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Abstract In this paper, the use of radial basis function
network (RBFN) for simultaneous online identification and
indirect adaptive control of nonlinear dynamical systems
is demonstrated. The motivation of using RBFN comes
from the simplicity of its structure and simpler mathemat-
ical formulation, which gives it an advantage over multi-
layer feed-forward neural network (MLFFNN). Since most
processes are nonlinear, the use of conventional proportional-
integral-derivative controller is not useful. Most of the time
plant’s dynamics information is not available. This creates
another limitation on the use of conventional control tech-
niques, which works only if plant’s dynamics information
is available. The proposed controller is tested for parameter
variations and disturbance effects. Simulation results showed
that RBFN is able to capture the unknown dynamics as well
as simultaneously able to adaptively control the plant. It is
also found to compensate the effects of parameter variations
and disturbances. The comparative analysis is also done with
MLFFNN in each simulation example, and it is found that
performance of RBFN is better than that of MLFFNN.
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1 Introduction

A lot of progress in recent years has witnessed the identifi-
cation and modeling of nonlinear dynamical systems due to
great demands for controller design (Qiao and Han 2012).
Due to the lack of knowledge of some parameters of given
system, the formulation ofmathematical model of the system
is very difficult. RBFNs are known to have various advan-
tages like strong immunity to input noise, simpler topology
and good generalizations (Fu and Chai 2007; Rossomando
et al. 2011). This makes them very suitable for identifica-
tion and control applications. They are being widely used
in various areas like modeling and identification (Attaran
et al. 2016), pattern recognition (Jankowski and Kadirka-
manathan 1997), but their potential as a controller is not fully
exploited in control applications. Multi-layer feed-forward
neural network (MLFFNN) has also shown good results
(Kayacan et al. 2015) as they have the ability to approximate
the nonlinear dynamics of the plant (Bishop 1995;Wang et al.
2016). However, MLFFNN has poor process interpretabil-
ity and other problems like slow learning and sometimes
stucking at local minima (Srivastava et al. 2005). The abil-
ity of RBFN to approximate nonlinear mapping directly
from the input–output data has made them popular in recent
times. RBFNs offer several advantages overmulti-layer feed-
forward network like smaller extrapolation errors, higher
reliability, simpler structure and faster convergence and have
increasingly attracted the interest for various engineering
applications. MLFFNNs work globally, since the output of
output layer neuron(s) is/are decided by all the neurons in
the network (Haykin and Network 2004), but this is not the
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case in RBFNs as they are local approximation networks
(Yu et al. 2011), which means the network output in them is
determined by specified radial centres in a certain local recep-
tive fields. At present, radial RBFN provides an alternate
approach (Seng et al. 1998) to conventional MLFFNN. They
have diverse applications and are probably the main rival
to the multi-layer feed-forward neural network (Moody and
Darken 1989; Poggio and Girosi 1990). RBFN has been used
to identify the optimal controller gain for fractional-order
(Perng et al. 2016) proportional-integral-derivative (FOPID)
controller of time-delay systems. In Sutrisno et al. (2015), a
novel self-organizing quasi-linear ARX radial basis function
network model (SOQARX–RBFN) is proposed to improve
the prediction accuracy of the QARX–RBFN model. This
improved version is then applied to the identification and
control of nonlinear dynamical systems. In Hsu et al. (2013),
a supervisory adaptive dynamic RBF-based neural fuzzy
controller is proposed for the nonlinear dynamical systems.
Dai et al. (2012) used RBFN-based controller to solve the
learning control problem for ocean surface ship in uncertain
dynamical environments. In Almaadeed et al. (2015), RBFN
has been applied to speaker identification problem.

In the paper (Qiu et al. 2016b), a Takagi–Sugeno (T–S)
fuzzy-based modeling of nonlinear systems has been done.
The issues like loss of data due to failure of links (known as
data packet dropouts) or sensors, presence of time delays are
addressed. The interesting thing is that whether the controller
will receive the output of plant or not or plant receives the
controller output or not are also modelled. The common fea-
ture which fuzzy-based system and RBFN share is that both
involve parameters (in case of RBFN, they are radial cen-
tres, output weights, width of each radial centres. For fuzzy
systems, they are membership function parameters). These
parameters are allowed to adjust (and change continuously)
at each instant based on the error value received at the same
instant during the training. The main purpose of modeling
of any system is to have an equivalent mathematical rep-
resentation of its dynamics. If RBFN is chosen, then after
the sufficient training the dynamics of given system will be
captured in the form of parameter values of RBFN. On the
other hand, if fuzzy-based system is used, then parameters
of membership function will have the information about the
dynamics of the plant. So, after a sufficient training of RBFN
or fuzzy-based system, we can expect to have their outputs
at any instant to be equal to that of given system’s output at
the same instant. In Qiu et al. (2013a, b, 2016a), the nonlin-
ear systems have been modelled using Takagi–Sugeno fuzzy
models with parameter uncertainties. In the paper (Qiu et al.
2015), input–output approach has been adopted to analyse
the time-delay-dependent stability and design of controller
for class of continuous-timeMarkovian jump linear systems.

In our present paper, RBFN has been used for implement-
ing the identification model as well as the controller. RBFNs

are represented by a network-like structure, similar to that of a
perceptron. RBFN can approximate dynamics of any nonlin-
ear system, a featurewhich is utilized in system identification
(Chen et al. 1992). Their potential to act as a controller as
well as an identification tool is exploited in this paper. RBFN
is very popular among the researchers, and during last two
decades,many researchers have beenworking towards devel-
oping more efficient (Gomm and Yu 2000; Sarimveis et al.
2003) training algorithms and potential applications.

1.1 Novelties and contributions of the paper

1. In this paper, a thorough testing of RBFN for identifica-
tion and control purpose is done by considering plant’s
of different complexity. Initial and final plant’s responses
under the action ofRBFN identificationmodel andRBFN
controller are shown, which clearly depicts the learning
of RBFN parameters.

2. The online control and identification configuration based
on RBFN are proposed. The advantage of this scheme
over other schemes is that there is no need to have
knowledge of plant’s dynamics. Moreover, the effects of
plant’s uncertainties can be compensated very quickly,
thus maintaining the desired response from the output of
the plant.

3. The criteria for selecting the inputs to the RBFN con-
troller is proposed which is, to the best of our knowledge,
is not available in the literature.

