
Soft Comput (2018) 22:1719–1730
https://doi.org/10.1007/s00500-016-2435-0

METHODOLOGIES AND APPLICATION

Fuzzy extensions of the DBScan clustering algorithm

Dino Ienco1,2 · Gloria Bordogna3

Published online: 15 November 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract TheDBSCANalgorithm is awell-knowndensity-
based clustering approach particularly useful in spatial data
mining for its ability to find objects’ groups with heteroge-
neous shapes and homogeneous local density distributions
in the feature space. Furthermore, it can be suitable as scal-
ing down approach to deal with big data for its ability to
remove noise. Nevertheless, it suffers for some limitations,
mainly the inability to identify clusters with variable den-
sity distributions and partially overlapping borders, which is
often a characteristics of both scientific data and real-world
data. To this end, in this work, we propose three fuzzy exten-
sions of the DBSCAN algorithm to generate clusters with
distinct fuzzy density characteristics. The original version of
DBSCAN requires two precise parameters (minPts and ε) to
define locally dense areas which serve as seeds of the clus-
ters. Nevertheless, precise values of both parameters may be
not appropriate in all regions of the dataset. In the proposed
extensions of DBSCAN, we define soft constraints to model
approximate values of the input parameters. The first exten-
sion, named Fuzzy Core DBSCAN, relaxes the constraint on
the neighbourhood’s density to generate clusters with fuzzy
core points, i.e. cores with distinct density; the second exten-
sion, named Fuzzy Border DBSCAN, relaxes ε to allow the
generation of clusters with overlapping borders. Finally, the
third extension, named Fuzzy DBSCAN subsumes the previ-

Communicated by V. Loia.

B Dino Ienco
dino.ienco@irstea.fr

Gloria Bordogna
bordogna.g@irea.cnr.it

1 IRSTEA, UMR TETIS, Montpellier, France

2 LIRMM, Montpellier, France

3 CNR IREA, Milan, Italy

ous ones, thus allowing to generate clusters with both fuzzy
cores and fuzzy overlapping borders. Our proposals are com-
pared w.r.t. state of the art fuzzy clustering methods over
real-world datasets.

Keywords Fuzzy clustering · Density-based clustering ·
DBSCAN clustering

1 Introduction

The advent of the big data era has launched new challenges
to the research community who reacted either by introducing
new algorithms or by extending existing algorithms to man-
age large datasets. Specifically, the first approaches focus on
the “scaling up” objective to deal with big data sets. Never-
theless, they risk to become useless in a short time, due the
data continuous growth. CISCO1 estimated that the data on
the Internet will increase at a compound annual growth rate
of 25% by the year 2017. Thus, to deal with datasets continu-
ously growing in size it will be necessary to frequently scale
up algorithms. The second kind of approach aims at scaling
down, i.e. at synthesizing, the data sets by reducing their size,
and to use existing algorithms on the reduced data. Although
scaling down may risk to cancel important information it has
the chance of reducing the datasets by eliminating noise or
redundant data. Clustering techniques can be categorized as
scaling down approaches, since their objective is to identify
groups of items within the dataset with common character-
istics in a feature space, while removing outliers and noise
which are considered uninteresting for further analysis.

1 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/Cloud_Index_White_Paper.html.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-016-2435-0&domain=pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.html

1720 D. Ienco, G. Bordogna

Many real-world applications such as social network
community identification and satellite image analysis need
effective means to identify regions that are characterized
by locally dense areas in the feature space representing the
objects of interests. For instance, such regions may repre-
sent communities of users linked by the friend of friend
relationships in social networks, ecosystems may appear as
regions characterized by homogeneous feature’ values in
satellite images. To detect such objects, density-based clus-
tering algorithms have been widely applied. They evaluate
a local criterion to group objects: clusters are regarded as
regions in the feature spacewhere the objects are densely dis-
tributed and separated by regions with sparse objects, which
are considered noise or outliers.

Indeed, in many real applications, such as in satellite
image analysis, one needs to cope with noise invariably
affecting data. Furthermore, one does not have any knowl-
edge about the number of clusters, the possible clusters’
shapes and the objects distribution in the feature space.
Finally, crisp clustering algorithms fail to detect the variable
and fuzzy nature of cluster borders which are often faint and
overlapped one another. Among the proposed crisp density-
based clustering algorithms DBSCAN (Ester et al. 1996) is
a well-known and widely applied approach as it does not
require to specify in input the number of clusters, it can detect
clusters of any shape, and it can remove noisy points. Fur-
thermore, this algorithm is suitable to process big data when
adopting a spatial index, such as an R-tree, since its com-
plexity varies as O(N ∗ log N) (Sander et al. 1998).

Nevertheless, it suffers for some drawbacks: first, to drive
the process, this algorithm needs two numeric input para-
meters, minPts, i.e. the neighbourhood density, and ε, i.e.
the distance to define the local neighbourhood size, which
together define the desired local density of the generated clus-
ters. Specifically, minPts is a positive integer specifying the
minimum number of objects that must exist within a max-
imum distance ε in the feature space in order for an object
to belong to a cluster. Second, the results of DBSCAN are
strongly dependent on the setting of these input parameters
that must be chosen with great accuracy (Ester et al. 1996)
by considering both the scale of the dataset and the closeness
of the objects in order to achieve both speed and effective-
ness of the results. To set the right values of these parameters
one generally engages a trial and error exploratory phase in
which the algorithm is run several times with distinct val-
ues of the input parameters. These repeated trials are costly
when dealing with big data volumes. A final drawback of
DBSCAN is that it detects clusters with sharp boundaries,
which is a common limitation of all crisp clustering algo-
rithms when used to group objects whose distribution has a
faint and smooth density profile in the feature space. They
draw crisp boundaries to separate clusters, which are often
somewhat arbitrary. To copewith undesired crisp boundaries,

soft clustering approaches have been defined which gener-
ate clusters with fuzzy overlapping boundaries (Pal et al.
2005; Ji et al. 2014; Yager and Filev 1994). Most of the
soft clustering approaches detect fuzzy clusters with same
shape, with each object of the dataset belonging to all clus-
ters to a distinct degree. Moreover, even the fuzzy extensions
of DBSCAN generate fuzzy clusters with the same charac-
teristics of fuzziness, i.e. all clusters have same fain borders
(Ulutagaya andNasibov2012; Smiti andEloudi 2013). In this
paper, we investigate new extensions of the DBSCAN algo-
rithm, defined within the framework of fuzzy set theory, with
the aim to cope with the limitation of both classic DBSCAN
and soft clustering algorithms. The idea is to define distinct
DBSCAN extensions capable to manage approximate values
of the input parameters, thus less sensible to the input parame-
ter setting, and capable to detect possibly fuzzy overlapping
clusters with distinct density characteristics and profiles.

