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Abstract Mining temporal association patterns from time-
stamped temporal databases, first introduced in 2009, remain
an active area of research. A pattern is temporally simi-
lar when it satisfies certain specified subset constraints. The
naive and apriori algorithm designed for non-temporal data-
bases cannot be extended to find similar temporal patterns in
the context of temporal databases. The brute force approach
requires performing 2n true support computations for ‘n’
items; hence, an NP-class problem. Also, the apriori or fp-
tree-based algorithms designed for static databases are not
directly extendable to temporal databases to retrieve temporal
patterns similar to a referenceprevalenceof user interest. This
is because the support of patterns violates the monotonic-
ity property in temporal databases. In our case, support is
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a vector of values and not a single value. In this paper,
we present a novel approach to retrieve temporal associa-
tion patterns whose prevalence values are similar to those of
the user specified reference. This allows us to significantly
reduce support computations by defining novel expressions
to estimate support bounds. The proposed approach elim-
inates computational overhead in finding similar temporal
patterns. We then introduce a novel dissimilarity measure,
which is the fuzzy Gaussian-based dissimilarity measure.
The measure also holds the monotonicity property. Our eval-
uations demonstrate that the proposed method outperforms
brute force and sequential approaches. We also compare the
performance of the proposed approach with the SPAMINE
which uses the Euclidean measure. The proposed approach
uses monotonicity property to prune temporal patterns with-
out computing unnecessary true supports and distances.

Keywords Temporal association pattern · Monotonicity ·
Outliers · Similar · Prevalence

1 Introduction

Soft computing plays an important role in data and text
mining, and in recent times, soft computing has also been
applied in temporal data mining (see Schultz et al. 2009;
Chen et al. 2016; Radhakrishna et al. 2015d, e). Although
several similaritymeasures exist in hard computing, there are
nomeasures defined in the soft computing context which can
be directly applied to temporal context and identify patterns
whose prevalence variation is similar to those of the chosen
reference. We also observe that while fuzzy logic has played
a significant role in soft computing (see Radhakrishna et al.
2016, 2015a, b, c; Borgelt 2013; McClean et al. 2013; Hong
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et al. 2002; Wan et al. 2016; Radhakrishna et al. 2015d, e),
there is no known fuzzy dissimilarity measure which can be
used to discover and retrieve identical patterns from a tem-
poral database. In addition, there has been no attempt toward
mapping the Euclidean space on fuzzy space. In this paper,
we introduce a novel fuzzy similarity measure, which holds
the monotonicity property and can be used to efficiently dis-
cover temporal similar patterns.

Finding frequent itemsets (patterns) in non-temporal (sta-
tic) databases has been extensively studied in the literature.
Specifically, a number of algorithms designed to find fre-
quent itemsets, while achieving space and time efficiency,
have been proposed. Finding temporal frequent itemsets has
also been studied. However, existing studies generally do not
consider finding similar temporal patterns whose prevalence
(support) values are similar or satisfy subset specifications,
with the exceptions of Yoo and Shekhar (2009), Yoo and
Shekhar (2008), Yoo (2012), Radhakrishna et al. (2016,
2015a, b, c). The subset specification involves specifying the
distance measure, reference support vector, and user interest
threshold value.

An approach for finding temporal frequent patterns is dis-
cussed in Jin et al. (2006), which uses TFP-tree. The authors
inHirano andTsumoto (2002) discuss the importance of tem-
poral frequent patterns in the context of medical and time
series applications. In Yoo and Shekhar (2009), temporal
patterns are extracted from the input database using bounds
of supports. In the research reported in Yoo and Shekhar
(2008) and Yoo (2012), temporally similar natured patterns
are retrieved for a set of pre-defined subset specifications.
The subset constraints involve specifying reference support
vector, user interest threshold value and an appropriate dis-
tance metric. The drawback of such an approach is in the
use of Euclidean distance. In Chen et al. (2015), patterns are
mined from the underlying time interval based data using
Gaussian function.

In this work, we introduce a fuzzy dissimilarity mea-
sure to compute distance in fuzzy space. We also introduce
expressions to estimate the support bounds. This allows us
to discover temporal patterns whose prevalence value vari-
ations are similar to those of the reference sequence. Our
approach also reduces the computational overhead in finding
the support values of itemsets. There is no known distance
measure that holds the monotonicity property w.r.t temporal
context, and this is the gap we seek to fill. Specifically, we
present a measure that holds the monotonicity property. We
regard the following as the contributions of this paper:

1. Designing of a novel fuzzy Gaussian-based membership
function which retains the monotonicity property.

2. Designing of novel expressions to estimate themaximum
possible prevalence and minimum possible prevalence
value of temporal patterns.

3. Designing of expression for mapping threshold value to
fuzzy space and using a suitable standard deviation value
in the fuzzy function.

The rest of the paper is organized as follows. Section 2
reviews related literature, and Sect. 3 describes our proposed
method. The case study and results are presented in Sect. 4.
Section 5 presents our discussion, and the last section con-
cludes this paper.

2 Related work

In practice, sequence databases generally consist of items
with different frequencies. When all these items are set to
minimum support, we may encounter the “rare item prob-
lem”. This problem is addressed in Hu et al. (2015), which
presented the “rep-Prefix scan” algorithm designed to sup-
port multiple minimum retention support value for items.

Terrain landscapes are likely to experience temporal phe-
nomena over time and have been the subject of active
research. In Schultz et al. (2009), the authors present a
spatio-temporal predictionmethod to predict terrain, forestry
landscapes state for a specific time period and forestry evolu-
tion using soft computing-based approach. Specifically, they
use the sequence of preprocessed binary images obtained
from remote sensing images, which are generated from a
specific set of regions.

Hydro climate variables are probabilistic in nature; thus,
estimating global warming accurately based on these vari-
ables is challenging when studying the impacts of climate
changes. Atmospheric predictors are also high dimen-
sional. In Sarhadi et al. (2016), a multivariate approach,
MRNBC (Multivariate Recursive Nesting Bias Correction),
is designed to correct spatial and temporal bias values that
exist in climate model simulations. The authors address the
high-dimensional feature space problem using a nonlinear
supervised dimensional reduction algorithm and two non-
linear soft computing machine learning algorithms, SVR
(support vector regression) and RVM (Relevance vector
machine).

