0.9341 0.9437  2.1932 0.4085  2.2227 0.4507  2.5227 0.2535 1.8932 0.5070
1.2 1.3 1.1280 0.8551  2.8698 0.0580  2.1876 0.3188  2.6512 0.1739  2.6556 0.1449
1.3 14 4.1395 0.7254  13.6752 0.0801 12.4575 0.1625 12.6310 0.1510  13.8129 0.0709
Average 0.8573 0.3625 0.2774 0.4346 0.4185

classes) that gave poor performance when tested on Synapse
version 1.1. The SOLR predictor classified all classes as non-
defective, resulting in zero LOC cost and zero effectiveness.
The loss in recall varies from 0 to 10% for these five cases,
whichis very less compared to gains we achieve for rest of the
25 experiments. For three projects, recall remains the same,
but for only two project MOLR was not able to get better
recall with lesser cost.

Average recall gain across all experiments is 22.77%. This
shows how effectively MOLR model is able to predict defect-
prone classes compared to SOLR.

The recall and LOC cost values for MOLR and naive
Bayes classifier are reported in Table 11. MOLR is able
to outperform naive Bayes in all 30 experiments. The gain

in recall varies from 1 to 76%. In particular, there are 17
cases when MOLR is able to achieve more than 30% gain
in recall compared to naive Bayes classifier. In this case
also, maximum cost difference is reported for Xerces 1.3—1.4
experiment (LOC difference of 13834). The gain in recall
value for this experiment is 76.89%, which is maximum
among all experiments. MOLR is able to achieve average
recall gain of 32.65% across all experiments.

The recall and LOC cost values for MOLR and decision
tree are reported in Table 12. In most of the cases, decision
tree achieves good recall values. The decision tree is able to
achieve more than 60% recall for ten experiments, but still
MOLR achieves better recall values in most of the cases.
There are five cases where the recall values of MOLR are
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Table 8 F-measure comparison for different cost factor values

Project  Train Test F-measure
MOLR (¢ =5) MOLR (¢ = 10) MOLR (¢ = 15) MOLR (¢ =20) LR NB DT RF
Ant 1.3 1.4 0.29268 0.34783 0.33333 0.38333 0.21053 0.16667 0.26866 0.15873
1.4 1.5 0.23387 0.22711 0.21429 0.2214 0.25641 0.18341 0.40909 0.16
1.5 1.6 05 0.54874 0.54152 0.54676 0.25455 0.34586 0.18182 0.31034
1.6 1.7 0.46519 0.46697 0.43924 0.41913 0.52518 0.40391 0.47887 0.54313
Camel 1.0 1.2 0.33243 0.355 0.37288 0.36715 0.0274  0.23944 0.06957 0.02715
1.2 1.4 0.29562 0.29502 0.29532 0.29532 0.22335 0.2753  0.26887 0.30303
1.4 1.6 0.38256 0.38344 0.35806 0.36346 0.13889 0.20664 0.25568 0.26122
Ivy 1.1 1.4 0.12549 0.13169 0.13389 0.13115 0.17568 0.13889 0.13253  0.15385
1.4 2.0 0.37349 0.4 0.36994 0.39766 0.26415 0.17241 0.15873 0.04444
Jedit 32 4.0 0.48689 0.49811 0.4797 0.41916 0.47619 0.26786 0.52632 0.54088
4.0 4.1 0.53906 0.49822 0.45483 0.45283 0.50435 0.30631 0.57803 0.58824
4.1 42  0.35294 0.31293 0.31544 0.30719 0.48148 0.32967 0.42708 0.44961
4.2 43 0.07447 0.06512 0.06335 0.05833 0.25641 0.17143 0.12308 0.18605
Log-4j 1.0 1.1 0.6747 0.65116 0.60606 0.59259 0.61017 0.54839 0.72464 0.66667
1.1 1.2 0.80723 0.8284 0.78154 0.77778 0.3691  0.45528 0.39496 0.32599
Lucene 2.0 2.2 0.71038 0.71038 0.70685 0.72087 0.53744 035106 0.53219 0.59574
2.2 24 0.74812 0.74576 0.74953 0.74046 0.7169  0.39073 0.65882 0.72261
Poi 1.5 20 0.21512 0.21083 0.21083 0.21083 0.17391 0.17143 0.2028  0.2129
2.0 2.5  0.34595 0.4359 0.45714 0.746 0.05447 0.20351 0.16197 0.13971
2.5 30 0.782 0.7913 0.78298 0.79202 0.78887 0.33803 0.70232 0.7483
Synapse 1.0 1.1 041322 0.4186 0.3871 0.39695 0 0.325 0.26667 0.2
1.1 1.2 0.54472 0.53875 0.55016 0.52769 0.32143 0.1913  0.43165 0.36975
Velocity 1.4 1.5 0.77059 0.78632 0.79083 0.78963 0.75904 0.63087 0.74074 0.76558
1.5 1.6  0.51827 0.51485 0.52174 0.52 0.55762 0.37594 0.54032 0.5913
Xalan 2.4 2.5  0.57513 0.59759 0.60559 0.63924 0.10145 0.19383 0.22034 0.14253
2.5 2.6 0.63994 0.63757 0.61755 0.64664 0.51841 0.23282 0.66083 0.59903
2.6 2.7 091127 0.9775 0.97346 0.9723 0.49076 0.42456 0.6391  0.61633
Xerces 1.0 1.2 0.27879 0.27935 0.29748 0.28571 0.25778 0.21262 0.25899 0.24742
1.2 1.3 0.26543 0.26629 0.26857 0.26879 0.10959 0.30986 0.16901 0.16807
1.3 1.4 0.62857 0.70932 0.72099 0.80457 0.14799 0.2768  0.25882 0.13617
Average 0.4761 0.4876 0.4800 0.4931 0.3436  0.2946  0.3814  0.3658
Table 9 Results of Wilcoxon signed-rank test
Cost factor Misclassification cost Recall F-measure
LR NB DT LR NB DT RF LR NB DT RF
5 0.00096 0.0002 0.00128 0 0 0 0 0.00278 0 0.00496 0.00298
10 0 0 0 0 0 0 0 0.00168 0 0.00528 0.00466
15 0 0 0 0 0 0 0 0.00386 0 0.01174 0.01108
20 0 0 0 0 0 0 0 0.00528 0 0.01552 0.01242