There are several real applications in which it could be
useful specifying approximate values of the input parameters
and detecting fuzzy clusterswith both distinct shapes and dis-
tinct density profiles. Consider the detection of communities
of users in a social network based on the FoF relationships:
while one can specify easily that the users must have a given
number of degrees of separation from other users on the net-
work to belong to the community, it may be questionable
defining the precise minimum number of users that consti-
tutes a community. In this case, it can be useful to apply a
clustering algorithm, as in our first extension of DBSCAN
in Bordogna and Ienco (2014), by allowing the specifica-
tion of an approximate density, i.e. an approximate number
of users and detecting non-overlapping fuzzy communities
where a user can belong to a community to a degree.

On the other side, in the case, one has to detect stars and
galaxies in astronomical optical images, appearing with a
crisp nucleus and faint borders, it can be easier to specify
an approximate local neighbourhood size, as in our second
extension ofDBSCAN proposed in this paper, and thus detect-
ing objects with crisp core and faint border.

Last but not least, there are applications in which objects
are characterized by distinct local densities and faint, possi-
bly overlapping, borders, such as in remote sensing images,
where distinct ecosystems have distinct densities of trees
(objects) and they may appear merged one another; in this
case, it would be useful to allow specifying both an approx-
imate neighbourhood density, and an approximate local
neighbourhood size to generate fuzzy overlapping clusters
as in our third extension of DBSCAN.

In the literature, several fuzzy extensions ofDBSCAN have
been proposed with the objective of leveraging the setting of
the precise input parameters (Ulutagaya and Nasibov 2012).
Nevertheless, none of them have tackled the objective of gen-
erating fuzzy clusters modelling distinct kind of fuzziness as
we do in this paper. We leverage the setting of either one or

123

Fuzzy extensions of the DBScan clustering algorithm 1721

both the input parameters ofDBSCAN by allowing the speci-
fication of soft constraints on both the number of objects and
the closeness (reachability) between objects. Specifically, the
precise value minPts is replaced by a soft constraint defined
by a pair (minPtsmin,minPtsmax) that specifies an approx-
imate minimum number of objects for defining a cluster, i.e.
there is a tolerance on the crisp limit minPtsmax defined by
minPtsmax − minPtsmin ; in the same way, the precise dis-
tance ε, is replaced by a soft constraints (εmin, εmax) on the
closeness of objects so that again on the crisp limit εmin we
have a tolerance defined by εmax − εmin .

The three extensions of DBSCAN generate clusters with
either a fuzzy core, i.e. clusterswhose elements are associated
with a numeric membership degree in [0,1] but not overlap-
ping one another, clusters with fuzzy overlapping border and
a crisp core, and clusters with both fuzzy core and over-
lapping borders. Having three extensions producing clusters
with distinct fuzzy andoverlappingproperties one can choose
the most appropriate for task to accomplish.

Furthermore, fuzzy clusters allow several advantages: for
instance, with a single run of the clustering it is possible to
summarize several distinct runs of the original approach by
specifying distinct thresholds on the membership degrees of
the objects to the clusters. For this reason, it can be employed
as intelligent reduction strategy for big data. In our case, this
allows an easy exploration of the spatial distribution of the
objects avoiding the tedious exact setting of the DBSCAN
parameters (Ester et al. 1996).

The paper is organized as follow: Sect. 2 discusses related
work, in Sect. 3 we recall the classic DBSCAN algorithm.
The clustering algorithm generating clusters with fuzzy core
points Fuzzy Core DBSCAN, firstly introduced in Bordogna
and Ienco (2014), the extension generating clusters with
fuzzy overlapping borders Fuzzy Border DBSCAN and the
most general strategy generating fuzzy overlapping clusters
(Fuzzy DBSCAN) are introduced in Sect. 4.

After the definitions of the three algorithms, Sect. 6
discusses and compares the performance of the different
approaches over real-world data sets in comparison with
those yielded by Fuzzy C-Means and Soft-DBSCAN fuzzy
clustering algorithms. Section 7 concludes and summarizes
the main achievements.

2 Related work

The relevant works to our proposal are those related to the
literature on soft density-based clustering algorithms. Soft
clustering algorithms are modelled within either fuzzy set,
probability theory or possibilistic typicalities to allow assign-
ing objects to clusters with a full or a partial membership
degree, in this latter case with the possibility for an object to

simultaneously belong to several clusters (Ji et al. 2014; Pal
et al. 2005).

Density-based clustering algorithms grow clusters around
seeds located in regions of the feature spacewhich are locally
dense of objects. DBSCAN (Ester et al. 1996) is one of the
most popular density-basedmethods used in data mining due
to both its ability to detect irregularly shaped clusters by
copying with noise data, and to its relatively low complexity
that varies as O(N ∗ log N) when adopting a spatial index,
thus making it suitable to process big data (Sander et al.
1998). Nevertheless, its effectiveness in detecting clusters is
strongly dependent on the parameters setting, and this is the
main reason that leads to its soft extensions. Besides this
motivation we argue that, in order to properly adopt a soft
density-based clustering approach with respect to another
one, one should be able to understand the properties of the
generated soft clusters. This is the reason that leads us to
define three distinct extensions of DBSCAN each one gener-
ating fuzzy clusters with distinct characteristics.

Ulutagaya andNasibov (2012) reports a survey of themain
fuzzy density-based clustering algorithms, while Shamshir-
band et al. (2014) presents a study in which they show that
density-based clustering algorithm coupled with fuzzy logic
can efficiently deal with the task of intrusion detection in
wireless sensor networks.

The most cited paper (Nasibov and Ulutagay 2009) pro-
poses a fuzzy extension of the DBSCAN, named fuzzy
neighbourhoodFN-DBSCAN,whosemain characteristic is to
use a fuzzy neighbourhood size definition. In this approach,
the authors address the difficulty of the user in setting the
values of the input parameter ε when the distances of the
points are in distinct scales, as it happens in astronomical
images. Thus, they first normalize the distances between all
points in [0, 1], and then they allow computing distinct mem-
bership degrees on the distance to delimit the neighbourhood
of points, i.e. the decaying of the membership degrees as a
function of the distance. Then, they select as belonging to the
fuzzy neighbourhood of a point only those points belonging
to the support of the membership function. This extension
of DBSCAN uses a level-based neighbourhood set, instead
of a distance-based neighbourhood size, and it uses the con-
cept of fuzzy cardinality, instead of classical cardinality, for
identifying core points. This last choice causes the creation
(within the same run of the algorithm) of fuzzy clusters with
very heterogeneous local density characteristics: both fuzzy
clusters with cores having a huge number of sparse points
(points located at the border of the local neighbourhood of
each other), and fuzzy clusters with small cores, constituted
only by a few close points. This approach can be consid-
ered dual to our first extension, the Fuzzy Core DBSCAN
algorithm (Bordogna and Ienco 2014), since we fuzzify the
minimum number of pointsminPts defining the local neigh-
bourhood density, while the distance ε is maintained crisp.

123

1722 D. Ienco, G. Bordogna

As a consequence, the membership degree of a point to the
fuzzy core depends on the number of points in its crisp neigh-
bourhood. By this choice, and the computation of the local
density based on the classic set cardinality, a point is assigned
to only one cluster to a distinct extent, thus generating non-
overlapping clusters with possibly fuzzy cores. Clusters may
have cores with faint profiles reflecting low density of the
clusters’ nucleus.

