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Abstract Expansion of today’s underwater scenarios and
missions necessitates the requisition for robust decisionmak-
ing of the autonomous underwater vehicle (AUV); hence,
design an efficient decision-making framework is essential
for maximizing the mission productivity in a restricted time.
This paper focuses on developing a deliberative conflict-free-
task assignment architecture encompassing a global route
planner (GRP) and a local path planner (LPP) to provide
consistent motion planning encountering both environmen-
tal dynamic changes and a priori knowledge of the terrain, so
that theAUVis reactively guided to the target of interest in the
context of an uncertain underwater environment. The archi-
tecture involves three main modules: The GRPmodule at the
top level dealswith the task priority assignment,mission time
management, and determination of a feasible route between
start and destination point in a large-scale environment. The
LPP module at the lower level deals with safety considera-
tions and generates collision-free optimal trajectory between
each specific pair ofwaypoints listed in obtained global route.
Re-planning module tends to promote robustness and reac-
tive ability of the AUV with respect to the environmental
changes. The experimental results for different simulated
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missions demonstrate the inherent robustness and drastic
efficiency of the proposed scheme in enhancement of the
vehicles autonomy in terms of mission productivity, mission
time management, and vehicle safety.
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1 Introduction

Autonomous underwater vehicles (AUVs) generally are
capable of spending long periods of time carrying out under-
water missions at lower costs comparing manned vessels
(Blidberg 2001). An AUV needs to have a certain degree
of autonomy to carry out mission objectives successfully
and ensure safety in all stages of the mission, as failure is
not acceptable due to expensive maintenance. Autonomous
operation of AUV in a vast, unfamiliar, and dynamic under-
water environment is a complicated process, specifically
when the AUV is obligated to react promptly to environ-
mental changes. On the other hand, diversity of underwater
scenarios and missions necessitates the requisition for robust
decision making based on proper awareness of the situation.
Hence, an advanced degree of autonomy at the same level as
human operator is an essential prerequisite to trade-offwithin
the problem constraints and mission productivity while man-
age the risks and available time. At the lower level, it again
must autonomously carry out the collision avoidance and
similar challenges. To this end, a hybrid architecture encom-
passes a global route planner (GRP) and local path planner
(LPP), so that the AUV is reactively guided to the target of
interest in the context of uncertain underwater environment.
With respect to the combinatorial nature AUV’s routing and
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task allocation, which is analogous to both traveling sales-
man problem (TSP) and knapsack problem, there should be
a trade-off within the maximizing number of highest priority
tasks with minimum risk percentage in a restricted time and
guaranteeing reaching to the predefined destination, which
is combination of a discrete and a continuous optimization
problem at the same time. To provide a higher level of auton-
omy, deliberative hybrid architecture has been developed to
promote vehicles capabilities in decision-making and sit-
uational awareness. To this end, the GRP module at the
top level simultaneously tends to determine the optimum
route in terrain network cluttered with several waypoints
and prioritize the available tasks. The proposed time opti-
mum global route may have several alternatives, each of
which consists of the proper sequence of tasks and way-
points.

Another important issue that should be taken into consid-
eration at all stages of the mission is vehicles safety, which
is extremely critical and complicated issue in a vast and
uncertain environment. The LPP module at lower level tends
to generate the safe collision-free optimum path between
pairs of waypoints included in the global route encoun-
tering dynamicity of the terrain; hence, the LPP operates
in context of the GRP module. Traversing the distance
between two specific waypoints may take more time than
expected due to dealing with dynamic unexpected changes
in the environment. The loss of time in dealing with associ-
ated problem leads to requirement for a proper re-planning
scheme. Hence, a “Synchro-module” is provided to man-
age the lost time within the LPP process and improve the
robustness and reactive ability of the AUV with respect
to the environmental changes. A variety of investigations
have been carried out on autonomous unmanned vehicle
motion planning and task allocation discussed in the next
section.

The paper is organized in the following subsections. The
related works to this research is provided in Sect. 2. In
Sect. 3, the problem is formulated formally. An overview
of the genetic algorithm and global route planner paradigm
are presented in Sect. 4. The particle swarm optimization and
the local path planner are introduced in Sect. 5. The archi-
tectures evaluation is discussed in Sect. 6. The discussion
on simulation results is provided in Sect. 7. And the Sect. 8
concludes the paper.

2 Related works

The majority of AUV’s motion planning approaches are cat-
egorized into two groups that first group attempt to find a
trajectory that allows an AUV to transit safely from one loca-
tion to another, while second group mostly concentrate on
task allocation and vehicles routing problem (VRP). Respec-

tively, the previous attempts in this scope are divided into two
main categories as follows.

2.1 Vehicle task assignment routing

Effective routing has a great impact on vehicle time manage-
ment as well as mission performance due to take selection
and proper arrangement of the tasks sequence. Various
attempts have been carried out in scope of single or mul-
tiple vehicle routing and task assignment based on different
strategies. Karimanzira et al. (2014) presented a behavior-
based controller coupled with waypoint tracking scheme
for an AUV guidance in large-scale underwater environ-
ment. Iori and Ledesma (2015) modeled AUVs routing
problem with a double traveling salesman problem with
multiple stacks (DTSPMS) for a single-vehicle pickup-and-
delivery problem by minimizing the total routing cost. Other
methods also studied on efficient task assignment for sin-
gle/multiple vehicle moving toward the destination such as
graph matching (Kwok et al. 2002), Tabu search (Higgins
2005), partitioning (Liu and Shell 2012), simulated anneal-
ing (Chiang and Russell 1996), branch and cut (Lysgaard
et al. 2004), and evolutionary algorithms (Gehring and
Homberger 2001).Martinhon et al. (2004) proposed stronger
K-tree approach for the vehicle routing problem. Zhu and
Yang (2010) applied an improved SOM-based approach
for multi-robots dynamic task assignment. Alvarez et al.
(2004) outlined a discrete method to grid the search space,
then applied genetic algorithm (GA) on the grids to gen-
erate an energy optimal route. Also some popular graph
search algorithms likeA* (Al-Hasan andVachtsevanos 2002;
Pereira et al. 2013) and Dijkstra (Eichhorn 2015) have been
applied to determine a grid- or cell-based route from the
start to the destination point. Liu and Bucknall (2015) pro-
posed a three-layer structure to facilitate multiple unmanned
surface vehicles to accomplish task management and for-
mation path planning in a maritime environment, in which
the mission is divided between vehicles according to general
mission requirement. Eichhorn (2015) implemented graph-
based methods for the AUV “SLOCUM Glider” motion
planning in a dynamic environment. The author employed
modified Dijkstra algorithm where the applied modifica-
tion and conducted time-variant cost function simplify the
determination of a time-optimal trajectory in the geometri-
cal graph. Wang et al. (2005) introduced an adaptive genetic
algorithm to determine real-time obstacle-free route for
AUV in a large-scale terrain in the presence of few way-
points. An energy efficient fuzzy-based route planning using
priori known wind information in a graph-like terrain is
presented by Kladis et al. (2011) for UAVs motion plan-
ning. Zadeh et al. (2015) investigated a large-scale AUV
routing and task assignment joint problem by transforming
the problem space into a NP hard graph context, in which
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the heuristic search nature of GA and PSO employed to
find the best series of waypoints. This work is extended
to semi-dynamic networks, while two biogeography-based
optimization (BBO) and PSO meta-heuristic algorithms are
adopted to provide real-time optimal solutions (Zadeh et al.
2016a). The traditional algorithms used for graph routing
problem have major shortcomings (notably high computa-
tional complexity) for real-time applications. The majority
of the discussed research, in particular, focuses on task and
target assignment and time scheduling problemswithout con-
sidering requirements for vehicle safe deployment toward the
destination.