4. Thorough analysis of robustness of both RBFN identifi-
cationmodel and controller is performed. Both parameter
variation and disturbance signals effects are considered.
Such a detailed analysis is not available in the literature.

5. Detailed computation of RBFNparameter’s update equa-
tions is given.

The remaining paper is organized as follows: In Sect. 2,
RBFN structure and its defining mathematical equations are
given. The superiority of RBFN over MLFFNN in terms of
mathematical computation is also explained. In Sect. 3, prac-
tical considerations for using RBFN are addressed. Section 4
discusses the computation complexities for RBFN. In Sect. 5,
four different models/classes to which any nonlinear plant
can belong are given, and the two different approaches of
identification procedures are given. Section 6 starts with the
derivation of update equations for updating parameters of
RBFN using gradient descent, and then, simulation exam-
ples are given to demonstrate the identification process. In
Sect. 7, the use of RBFN as a controller is proposed. Here,
both identification and control are implemented simultane-
ously by using two RBFNs in which one act as a controller
and other as an identifier. Necessary equations for updating
parameters of RBFN controller are given, and with the help
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of three simulation examples containing plants of different
complexities (in terms of dynamics), simultaneous online
identification and control using RBFNs are illustrated. In
each example, the comparison of performances of RBFN
with MLFFNN is made. After that the robustness of pro-
posed RBFN controller in each of the examples is checked
in terms of parameter variations and noise/disturbance sig-
nals. In Sect. 8, the achievements of this paper are given, and
Sect. 9 includes future scope and conclusion.

2 Structure of radial basis function network

Radial basis functions were first used in the design of neural
networks by Broomhead and Lowe (1988). It is like a
MLFFNN but contains only a single hidden layer, and the
functionality of nodes present in the hidden layer of RBFN
is different from the neurons present in the MLFFNN. This
makes RBFN different from the MLFFNN. The structure of
RBFN is fixed unlike MLFFNN, which gives it an advantage
over the MLFFNN in terms of structure complexity (Behera
and Kar 2010; Elanayar et al. 1994). Further, the computa-
tion time in case of RBFN is less as compared to MLFFNN
because there is nobackpropagation of error unlike the super-
vised learning in a MLFFNN. For single-input single-output
(SISO) plants, there is only a single neuron in the output layer
of RBFN. The hidden layer transforms the p-dimensional
input vector (meaning p-inputs in one training input sample)
into a high-dimensional feature space using Gaussian radial
function. The output of output layer in RBFN is simply a
weighted sum of the inputs received from hidden layer. The
nodes in the hidden layer of RBFN are called as radial cen-
tres/hidden unit (Lowe 2015). Each radial centre is equal to
one of the input training sample. It has its own receptive field
in the input space.Thus, each radial centre represents all those
input samples which are presented in its vicinity, and this is
termed as ’local representation of inputs’. So each radial cen-
tre is also a p-dimensional vector. If given input vector lies in
the vicinity of some radial centre, then this will activate that
radial centre (which means large output given by that radial
centre) and by proper choice of weights in output layer, the
desired output fromRBFN can be obtained. If the given input
vector lies between the receptive fields of two radial centres,
then the output of both of these radial centreswill be apprecia-
bly high. The number of radial centres considered in hidden
layer is usually less than the total number of training samples.
The data for training of RBFN are not always present before-
hand because in majority of the cases the data are coming
online, and hence, to do online training, principle of gradient
descent is used. The structure of RBFN is shown in Fig. 1.
In the structure of RBFN which is shown in Fig. 1, the first
layer is the input layer X = (x1, x2, . . . , xp), which is a p×1
vector, that is, p number of inputs are there in each training

Fig. 1 RBFN structure

sample. The radial centre vector H = (H1, H2, . . . , HL)

consists of L number of radial centres where L is always
≤ p and constitutes the hidden layer. The values of each
weight connecting input layer to the hidden layer are unity.
The output weight vector is (for single-input single-output
system) w = [w1, w2, w3, . . . , wL) (and the bias). The acti-
vation function of output neuron is taken to be linear. In short,
the input is clustered around the radial centres, and the output
is linear in terms of weights, w

yR(k) =
L∑

i=1

φi (k)wi (k) (1)

where yR(k) is RBFNoutput at kth time instant. The response
of the i th radial centre at kth time instant in RBFN is usually
expressed by the following expression

φi (k) = φ ‖X (k) − Hi (k)‖ (2)

where ‖X (k) − Hi (k)‖ is the Euclidean distance between
X(k) and Hi (k) at kth time instant. The φ (·) is a radial basis
function and is generally taken to be Gaussian

φ (z) = exp

(−z2

2σ 2

)
(3)

where z = ‖X (k) − Hi (k)‖ and σ = (σ1, σ2, . . . , σL) rep-
resents the width of each radial centre. In case of Gaussian
radial function, each node produces an identical output for
input within a fixed radial distance from the centre, i.e. they
are radially symmetric. That is why they are called as radial
basis function (Behera and Kar 2010). The training of RBFN
involves the adjustment of radial centres in hidden layers,
adjustment of widths of each radial centre in the hidden layer
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and optimizing the output layer weight vector such that the
cost function (instantaneous mean square error) gets mini-
mized. However, the performance of RBFN (Behera and Kar
2010) is not much sensitive to the accurate and precise value
of σ . If the plant’s input–output data are available before-
hand (which is not always the case), then offline training
can be used. In offline training, radial centres and widths are
fixed and adjustment of only output weight vector is done by
the application pseudo-inverse technique (Paul et al. 2015).
The work done in this paper is concerned with online train-
ing (Soudry et al. 2015) of RBFN, and method of gradient
descent is used to get its parameters learned.

3 Issues to be addressed while using RBFN

There are certain issues which need to be addressed for using
RBFN. These include

1. Which radial function φ should be used.
2. How many radial centres must be chosen so that desired

results can be obtained.
3. What should be the initial locations for radial centres.