FNDBSCAN (Parker andDowns 2013) is closer to our sec-
ond extension, named FBorder, in which we fuzzify only the
membership of objects belonging to the border of clusters,
this way allowing their partial overlapping. Nevertheless,
differently than FNDBSCAN,FBorder grows clusters’ cores
around points characterized by homogeneous local density,
thus generating clusters with crisp, not overlapping and
homogeneously dense cores.

Kriegel and Pfeifle (2005) algorithm is employed to clus-
ter objects whose position is ill-known. The authors propose
the FDBSCAN algorithm in which a fuzzy distance mea-
sure is defined as the probability that an object is directly
density-reachable from another objects. This problem can
be modelled by our third extension, named FDBScan, that
allows defining the local neighbourhood density of any object
by specifying an approximate number of objects within an
approximate maximum distance, thus capturing the uncer-
tainty on the positions of the moving objects, and generating
fuzzy clusters with both faint cores and fuzzy overlapping
border. Finally, the most recent soft extension of DBSCAN
has been proposed in Smiti and Eloudi (2013) where the
authors combine the classic DBSCAN with the Fuzzy C-
Means algorithm (Bezdek et al. 1984) proposing a method
called soft-DBSCAN. They detect seeds points by the classic
DBSCAN and in a second phase they compute the degrees of
membership to the clusters around the seeds by relying on
the Fuzzy C-Means clustering algorithm. A similar objective
of selecting the seeds to feed the Fuzzy C-Means is pursued
by the mountain method proposed in Yager and Filev (1994).

Nevertheless, these extensions do not grow the clusters
by applying density-reachable criteria as in our proposed
approaches. Distinct density characteristics of clusters: faint
cores and not overlapping distributions are modelled by
Fuzzy Core DBSCAN; semi-overlapping distributions with
homogeneous dense cores by our Fuzzy Border DBSCAN
extension; finally, faint cores and semi-overlapping distri-
butions by the third extension Fuzzy DBSCAN.

Another important issuewhenusing a clustering algorithm
onbig data is its scalability. In this respect, Parker et al. (2010)
proposes a scalable implementation of the FN-DBSCAN,
named SFN-DBSCAN, with the objective of improving the
efficiency when dealing with big data sets. Another efficient
implementation is proposed in Ester et al. (1996). It tackles
the problem of clustering a huge number of objects strongly
affected by noise when the scale distributions of objects are

heterogeneous. To remove noise they firstmap the distance of
any point from its k-neighbours and rank the distance values
in decreasing order; then they determine the threshold θ on
the distance which corresponds to the first minimum on the
ordered values. All points in the first ranked positions having
a distance above the thresholds θ are deemed noisy points
and are removed, while the remaining points will belong to
a cluster. Only these latter points are clustered with the clas-
sic DBSCAN providing as input parameters minPts = K
and ε = θ . By adopting this same procedure, we can imple-
ment the proposed algorithms: we can determine the most
appropriate distance εMax = θ (which delimits the support
of the membership function defining the approximate size of
the local neighbourhood). This way, depending on the data
set, we remove noise and then apply one of the proposed
algorithms on the remaining points.

Finally, the extension of DBSCAN with fuzzy logic
reported in Shamshirband et al. (2014) shares with our exten-
sion the idea of generating clusters with distinct fuzziness
properties, as specified by the fuzzy rules: specifically, a
hybrid clustering method is introduced, namely a density-
based fuzzy imperialist competitive clustering algorithm
(D-FICCA), to detect malicious behaviours in wireless sen-
sor networks (WSNs) with the aim to enhance the accuracy
of malicious detection. A density-based clustering algorithm
helps to improve the imperialist competitive algorithm for
the formation of arbitrary cluster shapes as well as han-
dling noise. The fuzzy logic controller is introduced to avoid
possible errors of the worst imperialist action selection strat-
egy. The results demonstrate that the proposed framework
achieves higher detection accuracy compared to existing
approaches.

3 Classic DBScan algorithm

For sake of clarity in the following, we will consider a set
of objects represented in multidimensional feature space.We
can figure out these objects as either cars, taxi cabs, airplanes
represented in the feature space defined by their geographic
coordinates (both 2D or 3D). DBSCAN can be applied to
group these objects based on their local densities in the fea-
ture space. For example, this makes it possible to identify
traffic jams of cars on the roads.

Specifically, DBSCAN assigns points of the feature space
defined on R × R × R · · · × R to particular clusters or des-
ignates them as outliers or noise if they are not sufficiently
close to other points. It determines cluster assignments by
assessing the local density at each point using two para-
meters: distance radius (ε) and minimum number of points
(minPts) that must exists within the neighbourhood ε of
the point. A single point which meets the minimum den-
sity criterion, namely it has minPts located within distance

123

Fuzzy extensions of the DBScan clustering algorithm 1723

ε, is designated a core point. Formally, given a set of points
P = (p1, p2, . . . , pn), p is a core point if at least aminimum
numberminPts of points exist s.t p j ∈ P and ||p−p j || < ε,
where ||x || is theEuclideandistance in then-dimensional fea-
ture space. Two core points pi and p j with i �= j belong to
the same cluster c if ||pi − p j || < ε. Both are core points of
c (pi , p j ∈ core(c)). All the points that are not core points
and lie within the maximum distance ε from a core point of
a cluster c are defined as border points of c: p /∈ core(c) is
a border point of c if ∃pi ∈ core(c) with ||p − pi || < ε.
Finally, the points that are not part of any cluster are consid-
ered noisy points: p /∈ core(c) is noise if ∀c, �pi ∈ core(c)
with ||p − pi || < ε. In the following, the classic DBSCAN
algorithm is formalized:

Algorithm 1 DBSCAN(P ,ε,MinPts)
Require: P: dataset of points
Require: ε: the maximum distance around a point defining its local neighbourhood
Require: MinPts: minimum local density, in points, around a point to be a candidate

core point
1: C = 0
2: Clusters = ∅
3: for all p ∈ P s.t. p is unvisited do
4: mark p as visited
5: neighboursPts = regionQuery(p,ε)
6: if (si zeo f (neighboursPts) <= MinPts) then
7: mark p as NOISE
8: else
9: C = next cluster
10: Clusters = Clusters ∪ expandCluster(p, neighboursPts,C, ε, MinPts)
11: end if
12: end for
13: return Clusters

Algorithm 2 expandCluster (p, neighboursPts,C, ε,

MinPts)
Require: p: the point just marked as visited
Require: neighboursPts: the neighbourhood of p
Require: C : the actual cluster
Require: ε the distance around a point to compute its local density
Require: MinPts: local density, in points, defining the minimum cardinality of the

neighbourhood of a point to be a candidate core point
1: add p to cluster C

2: for all p′ ∈ neighboursPts do

3: if p
′
is not visited then

4: mark p
′
as visited

5: neighboursPts
′
= regionQuery(p

′
,ε)