Table shows p value obtained by comparing performance measures of MOLR and other algorithms

less than or equal to decision tree (Ant 1.4-1.5, Ant 1.5-
1.6, Jedit 4.2-4.3, Log4j 1.0-1.1 and Synapse 1.0-1.1). The
loss in recall varies from 0 to 13% for these five cases. For
rest of the 25 cases, recall values of MOLR are higher than
decision tree. The gain in recall value varies from 2 to 72%.

@ Springer

Maximum recall gain of 72.31% is reported for Xerces 1.3—
1.4 experiment. And maximum cost difference is reported
for Xerces init-1.2 case (LOC difference of 25530). In this
case, MOLR achieves recall gain of 36.62%. MOLR is able to
achieve average recall gain of 21.08 % across all experiments.
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Table 10 Single-objective logistic regression versus multi-objective logistic regression
Project Train version Test version SOLR MOLR Difference
Cost (LOC) Recall Cost (LOC) Recall Cost (LOC) Recall
Ant 1.3 1.4 15,115 0.1500 10,091 0.1500 —5024 0
14 1.5 4614 0.1563 4447 0.0625 —167 —0.0938
1.5 1.6 17,451 0.1522 14,907 0.0978 —2544 —0.0543
1.6 1.7 102,300 0.4398 101,250 0.5843 —1050 +0.1446
Camel 1.0 1.2 360 0.0139 281 0.0278 -79 +0.0139
1.2 14 24,617 0.1517 23,840 0.5172 =777 +0.3655
14 1.6 18,121 0.0798 16,678 0.4894 —1443 +0.4096
Ivy 1.1 1.4 49,984 0.8125 43,924 0.8750 —6060 +0.0625
1.4 2.0 19,163 0.1750 17,360 0.2000 —1803 +0.0250
Jedit 32 4.0 62,288 0.4667 61,911 0.8000 —3717 +0.3333
4.0 4.1 54,274 0.3671 52,027 0.6582 —2247 +0.2911
4.1 4.2 75,135 0.5417 68,974 0.6667 —6161 +0.1250
4.2 4.3 56,442 0.4546 50,416 0.4546 —6026 0
Log—4;j 1.0 1.1 8870 0.4865 8588 0.5946 —282 +0.1081
1.1 1.2 19,768 0.2275 18,850 0.6561 —918 +0.4286
Lucene 2.0 22 46,442 0.4236 45,586 0.9097 —856 +0.4861
2.2 2.4 89,882 0.8670 78,787 0.9557 —11095 +0.0887
Poi 1.5 2.0 70,112 0.5946 69,570 0.8649 —542 +0.2703
2.0 2.5 28,501 0.0282 26,640 0.4597 —1861 +0.4315
2.5 3.0 112,170 0.8577 104,730 0.9751 —7440 +0.1174
Synapse 1.0 1.1 0 0.0000 0 0.0000 0 0
1.1 1.2 16,487 0.2093 13,637 0.3954 —2850 +0.1861
Velocity 14 1.5 28,875 0.8873 28,727 0.9366 —148 +0.0493
1.5 1.6 55,801 0.9615 55,062 1.0000 —739 +0.0385
Xalan 24 2.5 60,444 0.0543 55,952 0.6021 —4492 +0.5478
2.5 2.6 258,200 0.4453 255,950 0.8832 —2250 +0.4380
2.6 2.7 354,260 0.3252 345,740 0.9766 —8520 +0.6514
Xerces 1.0 1.2 112,560 0.4085 105,950 0.6197 —6610 +0.2113
1.2 1.3 30,597 0.0580 28,773 0.5797 —1824 +0.5217
1.3 1.4 56,835 0.0801 45,423 0.7140 —11412 +0.6339
Average 0.3625 0.5902 +0.2277