2.2 Path/trajectory planning approaches

Many strategies have been provided and applied to the AUV
path planning problem in recent years encountering dynam-
icity of the terrain. Methods like D* or A* algorithms have
been employed for AUV optimum path generation (Carsten
et al. 2006; Likhachev et al. 2005). Another approach to
solve this problem is the fast marching (FM) algorithm,
which uses a first-order numerical approximation of the
nonlinear Eikonal equation. Petres et al. (2005) provided
FM-based path planning to deal with a dynamic environ-
ment. This method is accurate but also computationally
expensive than A*. Later on, an upgraded version of FM
known as FM* or heuristically guided FM is investigated
on path planning problem (Petres et al. 2007) that pre-
serves the efficiency of the FM and accuracy of the A*
algorithm, while apparently it is restricted to use linear
anisotropic cost to attain computational efficiency. In par-
ticular, the main drawback of these methods is that their
time complexity increases exponentially with increasing
the problem space. Generally, the heuristic grid-search-
based methods are criticized because of their discrete-state
transitions, which restrict the vehicle’s motion to limited
directions.

Another solution for path planning is using the evolution-
based algorithms. Evolutionary algorithms are population-
based optimization methods that can be implemented on
a parallel machine with multiple processors to speed up
computation (Roberge et al. 2013). Relatively, they are
efficient methods for dealing with path planning as a non-
deterministic polynomial-time (NP) hard problem (Zadeh
et al. 2016c; Ataei and Yousefi-Koma 2015) and fast enough
to satisfy the time restrictions of real-time applications.
The particle swarm optimization (Zheng et al. 2005) and
genetic algorithm (Nikolos et al. 2003; Zheng et al. 2005;
Kumar and Kumar 2010) are two popular types of opti-
mization algorithms applied successfully in path planning
application. Fu et al. (2012) employed quantum-based PSO
(QPSO) for unmanned aerial vehicle path planning, but
implemented only off-line path planning in a static and

known environment, which is far from reality. Subsequently,
this algorithm was employed by Zeng et al. (2014a, b)
for online AUV path planning in a dynamic marine envi-
ronment. A differential evolution-based path planning is
proposed by Zadeh et al. (2016b) for the AUV operation
in three-dimensional complex turbulent realistic underwater
environment.

Although various path planning techniques have been
suggested for autonomous vehicles, AUV-oriented applica-
tions still have several difficulties when operating across a
large-scale geographical area. The computational complex-
ity grows exponentially with enlargement of search space
dimensions. To cope with this difficulty, speed up the path
planningprocess and reducememory requirement, themajor-
ity of conventional path planning approaches transmuted the
3D environment to 2D space. However, a 2D representation
of a marine environment does not sufficiently embody all the
information of a 3D ocean environment and vehicle motion
with six degrees of freedom. In large-scale operations, it is
hard to estimate all probable changes in the terrain (obsta-
cles/current behavior) and tracking the behavior of a dynamic
terrain beyond the vehicles sensor coverage is impractical
and unreliable. A further problem is that a huge amount
of data about the update of entire terrain condition must be
computed repeatedly. This huge data load from environment
should be analyzed continuously every time path re-planting
is required, which is computationally inefficient and unnec-
essary as only awareness of environment in vicinity of the
vehicle such that the vehicle can be able to perform reac-
tion to environmental changes is enough. On the other hand,
when the terrain is cluttered with multiple waypoints and
the vehicle is requested to carry out a specific sequence of
prioritized tasks assigned to trajectories between waypoints,
path planning is not able to facilitate the vehicle to carry
out the task assignment considering graph routing restric-
tions; thus, a routing strategy is required to handle graph
search constraints and facilitate the task assignment. The
routing strategies are not as flexible as path planning in
terms coping with environmental prompt changes, but they
give a general overview of the area that AUV should fly
through (general route), which means cut off the operation
area to smaller beneficial zones for deployment. To sum-
marize above discussion, existing approaches mainly cover
only a part of the AUV routing task assignment problem,
or path planning along with obstacle avoidance as a safety
consideration.

2.3 Research contribution

To carry out the underwater missions in large-scale environ-
ment in the presence of severe environmental disturbances,
a hybrid architecture with re-planning capability is being
developed to cover shortcomings and to take advantages of
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both path and route planning strategies, which is a signif-
icant change to accelerate the computational runtime. The
proposed system is designed in separate modules running
concurrently including a global route planner (GRP) at top
level with higher level of decision autonomy, and the local
path planner (LPP) at lower level, to autonomously carry
out the collision avoidance. A constant interaction is flowing
between these two modules by back feeding the situational
awareness of the surrounding operating filed form the LPP to
theGRP formaking a decision on requisitions of re-planning.
Hence, the third module “Synchro-module” is performed
to manage the lost time within the LPP/GRP process and
reactively adapt the system to the last update of environ-
ment and decision parameters (e.g., remaining time).This
process continues iteratively until the AUV reaches the
end point. A significant benefit of such detached design
is that different methods employed by main modules and
even submodules can be easily replaced with new meth-
ods or get upgraded without requiring any change in whole
structure of the system. This issue specifically increases
the reusability of the control architecture and specifically
eases updating/upgrading AUV’s maneuverability at all
times.

Obtaining the exact optimum solution is only possible
for the specific case where the environment is completely
known and no uncertainty exists and the environment mod-
eled by this research corresponds to a dynamic environment
with high uncertainty. Moreover, the task and route planning
problem is a generalization of both the knapsack and TSP
problems and meta-heuristics are the fastest approach intro-
duced for solving NP hard complexity of these problems and
have been shown to produce solutions close to the optimum
with high probability (Iori andLedesma 2015; Besada-Portas
et al. 2010). On the other hand, precise and concurrent syn-
chronization of the higher- and lower-level modules is the
primary requirement for preserving the consistency, stabil-
ity, and cohesion of this real-time system in meeting the
specified objectives. The most critical factor for both GRP
and LPP operation is having a short computational time to
provide fast concurrent synchronization between modules
while balancing the constraints.Maintaining comparably fast
operation for each component of the main architecture is
necessary to prevent any of them from dropping behind the
others. Any such a delay disrupts the routine flow and con-
currency of the entire system, and adding NP computational
time into the equation would itself render a solution subop-
timal. While the solutions proposed by any meta-heuristic
algorithm do not necessarily correspond to the optimal solu-
tion, it ismore important to control the time, and thus, we rely
on the previously mentioned ability of meta-heuristic algo-
rithms, including GA and PSO algorithms as employed in
the GRP and LPP modules, to find correct and near-optimal
solutions in competitive time (real and CPU).

3 Problem formulation

The main goal of AUV operation is to complete mission
objectives while ensuring the vehicle’s safety at all times.
Appropriate vehicle routing and path planning strategy along
with efficient synchronization between models maximizes
the achievements of a mission. A mathematical formulation
of the problem is provided in the following subsections.

3.1 Mathematical representation of the operation
terrain

The ocean environment is modeled as a three-dimensional
terrainΓ3D covered by uncertain, static andmoving obstacles
comprising several fixed waypoints. An underwater mis-
sion is commenced at a specified starting point WP1 :
(x1, y1, z1), and it is terminated when the AUV reaches
to a predefined destination point (dock for example) at
WPD : (xD, yD, zD). The waypoints’ location is random-
ized according to a uniform distribution of ∼ U(0, 10000)
for WPi

x,y and ∼ U(0, 100) for WPi
z (given by Eq.(1)).

Waypoints in the terrain are connected with edge like qi
from a set of q = {q1, . . ., qm}, where m is the number of
edges in the graph. The connections of the network are deter-
mined according to a randomly generated adjacency matrix.
Each edge of the network like qi is assigned with a spe-
cific task from a set of Task = {Task1, . . .,Taskk}k ∈ m in
advance. Hence, the operation space is presented with con-
nected weighted graph displayed by G = (V, E), where
V is the corresponding waypoints and E is the edges of the
graph, formulated as follows:

G = (V, E) ⇒ |V | = n
|E | = m

⇒ V (G) : {WP1 , ...,WPn} ;
E(G) : {q1, ..., qm} ;

∀WPi ∈ V ⇒ WPi
x,y ∼ U(0, 10000)

WPi
z ∼ U(0, 100)

qi j = (WPi ,WP j
)

(1)

Each task has a value like ρi from a limited set of ρ =
{ρ1, . . ., ρk} that represents its priority comparing other
tasks, and completion time of δT regardless of required
time for passing the relevant edge. Each task also has a
risk percentage of ξT regardless of terrain hazards and risks.
Exploiting a priori knowledge of the underwater terrain, the
initial step is to transform the problem space into a graph
problem as depicted in Fig. 1; then, the GRPmodule tends to
find the best fitted route to the available time, involving the
best sequence of waypoints.

qi j :
{
di j
ti j

Taskqi j :
⎧
⎨

⎩

ρTi j
δTi j
ξTi j

(2)
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Fig. 1 Graph representation of operating area covered by waypoints

The underwater variable environment poses several chal-
lenges for AUV deployment, such as dealing with static,
dynamic, and uncertain obstacles and ocean current. Ocean
current is considered as static current that affects floating
obstacles.