6: if si zeo f (neighboursPts
′
) > MinPts then

7: neighboursPts = neighboursPts ∪ neighboursPts
′

8: end if
9: end if
10: if p

′
is not yet member of any cluster then

11: add p
′
to cluster C

12: end if
13: end for
14: return C

4 Generating clusters with distinct fuzzy
characteristics

4.1 Generating clusters with fuzzy cores

The first extension of the classicDBSCAN algorithmwe pro-
posed in Bordogna and Ienco (2014), named

Fuzzy Core DBSCAN, for short FCore, is obtained by con-
sidering crisp distances and by introducing an approximate
value of the minimum cardinality of the local neighbourhood
of a point. This can be done by substituting the valueminPts
with a soft constraint defined by amonotonic non-decreasing
membership function on the domain of the positive integers.
This soft constraint specifies theminimumapproximate num-
ber of points that are required in the local neighbourhood of a
point for starting the generation of a fuzzy core. Let us define
the piecewise linear membership function as follows:

μminP (n̂)

⎧
⎪⎨

⎪⎩

1, if n̂ ≥ MptsMax
n̂−MptsMin

MptsMax−MptsMin
, if MptsMin < n̂ < MptsMax

0, if n̂ ≤ MptsMin

(1)

This membership function gives the value 1 when the
number n̂ of elements in the neighbourhood of a point is
greater than MptsMax , a value 0 when n̂ is below MptsMin

and intermediate values when n̂ is in between MptsMin and
MptsMax .

Since users may find it difficult to specify the two values
MptsMin and MptsMax in the case of big data, we can try
to automatically suggest two appropriate values. This can
be done by mapping the number of points of the data sets
which are at a maximum distance among each other below
ε, for increasing values of ε. This function is monotonically
not decreasing: we then suggest the values of the functions
corresponding to the first two flexes as the appropriate values
of MptsMin and MptsMax .

Another approach is to allow a user to specify two percent-
age values, %MptsMin and %MptsMax on the total dataset
size, measured in number of objects, and then convert these
percentages to determineMptsMin andMptsMax as follows:

MptsMin = round(%MptsMin∗N) and ptsMax = round
(%MptsMax∗N), in which N is the total number of objects
in the data set and round(m) returns the closest integer tom.

Let us now define the fuzzy core. Considering a set P of
N objects represented by N points p1, p2, . . . , pN in the n-
dimensional space Rn , so that each pi has the coordinates
xi1 , xi2 , . . . , xin .

Given a point p ∈ P , if n̂ points pi exist in the local neigh-
bourhood of point p, i.e. with ‖pi − p‖ < ε, s.t.μminP(n̂) >

0 then p is a fuzzy core point with membership degree
to the fuzzy core given by Fuzzycore(p) = μMinP (n̂) If
two fuzzy core points pi , p j with Fuzzycore(pi) > 0 and
Fuzzycore(p j) > 0 ∃ with i �= j s.t. ‖pi − p‖ < ε then
they belong to the same cluster c (pi , p j ∈ c) and both
are fuzzy core points of c, (pi , p j ∈ f uzzycore(c)) with
membership degrees f uzzycorec(pi) = Fuzzycore(pi)
and f uzzycorec(p j) = Fuzzycore(p j). They belong to the
cluster with membership degree μc(pi) = Fuzzycore(pi)
and μc(p j) = Fuzzycore(p j).

123

1724 D. Ienco, G. Bordogna

A point p of a cluster c is a border point if it is not a fuzzy
core point and ∃pi ∈ f core(c) s.t. ‖pi − p‖ < ε then p
gets a membership degree to c defined as:

μc(p) = min pi∈neighcore(p) f uzzycorec(pi) (2)

where neighcore(p) = {pi s.t. f uzzycorec(pi) > 0 ∧
‖pi − p‖ < ε}.

Finally, points p that are neither fuzzy core points nor
border points are considered as noisy points

Notice that, the points belonging to a cluster c get dis-
tinct membership values to the cluster reflecting the number
of their neighbours within a maximum distance ε. This def-
inition allows generating fuzzy clusters with a fuzzy core,
where the membership degrees represent the variable cluster
density.

Moreover, a border point p can partially belong to a single
cluster c since its membership degree is upperbounded by the
minimum membership degree of its neighbours fuzzy core
points. Notice that, this algorithm does not generate overlap-
ping fuzzy clusters, but the support of the fuzzy clusters is
still a crisp partition as in the classic DBSCAN: ci ∩ c j = �

Further property, theFCoreDBSCAN reduces to the clas-
sic DBSCAN when the input values MptsMin = MptsMax :
in this case FCore DBSCAN produces the same results of
the classicDBSCANwithminPts = MptsMin = MptsMax

and same distance ε. In fact, the level-based soft condition
imposed by μminP is indeed a crisp condition μMinP (x) ∈
{0, 1} on the minimum number of points defining the local
density of the neighbourhood:μminP (n̂) = 0 when the num-
ber of points n̂ within amaximum distance ε of any point p is
less than minPts = MptsMin = MptsMax , on the contrary
μminP (n̂) = 1. In this case, the membership degrees of all
fuzzy core points is 1, and thus the fuzzy core reduces to a
crisp core as in the classic DBSCAN.

The border points are thus defined as in the classic
approach too, since their membership degrees are the mini-
mum of the membership degrees of the core points in their
neighbourhood, which in the crisp case is always 1.

The fuzzy procedure is sketched in Algorithms 3 and 4.
Considering the outer loop of the process (Algorithm 3), the
difference with the original version (Algorithm 1) lies at line
6.

In the fuzzy version, a point is marked as NOISE if its
neighbourhood size is less than or equal to MptsMin , other-
wise it will be a fuzzy core point with a given membership
value. Once the point is recognized as fuzzy core point
the procedure expandCluster FuzzyCore is called (Algo-
rithm 4).

As in the classical DBSCAN, this procedure is devoted to
find all the reachable points from p and to mark them as core
or border points. In the original version, the assignment of the

point p is crisp, while we introduce a fuzzy assignment (line
1) modelled by the fuzzy function μMinP () defined in Eq. 1.
The same function is employed when a new fuzzy core point
is detected (line 8). Also in this case, firstly we verify the
density around a given point p

′
w.r.t. MptsMin and then, if

the point satisfies the soft constraint to a positive degree, we
add the point to the fuzzy core of clusterC with its associated
membership value.