In real-time applications, transactions often contain quan-
titative values which can be associated with a life span from
a temporal database. The latter includes geographical, health
records maintained over some time period. In Chen et al.
(2016), the authors present an approach to discover fuzzy
temporal association rules. The algorithm first transforms
all such quantitative values to their equivalent fuzzy set by
the use of fuzzy membership functions. The transformation
process is used to generate a temporal information table to
record the lifetime of items.

InBorgelt (2013), the authors discuss howsoft computing-
based pattern mining methods can be employed to address
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challenges of selective participation and temporal impreci-
sion related to a high level mechanism of neural information
processing. They also discuss the importance of adopting a
soft computing approach to testing the spatio-temporal cod-
ing and temporal coincidence coding hypothesis.

Providing personalized web services is increasingly pop-
ular, which is not surprising due to advances in data and
web mining technologies and potential financial benefits
(e.g., generating higher sales). This requires prediction and
discovery of hidden user behavioral patterns which can be
discovered from web user logs. Although there are a num-
ber of studies in the prediction of user trends and behavioral
patterns, this area is understudied in the context of discov-
ering temporal web usage patterns (see Xu (2016); Xu et al.
(2016)). In Tseng et al. (2008), the authors consider the
temporal property in web usage evolution and then present
temporal n-gram algorithm to mine temporal navigation pat-
terns. Similarly n-gramanalysis has beenused inother related
studies (see Peng et al. 2016a, b, inpress).

Retrieving historical information requires formulating
queries by specifying temporal constraints. This is the draw-
back of information retrieval systems as they do not store
and record structured temporal information, and they do not
have well-defined temporal boundaries for historical events.
A framework to address these issues in presented in Schock-
aert et al. (2010). InMcClean et al. (2013), the authors present
an approach to discover sequences consisting of heteroge-
neous symbolic data that have an underlying temporal similar
pattern. An approach based on propositional logic to discover
high coherent utility fuzzy patterns is presented in Chen et al.
(2014). In Hong et al. (2002), the authors use linguistic data
to study temporal user behavioral patterns. Segmentation is
a preprocessing step in time series pattern matching, which
transforms high-dimensional input data sequence to its low-
dimensional equivalent representation.

In Wan et al. (2016), the authors evaluate the accuracy
and effectiveness of a time series pattern matching using four
approaches, namely decision tree based, rule based, hybrid
and symbolic aggregate approximation. In Mahmoud et al.
(2013), soft computing techniques are used to predict the
behavior of occupant suffering from dementia in an inhabited
intelligent environment. Themovement patterns are recorded
using sensors, and occupancy data are transformed to a tem-
poral sequence of activities, which are later used to predict
the behavior of the occupant.

The author in Kudłacik et al. (2016) proposes a user
command-based intrusion detection based on fuzzy logic.
The approach consists of creating two user profiles called
the local profile and the fuzzy user profile. The purpose of
the fuzzy user profile is tomaintain user information in a gen-
eralized form. The proposed approach is also motivated from
the work detailed in Lin et al. (2014). Other recent soft com-
puting approaches based on similarity computations include

those reported in Wang and Ma (2016) and Wang and Feng
(2016). A genetic learning and the neuro-fuzzy approach for
“team level service climate is proposed in Sangaiah et al.
(2015), Sangaiah and Thangavelu (2014).

3 Proposed method to obtain similar temporal
patterns

Similar temporal patterns are those whose pattern preva-
lence variations are similar to those of a reference sequence,
which are of primary interest to the user and satisfy cer-
tain set of specifications Yoo and Shekhar (2008). This is an
understudied area. For example, in Yoo and Shekhar (2009),
Yoo and Shekhar (2008) and Yoo (2012), the authors pro-
pose an approach to find similar temporal itemsets. They
compute true supports of all itemsets in the previous stage
when estimating supports of superset patterns. They adopt
the basic Euclidean measure, which is widely used in the
literature. The authors use the Euclidean distance measure
and introduce the concept of bounds. They then show that
the maximum possible minimum distance computed using
the Euclidean distance w.r.t the maximum possible support
sequence holds the monotonicity property. The notations
used in this paper are introduced in the Table 1.

Let us consider the brute force approach, to retrieve sim-
ilar temporal association patterns for a specified reference
sequence, R, for a given threshold value, �. For itemset with
‘N’ items, this approach requires generating (2N−1) itemset
combinations and then computing true support values for all
these 2N-1 itemset combinations. The complexity is, thus, O
(2N). This means that the complexity is exponential, which
indicates that the complexity class of this approach is NP-
class. The present research is motivated from this fact. The
objective of this research is, thus, to reduce the computational
overhead in computing true supports by estimating support
bounds of itemsets. The true support for itemset is computed
if, and only if, it is really needed and required. In Sects. 3.1
and 3.2, we present the design expressions used to estimate
the pattern support bounds and fuzzy Gaussian dissimilar-
ity measure which is used to find similarity degree between
two temporal patterns. This is then followed by outlining the
proposed approach in Sect. 3.3, and the expressions used to
compute the upper and lower distance bounds and discussion
of monotonicity property in Sects. 3.4 and 3.5, respectively.

3.1 Design expressions to estimate support bounds

LetNbe the number of items in the finite set of items, denoted
by F with pattern size denoted by L. We design the expres-
sions to estimate bounds of supports of temporal patterns
by considering two cases, including all pattern combinations
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Table 1 Notations
Notation Description

Temporal pattern A temporal pattern may be defined as “ a sequence of support
values computed at different disjoint time slots defined over a
finite time period, Tp = {t1, t2, . . . , tn} where t1, t2 . . . , tn are
time slots”

Positive prevalence Positive prevalence is support value of pattern at a given time
slot

Positive prevalence sequence Positive prevalence sequence is the positive support values
computed at every time slot expressed as sequence of values
defined over finite time period. A positive temporal pattern is
denoted by Tn

Negative prevalence Negative prevalence is nonexistence support value of pattern at
a given time slot

Negative prevalence sequence Negative prevalence sequence is defined as the negative support
values computed at every time slot expressed as a sequence
defined over finite time period. A negative temporal itemset is
denoted by using a complement notation asT̄n