3.2 Mathematical representation of static/dynamic
obstacle

In terms of collision avoidance, obstacle’s velocity vectors
and coordinates can be measured by the sonar sensors with
a certain uncertainty modeled with a Gaussian distributions.
The state of obstacle(s) continuously measured and sent to
state predictor to provide the estimation of the future states
of the obstacles for the LPP. The state predictor estimates the
obstacles behavior during the vehicles deployment in speci-
fied operation window. Four different types of obstacles are
conducted in this study to evaluate the performance of the
proposed path planner, in which an obstacle is presented
by three components of position, radius, and uncertainty
�(i) : (�p,�r ,�Ur ). The obstacle position �p initialized
using normal distribution of∼ N (0, σ2) bounded to position
of start waypoint WPa

x,y,z and position of target waypoint
WPb

x,y,z , where σ2 ≈ �r . Therefore, the obstacles position
�p on WPa

x,y,z <�p <WPb
x,y,z has a truncated normal dis-

tribution, where its probability density function defined as
follows:

�i
p ∈
(
WPa

x,y,z,WPb
x,y,z

)
− �i

r

f
(
�i

p; 0,�i
r ,WPa

x,y,z,WPb
x,y,z

)

= �i
p

(
�i

r

)2

/(WPb
x,y,z − �i

p

�i
r

− WPa
x,y,z − �i

p

�i
r

)

(3)

Theobstacle radius initializedusing aGaussiannormal distri-
bution of∼ (0, 100). Different types of considered obstacles
in this research explained in the rest.

1. Static known obstacles: The location of these obstacles
is known in advance and their position can be obtained

from off-line map. No uncertainty growth considered for
position of these obstacles (e.g., known rocks in the ter-
rain).

2. Static obstacleswith certain growth of uncertainty: These
obstacles classified as the quasi-static obstacles that usu-
ally known as no flying zones. The obstacles in this
category have an uncertain radius varied in a specified
bound with a Gaussian normal distribution ∼ (�p, σ0),
where the value of �r in each iteration is independent of
its previous value.

3. Self-motivated moving obstacle: Self-motivated moving
obstacle is the third type that has amotivated velocity that
shifts it from positionA to position B. Therefore, its posi-
tion changes to a random direction with an uncertainty
rate proportional to time, given in (4).

�p(t) = �p(t − 1) ±U (�p0 , σ ) (4)

4. Moving obstacles with propagated uncertainty in posi-
tion and radius: Another type of considered obstacle is
self-motivated moving obstacle that affected by current
force and moving with a self-motivated velocity to a ran-
dom direction, denoted by (4) and (5). Here, the effect
of current presented by uncertainty propagation propor-
tional to current magnitude UC

R = |VC | ∼ (0, 0.3) that
radiating out from the center of the obstacle in a circular
format.

�r (t) = B1�r (t − 1) + B2X(t−1) + B3�Ur

B1 =
⎡

⎣
1 UC

R (t) 0
0 1 0
0 0 1

⎤

⎦ , B2 =
⎡

⎣
0
1
1

⎤

⎦ , B3 =
⎡

⎣
0
0
UC

R (t)

⎤

⎦

(5)

where �Ur ∼ σ is the rate of change in objects position
and X(t−1) ∼ N (0, σ0) is the Gaussian normal distrib-
ution that assigned to each obstacle and gets updated in
each iteration t .

3.3 Mathematical representation of the AUV routing
problem

The mathematical representation of the AUVs’ routing
problem should be simple enough to avoid unnecessar-
ily expensive computations. The generated route should
be applicable and logically feasible according to feasibil-
ity criteria’s (given in Sect. 4), and represented by Ri =
(x1, y1, z1, . . ., xi , yi , zi,...,xD, yD, zD), where (xi , yi , zi ) is
the coordinate of any arbitrary waypoint in geographical
frame. The goal is to find the optimum route covering the
maximum number of highest priority tasks with smallest risk
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percentage in a time interval that battery’s capacity allows.
The problem involves multiple objectives that should be
satisfied during the optimization process. In the preceding
discussion, themathematical representationof theAUVroute
planning problem in Γ3D terrain is described as follows:

di j =
√

(x j − xi )2 + (y j − yi )2 + (z j − zi )2 (6)

ti j = di j
VAUV

+ δTi j (7)

TRoute =
n∑

i=0
j �=i

lqi j ti j

=
n∑

i=0
j �=i

lqi j

(
di j

VAUV
+ δTi j

)
, l ∈ {0, 1} (8)

WR =
n∑

i = 0
j �= i

lqi j
ρi j

ξi j

=
n∑

i=0
j �=i

lqi jwi j ⇒ max

⎛

⎜⎜
⎝

n∑

i=0
j �=i

lqi jwi j

⎞

⎟⎟
⎠ , l ∈ {0, 1} (9)

min (|TRoute − TAvailable|)

= min

⎛

⎜
⎜
⎝

∣∣∣∣
∣∣∣∣

n∑

i=0
j �=i

lqi j

(
di j

VAUV
+ δTi j

)
− TAvailable

∣∣∣∣
∣∣∣∣

⎞

⎟
⎟
⎠

s.t.

max (TRoute) < TAvailable (10)

where TRoute is the required time to pass the route, TAvailable
is the total mission time, lis the selection variable, ti j is the
required time to pass the distance di j between two waypoint
ofWPi andWP j alongwith task completion time δT i j . ρT i j
and ξT i j are the priority value and risk percentage of the
task, respectively. The next step is generating time/distance
optimum trajectory in smaller scale between each pair of
waypoints in optimum global route.

3.4 Path planning problem formulation

The path planner should generate time optimum collision-
free local path ℘i (shortest path) between specific pair of
waypoints through a spatiotemporal underwater environment
in the presence different types of uncertain obstacles. The
resultant path should be safe and flyable (feasible). The
operation terrainmodeled as a time varying environment cov-
ered by uncertain, static, and moving obstacles � mentioned
above. The dimension of the operating window depends on

ϑ1

ϑ2

ϑ3

ϑ4

ϑ5
ϑ6

ϑ7

ϑ8

ϑ9

ϑ1

ϑ2

ϑ3

ϑ4

ϑ5
ϑ6

ϑ7

ϑ8

ϑ9

(a) (b)

Fig. 2 Quadratic B-spline curve by control points, where in (a), K =
3.5 and in (b), K = 6

distance between two nominated waypoints. The proposed
path planner in this study generates the potential trajectories
using B-spline curves captured from a set of control points
like ϑ = {ϑ1,ϑ2, . . .,ϑi , . . .,ϑn} in the problem space with
coordinates of ϑ1 : (x1, y1, z1), . . .,ϑn : (xn, yn, zn), where
n is the number of corresponding control points. These con-
trol points play a substantial role in determining the optimal
path. The mathematical description of the B-spline coordi-
nates is given by:

X (t) =
n∑

i=1

xi Bi,K (t)

Y (t) =
n∑

i=1

yi Bi,K (t)

Z(t) =
n∑

i=1

zi Bi,K (t) (11)

where Bi,K (t) is the curve’s blending functions, t is the time
step, and K is the order of the curve and shows the smooth-
ness of the curve, where bigger K corresponds to smoother
curves represented in Fig. 2. For further information, refer to
Zadeh et al. (2016b).

The path-traveled time Tpath−flight path-flight for ℘i

should be minimized. The ocean current velocity is assumed
to be constant. The path planner is applied in a small-scale
area, and the AUV considered to have constant thrust power;
therefore, the battery usage for a path is a constantmultiple of
the time and distance traveled. Performance of the generated
trajectory is evaluated based on overall collision avoidance
capability and time consumption, which is proportional to
energy consumption and traveled distance. The path plan-
ner’s cost function is detailed in Sect. 6.2.