Algorithm 3 Fuzzy Core DBSCAN(P ,ε,MptsMin,
MptsMax)
Require: P: dataset of points
Require: ε: the maximum distance around a point defining the point neighbourhood
Require: MptsMin , MptsMax : soft constraint on the density around a point to be a

candidate fuzzy core point
1: C = 0
2: Clusters = ∅
3: for all p ∈ P s.t. p is unvisited do
4: mark p as visited
5: nPts = regionQuery(p,ε)
6: if (si zeo f (nPts) ≤ MptsMin) then
7: mark p as NOISE
8: else
9: C = next cluster
10: Clusters = Clusters ∪ expandClusterFuzzyCore

(p, nPts,C, ε, MptsMin , MptsMax)
11: end if
12: end for
13: return Clusters

Algorithm 4 expandCluster FuzzyCore(p, nPts,C, ε,

MptsMin, MptsMax)
Require: p: the point just marked as visited
Require: nPts: the points in the neighbourhood of p
Require: C : the actual cluster
Require: ε the distance around a point to compute its density
Require: MptsMin , MptsMax : soft constraint on the density around a point to be a

candidate fuzzy core point
1: add p to C with membership Fuzzycore(p) = μMinP (|nPts|)
2: for all p′ ∈ nPts do

3: if p
′
is not visited then

4: mark p
′
as visited

5: nPts
′
= regionQuery(p

′
,ε)

6: if si zeo f (nPts
′
) > MptsMin then

7: nPts = nPts ∪ nPts
′

8: add p
′
to C with membership Fuzzycore(p

′
) = μMinP (|nPts′ |)

9: end if
10: if p

′
is not yet member of any cluster then

11: add p
′
to C (as border point)

12: end if
13: end if
14: end for
15: return C

4.2 Generating clusters with overlapping fuzzy border
and classic core points

A second extension of DBSCAN, named
Fuzzy Border DBSCAN (FBorder), can be defined by allow-
ing the specification of an approximate value of themaximum

123

Fuzzy extensions of the DBScan clustering algorithm 1725

distance instead of asking for a precise numeric parame-
ter ε and in defining a soft constraint with a monotonic not
increasing membership function on the positive real domain
of distance values. The soft constraint defines the concept of
fuzzy neighbourhood size, so that a point can belong to the
fuzzy neighbourhood of another point to a degree in (0,1].
This allows computing a gradual membership to the clusters.

Differently than the proposal of Nasibov and Ulutagay
(2009) we allow to specify the membership function on the
distance as a soft constraint with piecewise linear shape
defined by two values εMin and εMax so that when the
distance is smaller than εMin the membership degree is max-
imum (1), when it is greater than εMax its membership is null
(0) and it decreases linearly when it is in between εMin and
εMax :

μdist (p, pi) =

⎧
⎪⎨

⎪⎩

1, if ‖p − pi || ≤ εMin
εMax−‖p−pi ||

εMax−εMin
, if εMin < ‖p − pi || < εMax

0, if ‖p − pi || > εMax

(3)

In this definition, ‖p − pi || can be defined as either the
Euclidean distance or the complement of a cosine similarity
distance or any other distance measure more suitable in the
application context.

We can then redefine a core point of a cluster with fuzzy
border: given a point p if at least a numberminPts of points
P = {p1, . . . , pminPts}∃ s.t. ∀pi ∈ P, μdist (pi, p) = 1 then
p is a core point.

If two core points pi p j with i �= j and μdist (pi , p j) = 1
then pi , p j belongs to c, i.e. they define a cluster cwith fuzzy
border and are core points of c, i.e. pi , p j ∈ core(c) and thus
they get a membership degree to the cluster μc(p) = 1.

A point p of a cluster that is not a core point is a
fuzzy border point if it satisfies the following: ∀p s.t. p /∈
core(c) and pi ∈ core(c) and μdist (pi , p) > 0 then p gets
a membership degree to the fuzzy border of cluster c defined
as:

μc(p) = min pi∈neighcore(p)μdist (p, pi) (4)

where neighcore(p) = {pi ∈ core(c) ∧ μdist (p, pi) > 0}
This definition allows generating fuzzy clusters with faint

borders.
Moreover, a point p can partially belong to the fuzzy

borders of more clusters at the same time with distinct mem-
bership values. This allows generating fuzzy clusters with
overlapping boundaries, i.e. semi-overlapping fuzzy clus-
ters. This is guaranteed by the condition for the selection
of the points to be evaluated as border points of clus-
ters which requires that μc(p) < 1 for each generated

c. While a point p is considered as noise if ∀c �pi ∈
core(c) s.t. μdist (pi , p) > 0.

The strategy is outlined in Algorithm 5 and 6. The outer
loop (Algorithm 5) starts the process. Given a point, the
neighbourhood is selected considering εMin . If the MinPts
constraint is not satisfied the point is initially marked as
NOISEotherwise the creation of a newcluster begins, and the
procedure expandCluster FuzzyBorder is called. Algo-
rithm 6 tries to expand the current cluster C as much as
possible. Thedifferencewith the original versionofDBSCAN
lies in the way the border points are managed and detected.
Here, we employ a temporary structure f uzzyBorder Pts
to collect the current set of border points. Border points are
points with density lower than MinPts (line 6) but, differ-
ently from the original algorithm, a point can be a border
point if it is reasonably at a distance from the cluster in
between εMin and εMax . To verify this second condition,
we query the neighbourhood of a point p for both εMin and
εMax distances (line 2 and 8). Formula 4 specifies that the
membership of a border point is the minimum of the mem-
berships μdist between the point and all the core points of
the cluster directly reachable. In order to compute the min-
imum, we need first to detect all core points of the cluster
and then compute theμc(·) for all the border points (line 15–
18). Line 15 is particularly important because a point that
was inserted in the temporary structure f uzzyBorder Pts,
successively can verify the condition to be a core point. The
difference between the two sets (f uzzyBorder Pts and C)
guarantees that only the border points are considered after
line 15. Note that when εmin = εmax this extension reduces
to the classicDBSCAN algorithm, since a point will get from
Eq. 1 either a zero or a full (1)membership degree to the clus-
ter. This extension is very similar to the approach proposed
in Nasibov and Ulutagay (2009), since we fuzzify the input
parameter ε too. Nevertheless, in our proposal, the core is
still crisp and not fuzzy as in Nasibov and Ulutagay (2009).
Further, differently than in the previous cited paper, minPts
is still a numeric value that defines the local density of a core
as in the classicDBSCAN. This allows generating fuzzy clus-
ters with a crisp core, and a fuzzy border. More clearly, in
this extension of DBSCAN, all generated clusters have cores
with same density but that may differ for the density of their
border, which may have faint overlapping profiles.