Reference sequence It is prevalence support sequence chosen randomly and is of
user interest

Threshold Threshold is the dissimilarity constraint which indicates the
distance between reference pattern and temporal pattern

Pattern pruning The pattern is killed or pruned when maximum possible
minimum distance does not hold the dissimilarity constraint

Maximum pattern bound support
sequence (HPBSS)

It is the support sequence denoting maximum possible support
value at every time slot

Maximum possible minimum
dissimilarity (DU)

The distance computed considering reference, R w.r.t HPBSS is
termed maximum possible minimum dissimilarity

Minimum pattern bound support
sequence (LPBSS)

It is the support sequence denoting minimum possible support
value at every time slot

Minimum possible minimum
dissimilarity (DL)

The computed distance of R w.r.t LPBSS is termed minimum
possible minimum dissimilarity

Minimum possible support bound
(Dmin)

It is the sum of distances (DU) and (DL)

with length (also called size) classified as (i) |L| = 2 and (ii)
|L| > 2.

Case-1: Temporal pattern length, |L| =2
Let, Tm and Tn be two temporal singleton patterns at Level-
1, such that Tm = (

Tm1; Tm2; Tm3 , . . . , Tmp

)
and Tn =(

Tn1; Tn2; Tn3 , . . . , Tnp

)
where each Tmi and Tni is the

respective support value at ith timeslot. Then, the maximum
prevalence andminimumprevalence bounds of temporal pat-
terns, |L| = 2, are, respectively, obtained using Eqs. 1 and 2.

[Tm, Tn]max = 〈min
(
Tm1 , Tn1

)
, min

(
Tm2 , Tn2

)
, . . . ,

×min
(
Tmp , Tnp

)〉 (1)

[TmTn]min = 〈max
{
(1 − Tm1 − Tn1), 0

}
,

× max{(1 − Tm2 − Tn2 , 0}, . . . ,
× max

{
(1 − Tmp − Tnp ), 0

}〉 (2)

In Eqs. (1) and (2), notations, Tm and T̄n , are the positive
and negative prevalence sequence, respectively.

Case-2: Temporal pattern length, |L|2
Let, Tm, Tn be the temporal pattern of size, |L| greater than
two, for which we must estimate support bounds. We divide
all such patterns into two subpatterns. The first subpattern
(Tm) is assumed to beof length, |L|−1, and second subpattern
(Tn) is equal to length, |L| = 1. To estimate support bounds
of temporal pattern of the form Tm, Tn whose size is |L| > 2,
we assume that, Tm is the temporal association pattern of
length (n−1) i.e., |L| = (n−1) and Tn is singleton temporal
pattern.

Let, Tm and Tn be two temporal patterns, such that Tm =(
Tm1; Tm2; Tm3; . . . ; Tmp

)
andTn = (

Tn1; Tn2; Tn3; . . . ; Tnp

)

where each Tmi and Tni is support value at ith timeslot. The
maximum prevalence and minimum prevalence bounds of
temporal patterns, |L| > 2, are obtained using Eqs. 3 and 4

[TmTn]max = 〈(Tm1 − max
{(
1 − Tm1 − Tn1

)
, 0

})
,

× (
Tm2 − max

{(
1 − Tm2 − Tn2

)
, 0

})
,

× (
Tm3 − max

{(
1 − Tm3 − Tn3

)
, 0

})
, . . .
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× (
Tmp − max

{(
1 − Tmp − Tnp

)
, 0

})〉 (3)

[TmTn]min = 〈max
{
(1 − Tm1 − Tn1), 0

}
,max{(1 − Tm2

−Tn2 , 0}, . . . .max
{
(1 − Tmp − Tnp ), 0

}〉
(4)

In the Eqs. (3) and (4), Tm and Tn are positive temporal
pattern, Tm and T n is the negative singleton temporal pattern.

The support bound values of the superset temporal pat-
tern (whose size is say, ‘S’) are estimated considering each
of its proper subset temporal association pattern (whose
size is ‘S−1’). The maximum support sequence denoted as
[Tm, Tn]max is the minimum support sequence possible w.r.t
each time slot, and the minimum support sequence denoted
as [Tm, Tn]min is the maximum support sequence possible
w.r.t each time slot obtained by using Eqs. (3) and (4).

3.2 Proposed fuzzy gaussian dissimilarity measure

Let Tm and Rs be the pattern and reference prevalence (sup-
port) sequence denoted as Tm = (

Tm1; Tm2; Tm3; . . . ; Tmn

)

and Rs = (
Rs1; Rs2; Rs3; . . . ; Rsn

)
. Then, the average fuzzy

similarity value between these two temporal patterns is com-
puted using the expression given in Eq. (5)

μ
pattern
reference =

∑p=n
p=1 0.5 ∗

[

1 + exp
−

( Tm p−Rsp
σ

)2]

|p| (5)

The fuzzy dissimilarity between two temporal patterns is,
hence, given by Eq. (6) as defined below,

Dgaussian = 1 − μ
pattern
reference

2
(6)

The standard deviation denoted as σ in Eq. (5) is defined as
a function of threshold given by Eq. (7)

σ = �
√
loge

1
1−�2

(7)

where, � is the threshold value specified in the Euclidean
space and σ is the deviation used when estimating fuzzy
similarity value between pattern and reference.

The threshold in Euclidean space mapped to its equivalent
Gaussian space is given by Eq. (8)

�gaussian = 1 − 0.5 ∗
(

1 + e
−0.5∗

(
threshold
deviation

)2)

(8)

Equation (8) gives the equivalent threshold which we must
consider to test, if the distance is holds good for user defined
threshold in fuzzy space.

3.3 Proposed similar temporal association pattern
mining algorithm

Now, we present the algorithm outlining proposed method in
this section.

3.4 Computing distance bounds

To estimate distance bounds, we use Eqs. (9)–(11) presented
in Sects. 3.4.1 and 3.4.2. Equations (9)–(11) are inspired from
Yoo and Shekhar (2009), Yoo and Shekhar (2008) and Yoo
(2012) where the distance measure chosen is Euclidean. In
this work, we use the proposed measure to estimate distance
bounds (DU and DL).