To cope with the probable challenges of the dynamic
environment, the LPP repeatedly calculates the trajectory
between vehicles current position and its specified target
location. The path absolute time ti j is calculated at the end
of the trajectory. Then, ti j is added to corresponding task
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Fig. 3 Graph representation of operating area covered by waypoints and route/ trajectory planning, re-planning process

completion time δTask and the computation time Tcompute.
Total value of this summation Tpath−flight gets compared to
expected time TExpected for passing the distance between
specified pair of waypoints. If Tpath−flight gets smaller value
than TExpected, it means no unexpected difficulty is occurred
and vehicle can continue its travel along the current global
route. However, if Tpath−flight exceeds the TExpected, it means
AUV faced a challenge during its deployment. Obviously,
a specific amount of battery and time TAvailable is wasted
for handling collision avoidance, so the TAvailable should be
updated. In such case, the current route cannot be optimum
anymore due to loss of time and re-planning is required
according to mission updates.

Tpath−flight = ti j + δTaski j +
∑

Tcompute (12)

if Tpath-flight ≤ TExpected
Continue the current optimum route R j

else if Tpath-flight > TExpected
Update TAvaliable and operation network
Re-plan a new route according to mission updates

It would be computation and time dissipation for an AUV
to pass a specific edge (distance) for more than ones that
means repeating a task for several times. Hence, if re-routing
is required at any situation, the TAvailable gets updated; the
passed edges get eliminated from the operation network (so
the search space shrinks); and the location of the presentway-
point is considered as the new start position for both LPP
and GRP. Afterward, the GRP tends to find the optimum
route based on new information and updated network topol-
ogy. The process of combinational GRP, LPP, re-planning
process, and schematic representation of proposed control
architecture is provided in Figs. 3 and 4, respectively.

Given a candidate route in a sequence of waypoints (e.g.,
initial optimum route: {S-1–7–3–4–5–6–9–10–13–17–19-
D} in Fig. 3) along with environment information, the LPP
module provides a trajectory to safely guide the vehicle
through the waypoints. During deployment between two
waypoints, the LPP can incorporate any dynamic changes in
the environment. The provided trajectory is then sent to the
guidance controller to generate the guidance commands for
the vehicle. After visiting each waypoint, the re-planning cri-
teria (given in equation (12)) is investigated. If re-planning is
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Fig. 4 Proposed control
architecture including AUV’s
cooperative GRP and LPP
scheme
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required, the “Synchro-module” updates the operation graph
andmission available time, and the controller recalls theGRP
toprovide newoptimumroute basedonmission updates (e.g.,
new optimum route: { 9–8–10–16-D}). This process con-
tinues until mission ends, and vehicle reaches the required
waypoint.

The trade-off between available mission time and mission
objectives is critical issue that can be adaptability carried out
by GRP. Hence, the main synchronous architecture should
be fast enough to track environmental changes, cope with
dynamic changes, and carry out prompt re-planning. To
handle the complexity of NP hard graph routing and task
allocation problem, the GRP takes the advantages of genetic
algorithm to find an optimum global route for the underwater
mission. In the LPRmodule, the particle swarm optimization
algorithm carries out path planning between each pair of the
waypoints, which is efficient and fast enough in generating
collision-free optimum trajectory in smaller scale.

4 Overview of genetic algorithm and global routing
process

The genetic algorithm (GA) is a particular type of stochas-
tic optimization search algorithm represents problem solving
technique based on biological evolution. GA has been exten-
sively studied andwidely used onmany fields of engineering.
It searches in a population space that each individual of this

population is known as chromosome. Its process starts with
randomly selecting a number of feasible solutions from the
initial population. A fitness function should be defined to
evaluate quality of solutions during the evolution process.
Newpopulation is generated from initial population using the
GA operators like selection, crossover, and mutation. Chro-
mosomes with the best fitness value are transferred to next
generation, and the rest get eliminated. This process contin-
ues until the chromosomes get the best fitted solution to the
given problem (Sivanandam and Deepa 2008). The average
fitness of the population gets improved at each iteration by
adaptive heuristic search nature of the GA. The GRPmodule
deals with finding the optimal route through the operating
graph, where the input to this module is a group of feasible
generated routes involving a sequence of nodes with same
starting and ending points that are encoded as chromosomes.
The operation is terminated when a fixed number of itera-
tions get completed or when no dramatic change observed
in population evolution. The process of the GA algorithm is
proposed by the flowchart given in Fig. 5.

Developing a suitable coding scheme and chromosome
representation is the most critical step of formulating the
problem inGA framework. Hence, efficient representation of
the routes and encoding themcorrectly into the chromosomes
has direct impact on overall performance of the algorithmand
optimality of the solutions. The process of The GA-based
algorithm for route planning and task priority assignment is
summarized in following steps.
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Fig. 5 Process of the GA algorithm

4.1 Chromosome encoding (initialize chromosome/route
population)

A chromosome in the proposed GA corresponds to a fea-
sible route including a sequence of nodes. The first and last
gene of the chromosomes always corresponds to the start and
destination node with respect to the topological information
of the graph. Chromosomes take variable length, but limited
to maximum number of nodes included in the graph, since
it is never required for a route to include nodes more than
whole number of nodes in the graph. The resultant solution
from both GA should be feasible and valid according to cri-
teria given in Fig. 6. A priority-based strategy is used in this
research to generate feasible routes (Roberge et al. 2013).
For this purpose, some guiding information is added to each
node at the initial phase. The priority vector initialized ran-
domly. The nodes are selected based on their corresponding
value in priority vector and adjacency relations. Using adja-
cencymatrix prevents appearance of non-existed edges of the
graph. To prevent generating infeasible routes, some modifi-
cations are applied as follows:

Fig. 6 Route feasibility criteria

– Each node takes positive or negative priority values in
the specified range of [−100,100]. The selected node
in a route sequence gets a large negative priority value
that reduces the probability of repeated visits to the same
node (this converges the route to visit the destination).
Then, the visited edges get eliminated from the adjacency
matrix. So that, the selected edge will not be a candidate
for future selection. This issue reduces thememory usage
and time complexity for large and complex graphs.

– To satisfy the termination criteria of a feasible route, if
the route ends with a non-destination node and/or the
length of the route exceeds the number of existed nodes
in the graph, the last node of the sequence gets replaced
by index of the destination node. This process keeps the
generated route in feasible (valid) space.

Figure 7 presents an example of the route generating process
according to a sample adjacency matrix(Ad) of a graph and
a random priority array (Ui ). To generate a feasible route
in a graph with 18 nodes based on topological information,
the first node is selected as the start position. Then, from
adjacency matrix, the connected nodes to node-1 are consid-
ered. In graph shown in Fig. 7, this sequence is 2, 3, 4, 5. The
node with the highest priority in this sequence is selected and
added to the route sequence as the next visited node. This pro-
cedure continues until a legitimate route is built (destination
visited).