Usually Gaussian radial function is used. Other choices
include quadratic, inverse quadratic and thin plate of spline
(Schultz 1973). Among these radial functions, the Gaussian
function is very popular because it is more intuitive in a sense
that if the input lies in the neighbourhood of radial centre,
then the corresponding radial basis function output will be
large. However, thin plate of spline given by

φ(z) = z2lnz (4)

can also work well in practice and can be recommended. On
the other hand, direct links are provided by Gaussian form to
fuzzy logic systems (Torshizi et al. 2015) and cluster analy-
sis, and hence, each of the basis function centre positions has
significance and has a physical meaning attached to them.
Each radial basis function has its own certain properties, and
for a given problem, some radial functions φ are more suited
than the others. To get best results, optimum number of radial
centres must be chosen as too little or too many will give
undesirable results. This choice depends upon the amount of
training data, and this dependency is of proportional type.
The best initial locations of radial centres would be those
places in input space where more training data are present
(Ayala and Santos Coelho 2016). These issues need to be
taken care of for using the RBFN. To position the radial cen-
tres in a self-organizing fashion, techniques such as k-means
clustering algorithm or the mean-tracking cluster algorithm
can be used.

4 Remark on computation complexities for RBFN

The number of computational steps required in case of RBFN
is as follows:

1. Calculation of Euclidian distance between the input vec-
tors and radial centres.

2. Computation of each radial centre output using Gaussian
radial basis function.

3. Multiplication of each radial centre output with a weight
(of output weight vector).

4. Calculation of induced field of output neuron (weighted
sum of inputs for output neuron). Since activation func-
tion for output neuron is linear, output of output neuron
is equal to its own induced field.

But in case of MLFFNN there is one additional computation
need to be performed which is the multiplication of external
input vector with the input weights (which connects external
inputs to the neurons present in the hidden layer).

So, if the training continued for 2000 iterations, then
it means 2000 extra computations will be performed in
MLFFNN as compared to computations required by RBFN.
The other added benefit of using RBFN is that its struc-
ture RBFN is fixed containing only one single hidden layer,
whereas in case of MLFFNN it is not always like that.
So, increasing the number of hidden layer will proportion-
ally increase the number of computational steps required by
MLFFNN and hence will make the system complex.

5 Identification of dynamics of nonlinear
dynamical system using RBFN

Manycontrol schemesworkonly if good approximatemathe-
matical model of a given system to be controlled is available.
For any such scheme to perform satisfactorily, the quality
of system model obtained through identification procedure
must be of a certain standard. So, system identification proce-
dure must be carefully chosen. The process of identification
involves choosing the model structure to which the given
system/plant belongs and approximation to its order and then
setting up the same structure forRBFNmodel to approximate
the unknown dynamics of given plant/system. The nonlinear
dynamical plant/systemmay belong to any of the fourmodels
introduced here by the following nonlinear difference equa-
tions (Narendra and Parthasarathy 1992):

Model 1: yp(k + 1) =
[
n−1∑

i=0

ai yp(k − i)

]
+ G [u(k), u(k − 1)

· · · u(k − m + 1)] (5)
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Model 2: yp(k + 1) = F
[
yp(k), yp(k − 1) · · · yp(k − n + 1)

]

+
[
m−1∑

i=0

biu(k − i)

]
(6)

Model 3: yp(k + 1) = F
[
yp(k), yp(k − 1) · · · yp(k − n + 1)

]

+G [u(k), u(k − 1) · · · u(k − m + 1)]

(7)

Model 4: yp(k + 1) = F
[
yp(k), yp(k − 1) · · · yp(k − n + 1),

u(k), u(k − 1) · · · u(k − m + 1)] (8)

The models shown above are used for representing the dis-
crete time systems. Continuous analogs of these can be
described by using the differential equations. Symbol n rep-
resents the order of the system/plant and m ≤ n. F and G
represent nonlinear functions. All the four models represent
the dynamical system in which plant’s output at (k + 1)th
instant depends upon present value of plant’s output and
external input as well as their past values (Narendra and
Parthasarathy 1990). The identification process requires the
knowledge of two things:

1. The class/model to which the given plant belongs.
2. The estimate of plant’s order (value of n).

The RBFN will be used to approximate the nonlinearity
present in the plant. The problem of identification is to set up
a suitably parameterized identification model (RBFN) and
then adjusting its associated parameters based on the instan-
taneous mean square error between the plant’s output and
identification model output. The structure of identification
model chosen is same as the mathematical structure of plant.
But certain things, as shown in what follows, must be kept
in mind to ensure that process of identification leads to the
convergence (Wei and Liu 2015) of identification model’s
parameters to their desired value.

5.1 Identification in parallel mode

Figure 2 shows a plant which belongs to model 1 with n = 2
and m = 1 and depends nonlinearly on external input u.
This nonlinear dependence is denoted by F . For identifica-
tion purpose, the identification model is also given in Fig. 2.
It will approximate the nonlinear dependence of plant’s out-
put on external input u. The RBFN identification model is
described by equation

ŷR(k + 1) = â0 ŷR(k) + â1 ŷR(k − 1) + RBFN(u(k)) (9)

where ŷR(k + 1) is RBFN output at (k + 1)th instant and â0,
â1 are parameters of plant which are to be estimated using
the gradient descent.

Fig. 2 Parallel identification model

Figure 2 represents the parallel mode in which RBFN uses
its own present and past values alongwith external input u(k)
to compute the ŷR(k + 1) value. Identification thus involves
the estimation of parameters â0, â1 and adjustment of RBFN
parameters.All the plants used in this paper are assumed to be
bounded-input bounded-output (BIBO) stable in the presence
of an input (of known class), which means all the signals in
the plants will also be BIBO stable. But stability of RBFN
identification model is not guaranteed (Cao and Liang 2004)
and so using its own output values may lead to instability and
hence identification process will not be complete. Hence, for
plant representations usingmodels 1–4, series–parallel mode
will be used.

It is to be clear that the mathematical structure assumed
for RBFN identification model is same as that of the plant.
In the present discussion, we considered plant to belong to
the model 1. In this model, the known part in the math-
ematical equation includes plant’s present and past output
value, and the unknown part is its dependency on the exter-
nal input u. So, the overall output of RBFN identification
modelwould also be the sumof known part plus the unknown
part approximated by RBFN. Thus, in parallel identifica-
tion mode, RBFN present and past output values plus the
F approximated by it (represented as RBFN [u(k)]) would
constitute the overall output of RBFN identification model.
In case of series–parallel mode, for model 1 case, present
and past output values of plant plus the F approximated by
RBFNwould constitute the overall output of the RBFN iden-
tification model.