4.3 Generating clusters with fuzzy cores and
overlapping fuzzy border

In this subsection, we introduce how to model fuzziness over
both cores and borders in order to subsume the previous pro-
posed approaches into what is named Fuzzy DBSCAN, i.e.
FDBScan. The two soft constraints defined in (1) and (3)
replace both minPts and ε to allow the definition of the

123

1726 D. Ienco, G. Bordogna

Algorithm 5 Fuzzy Border DBSCAN(P ,εMax ,εMin ,
Mint Pts)
Require: P: dataset of points
Require: MinPts: the minimum density around a point to be a candidate core point
Require: εMin , εMax : soft constraint on the distance around a point defining the point

fuzzy neighbourhood size
1: C = 0
2: Clusters = ∅
3: for all p ∈ P s.t. p is unvisited do
4: mark p as visited
5: nPts = regionQuery(p,εMin)
6: if (si zeo f (nPts) ≤ MinPts) then
7: mark p as NOISE
8: else
9: C = next cluster
10: Clusters = Clusters ∪ expandClusterFuzzyBorder

(p, nPts,C, εMax , εMin , MinPts)
11: end if
12: end for
13: return Clusters

Algorithm 6 expandCluster FuzzyBorder (p, nPts,C,

εMax , εMin, MinPts)
Require: p: the point just marked as visited
Require: nPts: the points in the neighbourhood of p
Require: C : the actual cluster
Require: εMax , εMin : soft constraint on the distance around a point defining its fuzzy

neighbourhood size
Require: MinPts: the density around a point to be considered a core point
1: add p to C (as core point)
2: f uzzyBorder Pts = regionQuery(p, εMax) \ nPts
3: for all p′ ∈ nPts do

4: mark p
′
as visited

5: nPts
′
= regionQuery(p

′
,εMin)

6: if si zeo f (nPts
′
) > MinPts then

7: nPts = nPts ∪ nPts
′

8: f uzzyBorder Pts
′ = regionQuery(p

′
, εMax) \ nPts′

9: f uzzyBorder Pts = f uzzyBorder Pts ∪ f uzzyBorder Pts
′

10: add p
′
to C (as core)

11: else
12: f uzzyBorder Pts = f uzzyBorder Pts ∪ p

′
13: end if
14: end for
15: f uzzyBorder Pts = f uzzyBorder Pts \ C
16: for all p′ ∈ f uzzyBorder Pts do

17: add p
′
to C (as border point) with membership μc(p

′
) Equation (4)

18: end for
19: return C

fuzzy local density and the fuzzy local neighbourhood size
of points respectively:

– a soft constraint specified by two values (Mptsmin ≤
Mptsmax) on the Natural domain defines a fuzzy local
dense region;

– a soft constraint specified by a pair (εmin ≤ εmax) on the
positive reals defines the local fuzzy neighbourhood size
of a point.

We define the local density of a point p as follows:

dens(p) =
∑

pi∈neigh(p,εmax)

μdist (p, pi) (5)

where neigh(p, εMax) = {pi s.t. ‖pi − p‖ < εMax }

If μminP (dens(p)) > 0 then the point p belongs to the
fuzzycore of a certain cluster with a membership degree
Fuzzycore(p) = μminP (dens(p))

If μminP (dens(p)) = 0, then p is a border or a noise
point.

If in the local neighbourhood of a fuzzy core point pi there
exists another fuzzy core point p j , then a cluster c is gener-
ated: ∃pi , p j , s.t.μdist (pi , p j) > 0∧Fuzzycore(pi) > 0∧
Fuzzycore(p j) > 0 then f uzzycorec(pi) =
Fuzzycore(pi) ∧ f uzzycorec(p j) = Fuzzycore(p j).

A point p that is not a fuzzy core point is a fuzzy border
point of a cluster c, if it satisfies the following condition:
∃pi and ∃p s.t. f uzzycore(pi) = 0 ∧ μdist (p, pi) > 0 ∧
f uzzycorec(p) > 0.
If a point is a border point it cannot be a fuzzy core point

of any cluster:

�c s.t. f uzzycorec(p) > 0

If all the conditions are respected we define p as a fuzzy
border point of a cluster c with a membership function to the
cluster defined as:

μb(p) = min pi∈neigh f core(p)(min(f uzzycorec(pi),

μdist (p, pi))) (6)

where neigh f core(p) = {pi s.t. f uzzycorec(pi) > 0 ∧
μdist (p, pi) > 0}

The procedures are described in Algorithms 7 and 8.
The general schema is similar to the original DBSCAN.
The main difference concerns the decision between core
and border points which is made by considering μminP (·)
and the possibility of a point to belong to multiple clus-
ters. Note that, this algorithm reduces to either FCore when
MptsMin = MptsMax or to FBorder when εMin = εMax

Algorithm 7 Fuzzy DBSCAN(P ,εMax ,εMin ,MptsMax ,

MptsMin)
Require: P: dataset of points
Require: εMin , εMax : soft constraint on the distance around a point defining the point

fuzzy neighbourhood size
Require: MptsMin , MptsMax : soft constraint on the density around a point to be

considered as fuzzy core point
1: C = ∅
2: Clusters = ∅
3: for all p ∈ P s.t. p is unvisited do
4: mark p as visited
5: nPts = regionQuery(p,εMax)
6: dens(p) = as in equation (5)
7: if (μminP (dens(p)) == 0) then
8: mark p as NOISE
9: else
10: C = next cluster
11: Clusters = Clusters ∪ expandClusterFuzzy

(p, nPts,C, εMax , εMin , MptsMax , MptsMin)
12: end if
13: end for
14: return Clusters

123

Fuzzy extensions of the DBScan clustering algorithm 1727

Algorithm8 expandCluster Fuzzy(p, nPts,C, εMax , εMin,

MptsMax , MptsMin)
Require: p: the point just marked as visited
Require: nPts: the points in the fuzzy neighbourhood of p
Require: C : the actual cluster
Require: εMax , εMin : soft constraint on the distance around a point to compute its

fuzzy neighbourhood
Require: MptsMin , MptsMax : soft constraint on the density around a point to be

considered a fuzzy core point
1: add p to C (as core) with membership μMinP (dens(p))

2: for all p′ ∈ nPts do

3: mark p
′
as visited

4: if μminP (dens(p
′
)) > 0 then

5: nPts
′
= regionQuery(p

′
,εMax)

6: nPts = nPts ∪ nPts
′

7: add p
′
to C (as core) with membership μMinP (dens(p

′
))

8: else
9: add p

′
to C (as border point) with membership computed by equation (6)

10: end if
11: end for
12: return C

5 Computational complexity

In this section, we introduce a discussion about the com-
putational complexity of the different approaches we pro-
pose. Regarding the time complexity of the three pro-
posals: Fuzzy Core DBSCAN,Fuzzy Border DBSCAN and
Fuzzy DBSCAN, all of them have the same complexity of
the original DBSCAN. In the DBSCAN algorithm, the com-
putational time is mainly influenced by the number of time
the function regionQuery(·, ·) is invoked. If we support this
operation with a spatial indexing structure like an R-Tree,
we can avoid a linear search and perform such operation in
O(log n), where n is the number of elements in the dataset. In
the Fuzzy variants, it can happen to traverse the same object
multiple times because we can reach it from different start-
ing points. This means that the regionQuery(·, ·) can be
applied more than once for the same element. To avoid extra
computation, we can simply employ an hash table to store
the set of retrieved elements. Before performing the costly
regionQuery(·, ·) action, we check if the neighbour points
are already in the hash table, otherwise we perform the query
and we store the results in the hash table for future use. In
the case of the original DBSCAN algorithm, the worst case
complexity is O(n2) that involves the case in which no spa-
tial indexing structure is employed or the parameter are not
carefully set (e.g. all points are within a distance less than ε).
Considering our three fuzzy extensions, for all three cases,
the computational complexity is the same (O(n2)) as the one
of the original DBSCAN since the general schemas are very
similar. From a practical point of view, we have observed
that the three approaches behave similarly with an average
computational complexity lower than the worst case.