4.2 Selection

Selecting the parents for crossover and mutation operations
is another step of the GA algorithm that plays an important
role in improving the average quality of the population in the
next generation. Several selection methods exist for this pur-
pose such as roulette wheel, ranks selection, elitist selection,
scaling selection, tournament selection. The roulette wheel
selection has been conducted by current research, wherein
the next generation is selected based on corresponding cost
value, then the wheel divided into a number of slices and
the chromosomes with the best cost take larger slice of the
wheel.
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Example of adjacency matrix for a graph with 18 nodes
Node index where n=1 is the start and n=18 is the destination point
Partial route corresponding to the priority vector of a route including k nodes.
Priority array (random no repeated vector in range of [-100,100])

Ad
n
Rk

Ui

Ui

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

18

010101010000000000
100010010100000000
000011000000000000
100001101000000000
011000010110000000
101100110010000000
000101000001100000
110011000010000000
000100000010101000
010010000000010010
00001101100001100
000000100000010100
000000101000001100
000000000101000111
000000001010100001
000000000011110001
000000000100010001
000000000000011110

Ui:{44,-38,76,-78,18,47,42,61,66,-69,-25,-93,58,-15,11,-43,81,97} 

Fig. 7 Sample of feasible route generation process based on topological information (priority vector Ui and adjacency matrix Ad)

4.3 Crossover operator

Crossover is an evolution operator and generates new off-
spring by mixing and shuffling the subsections of two
parent chromosomes so that the offspring contains some
part of both parents. An advanced type of uniform crossover
is utilized to the purpose of this research, which uses
a fixed mixing ratio of 0.5 among pair of parent chro-
mosomes. The uniform crossover is specifically useful in
large-space problems in those where recombination order
is important. An example of uniform crossover is given
below:

In the process of the crossing over, some nodes may
appear twice so that the offspring corresponds to an infea-
sible route. To prevent this issue, some modifications are
applied in the crossover operation in which if the off-
spring includes a repeated node, the second one is replaced
with a randomly selected node from the set of non-existed
nodes in the corresponding offspring. An accurate search
process is defined to carry out this operation. On the
other hand, the length of smaller than four for a chro-
mosome perturbs finding the crossing site and also swap-
ping. So the chromosomes with length less than four
get discarded from the crossover operation. The chromo-
somes take variable length limited to maximum number
of waypoints in the graph, since it never required for

Parent-1: WPS WP3 WP14 WP18 WP8 WP4 WP7 WP17 WPD

Parent-2: WPS WP5 WP9 WP6 WP11 WP16 WP13 WP10 WP12 WP19 WPD

Offspring-1: WPS WP5 WP14 WP6 WP11 WP4 WP13 WP10 WPD

Offspring-2: WPS WP3 WP9 WP18 WP8 WP16 WP7 WP17 WP12 WP19 WPD

Fig. 8 Example of uniform crossover

a route to include nodes more than whole number of
nodes in the graph (Zadeh et al. 2015). The offspring gets
eliminated if it does not correspond to a feasible route
(Fig. 8).

4.4 Mutation operator

Mutation is another GA operator for generating the new
population. This operator provides bit flipping, insertion,
inversion, reciprocal exchange, etc., for altering parents
(SivanandamandDeepa 2008).A combination of three inver-
sion, insertion, and swapping type of mutation methods is
employed in the current research, explained in Fig. 9. All
these three methods preserve most adjacency information.
In order to keep the new generation in feasible space, the
mutation is applied on gens between the first and last gens
of the parent chromosome that correspond to start and des-
tination point. A similar search process is also defined for
mutation to replace redundant nodes (in a case of appear-
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WPS WP6 WP11 WP19 WP5 WP9 WP13 WP8 WPD WPS WP11 WP6 WP19 WP5 WP9 WP13 WP8 WPD

WPS WP6 WP11 WP19 WP5 WP9 WP13 WP8 WPD WPS WP13 WP11 WP19 WP5 WP9 WP6 WP8 WPD

WPS WP6 WP11 WP19 WP5 WP9 WP13 WP8 WPD WPS WP13 WP9 WP5 WP19 WP6 WP13 WP8 WPD

Fig. 9 Insertion, swap, and inversion mutations, respectively

ance of one node for multiple times) with a none-existed
waypoint to prevent generating infeasible route. Both of the
mutation and crossover operations enhance the rate of con-
vergence.

4.5 Termination criteria

The termination of the GA process is defined by comple-
tion of the maximum number of iterations, appearance of
no change in population fitness after several iterations, and
approaching to a stall generation.

4.6 Route optimality evaluation

The most important step in finding an optimum route by GA
is forming an efficient cost function, so that the algorithm
tends to compute best fitted solution with minimum cost
value. The problem involves multiple objectives that should
be satisfied during the optimization process. One approach
in solving multi-objective problems is using multi-objective
optimization algorithms. Another alternative is to transform
amulti-objective problem into a constrained single-objective
problem. The cost function for the route planner is defined as
particular combination of weighted factors that are required
to be maximized or minimized (given in Sect. 6).

5 Overview of PSO and its process on path
planning

The PSO is one of the fastest optimization methods for solv-
ing variety of the complex problems and widely used in
past decades. The argument for using PSO in path planning

problem is strong enough due to its superior capability in
scalingwellwith complex andmulti-objective problems. The
process of PSO is initialized with a population of particles.
Each particle involves a position and velocity in the search
space that get updated iteratively using equation (13). Each
particle has memory to preserve the previous state values of
best position PP−best, as the global best position PG−best.

The current state value of the particle is compared to the
PP−best and PG−best in each iteration. More detail about the
algorithm can be found in related references (Kennedy and
Eberhart 1995).

υi (t) = ωυi (t − 1) + c1r1
[
PP−best
i (t − 1) − χi (t − 1)

]

+ c2r2
[
PG−best
i (t − 1) − χi (t − 1)

]

χi (t) = χi (t − 1) + υi (t) (13)

where c1 and c2 are acceleration coefficients and χi and υi
are particle position and velocity at iteration t . PP−best

i is the
personal position, and PG−best

i is the global best position.
r1 and r2 are two independent random numbers in [0,1]. ω

exposes the inertia weight and balances the PSO algorithm
between the local and global search. Each particle in the
swarm assigned by a potential path. The position and veloc-
ity parameters of the particles correspond to the coordinates
of the B-spline control points ϑi that utilizes in path gen-
eration. The path planning is an optimization problem that
aims to minimize the travel distance/time and avoid colliding
obstacle(s). As the PSO algorithm iterates, every particle is
attracted toward its respective local attractor based on the out-
come of the particle’s individual and swarm search results.
The fitness of each generated path (particle) gets evaluated
according to the fitness/cost functions discussed in Sect. 6.
All control points ϑ = ϑ1, ϑ2, . . ., ϑi , . . ., ϑn} should be
located in respective search region constraint to predefined
bounds of β i

ϑ = [Ui
ϑ , Li

ϑ ]. If ϑ i : (xi , yi , zi ) represent one
control point inCartesian coordinates in t th path iteration, Li

ϑ

is the lower bound and Ui
ϑ is the upper bound of all control

points at (x − y − z) coordinates given by (14):

Lϑ(x) = [x0, x1, x2, ..., xi−1, ..., xn−1],
Lϑ(y) = [y0, y1, y2, ..., yi−1, ..., yn−1],
Lϑ(z) = [z0, z1, z2, ..., zi−1, ..., zn−1],

Uϑ(x) = [x1, x2, ..., xi , ..., xn],
Uϑ(y) = [y1, y2, ..., yi , ..., yn],
Uϑ(z) = [z1, z2, ..., zi , ..., zn],

(14)

With respect to given relations (14), each control point is
generated from (15):

xi (t) = Li
ϑ(x) + Randxi (Ui

ϑ(x) − Li
ϑ(x))

yi (t) = Li
ϑ(y) + Randy

i (Ui
ϑ(y) − Li

ϑ(y))

zi (t) = Li
ϑ(z) + Randzi (U

i
ϑ(z) − Li

ϑ(z)) (15)
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Fig. 10 PSO optimal path
planning pseudocode

where (x0, y0, z0) and (xn, yn, zn) are the position of the start
and target points in the LPP, respectively. The pseudocode
of the PSO algorithm and its mechanism on path planning
process are provided in Fig. 10.

6 Architecture evaluation

AUV starts its mission from start point and should serve
sufficient number of tasks to reach the destination on-time.
Given a candidate route in a sequence of waypoints along
with environmental information, the LPP module provides
a trajectory to safely guide the vehicle through the way-
points. The resultant local path should be time optimum,
safe, and flyable (feasible). It should not cross the forbid-
den area covered by obstacles � (defined using eq 2-5).
If the ϑ = {ϑ1, ϑ2, . . .,ϑi , . . .,ϑn} is the sequence of
control points along each arbitrary local path from set of
℘ = {℘1, ℘2, . . .}, the path ℘i gets evaluated by a cost
function Cost℘ defined based on travel time ti ≈ Tpath−flight

required to pass the path segments. The route cost has direct
relation to the passing distance among each pair of selected
waypoints. Hence, the path costCost℘ for any optimum local
path get used in the context of the GRP. The model is seeking
an optimal solution in the sense of the best combination of
path, route, and task cost. The route function CostRoute gets
penalty when the TRoute for a particular route Ri exceeds the
TAvailable. Thus, the provided route and path are evaluated as
follows.