5.2 Identification in series–parallel mode

In this mode, plant’s output is fed back to identification
model for computing the identification model (RBFN) out-
put. Figure 3 represents the series–parallel identification
model. The advantage of using series–parallel mode (Naren-
dra and Parthasarathy 1990) is that since the given plant is
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Fig. 3 Series–parallel identification model

assumed to be BIBO stable, all the signals used in the identi-
fication process (inputs of the RBFN) will also be bounded.
This leads to the following form of the identification model:

ŷR(k + 1) = â0yp(k) + â1yp(k − 1) + RBFN(u(k)) (10)

6 Identification algorithm using RBFN

One of the powerful tools to train the parameters of RBFN
is the gradient descent algorithm. The same principle is also
applied for updating the weights of MLFFNN-based identi-
fication model and controller. This is done in order to have
a fair comparison of performance evaluation of RBFN and
MLFFNN. Here, the algorithm is used in incremental mode
(that is sample by sample) because many times the train-
ing data are not available in advance but is coming online
and hence incremental type (Huang et al. 2006) of training
needs to be done. Let E(k) (instantaneousmean square error)
denotes instantaneous cost function value at kth instant and
is given by

E(k) = 1

2

(
yp(k) − yR(k)

)2 (11)

where yp(k) is the desired output (plant’s output whose
dynamics needs to be identified) and yR(k) is the output of
RBFNat kth time instant.Differentiating E(k)with respect to
Hi j (k)will provide the rate at which E(k) undergoes change
with respect to every element present in each radial centre,
where i = 1 to P , j = 1 to L , and this requires the use of
chain rule as number of signals are between E(k) and Hi j (k).

∂E(k)

∂Hi j (k)
=

(
∂E(k)

∂yR(k)
× ∂yR(k)

∂φ j (k)
× ∂φ j (k)

∂Hi j (k)

)
(12)

where ∂E(k)
∂yR(k) = −e(k),

∂φ j (k)
∂z j (k)

= −z j (k) × φ j (k)

σ 2
j (k)

and

∂z j (k)
∂Hi j (k)

=
(

∂
∑

j ((x j (k)−Hi j (k))2)
1
2

∂Hi j (k)

)

On simplification, we will get

∂z j (k)

∂Hi j (k)
= −

(
x j (k) − Hi j (k)

z j (k)

)
(13)

Thus, update equation for radial centres is

Hi j (k + 1) = Hi j (k) + �Hi j (14)

where

�Hi j = η1e(k)w j (k)
φ j (k)

σ 2
j (k)

(
x j (k) − Hi j (k)

)
(15)

Update rule for weights can be evaluated in a same fashion
as

∂E(k)

∂w j (k)
=

(
∂E(k)

∂yR(k)
× ∂yR(k)

∂w j (k)

)
(16)

where ∂E(k)
∂yR(k) = −(yp(k) − yR(k)) = −e(k) and ∂yR(k)

∂w j (k)
=

φ j (k). Thus, each element in w = [w1, w2, w3, . . . , wL) is
updated as

w j (k + 1) = w j (k) + �w j (17)

where �w j = η2e(k)φ j (k) and η2 is the learning rate and
is set between 0 and 1. Similarly, update equations for radial
centres width’s are obtained by applying the chain rule

∂E(k)

∂σ j (k)
=

(
∂E(k)

∂yR(k)
× ∂yR(k)

∂φ j (k)
× ∂φ j (k)

∂σ j (k)

)
(18)

where ∂E(k)
∂yR(k) = −(yp(k) − yR(k)) = −e(k), ∂yR(k)

∂φ j (k)
=

w j (k) and
∂φ j (k)
∂σ j (k)

= φ j (k)z2j (k)

σ 3
j (k)

. So, each element in σ =
(σ1, σ2, . . . , σL) is updated as

σ j (k + 1) = σ j (k) + �σ (19)

where

�σ = η3e(k)w j (k)
φ j (k)z2j (k)

σ 3
j (k)

(20)

where η3 is the learning rate and its value lies between 0 and
1. Before proceeding further, two simulation-based identifi-
cation examples using RBFN are given in the next section.
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6.1 Identification Example 1

The difference equation describing the dynamics of plant
(Narendra and Parthasarathy 1990) to be identified is given
by

yp(k + 1) = yp(k)yp(k − 1)yp(k − 2)u(k − 1)

1 + y2p (k − 2) + y2p (k − 1)
(21)

The given plant belongs to model 4. The learning rates η1,
η2 and η3 were all set to a value of 0.0045. Number of
radial centres taken is 20. The training was continued up
to 50,000 time steps using a random input signal with ampli-
tude uniformly distributed in the interval [−1, 1]. Red curve
in Fig. 4 shows the identification model response, and blue
curve shows the response of plant. It can be seen from the
figure that RBFN identification model is able to capture the
dynamics of the plant. Figure 5 shows the instantaneousmean
square error during the training. As the training progresses,
the MSE decreases showing the learning ability of RBFN.
The series–parallel RBFN identification model correspond-
ing to a nonlinear dynamical plant represented by model 4
is shown in Fig. 6. TDL in Fig. 6 denotes tapped delay lines
whose output vector constitutes the delayed values of its
input signal. During the identification, series–parallel mode
was selected but after the identification process is over the
performance of RBFN identification model is tested using
parallel mode. The reason of testing in parallel mode is to
check whether identification model is stable or not. Figure 7
shows the validation of RBFN identification model (after the
identification process is over), and for validating/testing the
identification model, the input chosen is given by

Fig. 6 Identification of dynamics of nonlinear plant using RBFN
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Fig. 7 Validation of RBFN identification model after identification
process is over

u(k) = sin

(
2πk

25

)
for k ≤ 500 (22)

and

u(k) = 0.75sin

(
2πk

250

)
+ 0.24cos

(
2πk

25

)
for k > 500

(23)

6.2 Identification Example 2

In this example, the nonlinear dynamical plant belongs to
model 2 and has the following form

yp(k + 1) = F + u(k) + 0.8u(k − 1) (24)

where

F = 5yp(k)yp(k − 1)

1 + y2p (k) + y2p (k − 1) + y2p (k − 2)
(25)

The identification process was continued for 30,000 time
steps using a random input whose amplitude is uniformly
distributed in the interval [−1, 1]. Number of radial centres
are 20, and learning rate was chosen to be 0.05. Figure 8
shows the identification model response during the training
process, and Fig. 9 shows the instantaneous mean square
error. Figure 10 shows the validation of RBFN identification
model after the training process is over. The input taken for
testing/validation purpose is shown below:
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Fig. 8 Identification by RBFN during the training for random input
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Fig. 9 Instantaneous mean square error during the training process
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Fig. 10 Validation of RBFN identification model after the training
process is over

u(k) = sin

(
2πk

25

)
for k ≤ 50 (26)

and

u(k) = 1.2cos

(
2πk

24

)
for k > 50 (27)

From the figures, it can be concluded that RBFN has the
ability of capturing the dynamics of unknown plant in the
form of its own tuned parameters (whichmoves towards their
desired values as the online training progressed).