The comparative results of MOLR and random forest clas-
sifier are shown in Table 13. There are only three cases when
recall values of MOLR are lesser than random forest recall
values (Camel 1.0-1.2, Synapse 1.0-1.1 and Xerces init-1.2).
For rest of the 27 cases, MOLR achieves recall gain up to
77%. Maximum recall gain of 77.12% is achieved for Xerces
1.3—1.4 experiment. MOLR is able to achieve average recall
gain of 21.83% across all experiments. Overall recall gains
are not as significant as other single objective algorithms
like logistic regression and naive Bayes. One of the reasons
might be that, being an ensemble algorithm, random forest
forms a model consisting of multiple decision trees. This
reduces overfitting and enhances performance compared to
single decision tree model.

Overall, there are very few cases when MOLR is achieving
lesser effectiveness than single-objective algorithms.

We summarize our findings in Table 14. The average
recall of each of single-objective prediction model and
MOLR is reported in this table. And also the percentage
of increase achieved by MOLR as compared to average
recall value of single-objective algorithm is reported. Over-
all MOLR achieved more than 48% increase in all four
cases, with maximum of 117% increase in case of compari-
son with naive Bayes algorithm. This shows the dominance
of multi-objective approach as compared to single-objective
algorithms. Single objective algorithms only optimize pre-
diction error as their objective, and they do not consider
cost of prediction. MOLR models are trained to minimize
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Table 11 Naive Bayes versus multi-objective logistic regression