Regarding the space complexity, thematerialization of the
pointwise distance matrix implies a cost of O(n2), while in
the worst case, the hash table can be O(n2). Since the two

Table 1 Dataset characteristics

Dataset No. of instances No. of attributes No. of classes

Breast 699 9 2

Diabetes 768 8 2

Ecoli 336 7 8

Glass 214 9 6

Iris 150 4 3

Parkinsons 197 23 2

Vehicle 846 18 4

quantities need to be summed up, the final space complexity
is O(n2).

6 Experiments

In this section, we discuss the evaluation of our pro-
posals on real-world datasets by comparing them w.r.t.
state of the art soft clustering approaches. We choose as
competitors the Fuzzy C-Means algorithm (Bezdek et al.
1984) (FCM) due to its popularity, and the (FN-DBSCAN)
(Smiti and Eloudi 2013) (Soft-DBSCAN) as representa-
tive of fuzzy density-based approaches extending DBSCAN.
The comparison includes all the three fuzzy DBSCAN
extensions we introduced: Fuzzy Core DBSCAN (FCore),
Fuzzy Border DBSCAN (FBorder) and Fuzzy DBSCAN
(FDBScan). In order to benchmark all the different
approaches, we use datasets from the UCI Machine Learn-
ingRepository2 whose characteristics are reported inTable 1.
More in detail, we use seven datasetswith different character-
istics (number of instances, number of features and number
of classes).We summarize the data characteristics in Table 1.

The behaviour of the different algorithms is evaluated by
computing both external and internal measures of validity
of the results, which express the conformity of the results
with the a-priori classifications (external measures) and the
optimization of an objective function (internal measures).
For the FCM algorithmwe use the implementation available
under the R3 statistical computing software.We set the value
of the fuzzification parameterm equals to 2, that controls the
fuzziness of cluster boundaries, and the number of clusters
equals to the number of classes. This way we drive the FCM
clustering with correct information, thus favourably biasing
its results. We run the FCM 50 times and then average the
results thus obtained.

For the Soft-DBSCAN approach we vary the Mpts para-
meter between 2 and 15 and the ε threshold between 0.1 and
1.0 with step of 0.05.

2 https://archive.ics.uci.edu/ml/datasets.html.
3 http://www.r-project.org/.

123

https://archive.ics.uci.edu/ml/datasets.html
http://www.r-project.org/

1728 D. Ienco, G. Bordogna

For FCore, FBorder and FDBScanwe vary the soft con-
straints considering all the possible values combination in
the previous intervals. For each method we retain the solu-
tion with the least number of noise points for, in principle,
the used datasets should not contain noise.

6.1 Internal and external clustering validity measures

The clustering results are assessed under both internal and
external validity measures. As internal criteria we choose the
Partition Coefficient (Guillén et al. 2007) and the Fuzzy Per-
formance Index (Smiti and Eloudi 2013), while we employ
the Fuzzy F-Measure as external one (Suanmali et al. 2009),
which is a combination of Recall and Precision.

We define with D the dataset, with |D| the size of the
dataset, with Dcl the instances of the dataset belonging to
class cl, andwithC the obtained cluster solution.We indicate
with μi j the membership degree of the i th object to the j th
cluster.

ThePartitionCoefficient (Guillén et al. 2007) is calculated
as follows:

PC = 1

|D| ×
|D|∑

i=1

|C|∑

j=1

μ2
i j

This internal evaluation measure allows to compute the
amount of overlap between clusters. High values of this mea-
sure indicate more cluster cohesion and density.

As second internalmeasurewe employ theFuzzyPartition
Index (Smiti and Eloudi 2013). This measure is defined as:

FPI = 1 −
(|C |

|C | − 1

)

×
⎛

⎝1 −
|D|∑

i=1

|C|∑

j=1

μ2
i j

|D|

⎞

⎠

This measure evaluates the degree of separation of the
fuzzy partition produced by the clustering algorithm. More
in detail, the Fuzzy Partition Index quantifies the average
cohesion of the clusters according to the membership func-
tion of the element of each cluster. Also for this measure,
high values indicate more cluster cohesion.

The external measure we use is the Fuzzy F-Measure
(Suanmali et al. 2009). This measure is a fuzzy adaptation
of the standard F-Measure commonly involved to compare
clustering results with the reference classification. First of all
we define the Fuzzy F-Measure for a cluster C j given a class
cl as:

FMeasure(C j , cl) = 2 × FPrecision(C j , cl) ∗ FRecall(C j , cl)

FPrecision(C j , cl) + FRecall(C j , cl)

where

FPrecision(C j , cl) =
∑

i∈C j∩Dcl
μi j

|C j |

and

FRecall(C j , cl) =
∑

i∈C j∩Dcl
μi j

|Dcl |
and the final Fuzzy F-Measure is defined as:

∑

C j∈C

|C j |
|D| × Fuzzy F-Measure(C j , cl)

Each clusterC j is associated with the class cl that maximizes
the corresponding Fuzzy F-Measure(C j , cl). The final solu-
tion is a weighted sum between the Fuzzy F-Measure of a
clusterC j and its importance considering the clustering solu-
tion.

6.2 Results

We report the evaluation results of the different approaches
in Tables 2, 3 and 4. Table 2 shows the results in term of
Fuzzy F-Measure. We can observe that, most of the time,
our proposals outperform the competitors. Considering the
Breast and (Iris) datasets, FCM obtains the highest score,
while our strategies still obtain reasonable and competitive
results. Regarding the comparison among the three differ-
ent fuzzy extensions we proposed, we can observe that the
FBorder strategy always reaches the same or the best score
in term of Fuzzy F-Measure w.r.t. the other extensions. This
model, contrary to the others we proposed, allows a fuzzi-
ness degree only for border points,while it considers that core
points can belong to only one cluster. The empirical results
underline that the assumption behind the FBorder well fits
the underlined data distribution of the real-world benchmark
we considered.

Tables 3 and 4 summarize the results in term of Partition
Coefficient and Fuzzy Partition Index of the different algo-
rithms. Both measures highlight the quality of our new fuzzy
DBSCAN extensions. We can see that all the three extensions
yield high values for the internal measures and outperform
any of the competitors.