∀℘, ℘ ≈
|℘|∑

1

ϑ j+1 − ϑ j ,

℘
j
x,y,z =

|℘|∑

xs ,ys ,zs

×
√

(ϑx( j+1) − ϑx( j))2 + (ϑy( j+1) − ϑy( j))2 + (ϑz( j+1) − ϑz( j))2

(16)

Tpath−flight =
n∑

1

ti =
|℘|∑

1

�3D

{
ϑ i
ti

}

=
|℘|∑

1

∣∣∣ϑ ti+1
i+1 − ϑ

ti
i

∣∣∣

|VAUV| (17)

Cost℘ ≈ min(Tpath−flight)

s.t.

∀ j ∈ {0, ..., |℘|} ⇒ ϑ
ti
j /∈ �(t j ) ∪ �3D

and j /∈
⋃

N�

�(�p,�r ,�Ur ) (18)

CostRoute ∝ |TRoute − TAvailable|

CostRoute ∝

∣∣
∣∣
∣∣
∣∣

n∑

i=0
j �=i

lqi j

(
Cost℘i j

VAUV
+ δTi j

)
− TAvailable

∣∣
∣∣
∣∣
∣∣

, l ∈ {0, 1}

(19)
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s.t.

∀Ri ⇒ max (TRoute) < TAvailable

CostTask ∝
n∑

i=0
j �=i

lqi j

(
ξRoute

ρRoute

)
, l ∈ {0, 1} (20)

After visiting each waypoint, the re-planning criterion is
investigated. A computation cost encountered any time that
re-planning is required. Thus, the total cost for the model
defined as:

CostTotal = ϕ1CostTask + ϕ2CostRoute
(
Cost℘

)

+
r∑

1

Tcompute (21)

where Tcompute is the time required for checking the re-
planning criteria and computing the new optimum route,
and r is the number of repeating the re-planning procedure.
NΘ is number of obstacles. Θp,Θr , and ΘUr are obstacle
position, radius, and uncertainty, respectively. ϕ1 and ϕ2 are
two positive numbers that determine amount of participa-
tion of CostTask and CostRoute on calculation of total cost
CostTotal . Giving the appropriate value for coefficients of
engaged factors in the cost function has a significant effect
on performance of the model.

7 Results and discussion

The main purpose of this research is evaluating the perfor-
mance of entire architecture in terms of increasing mission
productivity (task assignment and time management), while
guaranteeing vehicles safety during themission. To verify the
efficiency of the proposed architecture, the performance of
each module is investigated individually from top to bottom
layer and explained in following subsections.

8 Simulation results and discussion

The main purpose of this research is evaluating the perfor-
mance of entire architecture in terms of increasing mission
productivity (task assignment and time management), while
guaranteeing vehicles safety during themission. To verify the
efficiency of the proposed architecture, the performance of
each module is investigated individually from top to bottom
layer and explained in following subsections.

8.1 Simulation results for methods used in GRP module

At the top level of the architecture, a configurable GRPmod-
ule is developed in order to find themost productive optimum

global route between start and destination points. Two differ-
ent algorithms are adapted and tested by module to evaluate
the optimality of the global route. Several different criteria are
embedded to keep the generated routes concentrated to the
feasible solution space, which comprehensively reduces the
memory usage and time complexity of the searching process.
The global route gives a general overview of the area that
AUV should fly through by cutting off the operation area to
smaller beneficent zone for vehicle’s deployment. The GRP
operates based on off-line map information and does not deal
with dynamic changes of terrain. Assumptions forGRPmod-
ule are given below.

1. In this study, it is assumed that vehicle is moving in a 3D
environment covered by multiple fixed waypoints that
one of them is the start point which vehicle starts its mis-
sion from that and one of them is destination point (dock
for example) that vehicle should reach to that pointwithin
mission available time. This information represented in
a graph form terrain.

2. Tasks assigned to edges of the graph in advance. Each
task involves three parameters of priority, risk percentage,
and required completion time. AUV ismovingwith static
velocity and is requested to serve maximum number of
tasks in mission time.

To evaluate efficiency, the GRP module for a single-vehicle
routing problem, its performance in task allocation, time
management, productivity of the mission, real-time per-
formance, and other factors are tested using two different
evolutionary strategies of GA and imperialist competitive
algorithm (ICA), which both are popular meta-heuristic
optimization methods in solving NP hard problems. More
detail about ICA optimization algorithm can be found in
(Movahed et al. 2011; Soltanpoor et al. 2013). A number
of performance metrics have been investigated to evaluate
the quality/optimality of the proposed solutions in different
network topologies. One of these metrics is the reliability
percentage of the route representing chance of mission suc-
cess,which is combination of route validity to time restriction
and feasibility criteria. Other metrics involve the number of
completed tasks, total obtained weight, total cost, and the
time optimality of the generated route with respect to com-
plexity of the graph. These metrics altogether perform single
vehicles mission productivity in a specific time interval. The
ICA and GA configured with the same initial conditions of
150 iterations and 100 populations. The performance of both
algorithms is tested on two graphs with the same complex-
ities, one with 50 nodes and another one with 100 nodes,
presented in Table 1 and Fig. 11.

From simulation results in Table 1, it is noted that in all
cases route traveling time obtained by GA is smaller than
total available time and violation value for all solutions is
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Table 1 Statistical analyzing of
route evaluation for two
different graph complexity for
both ICA and GA

Performance metrics Topology 1 Topology 2

Number of nodes 50 Nodes 100 Nodes

Number of edges 1197 4886

Algorithm ICA GA ICA GA

CPU time (s) 18.4 9.5 20.2 17.53

Best cost 0.056 0.034 0.047 0.029

Available time (s) 25200 (7h) 25200 (7h) 25200 (7h) 25200 (7h)

Route time (s) 22218 23981 25212 23875

Total distance 55329 61812 669857 63417

Total weight 45 54 47 57

N-tasks 16 19 18 23

Reliability Violation 0.00 0.00 0.0043 0.00

Feasibility Yes Yes Slightly late Yes

Fig. 11 a GA and ICA cost variations in 150 iterations, b GA and ICA total computational time in 150 iterations

equal to zero that confirms feasibility of the produced route,
which means GA acts according to defined constraints. It
is clear from Table 1 and Fig. 11 that GA acts more effi-
ciently in terms of minimizing cost value and computation
time comparing to ICA. The provided results also confirm
the superior performance of the GA-based route planner
in terms of increasing mission productivity by maximizing
total obtained weight and number of covered tasks by taking
maximum use of the available time (as TRoute considerably
approaches the TAvailable). Indeed, it is evident from Table 1
and Fig. 11 that the performance of both algorithms is rela-
tively independent of both size and complexity of the graph,
as this is a challenging problem for other deterministic algo-
rithms. Hence, the evolutionary algorithms are suitable to
produce optimal solutions quickly for real-time applications.

To evaluate the stability and reliability of the employed
algorithms in terms of total route time, CPU time, distance,
and total obtained weight, 100 execution runs are performed
in a Monte Carlo simulation, presented in Fig. 12.

The number of graph nodes is fixed on 20 waypoints for
all Monte Carlo runs, but the topology of the graph was
changed randomly based on a Gaussian distribution on the
problem search space. The time threshold (TAvailable) also
fixed on 2.52×104 (s). Figure 12 compares the functionality
of GA and ICA in dealing with problem’s space deformation
and quantitative measurement of four significant mission’s
metrics of travel time, CPU time, total weight, and total
traveled distance. As indicated in Fig. 12, GA has superior
performance and shows more consistency in its distribution
comparing to the generated solutions by ICA algorithm. The
GA reveals robust behavior to the variations and meets the
specified constraint.

8.2 Simulation results for PSO-based planner used
in LPP module

The path planning is an optimization problem in which
the main goal is to minimize the travel distance and time

123



A novel versatile architecture for autonomous underwater vehicle’s motion planning... 1701

Fig. 12 Comparison of stability of GA and ICA in terms of satisfying given performance metrics based on Monte Carlo simulation

Tpath−flight, and avoiding colliding obstacle(s). The follow-
ing assumptions are considered in generation local optimum
path.