7 Simultaneous online identification and control
using RBFN

There are two different approaches to adaptively control the
plant. These are

1. Direct control.
2. Indirect control.

For direct control of linear time invariant system, stable laws
exist (Narendra and Parthasarathy 1991) for updating the
parameters of controller and that only requires the knowl-
edge of the error between plant output and reference model
output. But such stable laws do not exist (Wang 1993) for
RBFN, and hence, indirect adaptive control will be used.

For applying indirect control method, knowledge regard-
ing the plant’s dynamics must be known since this informa-
tion is required for Jacobian value computation. The value of
Jacobian is needed during the training for updating theRBFN
parameters (Khalil and Dombre 2004). In this paper, plant’s
dynamics are assumed to be unknown. So, for implement-
ing the control action we have to incorporate identification
model in parallel to the plant which will learn the dynam-
ics of the plant as the training progress. In online training,
both RBFN-based identification model and controller will
operate simultaneously (which also ensures the stability of
the system). In this section, first the control algorithm based
on RBFN will be given. After that numerical examples will
be given for demonstrating simultaneous identification and
control using RBFN for nonlinear dynamical systems. This
will also include the test for robustness of proposed RBFN
controller in terms of system’s uncertainties.

7.1 Control algorithm using RBFN

Again, the gradient descent is used for obtaining controller’s
parameters update equations in an incremental mode. Let
E(k) denote the instantaneous error between the output of
plant and reference model at kth instant and is given as:

E(k) = 1

2
(ym(k) − yp(k))

2 (28)

where yp(k) is plant output and ym(k) is the reference model
output at kth instant. Differentiating E(k) with respect to
Hi j (k)will provide the rate at which E(k) undergoes change
with respect to every element present in each radial centre,
where i = 1 to P , j = 1 to L and this requires the use of a
chain rule as number of signals are between E(k) and Hi j (k).

∂E(k)

∂Hi j (k)
= ∂E(k)

∂yp(k)
× ∂yp(k)

∂uc(k)
× ∂uc(k)

∂φ j (k)
× ∂φ j (k)

∂z j (k)

× ∂z j (k)

∂Hi j (k)
(29)

∂E(k)

∂Hi j (k)
= −e(k) × J (k) × w j (k) ×

(
∂φ j (k)

∂z j (k)
× ∂ z j (k)

∂Hi j

)

(30)

where

∂yp(k)

∂uc(k)
= J (k) (31)
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J (k) is called as Jacobian of plant and uc(k) = RBFN con-
troller output at kth instant.

The computation of J (k) requires the knowledge of the
plant’s dynamics, and if they are unknown, then a separate
RBFNwill be used as an identificationmodel (identifier), and
it will capture the dynamics of the plant in the form its own
parameters during the online training. The RBFN identifica-
tion model thus will be used to calculate the Jacobian value
of plant as RBFN mathematical structure is known. Now

∂φ j (k)

∂z j (k)
= −z j (k) × φ j (k)

σ 2
j (k)

(32)

and

∂z j (k)

∂Hi j (k)
=

⎛

⎝∂
∑

j

(
(x j (k) − Hi j (k))2

) 1
2

∂Hi j (k)

⎞

⎠ (33)

On simplification

∂z j (k)

∂Hi j (k)
= −

(
x j (k) − Hi j (k)

z j (k)

)
(34)

Thus, update equation for radial centres is

Hi j (k + 1) = Hi j (k) + �Hi j (35)

where

�Hi j = η1 J (k)e(k)w j (k)
φ j (k)

σ 2
j (k)

(
x j (k) − Hi j (k)

)
(36)

where η1 is a learning rate and its value lies between 0 and
1. Update rule for weights is

∂E(k)

∂w j (k)
=

(
∂E(k)

∂yp(k)
× ∂yp(k)

∂uc(k)
× ∂uc(k)

∂w j (k)

)
(37)

where ∂E(k)
∂yp(k)

= −(ym(k) − yp(k)) = −e(k),
∂yp(k)
∂uc(k) =

J (k) and ∂uc(k)
∂w j (k)

= φ j (k). Thus, each element in w =
(w1, w2, w3, . . . , wL) is updated as

w j (k + 1) = w j (k) + η2e(k)J (k)φ j (k) (38)

where η2 is the learning rate, and its value is anywhere
between 0 and 1. Similarly, update equation for widths is
obtained as:

∂E(k)

∂σ j (k)
=

(
∂E(k)

∂yp(k)
× ∂yp(k)

∂uc(k)
× ∂uc(k)

∂φ j (k)
× ∂φ j (k)

∂σ j (k)

)
(39)

Fig. 11 Identification and indirect adaptive control using RBFN

where ∂E(k)
∂yp(k)

= −(ym(k) − yp(k)) = −e(k),
∂yp(k)
∂uc(k) = J (k)

and ∂uc(k)
∂φ j (k)

= w j (k) and

∂φ j (k)

∂σ j (k)
= φ j (k)z2j (k)

σ 3
j (k)

(40)

So, each element in σ = (σ1, σ2, . . . , σL) is updated as

σ j (k + 1) = σ j (k) + η3e(k)J (k)w j (k)
φ j (k)z2j (k)

σ 3
j (k)

(41)

where η3 is the learning rate and η3 lies between 0 and 1.
Figure 11 shows the configuration for simultaneous online
identification and control based on RBFN. The symbol ec(k)
denotes the instantaneous error between plant’s output and
reference model output and is used to update the parameters
of RBFN controller at kth instant. The ei (k) denotes error
between RBFN identification model (identifier) and actual
plant, and this error is used to update the parameters of RBFN
identificationmodel at the same kth instant. Three simulation
examples are given consisting of plants of different complex-
ity, and their dynamics are assumed to be unknown. These
examples demonstrate the process of simultaneous identifi-
cation and control usingRBFNs and also show the robustness
of proposed RBFN controller.