Project Train version Test version NB MOLR Difference
Cost (LOC) Recall Cost (LOC) Recall Cost (LOC) Recall
Ant 1.3 1.4 15,333 0.1250 10,091 0.1500 —5242 +0.0250
14 1.5 58,017 0.6563 54,519 0.8438 —3498 +0.1875
1.5 1.6 38,203 0.2500 37,861 0.4022 —342 +0.1522
1.6 1.7 86,944 0.3735 85,265 0.4940 —1679 +0.1205
Camel 1.0 1.2 12,036 0.1574 10,890 0.1667 —1146 +0.0093
1.2 14 30,307 0.2345 29,462 0.5724 —845 +0.3379
14 1.6 30,205 0.1489 29,745 0.6117 —460 +0.4628
Ivy 1.1 14 32,032 0.3125 30,380 0.7500 —1652 +0.4375
14 2.0 16,486 0.1250 15,265 0.2500 —1221 +0.1250
Jedit 32 4.0 45,376 0.2000 45,040 0.6267 —336 +0.4267
4.0 4.1 45,988 0.2152 44,391 0.5443 —1597 +0.3291
4.1 4.2 68,278 0.3125 67,847 0.6667 —431 +0.3542
4.2 4.3 59,442 0.2727 50,416 0.4546 —9026 +0.1818
Log—4;j 1.0 1.1 7685 0.4595 7672 0.5676 —13 +0.1081
1.1 1.2 17,090 0.2963 16,824 0.5450 —266 +0.2487
Lucene 2.0 2.2 25,216 0.2292 24,233 0.7500 —983 +0.5208
2.2 2.4 35,849 0.2906 34,735 0.7291 —1114 +0.4384
Poi 1.5 2.0 36,223 0.3243 36,180 0.4865 —43 +0.1622
2.0 2.5 40,844 0.1169 35,412 0.4758 —5432 +0.3589
2.5 3.0 40,658 0.2135 40,369 0.6619 —289 +0.4484
Synapse 1.0 1.1 28,270 0.4333 25,356 0.5000 —2914 +0.0667
1.1 1.2 12,121 0.1279 11,763 0.3023 —358 +0.1744
Velocity 14 1.5 22,826 0.6620 22,658 0.8732 —168 +0.2113
1.5 1.6 43,271 0.3205 42,496 0.9872 =775 +0.6667
Xalan 24 2.5 71,233 0.1137 70,314 0.6615 -919 +0.5478
2.5 2.6 70,599 0.1484 68,896 0.4818 —1703 +0.3333
2.6 2.7 306,030 0.2695 299,830 0.9577 —6200 +0.6882
Xerces 1.0 1.2 56,364 0.4507 55,448 0.7606 -916 +0.3099
1.2 1.3 123,940 0.3188 114,900 0.9130 —9040 +0.5942
1.3 1.4 86,894 0.1625 73,060 0.9314 —13834 +0.7689
Average 0.2774 0.6039 +0.3265

LOC cost and maximize effectiveness as their objectives.
This is one of the major reasons why MOLR outperformed
single-objective algorithms. MOLR is able to identify more
defect prone classes than single-objective algorithms at same
or lesser LOC cost.

To confirm these findings statistically, we performed
Wilcoxon two- tailed paired test (Rahman et al. 2012) for
all four cases. p values for all four types of experiments,
i.e., SOLR versus MOLR, naive Bayes versus MOLR, deci-
sion tree versus MOLR and random forest versus MOLR,
are 0.00000131, 0.00000000, 0.00000117 and 0.00000008,
respectively. As p values are significantly lower than thresh-
old value 0.05, we can easily reject null hypothesis Hyp. This
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confirms domination of MOLR over single-objective algo-
rithms in terms of LOC cost and recall.

7 Threats to validity

This section discusses various threats to validity that may
impact the analysis of the proposed approach and the exper-
imental study presented here.

7.1 Threats to construct validity

The choice of recall as performance measure is widely
adopted in previous studies. The choice of cost factor is based
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Table 12 Decision tree versus multi-objective logistic regression
Project Train version Test version D. Tree MOLR Difference
Cost (LOC) Recall Cost (LOC) Recall Cost (LOC) Recall
Ant 1.3 1.4 22,266 0.2250 22,112 0.3500 —154 +0.1250
1.4 1.5 30,936 0.5625 30,751 0.4375 —185 —0.1250
1.5 1.6 17,600 0.1087 14,907 0.0978 —2693 —0.0109
1.6 1.7 104,610 0.5121 101,250 0.5843 —3360 +0.0723
Camel 1.0 1.2 2937 0.0370 2626 0.0556 —311 +0.0185
1.2 14 34,238 0.3931 33,828 0.6000 —410 +0.2069
14 1.6 31,877 0.2394 31,470 0.6277 —407 +0.3883
Ivy 1.1 14 46,099 0.6875 43,924 0.8750 —2175 +0.1875
14 2.0 19,995 0.1250 17,360 0.2000 —2635 +0.0750
Jedit 32 4.0 51,516 0.5333 51,047 0.6933 —469 +0.1600
4.0 4.1 78,999 0.6329 77,452 0.8608 —1547 +0.2279
4.1 4.2 118,510 0.8542 112,650 0.9375 —5860 +0.0833
4.2 4.3 44,481 0.3636 39,275 0.3636 —5206 0
Log—4;j 1.0 1.1 11,925 0.6757 10,162 0.6216 —1763 —0.0541
1.1 1.2 20,216 0.2487 20,019 0.6720 —197 +0.4233
Lucene 2.0 22 39,645 0.4306 38,183 0.8958 —1462 +0.4653
22 2.4 70,512 0.6897 70,427 0.9360 -85 +0.2463
Poi 1.5 2.0 71,231 0.7838 69,570 0.8649 —1661 +0.0811
2.0 2.5 41,642 0.0927 41,048 0.5282 —594 +0.4355
2.5 3.0 91,731 0.7011 90,774 0.9537 —957 +0.2527
Synapse 1.0 1.1 8531 0.1667 4909 0.1000 —3622 —0.0667
1.1 1.2 20,402 0.3488 20,390 0.4884 —12 +0.1395
Velocity 14 1.5 27,690 0.8451 25,848 0.9085 —1842 +0.0634
1.5 1.6 52,329 0.8590 42,496 0.9872 —9833 +0.1282
Xalan 24 2.5 84,023 0.1344 83,456 0.7158 —567 +0.5814
2.5 2.6 343,230 0.7348 336,330 0.9562 —6900 +0.2214
2.6 2.7 352,990 0.4733 345,740 0.9766 —7250 +0.5033
Xerces 1.0 1.2 102,530 0.2535 77,000 0.6197 —25530 +0.3662
1.2 1.3 29,330 0.1739 28,773 0.5797 —557 +0.4058
1.3 1.4 64,336 0.1510 59,471 0.8741 —4865 +0.7231
Average 0.4346 0.6454 +0.2108