3.4.1 Maximum possible minimum dissimilarity, (DU)

Let Tm = (
Tm1; Tm2; Tm3; . . . ; Tmn

)
and Rs =(

Rs1; Rs2; Rs3; . . . ; Rsn

)
be the Maximum Pattern Bound

Support Sequence and reference sequence, respectively.
Now, DU is defined by Eq. 9.

Du =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1 −
∑p=n

p=1 0.5∗
⎛

⎜
⎝1+e

−
(
Tm p−Rsp

σ

)2
⎞

⎟
⎠

|P|
2

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(9)

∀ i, where Rsi > Tmi

For all cases, when the above condition fails in which the
support values of temporal association pattern do not exceed
the support values of the reference, DU = 0.

3.4.2 Minimum possible minimum dissimilarity, (DL)

Let Tm = (
Tm1; Tm2; Tm3; . . . ; Tmn

)
and Rs =(

Rs1; Rs2; Rs3; . . . ; Rsn

)
. be the Minimum Pattern Bound

Support Sequence and reference sequence, respectively.
Now, DL is defined by Eq. 10.

DL =

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 −
∑p=n

p=1 0.5∗
⎛

⎜
⎝1+e

−
(
Tm p−Rsp

σ

)2
⎞

⎟
⎠

|P|
2

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

(10)

∀ i, where Rsi < Tmi .
For all time slots, in which the support values of temporal
associationpattern exceed the support values of the reference,
the value of DL = 0.
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Algorithm : Mining similar temporal patterns

Input: Temporal Database with time-stamped transactions;
Reference sequence; User specified dissimilarity threshold
and proposed distance function.
Output: Similar temporal patterns
Step-1: Determine true prevalence value of singleton pat-
terns
Obtain Positive Prevalence and Negative Prevalence for each
singleton temporal item (temporal pattern) from the finite set
of items defined by F. This is the first time; we compute true
support values of all temporal items initially.
Step-2: Determine true prevalence sequence of singleton
patterns
Obtain Positive Prevalence Sequence and Negative Preva-
lence Sequence for each singleton temporal item (temporal
pattern) using prevalence values computed in step-1.
Step-3: Pruning stratergy-1 for singleton patterns of size, L
= 1
Compute true distance between reference and each temporal
pattern of size=1. If the true distance satisfies dissimilarity
constraint, then the pattern is treated as similar and retained.
If the true distance exceeds dissimilarity constraint, the pat-
tern is treated dissimilar. To decide to prune or not, we
compute distance (DU)which is themaximumpossible devi-
ation above reference sequence defined in Section 1.1. If this
distance exceeds threshold value, thenprune the temporal pat-
tern. In this case, we say the temporal pattern is not retained.
Otherwise (dissimilarity condition is satisfied), thenwe retain
the candidate temporal pattern to compute prevalence values
(support values) of higher size temporal patterns.
Step-4: Pruning stratergy-2 for temporal patterns of size,
L>1
Case-1: Obtain the Maximum Pattern Bound Support
Sequence and Minimum Possible Support Bound for all pat-
terns of size>1. Now, if the Minimum Possible Support
Bound (Dmin) exceeds threshold, then the pattern is dissimi-
lar. To decide whether this temporal pattern be pruned or not,
we compute distance (DU) which is the maximum possible
minimum deviation above temporal pattern. If DU > thresh-
old, �, then prune the temporal pattern. In this case, we say
the temporal pattern is not retained. However, if dissimilarity
condition is satisfied, then we retain the candidate tempo-
ral pattern to compute prevalence values (support values) of
higher size temporal patterns.
Case-2: Obtain Minimum Possible Support Bound (Dmin)

for all patterns of size >1. Now, if the Minimum Possible
Support Bound (Dmin) satisfies threshold, then the pattern
may be similar, but this may not always be the case as
it is dependent on itemset distribution. This is because we
are estimating maximum and minimum possible bounds and
comparing these with reference. So, to decide whether this
temporal pattern is temporally similar, we scan the database
to find patterns true support sequence and from this support
sequence, we find its true distance with reference, R by using
proposed measure. If the true distance≤ threshold, then tem-
poral pattern is similar and is also retained. If the true distance
is violating dissimilarity condition then we find if DU >

threshold, �, if so, we prune the temporal pattern. In this
case, we say the temporal pattern is not retained. However,
if DU ≤ �, then we retain the candidate temporal pattern
to compute prevalence values (support values) of higher size
temporal patterns.

Step-5: Prune all infeasible candidate temporal patterns
In the process of verifying temporal patterns for similarity
w.r.t reference, discard and prune all temporal superset pat-
terns, if there is at least one subset pattern of this superset
pattern which is not retained. In other words, for temporal
pattern T to be considered similar, all its subpatterns must
satisfy the retaining condition. If there is at least one subset
such that it does not satisfy dissimilarity condition, then the
superset pattern, T, is not similar.
Step-6: Output all candidate temporal patterns which are
similar and retained.
The similar patterns are all those patterns which are consid-
ered similar and retained in previous steps.

3.4.3 Minimum possible support bound, (Dmin)

This is the distance used to decide whether the pattern is
similar or not and is given by Eq. (11)

Dmin = DU + DL (11)

3.5 Monotonicity property of maximum possible
minimum bound distance (Du)

To find the dissimilarity degree between two patterns, we
propose a novel fuzzy-based Gaussian distance measure
as represented by Eqs. 5–7. We found that the distance
computed using the proposed dissimilarity fuzzy Gaussian
measure did not satisfy monotonicity property directly.

We deduced that the maximum possible minimum dis-
tance computed using proposedmeasure satisfiesmonotonic-
ity property. This property is used to prune the superset
patterns. This is because the distance of any superset pattern
shall be greater than or at most equal to its subset patterns.
Therefore, if a subset pattern is not similar at the previous
level, then all the superset patterns at the next level are implic-
itly not similar and we need not compute their true supports
to decide whether they are similar or not.