The flowchart describing the various computational steps
to be done for both RBFN identificationmodel and controller
is shown in Fig. 12

7.2 Example 1

Consider a nonlinear plant belonging to model 2 and (Naren-
dra and Parthasarathy 1990) is described by the following
difference equation

yp(k + 1) = yp(k)yp(k − 1)
[
yp(k) + 2.5

]

1 + y2p (k) + y2p (k − 1)
+ u(k) (42)
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Fig. 12 Flowchart describing the various steps involved in the training

where the function

F
[
yp(k), yp(k − 1)

] = yp(k)yp(k − 1)
[
yp(k) + 2.5

]

1 + y2p (k) + y2p (k − 1)
(43)

is assumed to be unknown and u(k) denotes input to the plant.
The external input is BIBO stable and is given by

r(k) = sin

(
2πk

25

)
(44)

The reference model is described by the following second-
order difference equation

ym(k + 1) = 0.6ym(k) + 0.3ym(k − 1) + r(k) (45)

The objective of control is to make ec(k + 1) = ym(k +
1) − yp(k + 1) equal to or closer to zero by generating an
appropriate control signal uc(k) at each instant. If the func-
tion F is known, it follows directly that at kth instant, uc(k)
can be computed from the knowledge of yp(k) and its past
values as

uc(k) = −F
[
yp(k), yp(k − 1)

] + 0.6yp(k)

+ 0.3yp(k − 1) + r(k) (46)

If F is unknown, then it is first identified offline using RBFN
whose inputs will be yp(k) and yp(k − 1) using the series

parallel mode. But this is not always the case as plant output
at (k + 1)th instant may depend nonlinearly on its input, and
hence, above procedure will not be applicable. So to handle
linear as well as nonlinear cases in terms of dependency of
plant’s output on its input, the general procedure is given
and it involves a RBFN controller whose inputs are r(k),
(yp(k), yp(k−1), . . . , yp(k−n+1)) and uc(k−n+1)where
n denotes the order of plant (which is assumed to be known).
Thus, the reference input r(k), the plant’s present output,
yp(k), as well as its past n−1 values and n−1 past values of
uc(k) (i.e. RBFN controller output) will constitute the inputs
to the controller. Then, by using the update equations the
parameters of RBFN controller (using ec(k+1)) as well as of
RBFN identification model (using ei (k+1)) will be adjusted
simultaneously during the online control and identification
process.

In the given example, n = 2; thus, the number of inputs
to RBFN controller will be 4, i.e.

uc(k) = −RBFN
[
yp(k), r(k), yp(k − 1), uc(k − 1)

]

+ 0.6yp(k) + 0.3yp(k − 1) + r(k) (47)

where uc(k) is RBFN controller output, and hence, u(k) in
Eq. 42 is equal to uc(k).

Figure 13 shows the response of plant (dotted lines) and
reference model (solid line) without control action. It can be
seen from the figure that plant output is not following the ref-
erence model output. Now, using the configuration as shown
in Fig. 11, both RBFN controller and RBFN identifier are
set up and their parameters will be updated simultaneously
online. The learning rate was set to 0.025 value. The number
of radial centres was chosen to be 25 in both RBFN identifier
and controller. Figure 14 shows the response of RBFN identi-
ficationmodel (growing curve in amplitude) and plant during
the initial phase of learning. As the training progresses, the
output of identification model started following the plant’s
output, and Fig. 15 shows the response of plant (growing
curve in amplitude) and reference model during the initial
stage of RBFN controller training. Here also the response of
plant with RBFN controller action improved (become closer
to reference model response) and become similar to that of
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Fig. 13 Response of plant without control
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Fig. 14 Response of RBFN identifier and plant during initial phase of
training
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Fig. 15 Response of plant and reference model during initial stage of
RBFN controller training
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Fig. 16 RBFN identification model and plant response after sufficient
online training

reference model. The updating process continued for 10,000
time steps after which it was terminated. It can be seen from
Fig. 16 that RBFN identifier is able to capture the dynam-
ics of the plant. Figure 17 shows the mean square error plot
for RBFN identification model. When the RBFN parame-
ters were updating, then at the same time RBFN controller
parameters were also updating. Figure 18 shows the response
of plant with RBFN controller in action after the sufficient
online training of RBFN controller is done. It is clear from
Fig. 18 that RBFN parameters attained their optimal values
and generate the desired control output such that plant output
is following the reference model output at each instant. Fig-
ure 19 shows the mean square error plot of RBFN controller,
and it is clear from Fig. 19 that as the training progresses
mean square error keeps on decreasing because as the train-
ing progresses the parameters of RBFN move towards their
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Fig. 17 Instantaneous mean square error of RBFN identification
model
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Fig. 18 Plant response with RBFN controller after sufficient online
training
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Fig. 19 Instantaneous mean square error of RBFN controller model

Table 1 Comparison of instantaneous mean square error (MSE) of
RBFN and MLFFNN identifier during training

Network type Average MSE

Average MSE of RBFN identifier 0.0170

Average MSE of MLFFNN identifier 0.0335

optimum values and hence instantaneous error at subsequent
instants keeps on decreasing. The same example was simu-
lated using the MLFFNN with single hidden layer and with
number of hidden neurons equals to number of radial cen-
tres in RBFN, i.e. 25. The learning rate was also chosen
same, i.e. η = 0.025, and the training continued for same
number of time instants, i.e. 10,000. Table 1 shows the com-
parative results showing average mean square error (MSE)
during online training of RBFN and MLFFNN identifica-
tion model. Table 2 shows the average mean square error of
RBFN and MLFFNN controller. From both the tables, it is
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Table 2 Comparison of instantaneous mean square error (MSE) of
RBFN and MLFFNN controller during training

Network type Average MSE

Average MSE of RBFN controller 0.0231

Average MSE of MLFFNN controller 0.0318
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Fig. 20 Instantaneous MSE of RBFN controller during parameter
perturbation

clear that RBFN has given better results than the MLFFNN.
Now the proposed controller is checked for robustness. It is
one of the important and useful properties of feedback. A
system having robustness is very little sensitive or immune
to parameter variations (component’s values variations) in a
plant/system. Since the given plant’s dynamics are unknown,
they are approximated by theRBFN identificationmodel. So,
in essence the unknown parameters values of plant are stored
in the form of parameters values of the RBFN identifica-
tion model. Thus, in order to check the robustness of RBFN
controller, any element of output weight vector of RBFN
identification model can be perturbed. The consequence of
this will be seen as an increase in the value of instantaneous
mean square error in MSE plot of RBFN controller at the
instant at which perturbation occurred. If theMSE again goes
back to zero, then the system has robustness otherwise not.
Figure 20 shows theMSE plot of RBFN controller when first
perturbation in parameter occurred at K = 300th s instant.
From Fig. 20, notice that when perturbation occurred MSE
suddenly increases and then quickly drops towards zero but
again a perturbation in parameter occurred at k = 302th
instant which again made the MSE to increase but as train-
ing progresses MSE again started to decrease and becomes
zero at k = 307th time instant which shows the robust nature
of RBFN controller. Now controller robustness is checked
against the disturbance signals in the system.