on the fact that it is more costly to fix defects during post-
release phase as compared to performing QA activities on
non-defective files in pre-release phase (Moser et al. 2008).
One can choose appropriate cost factor based on the project
and organization. And also different values of cost factor may
yield different results. For our second problem, the choice of
LOC cost is inspired from the fact that it is related to amount
of time that will be spent to review or test the code. And
the same measure has been used in Canfora et al. (2013,
2015) and Rahman et al. (2012). But one can use other mea-
sures as well. One more threat to construct validity can be the
choice of metrics and datasets. The CK metrics are one of the
standard sets of metrics used for object-oriented projects. We
have considered datasets from widely used PROMISE repos-

itory (Menzie et al. 2015), but we are not denying the fact that
the datasets are prone to imperfection and incompleteness.

7.2 Threats to internal validity

One of the biggest threat is the choice of parameter set-
tings for implementation. These parameters are chosen from
experimentation and past research work (Canfora et al. 2013,
2015; Coello et al. 2007; Krall et al. 2015). For the param-
eters chosen from experimentations, we have used spread
as the evaluation criteria for measuring goodness of Pareto
optimal solutions, as defined by Deb (2001). The choice of
different evaluation criteria may lead to different parameter
settings. The choice of best parameters may vary from one
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Table 13 Random forest versus multi-objective logistic regression

Project Train version Test version Random forest MOLR Difference
Cost (LOC) Recall Cost (LOC) Recall Cost (LOC) Recall
Ant 1.3 1.4 18,778 0.1750 18,699 0.3500 -79 +0.1750
14 1.5 10,176 0.1563 9342 0.1875 —834 +0.0313
1.5 1.6 30,515 0.2174 27,254 0.3044 —3261 +0.0870
1.6 1.7 112,400 0.5301 110,760 0.6566 —1640 +0.1265
Camel 1.0 1.2 56 0.0093 22 0.0046 —34 —0.0046
1.2 14 38,565 0.4207 37,281 0.6207 —1284 +0.2000
14 1.6 22,497 0.2021 20,718 0.5372 —1779 +0.3351
Ivy 1.1 14 48,820 0.7500 43,924 0.8750 —4896 +0.1250
14 2.0 10135 0.0750 6557 0.1250 —3578 +0.0500
Jedit 32 4.0 65,254 0.5733 64,131 0.8400 —1123 +0.2667
4.0 4.1 61,109 0.5570 59,899 0.7215 —1210 +0.1646
4.1 4.2 111,950 0.6458 111,940 0.9375 —10 +0.2917
4.2 4.3 56,148 0.3636 50,416 0.4546 —5732 +0.0909
Log—4;j 1.0 1.1 9247 0.5405 9153 0.6216 —94 +0.0811
1.1 1.2 20,158 0.2169 20,019 0.6720 —139 +0.4550
Lucene 2.0 2.2 43,632 0.4514 42,251 0.9306 —1381 +0.4792
22 2.4 86,894 0.7783 78,787 0.9557 —8107 +0.1773
Poi 1.5 2.0 88,547 0.9189 83,322 0.9730 —5225 +0.0541
2.0 2.5 38,128 0.0685 35,412 0.4758 —2716 +0.4073
2.5 3.0 106,020 0.7687 104,730 0.9751 —1290 +0.2064
Synapse 1.0 1.1 5916 0.1167 4909 0.1000 —1007 —0.0167
1.1 1.2 16,572 0.2558 13,637 0.3954 —2935 +0.1395
Velocity 14 1.5 29,876 0.9155 29,841 0.9578 =35 +0.0423
1.5 1.6 50,271 0.8462 42,496 0.9872 =7775 +0.1410
Xalan 24 2.5 73,382 0.0904 70,314 0.6615 —3068 +0.5711
2.5 2.6 291,530 0.7470 281,600 0.9027 —9930 +0.1557
2.6 2.7 351,450 0.4298 345,740 0.9766 —5710 +0.5468
Xerces 1.0 1.2 115,990 0.6901 105,950 0.6197 —10040 —0.0704
1.2 1.3 31,204 0.1594 28,773 0.5797 —2431 +0.4203
1.3 1.4 45,145 0.0801 45,130 0.8513 —15 +0.7712
Average 0.4250 0.6417 +0.2167