3.5.1 When to estimate and discard estimating supports and
computation of true supports of temporal patterns

Fig. 1 depicts the generalized flow of the proposed approach.
Case-1 When considering a temporal pattern, P at level-

(k+1) to determine whether it is similar or not, with respect
to a user specified reference support sequence, R, we check
if all subset patterns of this temporal pattern, P at level-k
satisfies either of two conditions

(i) Similar and Retained
(ii) Not Similar and Retained
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Fig. 1 Flowchart of proposed approach to discover similar temporal patterns

If so, we consider the temporal pattern for possibility of
it being a similar pattern and proceed by estimating support
bounds of P. If the minimum bound distance computed using
estimated support bounds exceeds threshold, thenwe directly
prune the temporal pattern and do not retain it and consider
the pattern as dissimilar. Since the pattern is not retained, we
terminate all its superset patterns and declare them dissimi-
lar, without computing their true supports. We eliminate true
support computations in this case.

Case-2 Alternately, if maximum possible minimum dis-
tance is less than or equal to threshold in fuzzy space, then
we compute the true support of temporal pattern and find
its distance using proposed fuzzy Gaussian function. If true
distance computed w.r.t reference is less than the threshold,
then the pattern is similar. In this case, pattern is retained.

Case-3 When the true distance of temporal pattern P
exceeds threshold, then the pattern is dissimilar. Now, to
determine whether the temporal pattern P is to be retained
or not, we compute the maximum possible minimum bound
distance w.r.t reference. If it does not exceed threshold, then

we retain it for next stage computations; otherwise, we do
not retain the pattern.

Case-4Whenwe have a situationwhere at least one subset
temporal pattern is not similar and also not retained,we prune
the superset temporal pattern P without the need to estimate
support bounds.

3.5.2 Correctness of DU

To output all the similar patterns, we compute the distance,
DU and true distance (denoted as Dgaussian) using the pro-
posed fuzzy function. By the correctness of DU, we mean
that the computed dissimilarity between the reference pat-
tern and a temporal pattern never exceeds the threshold for
all temporal patterns whose outputs are similar. Since, prun-
ing is also based on DU, this distance to the true distance
can be computed using the proposed measure. Based on the
maximum possible minimum distance given by Eq. 9, we
have the following:
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DU =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.5 ∗

⎛

⎜
⎜⎜⎜
⎝
1 −

∑p=n
p=1 0.5∗

⎛

⎜
⎝1+e

−
(
Tm p −Rsp

σ

)2
⎞

⎟
⎠
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; ∀ i where Rsi > Tmi

0 ; else

(12)

From Eq. (12), we obtain three situations, as discussed
below.

Case-1: Worst case In the worst case, all ‘p’ time slots have
support values satisfying the constraint, Rsi > Tmi . In this
case, the computed distance shall be same as the true distance
of temporal pattern to reference in fuzzy space, i.e., DU =
Dgaussian. This implicitly implies distance, DL = 0 in the
fuzzy space.

Case-2: Best case In the best case, all ‘p’ time slots have
supports such that, Rsi ≤ Tmi . In this case, the distance
computed i.e., DU = 0.

Case-3:Average caseTheaveragedistancevalue is observed,
when for some time slots, support values of temporal pattern
being considered are less than the reference value and for
all other remaining time slots, support values of temporal
pattern are either equal to or higher than reference support.
For the case, where the temporal pattern support value at a
given time slot is greater than or equal to reference, distance
is zero; otherwise, this value is nonzero.

Deduction: It is seen that in the worst case, DU is equal
to the true distance obtained using the proposed fuzzy mem-
bership distance function. In other words, true distance and
DU hold the relation represented by:

DU ≤ Dgaussian (13)

Hence, if DU computed for a temporal pattern considering
its true support does not satisfy the threshold condition, then
the true distance (Dgaussian)computed shall also not satisfy
the dissimilarity condition.

4 Case study

We used the well-known IBM Quest data generation system
(http://www.almaden.ibm.com/software/quest/resources/) to
generate synthetic datasets. A detailed discussion about syn-
thetic data generator is addressed in Sect. 5. We use the
following input parameters to generate the time-stamped
temporal database. These include the number of time slots,
number of items, average number of items per transaction
and number of transactions per time slot. Based on the input
parameters, the system generates the dataset consisting of
customer transaction information.

Table 2 Temporal database of time-stamped transactions defined over
three time slots

T-ID Timeslot, t1 T-ID Timeslot, t2 T-ID Timeslot, t3

T101 [A, D] T111 [A, B] T121 [A, C]

T102 [A, B] T112 [A, B, C, D] T122 [C]

T103 [B, C] T113 [B, C, D] T123 [A]

T104 [A, D] T114 [C, D] T124 [D]

T105 [C, D] T115 [D] T125 [B]

T106 [A, C] T116 [A, C, D] T126 [A, B]

T107 [A, B, C] T117 [C] T127 [D]

T108 [A, B] T118 [A, B] T128 [D]

T109 [B] T119 [A, B, D] T129 [A, B, C]

T110 [A, C, D] T120 [A, B, C, D] T130 [B, C, D]

Table 2 is the temporal database generated using the IBM
synthetic generator by considering number of time slots, T =
3, number of items, I = 4, average number of items per
transaction, L = 2 and number of transactions per time slot,
TD=10. In otherwords, the temporal database is defined over
three timeslots t1, t2, t3 with each timeslot consisting of 10
time-stamped transactions, and the itemset consists of only 4-
items A, B, C and D. Thus, there are a total of 30 transactions
and any transaction must be performed only from these four
items.

The computations in Table 3 show the true supports of
all temporal patterns and their corresponding true distances
computed usingEuclidean distancemeasure. In this example,
the Euclidean distance considered is the normalized Euclid-
ean distance. The reason for considering normalized distance
is from the fact that Euclidean distance does not have the
upper limit. To make it lie between 0 and 1, we normalize
the distance obtained based on number of time slots. Table 3
shows the positive, negative prevalence values of single-
ton temporal patterns respectively. We choose the threshold,
Δ = 0.2 and R = (0.4, 0.6, 0.6) as reference sequence.
The threshold value chosen is 0.2 in Euclidean space which
is then mapped to its equivalent value Δ = 0.0101 in the
Gaussian space using the transformation equation presented
in Sect. 3. The distance measure used to find similar (or
dissimilar patterns) is the novel fuzzy Gaussian-based dis-
tribution function, which is one of the contributions in this
research inspired from Lin et al. (2014).