Disturbance also leads to spikes in theMSE plot of RBFN
controller, and from Fig. 21, it is clear that at two noise
signals (of step type) entered the system at k = 3000
and k = 3002th s instants, respectively, and there occurs
an increase in MSE value but as the training progresses it
quickly recovered and drops down to zero within few sec-
onds proving the robust characteristic of RBFN controller.
This shows the effectiveness of the control configuration as
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Fig. 21 Instantaneous MSE of RBFN controller during noise

shown in Fig. 11. The identification model is able to capture
the changed dynamics of plantwhich getsmodified due to the
disturbance signals of parameter variations, and this allows
the controller to modify its own parameters accordingly so
that a correction can bemade in the control signal value. This
makes plant’s to provide again the desired output values.

7.3 Example 2

In this example, the unknowndynamics of the nonlinear plant
(Narendra and Parthasarathy 1990) is described by the fol-
lowing difference equation

yp(k) = 5yp(k)yp(k − 1)

1 + y2p (k) + y2p (k − 1) + y2p (k − 2)
+ u(k)

+ 0.8u(k − 1)

(48)

The external input r(k) is given by r(k) = sin (2πk/25). The
order of the given plant is 3 so number of inputs to the RBFN
controller will be 6. The present external input r(k), present
plant output yp(k) and its past values yp(k − 1), yp(k − 2)
along with past two values of controller outputs: uc(k − 1)
and uc(k−2)will form the six inputs to the RBFN controller.
For RBFN identifier, yp(k), yp(k−1) and yp(k−2) form the
inputs. Thus, RBFN identification model is described by the
following difference equation in the series–parallel mode as

yR(k + 1) = RBFN
[
yp(k), yp(k − 1), yp(k − 2)

]

+ u(k) + 0.8u(k − 1)
(49)

The reference model is described by the following second-
order difference equation

ym(k+1) = 0.72ym(k)+0.64ym(k−1)−0.5ym(k−2)+r(k)

(50)

The learning rate, η, was chosen to be 0.0015. Figure 22
shows the response of plant (non sinusoidal curve with
smaller amplitude) and reference model (sinusoidal curve)
when no control action is initiated. It is clear that plant out-
put is not following the reference model output, and hence,
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Fig. 22 Plant output and reference model output without control
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Fig. 23 RBFN identification model output and plant output during the
initial phase identification
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Fig. 24 Output of plant with controller action and reference model
output during the initial phase of controller training

control action is needed. Figure 23 shows the output of
RBFN identification model (curve with higher amplitude at
the beginning) and plant output (curve with smaller ampli-
tude at the beginning) when training is in its initial stage, and
Fig. 24 shows the plant output (non sinusoidal curve) and
reference model output (sinusoidal curve) when training of
RBFN controller is in initial phase. From both the figures, it
can be seen that as the training progresses parameters of both
RBFNs are approaching towards their desired optimal values.

After a sufficient training (for 25,000 time steps), the
RBFN identifier and controller parameters reached to their
desired values. Figure 25 shows the response of identifica-
tionmodel and plant. It is clear from the figure that the output
of RBFN identifier and plant is indistinguishable. Figure 26
shows the response of plant (dotted curve)with trainedRBFN
controller, and it can be easily seen from the figure that plant
output is following the reference model output (solid line
curve) under RBFN controller action.

Figure 27 shows the instantaneous mean square error plot
of RBFN identification model during the training. It is clear
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Fig. 25 RBFN identification model output and plant output at end
stage of the identification process
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Fig. 26 Plant output and reference model output at end stage of the
training process
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Fig. 27 Instantaneous mean square error of RBFN identification
model during the online training
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Fig. 28 Instantaneous mean square error of RBFN controller during
the online training

from the figure that in the earlier stages of training the error
was appreciable but as the training progresses the error keeps
on decreasing and finally become closer to zero. Similar is
the case with the instantaneous mean square error plot of
RBFN controller which is shown in Fig. 28. Again in this
example the comparative analysis is done by simulating the
same example with MLFFNN under same conditions, and
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Table 3 Comparison of mean square error (MSE) of RBFN and
MLFFNN identifier during training

Network type Average MSE

Average MSE of RBFN identifier 0.0356

Average MSE of MLFFNN identifier 0.2042

Table 4 Comparison of mean square error (MSE) of RBFN and
MLFFNN controller during training

Network type Average MSE

Average MSE of RBFN controller 0.1232

Average MSE of MLFFNN controller 0.1872
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Fig. 29 Instantaneous mean square error of RBFN controller with
noise in the system
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Fig. 30 Mean square error of RBFN controller during parameter per-
turbation

the results in terms of average instantaneous MSE are given
in Tables 3 and 4. The RBFN controller in this example is
also checked for robustness. The system undergone para-
meter perturbation at k = 8000th time instant, and from
Fig. 29 it can be seen that the MSE at that instant rapidly
increased and then in a very short time goes to zero. Fig-
ure 30 shows the effect on the MSE when noise entered the
system at k = 5000th instant.

The RBFN has again given improved response which
proves it as a strong option for implementing as a controller
and identifier. The MSE value increases in response to the
noise, but parameters of RBFN recovered as the training pro-
gresses and MSE again decrease and drops down to zero
value. This example again shows that the RBFN has the
robustness characteristic.