In order to explain this result, we deeply inspected the
different clustering solutions. We observed that, first, the
Soft-DBSCAN and the FCM algorithms assign each object
to more clusters than the FCore, FBorder and FDBScan.
Second, for an object its membership values distribution over
all fuzzy clusters has often a multi-modal shape for both the
Soft-DBSCAN and the FCM. This means that, several clus-
ters share high membership values for the same object. This

123

Fuzzy extensions of the DBScan clustering algorithm 1729

Table 2 Achieved Fuzzy
F-Measure of the different
methods over the UCI datasets

Dataset FCore FBorder FDBScan Soft-DBSCAN FCM

Breast 0.76 0.79 0.77 0.42 0.88

Diabetes 0.73 0.75 0.71 0.56 0.57

Ecoli 0.60 0.61 0.61 0.32 0.38

Glass 0.55 0.74 0.48 0.25 0.35

Iris 0.78 0.78 0.78 0.39 0.8

Parkinsons 0.79 0.84 0.78 0.46 0.6

Vehicle 0.41 0.41 0.41 0.30 0.34

The best results yielded by one of the tested algorithms on each dataset are marked in bold

Table 3 Achieved Partition
Coefficient of the different
methods over the UCI datasets

Dataset FCore FBorder FDBScan Soft-DBSCAN FCM

Breast 0.95 0.98 0.97 0.58 0.84

Diabetes 0.96 0.98 0.97 0.50 0.57

Ecoli 1.0 1.0 1.0 0.38 0.31

Glass 0.89 0.81 0.92 0.46 0.43

Iris 1.0 1.0 1.0 0.68 0.74

Parkinsons 0.97 0.79 0.97 0.41 0.61

Vehicle 1.0 1.0 1.0 0.53 0.42

The best results yielded by one of the tested algorithms on each dataset are marked in bold

Table 4 Achieved Fuzzy
Performance Index of the
different methods over the UCI
datasets

Dataset FCore FBorder FDBScan FN-DBSCAN FCM

Breast 0.9 0.96 0.94 0.37 0.68

Diabetes 0.92 0.96 0.94 0 0.14

Ecoli 1.0 1.0 1.0 0.07 0.21

Glass 0.78 0.72 0.84 0.28 0.43

Iris 1.0 1.0 1.0 0.36 0.61

Parkinsons 0.94 0.72 0.94 0.12 0.22

Vehicle 1.0 1.0 1.0 0.04 0.23

is not the case for our fuzzy DBSCAN extensions where, in
theory, an object can belong to multiple clusters but, in prac-
tice, it hasmembership degrees greater than zero for a limited
number of clusters (usually no more than two or three clus-
ters), which seems a reasonable characteristics of real data
distributions.

7 Conclusion

In this contribution, we presented three fuzzy extensions of
the DBSCAN clustering algorithm, to the aim of modelling
distinct density-based characteristics of the objects spatial
distributions in the feature space. The main characteristics
of these algorithms are the definition of distinct soft con-
straints to specify the approximate local density of points
needed for generating a cluster. Specifically, the first exten-
sion, Fuzzy Core DBSCAN allows assigning a core point to
a cluster with a membership value; in doing so, clusters can

contain core points with different membership values, thus
allowing to detect clusters with heterogeneous densities of
their nucleus with a single run of the algorithm. The second
extension, Fuzzy Border DBSCAN, allows generating semi-
overlapping clusters with fuzzy border and homogeneous
dense cores. The third extension, Fuzzy DBSCAN, combines
the previous ones thus detecting clusters with both fuzzy core
and fuzzy border points, i.e. heterogeneous dense cores and
overlapping borders.

The main novelty of the proposal is the intent to con-
trol distinct fuzzification characteristics of the clusters that
can be generated when using a clustering algorithm, thus
suiting distinct application domains, such as user commu-
nity detection in social networks with partial membership
either to disjoint communities Fuzzy Core DBSCAN or to
semi-overlapped communities Fuzzy Border DBSCAN, and
ecosystems detection in satellite images Fuzzy DBSCAN.

Furthermore, besides leveraging the specification of the
precise input, the proposals supply with a single run a solu-

123

1730 D. Ienco, G. Bordogna

tion that summarizes multiple runs of the original classic
DBSCAN algorithm. Experimental comparison w.r.t. state of
the art fuzzy clustering approaches over real-world datasets
underlined the higher quality of the results produced by our
proposals, which better model the fuzzy characteristics of the
real datasets.

Compliance with ethical standards

Conflict of interest Dino Ienco andGloria Bordogna declares that they
have no conflict of interest.

Ethical standard This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Bezdek JC,EhrlichR, FullW (1984) FCM: the fuzzy c-means clustering
algorithm. Comput Geosci 10(2):191–203

Bordogna, G., Ienco, D.: Fuzzy core dbscan clustering algorithm. In:
IPMU, pp. 100–109 (2014)

Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm
for discovering clusters in large spatial databases with noise. KDD
160:226–231

Guillén A, González J, Rojas I, Pomares H, Herrera LJ, Valenzuela
O, Prieto A (2007) Using fuzzy logic to improve a clustering
technique for function approximation. Neurocomputing 70(16–
18):2853–2860

Ji Z, Xia Y, Sun Q, Cao G (2014) Interval-valued possibilistic fuzzy
c-means clustering algorithm. Fuzzy Sets Syst 253:138–156

Kriegel H, Pfeifle M (2005) Density-based clustering of uncertain data.
In: KDD’05 vol 17, pp 672–677

Nasibov EN, Ulutagay G (2009) Robustness of density-based cluster-
ing methods with various neighborhood relations. Fuzzy Sets Syst
160(24):3601–3615

Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-
means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–
530

Parker J, Downs J (2013) Footprint generation using fuzzy-
neighborhood clustering. Geoinformatica 17:283–299

Parker J, Hall L, Kandel A (2010) Scalable fuzzy neighborhood dbscan.
In: IEEE-fuzzy, pp 1–8

Sander J, Ester M, Kriegel H, Xu X (1998) Density-based clustering in
spatial databases: the algorithm GDBSCAN and its applications.
Data Min Knowl Discov 2(2):169–194

Shamshirband S, Amini A, Anuar NB, Kiah LM, Wah TY, Furnell
S (2014) D-ficca: a density-based fuzzy imperialist competitive
clustering algorithm for intrusion detection in wireless sensor net-
works. Measurement 55:212–226

Smiti A, Eloudi Z (2013) Soft dbscan: improving dbscan clustering
method using fuzzy set theory. Hum Syst Interact 1:380–385

Suanmali L, Salim N, BinwahlanMS (2009) Fuzzy logic based method
for improving text summarization. CoRR arXiv:0906.4690

Ulutagaya G, Nasibov E (2012) Fuzzy and crisp clustering methods
based on the neighborhood concept: a comprehensive review. J
Intell Fuzzy Syst 23:1–11

Yager R, Filev D (1994) Approximate clustering via the mountain
method. IEEE Trans Syst Man Cybern 24(8):1279–1284

123

http://arxiv.org/abs/0906.4690

	Fuzzy extensions of the DBScan clustering algorithm
	Abstract
	1 Introduction
	2 Related work
	3 Classic DBScan algorithm
	4 Generating clusters with distinct fuzzy characteristics
	4.1 Generating clusters with fuzzy cores
	4.2 Generating clusters with overlapping fuzzy border and classic core points
	4.3 Generating clusters with fuzzy cores and overlapping fuzzy border

	5 Computational complexity
	6 Experiments
	6.1 Internal and external clustering validity measures
	6.2 Results

	7 Conclusion
	References