Table 3 also represents, the similar (denoted using symbol,
�) and dissimilar temporal patterns (denoted using symbol,
✘) obtained using the brute force approach. The number of
possible patterns using 4 items is 15, i.e (24 − 1). Hence,
for applying the brute force approach, we require 15 true
support computations to decide whether the corresponding
patterns are similar or not. In general, we require 2n − 1
support computations for ‘n’ items. We considered the worst
case scenario input for our case study. In such a case, the pro-
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Table 3 True support computations

Item Set t1 t2 t3 Distance Decision

[A] 0.7 0.6 0.4 0.1732 �
[B] 0.5 0.6 0.4 0.0577 �
[C] 0.5 0.6 0.4 0.0577 �
[D] 0.4 0.7 0.4 0.0577 �
[AB] 0.3 0.5 0.2 0.1414 �
[AC] 0.3 0.3 0.2 0.2160 ✘

[AD] 0.3 0.4 0 0.2645 ✘

[BC] 0.2 0.3 0.2 0.2380 ✘

[BD] 0 0.4 0.1 0.3109 ✘

[CD] 0.2 0.5 0.1 0.2160 ✘

[ABC] 0.1 0.2 0.1 0.3366 ✘

[ABD] 0 0.3 0 0.3696 ✘

[ACD] 0.1 0.3 0 0.3366 ✘

[BCD] 0 0.3 0.1 0.3366 ✘

[ABCD] 0 0.2 0 0.4 ✘

posed approach requires only ten true support computations
as compared to 15 support computations required using brute
force approach. For a huge number of pattern combinations,
the true supports to be found are naturally reduced.

In the best case scenario, we require only four true sup-
port computations. This is because all patterns at level-2 have
their estimated lower bound distance bounds exceeding dis-
similarity threshold limit. Hence, we need not compute true
supports for those patterns (Table 4). One disadvantage that
we have with use of Euclidean distance is that the Euclidean
distancemeasure does not hold true for finding similar or dis-
similar patterns in temporal contextwhen considered directly
Yoo and Shekhar (2009). The reason is that it does not hold
monotonicity property. For example, using the Euclidean dis-
tance, the distance of patterns A, B, C, D w.r.t reference
computed using the Table 2, denoted as d(A), d(B), d(C) and
d(D) are 0.1732, 0.0577, 0.0577 and 0.0577, respectively.
The reference support sequence is denoted in Table 5. The
dissimilarity value of patterns AB, AC and AD denoted by
d(AB), d(AC), d(AD) is 0.1414, 0.2160 and 0.2645, respec-
tively.Also, the dissimilarity of d(ABC) is 0.3366.According
to the monotonicity property, the distance of superset pattern
must be greater than or equal to distance of all its subset pat-
terns w.r.t reference chosen. If we consider the distance of
pattern AB, and its subsets A and B w.r.t reference support
sequence, we have d(AB) > d(B) but d(AB) < d(A).

This clearly shows that the monotonicity property does
not hold when using Euclidean distance for pruning the pat-
terns of next stage. The true distance and upper bound value
of each singleton temporal pattern is recorded in Table 5. It
is seen from Table 5 that the temporal patterns [A], [B], [C],
[D] are similar and are also retained. If a pattern is similar,

Table 4 Positive and negative supports

Item set Positive prevalence Negative prevalence

[A] (0.7, 0.6, 0.4) (0.3, 0.4, 0.6)

[B] (0.5, 0.6, 0.4) (0.5, 0.4, 0.6)

[C] (0.5, 0.6, 0.4) (0.5, 0.4, 0.6)

[D] (0.4, 0.7, 0.4) (0.6, 0.3, 0.6)

Table 5 Level-1 patterns

Pattern True distance DU Similar Retained

[A] 0.007313 0 � �
[B] 0.000846 0 � �
[C] 0.000846 0 � �
[D] 0.000846 0 � �

Table 6 Threshold transformation

Threshold Transformed value

0.2 0.010102

then it is retained. In the event that the true distance of tempo-
ral pattern exceeds the threshold, we find the corresponding
highest possible minimum distance from reference. If it does
not exceed threshold, then we retain the pattern and consider
it for the next stage support computations; otherwise, the
temporal pattern is discarded (Table 6).

Table 7 outlines the estimated value of highest possi-
ble support sequence bound (HPSSB) and lowest possible
support sequence bound (LPSSB) of pattern [A B], its cor-
responding highest possible minimum and lowest possible
minimum distances from the reference and the lower bound
distance (Dmin = DU + DL) computed using proposed dis-
similarity function. Since Dmin < 0.0101, the pattern [AB]
has chances of being similar w.r.t reference. In such a case,
we need to compute the true support. The true support com-
putation shall be eliminated whenever the distance denoted
by Dmin exceeds the value of threshold.

Table 8 shows the true support value of temporal pattern
[A B]; true distance w.r.t reference computed using novel
fuzzy Gaussian distribution function, and the highest possi-
ble minimum bound value. The true distance computed is
0.005026<0.01010 and hence; the temporal pattern [A B]
is similar. It is also retained to verify, if a superset pattern of
[A B] may be considered for similarity or not in future.

Table 9, outlines the highest possible support sequence
bound (HPSSB) and lowest possible support sequence bound
(LPSSB) of all size two temporal patterns, corresponding
highest possible minimum and lowest possible minimum
distances from the reference and the lower bound distance
(Dmin = DU+DL) computed using proposed distance func-
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Table 7 Estimation of support bounds of temporal pattern [AB]

Pattern HPBSS LPBSS DU DL Dmin = DU + DL Since Dmin ≤ � (0.0101), pattern
may be similar. So, we find true sup-
port in this case

[A B] (0.5, 0.6, 0.4) (0.2, 0.2, 0.0) 0 0 0

Table 8 Testing similarity and
retaining conditions for pattern
[A B]