7.4 Example 3

In this last example a nonlinear plant belonging to Narendra
and Parthasarathy (1990), a class of model 4 is considered,
and it has the unknown dynamics which are to be indentified
parallel along with the control action:

yp(k + 1)

= yp(k)yp(k − 1)yp(k − 2)u(k − 1)
[
yp(k − 2) − 1

] + u(k)

1 + y2p (k − 1) + y2p (k − 2)

(51)

The external input r(k) is given by

r(k) = sin (2πk/25) (52)

and reference model dynamics is given by

ym(k + 1) = 0.08ym(k) + 0.13ym(k − 1) + r(k) (53)

The dependencyof plant output at (k+1)th instant on its input
is not linear. The order of the plant is n = 3 so RBFN con-
troller will have six inputs. The learning rate, η, was chosen
to be 0.0038. The external reference input r(k), the plant’s
output yp(k) as well as its past n−1 values, namely yp(k−1),
yp(k − 2) and n − 1 past values of RBFN controller outputs:
uc(k−1) and uc(k−1). Since the given dynamics of the plant
are assumed to be unknown, theywill be identified simultane-
ously along with RBFN controller’s parameter tuning using
RBFN identifier having the same plant’s mathematical struc-
ture shown in below equation:

yR(k + 1) = RBFN
[
yp(k), yp(k − 1),

yp(k − 2), u(k), u(k − 1)
]

(54)

Both RBFN controller and RBFN identification model will
operate and undergo online training simultaneously. The
response of the plant to external input, r(k), without RBFN
controller is shown in Fig. 31. The identification model and
plant’s response during early stages of training are shown in
Fig. 32. It can be seen from the figure that as the training
progresses (along with RBFN control) the RBFN identi-
fication model output started following the plant’s output.
Figure 33 shows the plant’s output (growing in amplitude)
and reference model output (sinusoidal curve with constant
amplitude) during the initial stages of RBFN controller train-
ing.

After sufficient training (for 30,000 time steps), the final
stage response (during the training process) of RBFN iden-
tification model and plant’s output under RBFN controller
action are shown in Figs. 34 and 35, respectively. From
both the figures, a conclusive evidence of successful online
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Fig. 31 Plant output and referencemodel outputwithout control action
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Fig. 32 RBFN identification model output and plant’s output during
the initial phase identification
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Fig. 33 RBFNcontrolled plant output and referencemodel output dur-
ing the initial phase of controller training
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Fig. 34 RBFN identification model output and plant output at end
stage of the identification process

training of both RBFN controller and identifier is obtained.
Figures 36 and 37 show the mean-square-error (MSE) plots
of RBFN controller and RBFN identification model, respec-
tively, during the simultaneous online training. Now, the
developed controller is checked for robustness. For this the
performance of controller is checked against parameter vari-
ation and noise in the system. The parameter variation (one
of the RBFN weight undergoes step like change) occurred at
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Fig. 35 Plant output and reference model output at end stage of the
training process
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Fig. 36 Instantaneous mean square error of RBFN identification
model during online training
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Fig. 37 Instantaneous mean square error of RBFN controller during
online training
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Fig. 38 InstantaneousMSE of RBFN controller during parameter per-
turbation

k = 5000th instant, and from Fig. 38 it can be seen that the
MSE responded to that in the form of increase in the value
but as the time progresses MSE quickly drops down towards
zerowhich shows the robust nature ofRBFNcontroller. After
this, RBFN is tested against the effects of noisewhich entered
the system at k = 6000th instant. In this case also, the rise in
MSE due to noise was soon taken care of, and from Fig. 39,
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Fig. 39 Instantaneous MSE of RBFN controller when noise enters in
the system

Table 5 Comparison of mean square error (MSE) of RBFN and
MLFFNN identifier during training

Network type Average MSE

Average MSE of RBFN identifier 0.0153

Average MSE of MLFFNN identifier 0.0245

Table 6 Comparison of mean square error (MSE) of RBFN and
MLFFNN controller during training

Network type Average MSE

Average MSE of RBFN controller 0.0236

Average MSE of MLFFNN controller 0.0562

one can see that the MSE reduced to zero within a very short
time proving the robustness of RBFN controller against the
effects of noise.Again in this example the comparative analy-
sis is done by simulating the same example with MLFFNN
under same conditions, and the results in terms of MSE are
given in Tables 5 and 6. From the tables, it can be said that
RBFN has given better results over MLFFNN.

8 Achievements of the paper

The achievements of this paper are summarized below:

1. The application of RBFN as a robust controller is demon-
strated in this paper. Its performance was checked by
considering nonlinear plant’s of different complexities.
Simulation results showed that RBFN is able to effi-
ciently control the plants.

2. In this paper, the RBFN performance is compared with
MLFFNN, and results showed the superior performance
of RBFN over MLFFNN.

3. The robustness of proposed RBFN controller is checked
against parameter variations and disturbances. The plots
ofMSE showed thatRBFNparameters recovered quickly
and MSE again dropped down to zero.

4. The dynamics of the plants considered in the simula-
tion examples were assumed to be unknown; hence, both
identification and control were implemented simultane-
ously which again shows the capability of RBFN as an
identifier and as a controller.

9 Conclusion and future scope

In this paper, radial basis function network has been used for
online identification and control of nonlinear plants of dif-
ferent complexities. The results reveal that RBFN is able to
efficiently control the plant without requiring the knowledge
of the plant’s parameters. The response of RBFN controller
and identification model depends on the learning of their
parameters, and results showed that as the training progressed
their parameters reached to their optimum values, thus deliv-
ering the right value of RBFNs output. It has also shown good
performance under the impact of noise and parameter varia-
tions as the parameters of RBFN are able to quickly adjust
them in order to cope with the changes occurred in the sys-
tem. The RBFN performance in comparison with MLFFNN
is also checked, and results showed that RBFN performed
better than theMLFFNN. The topological structure of RBFN
is much simpler than MLFFNN which gives it an edge over
it in terms of computation time required during the online
training phase. This makes RBFN as a perfect candidate for
control and identification of plants with nonlinearity, and
from the simulation results, it can be proposed that RBFN
can be used as a robust controller and as an identifier. The
application of RBFN-based identification and control can be
extended to multi-input multi-output (MIMO) systems. New
learning algorithms can be explored, and their stability analy-
sis can be done for updating the parameters of RBFN. RBFN
can be combinedwith fuzzy-based systems (like neuro-fuzzy
systems) in order to use the power of both structures. The
issues like packet dropouts and time delays also create prob-
lems while controlling the plant and application of RBFN for
dealing with such cases is itself a new problem, which can
be addressed in future works.
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