(a) The ocean current velocity is assumed to be constant. As
the path planner is applied in a small-scale area, thewater
current has effect on both floating and moving obstacles,
where moving obstacles have self-motivated velocity
additional to current velocity. The floating obstacles con-
sideredwith a growinguncertainty rateΘUr proportional
to current velocity (UC

R (t) ∼ |VC |).
(b) The AUV considered to have constant thrust power, and

therefore, the battery usage for a path is a constant multi-
ple of the distance traveled. Therefore, it is assumed the
AUV traveling with constant velocity of VAUV.

These assumptions play important role in efficient path
planning and copping with terrain dynamic changes. In path
planning simulation, the obstacles are generated randomly
from different categories and configured individually based
on given relations in Sect. 3. Encountering different type of
obstacles, this research investigates four different scenarios
in terms of the dynamicity of the environment.

Scenario-1: The AUV starts its deployment in a pure static
operating filed covered by random combination of the known
static and uncertain static obstacles, in which obstacles are
under the exposure of varying levels of position uncertainty
propagating from the center of the obstacle. The vehicle is
required to pass the shortest collision-free distance to reach
to the specified target waypoint.

Scenario-2: Making the AUV’s deployment more challeng-
ing, in the second scenario, the robustness of the method is
tested in a dynamic environment with moving obstacles, in
which obstacle position changes to a random direction by
uncertainty rate proportional to time, where the number of
obstacles increases by time.

Scenario-3: In the third scenario, the mission becomes more
complicated by encountering the current force on moving
obstacles with uncertain position, in which the obstacle has
self-motivated velocity to a random direction and affected
by current force that presented with a growing uncertainty
proportional to the current velocityUC

R ∼ |VC | radiating out
from center of the object.

Scenario-4: The last case, an irregularly shaped terrains
including all static, floating, and moving obstacles, encoun-
tered in computing optimum trajectory.

All four scenarios simulated for varying number of 3 to 6
obstacles in corresponding operation window. The purpose
of this simulation is evaluating the ability of the proposed
method in balancing between searching unexplored envi-
ronment and safely swimming toward the target waypoint.
For this purpose, a distinctive number of runs are performed
to analyze the performance of the method in satisfying the
problem constrains for all mentioned scenarios. The PSO
optimization configuration set by 150 particles (candidate
paths) and 100 iterations. The expansion–contraction coef-
ficients also set on 2.0 to 2.5. The maximum number of
control points for each B-spline is fixed on 8. The vehi-
cles water-referenced velocity considered 3 m/s. Figure 13
represents the produced optimum trajectory in first scenario
encountering 3 to 6 obstacles. The gradual increment of colli-
sion boundary is presented by circle(s) around the obstacles,
in which the uncertainty propagation is assumed to be lin-
ear with iteration/time. The performance of the algorithm
in minimizing the cost and eliminating the violation is for
all scenarios represented by Figs. 13b–c, 14 and 15b–c. The
purpose of increasing the number of obstacles is to evaluate
sustainability of the path planning performance to complex-
ity of the terrain.

The performance of the algorithm investigated for the
second scenario and presented in Fig. 14, while number of
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Fig. 13 a 2D representation of generated optimum 3D trajectory in scenario-1, including random combination 3 to 6 static known and static
uncertain obstacles. b Cost variation of path population in each iteration. c Violation variation of path population in each iteration as collision
penalty

obstacles is increased to 6. The obstacles movement also
occurs in a specified rate of uncertainty proportional to time
in a random direction.

Figure 15 represents the produced optimum trajectory for
3 to 6 obstacles in the third scenario, respectively. The uncer-
tainty around the obstacles propagates from the center of
the object in all directions with a growth rate proportional
to current velocity. Additionally, the obstacles move with a
self-motivated velocity in a random direction.

Referring to Figs. 13b, 14b, and 15b, it is evident that the
path population converges to the minimum cost by passing
iterations. The cost variation range decreases in each iteration
which means algorithm accurately converges the solution
space to the optimum solution. The red crosses in the middle
of the bar charts represent the mean cost of path population
in each iteration. Tracking the variation of the mean cost and
mean violation in Figs. 13b, c, 14b, c, and 15b, c declares
that algorithmaccurately pushes the solutions to approach the
optimum solution with minimum cost and efficiently man-
ages the trajectory to eliminate the collision penalty within
100 iterations.

The simulation result for last scenario is provided in Fig.
16 in which the performance of the proposed method in gen-
erating collision-free shortest trajectory is investigated for a
random combination of all types of obstacles. The trajectory

is plotted in 3D format for clear graphical representation of its
collision avoidance capability. The simulation results repre-
sented in Figs. 13, 14, 15 and 16 show that the proposed
path planning method accurately generates collision-free
time optimal trajectories and dynamically adapts to envi-
ronmental changes encountering uncertain, static, floating,
and moving obstacles. Increasing the number of obstacles
increases the problems complexity; however, it is derived
from results that the performance of the algorithm is almost
stable against increasing the complexity of the terrain and
the algorithm tends to minimize the travel distance and time,
which furnishes the expectation of the architecture at lower
level of the autonomy. Any time that LPP is recalled from the
main model, it dynamically computes optimum path based
on observed change in the environment and new obtained
information. The AUV travels through the listed waypoints
in optimum global route with 3m/s water-referenced velocity
and passes waypoints one by one, in a way that a target way-
point for LPP would be a new start position in next run. This
process repeats until vehicle reaches to the final destination.
Therefore, the initial anddestinationwaypoints andoperation
field for LPP change as vehicle passes through the waypoints
in global route sequence. The next step is evaluation of the
entire model in terms of appropriate decision making and
providing efficient interaction and cooperation between the
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Fig. 14 a 2D representation of generated optimum 3D trajectory in scenario-2, including 3 to 6 moving obstacles. b Cost variation of path
population in each iteration. c Violation variation of path population in each iteration as collision penalty

Fig. 15 a 2D representation of generated optimum 3D trajectory in scenario-3, including 3 to 6 obstacles. b Cost variation of path population in
each iteration. c Violation variation of path population in each iteration as collision penalty
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Fig. 16 Generated trajectory in scenario-4 with random composite of all four types of obstacles

Fig. 17 Architecture
performance in maximizing
mission’s productivity by
maximizing the mission time
constraint to available time
threshold and its computational
stability

high- and low-level modules. Additional to addressed com-
mon performance indexes discussed above, two other factors
are highlighted for the purpose of this research that are inves-
tigated along the evaluation of the architectures performance.
The first critical factor for the LPP is the computational time.
The second important factor considered for the purpose of
this research is the existence of reasonable and close cor-
relation between generated path time (Tpath−flight) and the
expected time (TExpected), which is investigated meantime
the evaluation of the architecture along the checking process
for requisition of re-planning.

8.3 Architecture performance evaluation

In this section, the simulation result of the proposed con-
figurable architecture for AUV’s mission management is

presented. The main architecture aims to take the maxi-
mum use of the mission available time, increase the mission
productivity by optimum routing, and guarantee on-time ter-
mination of the mission, concurrently ensuring the vehicles
safety by copping dynamic unexpected challenges during
deployment toward the final destination. Accurate synchro-
nization of the inputs and outputs to the main model and
concurrent cooperation of the engaged modules are the most
important requirements in stability of the architecture toward
the main objectives addressed above. To this end, the robust-
ness of the model in enhancement of the vehicles autonomy
is evaluated by testing 10 missions through 10 individual
experiments presented in Figs. 17, 18 and 19.

The initial configuration of the operation network has
been set on 50 waypoints and 1470 edges involving a fixed
sequence of tasks with specified characteristics (priority, risk
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Fig. 18 Stability of architecture in managing correlation of Tpath−flight and TExpected in multiple recall of LPP in 10 experiments
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Fig. 18 continued

Fig. 19 Stability of LPP and
GRP computational time
variation for different recall in
10 individual experiments

percentage, completion time) in 10 km2(x − y), 1000 m(z)
space. The waypoints location are randomized according
to ∼ U (0,10,000) for WPi

x,y and ∼ U (0, 100) for WPi
z .