Pattern True support Dtrue_gaussain DU � Similar Retained

[A B] (0.3, 0.5, 0.2) 0.005026 0.005026 0.0101 � �

Table 9 Estimation of support
bounds of temporal patterns,
size 2

Pattern HPBSS LPBSS DU DL Dmin = DU + DL Compute true support

[A B] (0.5, 0.6, 0.4) (0.2, 0.2, 0.0) 0 0 0 (< 0.0101) �
[A C] (0.5, 0.6, 0.4) (0.2, 0.2, 0.0) 0 0 0 (< 0.0101) �
[A D] (0.4, 0.6, 0.4) (0.1, 0.3, 0.0) 0 0 0 (< 0.0101) �
[B C] (0.5, 0.6, 0.4) (0.0, 0.2, 0.0) 0 0 0 (< 0.0101) �
[B D] (0.4, 0.6, 0.4) (0.0, 0.3, 0.0) 0 0 0 (< 0.0101) �
[C D] (0.4, 0.6, 0.4) (0.0, 0.3, 0.0) 0 0 0 (< 0.0101) �

tion. Since Dmin < 0.0101, for all patterns, each pattern may
be similar w.r.t reference. In such a case, we need to compute
the true support of all these patterns. The true support com-
putation shall be eliminated, whenever the distance denoted
by Dmin exceeds the value of threshold.

Table 10, shows the true support value of all size two
temporal patterns; their true distance w.r.t reference com-
puted using proposed function, highest possible minimum
bound value. The minimum bound distances for patterns
[AC], [AD], [BC], [BD] and [CD] exceed threshold value,
0.010102. So, these patterns are not similar temporally and
are called dissimilar patterns. The corresponding highest pos-
sible minimum bound distance of these temporal patterns is
computed to determine whether they can be retained. Since
this value also exceeds the threshold value, all these temporal
patterns are not retained. Since we consider the worst case
situation,we had true distance and highest possibleminimum
bound distance to be same, which is not the typical case.

Figure 2 shows the lattice structure for 15 itemsets or pat-
terns formed from 4 items. Level-1 consists of four patterns,
level-2 consists of six (6) temporal patterns, and level-3 and

level-4 has four and one temporal pattern, respectively. Each
temporal pattern is annotated with the highest possible min-
imum bound distance value (also called upper lower bound).
The proposed Gaussian-based fuzzy distribution function
satisfies themonotonicity propertyw.r.t highest possiblemin-
imum bound distances, whichmay be verified from distances
annotated in Fig. 1.

The temporal patterns at level-3 include, [ABC], [ABD],
[ACD], [BCD]. Since the subset temporal patterns for these
four temporal patterns are not retained in the level-2, we
directly say these patterns are not similar, without computing
true supports of these patterns. We also need not estimate
the highest and lowest possible support values in this case.
Thus, the patterns denoted by [ABC], [ABD], [ACD], [BCD]
are dissimilar temporal patterns. Now if we consider level-
4, we have [ABCD] as the only temporal pattern. As all its
subset patterns denoted by [ABC], [ABD], [ACD], [BCD]
are not retained and also are not similar, so this superset
pattern [ABCD] is not temporally similar. We eliminate true
support computations in this case also.

Table 10 Testing similarity and
retaining conditions for size two
patterns

Pattern True support Dtrue_gaussain DU Δ Similar Retained

[A B] (0.3, 0.5, 0.2) 0.005026 0.005026 0.0101 � �
[A C] (0.3, 0.3, 0.2) 0.011493 0.011493 0.0101 ✘ ✘

[A D] (0.3, 0.4, 0.0) 0.016734 0.016734 0.0101 ✘ ✘

[B C] (0.2, 0.3, 0.2) 0.01398 0.01398 0.0101 ✘ ✘

[B D] (0.0, 0.4, 0.1) 0.023201 0.023201 0.0101 ✘ ✘

[C D] (0.2, 0.5, 0.1) 0.011493 0.011493 0.0101 ✘ ✘
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Fig. 2 Lattice diagram
representing monotonicity
property of proposed measure
w.r.t true supports upper lower
bound distance to reference
sequence

0.005026              0.001493        0.016734            0.01398      0.023201            0.011493

Φ

A B C D 
0.00713(0)      0.00846(0)     0.00846(0)   0.00846(0)

AB AC AD BC BD CD

ABC ABD ACD BCD
0.027181         0.032422         0.027181                              0.027181

ABCD
0.037663

However, for verification and validation, we give the sup-
port bounds and distance bounds for level-3 and level-4
patterns to prove our argument hold true. The computations
in Tables 11 and 12 give the estimated support and distance
bounds and corresponding true support and distance values.
The patterns are denoted as not similar using the symbol,
✘.

5 Findings

The data generator system mainly consists of two genera-
tors. The first generator was used to generate the transaction
data which may be used to retrieve the sequential patterns or
association patterns. Since the data generator system did not
generate temporal database of time-stamped transactions, we

Table 11 Estimation of support bounds of temporal patterns, size 3 for verification

Pattern HPBSS LPBSS DU DL Dmin = DU + DL Compute true support

[A B C] (0.2, 0.3, 0.2) (0.0, 0.1, 0.0) 0.01398 0 0.01398 ✘

[A B D] (0.0, 0.4, 0.0) (0.0, 0.2, 0.0) 0.028442 0 0.028442 ✘

[A C D] (0.2, 0.3, 0.0) (0.0, 0.1, 0.0) 0.023201 0 0.023201 ✘

[B C D] (0.0, 0.3, 0.1) (0.0, 0.1, 0.0) 0.027181 0 0.027181 ✘

Table 12 Testing similarity and
retaining conditions for size
three patterns w.r.t true supports

Pattern True support Dtrue_gaussain DU � Similar Retained

[A B C] (0.1, 0.2, 0.1) 0.027181 0.027181 0.0101 ✘ ✘

[A B D] (0.0, 0.3, 0.0) 0.032422 0.032422 0.0101 ✘ ✘

[A C D] (0.1, 0.3, 0.0) 0.027181 0.027181 0.0101 ✘ ✘

[B C D] (0.0, 0.3, 0.1) 0.027181 0.02718 0.0101 ✘ ✘
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Fig. 3 Comparison of execution time

Fig. 4 Threshold versus execution time

modified it to suit our requirements. To generate the tempo-
ral database consisting of time-stamped transactions for the
experiments, we considered the following parameters which
include the number of time slots, number of items, average
number of items per transaction, number of transactions per
timeslot. Based on these input parameters, the system gen-
erates dataset consisting customer transaction information.It
also generates transactions randomly for different specifica-
tions given by user.