Table 14 % Increase in average recall achieved by MOLR

Algorithm Average Difference in % Difference in recall
recall average recall ~ compared to
single-objective algorithm
Logistic 0.3625
Regression
MOLR 0.5902  0.2277 62.81
Naive Bayes 0.2774
MOLR 0.6039  0.3265 117.72
Decision Tree ~ 0.4346
MOLR 0.6454  0.2108 48.51
Random Forest 0.425
MOLR 0.6417  0.2167 50.98
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dataset to another. We chose a uniform set of parameters to
compare the results at the same scale. To mitigate inherent
randomness of GA, we ran training process multiple times.
For the problem M1, we ran NSGA-II 30 times to get the
best model of MOLR which is used for testing purpose. For
the problem M2, we ran and took coefficients corresponding
to median Pareto front. The choice of median Pareto front
corresponds to median spread value obtained among all 31
runs. The parameters for other algorithms are standard ones
available in MATLAB. We have used logistic regression as
fitness function to multi-objective genetic algorithm and four
traditional machine learning algorithms for the comparison
purpose. All of these algorithms have been used in many
of the past works (He et al. 2013; Kamei et al. 2010; Kim
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et al. 2007; Mende and Koschke 2009; Peters et al. 2013),
but the results may not hold true for other machine learn-
ing algorithms. Our aim was to compare cost-effectiveness
of multi-objective algorithm with traditional algorithms for
cross-version defect prediction, rather than comparing dif-
ferent machine learning algorithms with each other.

7.3 Threats to conclusion validity

We have performed two-tailed Wilcoxon paired test to statis-
tically compare the difference in the performance measures
obtained from MOLR and traditional single-objective algo-
rithms. Wilcoxon test is a nonparametric test, which does
not make any assumptions about input value distributions.
We have confirmed our findings at 5% significance level.

7.4 Threats to external validity

We have experimented with 11 open-source projects from
the PROMISE repository having different versions. One may
find different results with the projects developed in industry,
where certain standards are followed. So the findings pre-
sented by us may or may not hold good for industrial software
projects. We have used CK metrics as predictors in our study.
The choice of different metrics may yield different results.

8 Conclusion

In this paper, we formulated cross-version defect prediction
as multi-objective optimization problem with two distinct set
of objective functions, and the same was solved using multi-
objective genetic algorithm. We compared multi-objective
logistic regression with four single-objective algorithms for
cross-version defect prediction. We applied the proposed
approach to 11 projects and a total of 30 train version-test
version pairs. Our results indicate following benefits of multi-
objective approach:

1. The multi-objective defect prediction model (M1) is able
to identify more defects at the same or lesser misclassi-
fication cost incurred by all four single-objective defect
prediction models. And this observation holds good for
four different values of cost factor 5, 10, 15, 20.

2. The multi-objective defect prediction model (M2) incurs
the same or lesser LOC cost to achieve better recall as
compared to all four single-objective defect prediction
models. This proves that M2 is able to identify more
defect-prone classes at the same or lesser LOC cost than
the cost incurred with single-objective algorithms.

In summary, multi-objective approach can yield better
results for cross-version defect prediction compared to tra-
ditional single objective approaches.
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