The mission available time for all experiments is fixed on
TAvailable = 10, 800(s) = 3 (h). The vehicle starts its mis-
sion at initial location WP1 and ends its mission at WP50.
The operating field is modeled as a realistic underwater envi-
ronment that randomly covered by different uncertain static,
floating, and moving obstacles, where the floating obstacles
are affected by current force varied according to |VC | ∼
N (0, 0.3). For the purposes of this study, the optimization
problem was performed on a desktop PC with an Intel i7
3.40 GHz quad-core processor in MATLAB�R2014a. The
LPP as an inner component operates in context of the GRP
module, and output of each module concurrently feeds to

another one. One mission progress is provided in Table 2
(A–B) to clarify the process of the architecture in different
stages of a specific mission toward carrying out the men-
tioned objectives.

The mission starts with calling the GRP for the first time.
The GRP produces a valid optimum route to take maximum
use of available time (valid route TRoute ≤ TAvailable). Refer-
ring Table 2(A), the initial optimum route covers number of 8
tasks with total weight of 22 and cost of 0.048 with estimated
completion timeof TRoute = 10262(s). In the second step, the
LPP is recalled to generate optimum collision-free trajectory
through the listed sequence ofwaypoint included in the initial
route. Referring to Table 2(B), the LPP module got the first
pair of waypoints (1-39) and generated optimum trajectory
between location ofWP1 to location ofWP39 with total cost
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of the 0.2260, and travel time of Tpath−flight = 2333.1 which
is smaller than TExpected = 2535.3. The TExpected for the LPP
is calculated based on estimated travel time for the generated
route TRoute. In cases that Tpath−flight is smaller than TExpected
the re-planning flag is zero which means the initial optimum
route is still valid and optimum, so the vehicle is allowed the
follow the next pair of waypoints included in initial optimum
route. After each run of the LPP, the Tpath−flight is reduced
from the total available time TAvailable. The second pair of
waypoints (39-7) is shifted to the LPP, and the same process
is repeated. However, if Tpath−flight exceeds the TExpected re-
planning flag gets one, which means some of the available
time is wasted in passing the distance between WP39 and
WP7 due to copping collision avoidance. In such a case also
the TAvailable gets updated and visited edges (1-39, and 39-7)
get eliminated from the graph. Afterward, instead of LPP,
the GRP is recalled to generate new optimum route from the
current waypoint WP7 to the predefined destination WP50

according to updated operation network and TAvailable. In
experimental results presented in Table 2, theGRP is recalled
for 7 times and the LPP called for 13 times within 7 optimum
routes. This synchronization among the modules continues
until vehicle reaches to the destination (success) or TAvailable
gets a minus value (failure: vehicle runs out of battery). The
final route passed by the vehicle in this mission through the 7
route re-planning and 13 path planning is the sequence {1-39-
7-41-14-12-4-41-46-3-29-30-42-50}with total cost of 0.038,
total weight of 38, and total time of 10788.3.

The most appropriate outcome for a mission is comple-
tion of the mission with the minimum remained time, which
means maximizing the use of mission available time. Refer-
ring Table 2(B), the remaining time is 11.7 out of the whole
mission available time of TAvailable = 10800(s) = 3(h),
which is considerably approached to zero. Therefore, the
architectures performance can be represented by mission
time (or remained time) along with productivity of the mis-
sion by completing the maximum number of highest priority
tasks with minimum risk percentage.

Considering the fact that reaching to the destination, as
a big concern for vehicles safety, is more important than
maximizing the vehicles productivity, a big penalty value is
assigned to GRP to strictly prevent generating routes with
TRoute bigger than TAvailable. To measure the performance of
the proposed dynamic architecture in a quantitative manner,
the robustness and stability of the model in enhancement of
the vehicles autonomy in terms of mission time management
and vehicles safety are evaluated through testing 10 indi-
vidual missions with the same initial condition that closely
matches actual underwater mission scenarios that presented
in Figs. 17, 18 and 19.

The stability of the architecture in timemanagement is the
most critical factor representing robustness of the method. It
is derived from simulation results in Fig. 17 that the proposed

architecture is capable of taking maximum use of mission
available time as apparently the mission time in all experi-
ments approach the TAvailable and meet the above constraints
denoted by the upper bound of 10800 s=3 h (is shown by red
line). Respectively, the value of the remaining time that has a
linear relation to TAvailable should be minimized but it should
not be equal to zero which is accurately satisfied considering
variations of remaining time for 10 experiments in Fig. 17.
In other words, minimizing the remaining time maximizes
the mission productivity. To establish appropriate cooper-
ation between the high- and low-level modules (GRP and
LLP), the correlation between path time (Tpath−flight) and the
expected time (TExpected) is another important performance
index investigated and presented in Fig. 18.

Figure 18 presents relation between value of Tpath−flight

and TExpected in multiple recall of LPP in 10 different
experiments. Existence of a reasonable difference between
Tpath−flight and TExpected values in each LPP operation is
critical to total performance of the architecture. In other
words, there should not be a big difference between these two
parameters to prevent interruption in cohesion of the whole
system. As discussed earlier, route re-planning is required
when the Tpath−flight exceeds TExpected; hence, according to
Fig. 18, the Synchro-module is recalled for six times in mis-
sion 1, not recalled in mission 2, two times in mission 3, not
recalled in mission 4 and 5, six times in mission 6, ones in
mission 7, three times in mission 8, four times in mission 9,
and two times inmission 10 in order to applymission updates
and carry out the re-planning process. Another critical factor
is the computational time for both LPP and GRP operations.
The LPP must operate concurrently and synchronous to the
GRP; thus, a large computational time causes the LPP drop
behind the operation of the GRP, which flaws the routine
flow and cohesion of the whole system. Figure 19 presents
the computational time for both LPP and GRP operations in
multiple recalls through the 10mission executions in boxplot
format.

It is noteworthy to mention from analyze of results in Fig.
19 that the proposed methodology takes a very short compu-
tational (CPU) time for all experiments that makes it highly
suitable for real-time application. Besides, referring to Fig.
19, it can be inferred that the variation of computational time
is settled in a narrow bound (approximately in range of sec-
ond for all experiments) for both GRP and LPP modules
that confirm applicability the model for real-time implemen-
tation. Considering the indexes of the total mission time,
remaining time, and variations of Tpath−flight and TExpected,
the results obtained from analyze of 10 different missions
are quantitatively very similar that prove the inherent stabil-
ity of the model. More importantly, the violation percentage
in bothGRPandLPP simulations presented inTable 2 reveals
that both planners are robust to the variations of the operation
network parameters and environmental conditions.
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9 Conclusion

In this paper, a novel approach for enhancement of an under-
water vehicle’s autonomy for large-scale underwater mission
was provided. This included a two-layer architecture, route
planner in top level and path planner in low level, working
interactively with each other and made vehicle capable of
robust decision making. Indeed, this research is an extension
of previous study (Zadeh et al. 2016d, e) in which the high-
and low-level motion planner are designed in a separatemod-
ular format, so that the employed algorithms by each module
canbe easily replacedor upgraded.Themain advantageof the
proposed framework is having a modular and flexible struc-
ture that is compatible with a broad range of computational
methods. The underwater mission, which conceptually is a
kind of task assignment problem, was specified by accom-
plishing the maximum number of assigned tasks regarding
the mission available time. By doing so, a series of diverse
scenarioswere designed to evaluate the performance and reli-
ability of the proposedmodel. Simulation results showed that
the proposedmodel is able to generate real-time near-optimal
solutions that are relatively independent of both size and com-
plexity of operationnetwork.Therefore, themainobjective of
mission that was maximizing the mission productivity while
keeping the vehicle safety was perfectly satisfied. Besides,
the results indicated that the proposed model is good choice
for operating in dynamic environment as it can excellently
handle the influence of uncertainties through the mission.

As prospect for future research, we will plan to improve
the level of vehicle’s overall situation awareness by using
the estimation of one step forward of mission operating filed
changes and then feeding those to the model to generate the
solutions for such a highly dynamic and uncertain missions.
Besides, the functionality of the model will be investigated
on a sea test trials. The modules will be upgraded with online
re-planning capability operating in a more realistic environ-
ment.
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