Finding similar temporal association patterns whose sup-
port value varies w.r.t reference is initiated in Yoo and

Shekhar (2009), Yoo and Shekhar (2008) and Yoo (2012).
The authors present sequential approach for mining patterns
and compare their approach with the sequential approach as
there is no other work prior to this in the literature except
for the brute force approach. In this research, we compare
the brute force, sequential approaches for retrieving similar
temporal patterns with our proposedmeasure and bound esti-
mation approach. We also compared the proposed approach
with algorithms in Yoo and Shekhar (2009) and Yoo and
Shekhar (2008).

We generated the temporal database, TD1000-L10-I20-
T100. The results are the average readings obtained for all
experiments.Here, TDdenotes 1000 (X100) transactions and
L, is the average size of transaction, I indicates items; T is
number of time slots considered.

Figure 3 shows a comparative summary of the execu-
tion time for the brute force approach and the proposed
approach using fuzzy dissimilarity measure. In the brute
force approach, after Level-7, the execution time is expo-
nential, while the proposed approach is polynomial and
terminates in finite time. Figure 4 presents the comparative
summary of the proposed and the brute force approaches for
variable threshold values of values 0.15, 0.2, 0.25, 0.3, 0.35,
0.4, 0.45 w.r.t execution time and true support computations.
Figures 5 and 6 denote the number of true support computa-
tions performed and candidate temporal pattern retained by
proposed approach, respectively. Figures 7 and 8 depict the
candidate patterns retained and true support computations at
different levels for Δ = 0.45 and Δ = 0.40 using the brute
force and proposed approaches considering TD1000-L10-
I20-T100 dataset generated using the IBM synthetic data
generator, respectively. The parameters are chosen such that
number of time slots = 100, number of items = 20, number
of transactions = 1,00,000, number of transactions per time
slot = 1000.

From Figs. 7 and 8, it is seen that the number of true sup-
port computations and candidate temporal patterns retained

Fig. 5 True support
computations
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Fig. 6 Candidate items
retained for different user
threshold values
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Fig. 7 Candidate patterns
retained at each level for
Δ=0.45

is linear using the proposed approach and exponential with
the brute force approach. This clearly demonstrates that our
approach outperforms the brute force approach.

In Fig. 9, we vary the threshold values and compare the
execution times of proposed and sequential approaches in
Yoo and Shekhar (2009), Yoo and Shekhar (2008) for dif-
ferent threshold values. The graph is plotted by considering
threshold w.r.t x-axis, and execution time in seconds w.r.t
y-axis.

In Fig. 10, we vary the time slots and record execution
times of both proposed and sequential approaches Yoo and
Shekhar (2009), Yoo and Shekhar (2008) for different time
slots such as 100, 150, 200, 250 and 300. The graph is plotted
by considering timeslots w.r.t x-axis, and execution time in
seconds w.r.t y-axis.

Fig. 11 illustrates the threshold on x-axis and execution
time on y-axis for 40 items, 10,000 transaction/timeslot and
500 timeslots. From Fig. 11, we observe that an increase in
the threshold will also result in an increase in the execution
time.The increase is linear and the time taken to output simi-
lar temporal patterns is finite. However, the time taken using
the sequential and brute force approaches is not finite.

Figure 12, illustrates the results obtained onTD1000-L10-
I20-T100 using the proposed and spamine approaches in Yoo
andShekhar (2009),Yoo andShekhar (2008) andYoo (2012).
From Fig. 12, we observe that as the threshold increases, so
does the time taken for the execution. However, the time
taken using the proposed approach is comparitively less w.r.t
spamine approach. The threshold values are varies from 0.15
to 0.45 insteps of 0.05.
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Fig. 8 True support
comparisons at Δ=0.4

Fig. 9 Execution for different
thresholds on
TD1000-L10-I20-T100

Fig. 10 Execution times for
both algorithms for different
timeslots
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Fig. 11 Threshold versus execution time for large dataset

Figure 13, is a screen capture of our temporal pattern min-
ing proof-of-concept used to generate the temporal database,
enter input parameter values. Figure 14 depicts the trends of

similar temporal patterns obtained w.r.t reference (shown in
red color).

6 Conclusion

The problem of finding temporal association patterns whose
prevalence variations are similar to reference sequence is
understudied in the literature, which is first coined in Yoo
and Shekhar (2009). Discovering temporal patterns which
are similar for a chosen reference is a challenging problem
as it requires reducing both the number of database scans and
number of true support computations at the same time retriev-
ing all possible similar patterns efficiently in a finite time.

In this research, we presented novel expressions to
gauge the maximum and minimum possible prevalance
values of temporal patterns and retrieving similar tempo-

Fig. 12 Execution times of our
approach and SPAMINE

Fig. 13 Sample screen shot
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Fig. 14 Graph showing pattern trends

ral patterns using fuzzy-based gaussian distribution func-
tion. The dissimilarity measure designed also holds the
monotonicity property, which is used to eliminate unnec-
essary true pattern prevalence computations so as to prune
dissimilar patterns. We then presented the expression for
equivalent threshold in fuzzy space for its correspond-
ing threshold value specified in the euclidean space. Our
findings demonstrated that the proposed approach outper-
forms the brute force approach, sequential approaches and
SPAMINE Yoo (2012). Also, the gaussian function used to
find dissimilarity value has finite maximum and minimum
bounds which fail w.r.t Euclidean measure. The pruning
is dominated by the factors such as choice of reference,
data distribution and distance allowable for considering
similarity.

In this paper, we focus on the design of fuzzy measure
and its suitability to retrieve all valid temporal patterns but
with varying scale w.r.t base pattern. To achieve this, we con-
sidered the whole pattern to compute the similarity degree.
Often, it may also be required to find subsequence of a
sequence in which the patterns are similar. This is one direc-
tion in which the present work may be extended.The choice
of reference, data distribution and the value of permissi-
ble distance limit to evaluate similarity between patterns are
the dominating parameters which affect the pruning process.
We are also examining the possibility of designing similar-
ity measures which can hold monotonicity and efficiently
retrieve the valid similar temporal patterns. Future work also

includes using the normal distribution concept to estimate
pattern support bounds.
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